FINITE HOMOLOGICAL DIMENSION OF $BP_*(X)$ FOR INFINITE COMPLEXES

PETER S. LANDWEBER^l

ABSTRACT. The main result proved here is that $\mathrm{BP}_*(EG \times_G X)$ has finite homological dimension when $G = \mathbf{Z}_p$ and X is a finite G-CW-complex. The argument uses BP BP-comodules.

It is well known that the Brown-Peterson homology $BP_*(X)$ of a finite CW-complex X has finite homological dimension (= projective dimension) as a BP_* -module (cf. L. Smith [10], D. C. Johnson and W. S. Wilson [3]). On the other hand, for infinite complexes and spectra, hom dim $BP_*(X)$ may be infinite [4].

The modules $BP_*(BZ_p)$ are well understood in terms of a standard resolution, and have homological dimension one (BP denotes Brown-Peterson homology for the same prime p). A recent unpublished study by D. C. Johnson and W. S. Wilson includes the result that $BP_*((BZ_p)^n)$ has homological dimension n for p odd and all n; this has been an intractable problem for ten years, having been verified previously only for n = 2. In this note I shall obtain qualitative information on $BP_*(BZ_p \times X)$ for finite complexes X; this approach suffices in the case of BP and MU cohomology to calculate $BP^*(BA)$ and $MU^*(BA)$ for all compact abelian Lie groups A (see [6] and Stretch [11]).

The results to be proved here depend on a theorem about BP_{*}BP-comodules (Theorem A below) proved in [9], which I refer to as the coherence theorem. The results, and the key lemma on which they depend, are as follows.

Theorem 1. hom dim $\mathrm{BP}_*(B\mathbf{Z}_p\times X)<\infty$ for each finite complex X.

The proof will of course begin with the common knowledge that

hom dim
$$BP_*(BZ_n) = 1$$
,

and make use of the standard projective resolution.

THEOREM 2. If hom dim $BP_*(Y) < \infty$, this remains true after attaching a finite number of cells to Y.

More generally, one may ask if $BP_*(EG \times_G X)$ has finite homological dimension for all compact Lie groups G and finite G-complexes X.

THEOREM 3. If $G = \mathbb{Z}_p$, then hom dim $\mathrm{BP}_*(EG \times_G X) < \infty$, for each finite G-complex.

Received by the editors March 6, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55N22; Secondary 55N35, 57R77.

¹ Supported in part by a grant from the National Science Foundation.

These results depend essentially on one argument, based on the following lemma.

KEY LEMMA. Let $\phi: A \to B$ be a homomorphism of BP_* -modules, where A is finitely-presented and B is a BP_*BP -comodule with hom dim $B < \infty$. Then Im ϕ and Ker ϕ are finitely-presented, and hom dim Coker $\phi < \infty$.

We remark that a (graded) BP_{*}-module M is finitely-presented if and only if it is *coherent* (it is finitely-generated, and each of its finitely-generated submodules is finitely-presented). Since BP_{*} = $\mathbf{Z}_{(p)}[v_1, v_2, \ldots]$, it is equivalent to assert that M is isomorphic to

$$\mathrm{BP}_* \underset{\mathbf{Z}_{(n)}[v_1,\ldots,v_n]}{\otimes} N$$

for some finitely-generated module N over $\mathbf{Z}_{(p)}[v_1,\ldots,v_n]$, with $n<\infty$; then hom dim $M\leq n+1$

by the Hilbert syzygy theorem [2, §1].

COROLLARY. If

$$A \qquad \stackrel{\phi}{\rightarrow} \qquad B$$

is an exact triangle of BP_*BP -comodules, with A coherent and hom dim $B < \infty$, then hom dim $C < \infty$.

The corollary follows at once from the Key Lemma, applied to the exact sequence $0 \to \text{Coker } \phi \to C \to \text{Ker } \phi \to 0$.

Notice further that Theorem 2 follows immediately from the corollary; in particular, if hom dim $BP_*(Y) < \infty$ and $\alpha \in BP_*(Y)$, then the annihilator ideal $Ann(\alpha)$ is finitely-generated.

The Key Lemma follows from the coherence theorem (Theorem 4) of [9].

THEOREM A. Let M be a BP_*BP -comodule, which is finitely-generated as a BP_* -module. Then M is coherent if and only if v_n : $M \to M$ is injective for some $n \ge 0$ (by convention, $v_0 = p$).

PROOF OF THE KEY LEMMA. The assumptions imply that Im ϕ is a finitely-generated BP_{*}-module; Im ϕ may not be a subcomodule of the BP_{*}BP-comodule B, but it generates a subcomodule B_0 which is finitely-generated as a BP_{*}-module. If hom dim B=n, then v_n : $B\to B$ is injective [9, Lemma 3.4], hence also v_n : $B_0\to B_0$ is injective, and so B_0 is coherent by Theorem A. Then its finitely-generated subcomodule Im ϕ is finitely-presented. The conclusions about Ker ϕ and Coker ϕ now follow from the exact sequences

$$0 \to \operatorname{Ker} \phi \to A \to \operatorname{Im} \phi \to 0, \quad 0 \to \operatorname{Im} \phi \to B \to \operatorname{Coker} \phi \to 0$$
 (cf. [2, §1]).

We turn now to $BP_*(BZ_p \times X)$, and shall make use of the Künneth formula [5],

$$0 \to \mathrm{BP}_{*}(B\mathbf{Z}_{p}) \underset{\mathrm{BP}_{*}}{\otimes} \mathrm{BP}_{*}(X) \to \mathrm{BP}_{*}(B\mathbf{Z}_{p} \times X)$$
$$\to \mathrm{Tor}_{1}^{\mathrm{BP}_{*}}(\mathrm{BP}_{*}(B\mathbf{Z}_{p}), \mathrm{BP}_{*}(X)) \to 0.$$

Thus it suffices, for the proof of Theorem 1, to prove the following result about BP_*BP -comodules. Let \mathfrak{BP}_0 denote the category of BP_*BP -comodules which are coherent as BP_* -modules; for each finite complex X, $BP_*(X) \in \mathfrak{BP}_0$.

THEOREM 1'. Let $M \in \mathfrak{BP}_0$, and put $L = \mathrm{BP}_*(B\mathbb{Z}_p)$. The $\mathrm{Tor}_1^{\mathrm{BP}_*}(L, M)$ is a coherent BP_* -module, and hom $\dim L \otimes_{\mathrm{BP}_*} M < \infty$.

The proof will make use of the prime filtration theorem for coherent BP_{*}BP-comodules [7, 8]. Thus we begin with the case $M = \text{BP}_*/I_n$, $0 \le n < \infty$, where I_n denotes the invariant prime ideal $(v_0, v_1, \ldots, v_{n-1})$. Recall $L = \text{BP}_*(B\mathbf{Z}_n)$.

LEMMA. Tor $_{1}^{BP_{*}}(L, BP_{*}/I_{n})$ is a direct sum of $p^{n}-1$ copies of BP_{*}/I_{n} , and $L \otimes_{BP_{*}} BP_{*}/I_{n}$ is v_{n} -torsion with homological dimension n+1.

PROOF. We use the standard free resolution, resulting from the Gysin sequence,

$$0 \to F_1 \stackrel{\phi}{\to} F_0 \to L \to 0,$$

with F_0 free on $\{\alpha_n\}_1^{\infty}$, F_1 free on $\{\beta_n\}_1^{\infty}$ and $\phi(\beta_n) = p\alpha_n + \lambda_1\alpha_{n-1} + \cdots + \lambda_{n-1}\alpha_1$, where the λ_n 's are the coefficients of the power series $[p]^{BP}(T)$ associated with the formal group law

$$[p]^{BP}(T) = pT + \lambda_1 T + \cdots + \lambda_n T^{n+1} + \ldots$$

Recall that $I_n = (p, \lambda_1, \dots, \lambda_{p^n-1})$, and that $\lambda_{p^n-1} = v_n \in BP_{2(p^n-1)}$; the generators α_n and β_n are assigned degree 2n-1.

Now tensor with BP_*/I_n , and let $\{\overline{\beta}_n\}$, $\{\overline{\alpha}_n\}$ denote the images of the generators in $F_1 \otimes_{\mathrm{BP}_*} \mathrm{BP}_*/I_n$ and $F_0 \otimes_{\mathrm{BP}_*} \mathrm{BP}_*/I_n$. Under the map $\phi \otimes 1$, we have $\phi \otimes 1(\overline{\beta}_i) = 0$ for $i < p^n$, and then relations

$$\begin{cases} \phi \otimes 1(\bar{\beta}_{p_n}) = \lambda_{p^n - 1}\bar{\alpha}_1, \\ \phi \otimes 1(\bar{\beta}_{p^n + 1}) = \lambda_{p^n - 1}\bar{\alpha}_2 + \lambda_{p^n}\bar{\alpha}_1, \\ \dots \end{cases}$$

The conclusions of the lemma now follow easily: since $\lambda_{p^n-1} = v_n \neq 0$ in BP_*/I_n , $Tor_1 \cong Ker(\phi \otimes 1)$ is free over BP_*/I_n on $\overline{\beta}_1, \ldots, \overline{\beta}_{p^n-1}$, and $L \otimes_{BP_*} BP_*/I_n$ is v_n -torsion, hence has homological dimension at least n+1 by the Koszul resolution [2], while the free resolution over BP_*/I_n obtained by dividing out $Ker(\phi \otimes 1)$ forces its homological dimension to be at most n+1.

By the prime filtration theorem [7, 8], the general case of Theorem 1' will follow if we show that for an exact sequence $0 \to M' \to M \to M'' \to 0$ in \mathfrak{BP}_0 , the conclusion

of Theorem 1' holds for M if it holds for M' and M''. For this we examine the 6-term exact sequence (with evident abbreviations)

$$0 \to \operatorname{Tor}(L, M') \to \operatorname{Tor}(L, M) \to \operatorname{Tor}(L, M'')$$

$$\stackrel{\Delta}{\to} L \otimes M' \to L \otimes M \to L \otimes M'' \to 0.$$

Notice that we can give $L \otimes M'$ the diagonal comodule structure: from $\psi_L: L \to BP_*BP \otimes_{BP_*} L$ and $\psi_{M'}: M' \to BP_*BP \otimes_{BP_*} M'$ we give $L \otimes M'$ the coaction map

$$L \underset{\text{BP}_{*}}{\otimes} M' \xrightarrow{\psi_{L} \otimes \psi_{M'}} \text{BP}_{*} \text{BP}_{*} \underset{\text{BP}_{*}}{\otimes} L \underset{\text{BP}_{*}}{\otimes} \text{BP}_{*} \text{BP} \underset{\text{BP}_{*}}{\otimes} M'$$

$$\cong \left(\text{BP}_{*} \text{BP} \underset{\text{RP}_{*}}{\otimes} \text{BP}_{*} \text{BP} \right) \underset{\text{RP}_{*}}{\otimes} \left(L \underset{\text{RP}}{\otimes} M' \right) \xrightarrow{m \otimes 1} \text{BP}_{*} \text{BP} \underset{\text{RP}_{*}}{\otimes} \left(L \underset{\text{RP}_{*}}{\otimes} M' \right).$$

By assumption, Tor(L, M'') is a coherent BP_* -module, and hom $\dim M' \otimes L < \infty$; then the Key Lemma applies to Δ , with the conclusion that $\text{Ker } \Delta$ is coherent and $\text{Coker } \Delta$ has finite homological dimension. This gives the desired conclusions for M at once, and so proves Theorem 1'.

Finally, we consider $\mathrm{BP}_*(EG \times_G X)$ with $G = \mathbf{Z}_p$ and X a finite G-CW-complex [1]. Then the fixed point set X^G is a subcomplex, and $EG \times_G X^G = BG \times X^G$. Thus we obtain an exact triangle

$$BP_*(EG \times_G X, EG \times_G X^G) \xrightarrow{\partial} BP_*(BG \times X^G)$$

$$\searrow \qquad \qquad \swarrow$$

$$BP_*(EG \times_G X)$$

Now if G acts freely on Y, there is a fibre bundle $EG \to EG \times_G Y \to Y/G$ with contractable fibre (in addition to the usual bundle $Y \to EG \times_G Y \to BG$); thus $BP_*(EG \times_G Y) \cong BP_*(Y/G)$. Now choose a suitable equivariant regular neighborhood of X^G in X, apply excision and the relative version of the observation above for free actions to conclude that the relative group in the exact triangle is coherent. By Theorem 1, hom dim $BP_*(BG \times X^G) < \infty$ and now the corollary to the key lemma implies that this is also true for $BP_*(EG \times_G X)$. This completes the proof of Theorem 3.

REFERENCES

- 1. G. Bredon, Equivariant cohomology theories, Lecture Notes in Math., vol. 34, Springer-Verlag, Berlin and New York, 1967.
- 2. P. E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Haute Études Sci. Publ. Math. 37 (1969), 117-221.
- 3. D. C. Johnson and W. S. Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353.
- 4. _____, The projective dimension of the complex bordism of Eilenberg-Mac Lane spaces, Osaka J. Math. 14 (1977), 533-536.
- 5. P. S. Landweber, Künneth formulas for bordism theories, Trans. Amer. Math. Soc. 121 (1966), 242-256.

- 6. _____, Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study Inst. Algebraic Topology (Aarhus, 1970), Math. Inst. Aarhus Univ., Aarhus, 1970, pp. 256-269.
 - 7. _____, Associated prime ideals and Hopf algebras, J. Pure Appl. Alg. 3 (1973), 43-58.
- 8. _____, Homological properties of comodules over MU_{*}MU and BP_{*}BP, Amer. J. Math. 98 (1976), 591-610.
- 9. _____, New applications of commutative algebra to Brown-Peterson homology, Algebraic Topology (Waterloo, 1978), Lecture Notes in Math., vol. 741, Springer-Verlag, Berlin and New York, 1979, pp. 449-460
 - 10. L. Smith, On the finite generation of $\Omega^{U}_{\bullet}(X)$, J. Math. Mech. 18 (1969), 1017–1024.
- 11. C. Stretch, Stable cohomotopy and cobordism of abelian groups, Math. Proc. Cambridge Philos. Soc. 90 (1981), 273-278.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903