
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 124, Number 1, January 1996

ON SEPARATION PROPERTIES

OF FINITE DIMENSIONAL COMPACT CONVEX SETS
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Abstract. In a real finite-dimensional vector space, we study families of sets
such that every compact convex set in the space is the intersection of all
members of the family that contains it.

1. Introduction

In this paper we consider convex sets in a real vector space. We shall restrict
ourselves to the finite-dimensional case (or, without loss of generality, to Rn), al-
though some of our comments and results hold in more general topological vector
spaces.

The kind of question we are interested in is the following: for a given type of
convex sets, which families of sets are such that every set of the prescribed type
is equal to the intersection of all members of the family that contain it? This is a
simple matter for closed convex sets, and our purpose in the paper is to answer it
for compact convex sets.

For closed convex sets, a well-known theorem of Minkowski says that every such
set is the intersection of closed half-spaces. Are there other families of sets satisfying
this property? The answer is essentially negative, as shown by the following result.

Proposition 1.1. Let S be a family of closed convex sets, such that every closed
convex set in the space is the intersection of a subfamily of S. Then every closed
convex set in the space is the intersection of half-spaces belonging to S.

Proof. If a closed convex set which is not the whole space contains a half-space, it
must be a half-space itself. It follows that every closed half-space is the intersection
of half-spaces belonging to S. The result now follows from Minkowski’s theorem.

We now turn to compact convex sets, and restate our problem: we want to know
which families S of closed convex sets satisfy the property

every compact convex set in the space
is the intersection of a subfamily of S.

(1)
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To describe one example of such a family, denote by Be the unit ball, Be := {x ∈
Rn : ‖x‖ ≤ 1}, where ‖ · ‖ is the standard Euclidean norm of Rn. Then, the family
of all closed balls, namely

Se := {rBe + a : r > 0 and a ∈ Rn} ,
satisfies (1). In fact, even the family of balls rBe + a with (r, a) running over a
dense subset of R+ × Rn satisfies (1).

To simplify our discussion, we shall study families S which are closed under
translations and positive homotheties, i.e. such that

αC + w ∈ S, for any C ∈ S, w ∈ Rn and α > 0 .(2)

We shall give a necessary and sufficient condition for such a family to satisfy prop-
erty (1). Our condition involves the set of outward normals to each C ∈ S at points
of differentiability of the boundary of C. Our main result cannot be called an un-
expected one, in view of its appealing, intuitively acceptable geometrical meaning
and flavour.

The kind of problem we are dealing with calls for appropriate separation theo-
rems. In the literature we found several such theorems which use separating con-
vex surfaces other than hyperplanes: for example, separation by spherical surfaces,
cylinders and parallelotopes have been considered in [2, 3, 4] for a different type
of problem. Here, we are using very general separating surfaces, and prove general
separation theorems under appropriate differentiability conditions, and then show
that these conditions are best possible in a certain sense. For a related reasoning,
see the proof of [1, Theorem 2.1].

The symbol 〈x|y〉 denotes the usual inner product of x and y in Rn. Our refer-
ence for results and notation concerning convex sets and functions, subdifferentials,
separation, etc., is [5].

2. Results

In this article, F denotes a family of functionals, f : Rn → R+, which are convex
and positively homogeneous (i.e. f(λx) = λf(x), for any x ∈ Rn and λ ≥ 0). We
shall always assume that F is a cone, i.e. it satisfies the property

αf ∈ F , for any f ∈ F and α ∈ R+ .(3)

The set {x ∈ Rn : f(x) ≤ 1} will be denoted by Bf . Obviously, Bf is a convex,
closed neighborhood of the origin.

We define ∇(F) as the set of all γ ∈ Rn for which there exist f ∈ F and v ∈ Rn
such that f is differentiable at v and γ = ∇f(v). Here and throughout, ∇f(x)
denotes the gradient of f at a point x at which f is differentiable.

We now state our main result:

Theorem 2.1. Let F be a family satisfying the above conditions. The following
statements are equivalent:

(a) ∇(F) is dense in Rn.
(b) Any compact convex set, say K ⊂ Rn, is the intersection of all sets of the

form Bf + w, such that Bf + w ⊃ K, f ∈ F and w ∈ Rn.

This result may be translated in a slightly different form, more in the geometrical
style of Minkowski’s theorem language. For, let B be a closed convex set and v a
point on the boundary of B, at which that boundary is differentiable. Denote by
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γv the only element of Rn satisfying the conditions ‖γv‖ = 1 and 〈γv|x− v〉 ≤ 0 for
all x ∈ B. So γv is the outward, unit, normal vector to B at v. The set of all γv,
with v running over the set of points of differentiability of the boundary of B, will
be denoted by NB.

Let S be a family of closed convex sets, each of which has nonempty interior;
assume S is closed for translations and positive homotheties, i.e.

αB + w ∈ S for any B ∈ S, w ∈ Rn and α > 0 .

Define

N (S) :=
⋃
B∈S

NB .

Theorem 2.2. For a family S of sets satisfying the above conditions, the following
statements are equivalent:

(α) N (S) is dense in the unit sphere of Rn.
(β) Any compact convex subset of Rn is the intersection of a subfamily of family

S.

In the following section we prove Theorem 2.1. Theorem 2.2 is a simple conse-
quence. To see that, let us pick any B ∈ S and let b be any point of B. As B− b is
a closed convex neighborhood of the origin, the Minkowski gauge of B − b, defined
by

fB,b(x) := inf{λ > 0 : x ∈ λ(B − b)} ,
for any x ∈ Rn, is a nonnegative, convex, positively homogeneous functional.
Clearly, B is the unit ball of fB,b. It is easily seen that the family

FS := {fB,b : B ∈ S and b ∈ int(B)}
satisfies the preconditions of Theorem 2.1. Now Theorem 2.2 is nothing but a
restatement of Theorem 2.1 applied to FS .

3. Lemmas and proofs

We adopt here the notation of section 2. In the next two lemmas we fix a
functional f ∈ F and a point v where f is differentiable and satisfies f(v) = 1. We
again denote by γ the gradient of f at v; moreover, the symbol Γ represents the
subspace of Rn orthogonal to γ. Recall (cf. [5, Theorem 25.1]) that γ is the only
vector satisfying

f(x)− f(v) ≥ 〈γ|x− v〉 , for all x ∈ Rn .
In particular, we have 〈γ|v〉 = f(v) = 1 and, therefore, γ 6= 0.

For any positive δ and λ, define:

Cδ(λ) := {x ∈ Γ : f(x+ λv) ≤ λ+ δ}
= Γ ∩ [(λ+ δ)Bf − λv]

= [(λv + Γ) ∩ (λ+ δ)Bf ]− λv .

Lemma 3.1. For positive λ, δ and µ, we have:
(a) In the relative topology of Γ, Cδ(λ) is a closed, convex neighborhood of the

origin.
(b) Cδ(λ + µ) ⊃ Cδ(λ).
(c) Γ =

⋃
λ>0 Cδ(λ) .
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Proof. (a) and (b) are easy to prove.
(c) Let z ∈ Γ. Choose ε > 0, in such a way that ε‖z‖ ≤ δ. As γ = ∇f(v), there

exists η > 0 such that

f(x+ v)− f(v)− 〈γ|x〉 ≤ ε‖x‖ ,(4)

for all x satisfying ‖x‖ < η. Let us choose λ > 0 such that ‖z‖/λ < η. As 〈γ|z〉 = 0,
(4) yields:

f(λ−1z + v)− f(v) ≤ ε‖z‖/λ .
Therefore

f(z + λv) ≤ λ+ ε‖z‖ ≤ λ+ δ .

This means that z ∈ Cδ(λ), and so (c) is proved.

Lemma 3.2. Let L be a bounded subset of Rn, such that 〈γ|y〉 ≤ 0 for all y ∈ L.
Given δ > 0, there exists λ0 > 0 such that any λ ≥ λ0 satisfies

L+ λv ⊂ (λ + δ)Bf .

Proof. Any y ∈ Rn can be uniquely represented as

y = x− µv , where x ∈ Γ and µ ∈ R .(5)

In case y ∈ L, the corresponding µ is obviously nonnegative. As L is bounded,
there exist r, s ∈ R such that, for any y ∈ L, the representation (5) satisfies

‖x‖ ≤ s and 0 ≤ µ ≤ r .(6)

By Lemma 3.1(b)-(c), there exists λ0 > 0 such that, for any λ ≥ λ0:

λ ≥ 2r,(7)

Cδ(λ) ⊃ {z ∈ Γ : ‖z‖ ≤ 2s} .(8)

Let y ∈ L. It follows from (5)-(7) that the vector

z :=
λ

λ− µ x

satisfies

‖z‖ ≤ λs

λ− r ≤ 2s .

By (8), z ∈ Cδ(λ). Therefore f(z + λv) ≤ λ+ δ . Finally, the inequality

f(y + λv) =
λ− µ
λ

f(z + λv) ≤ λ+ δ

proves y + λv ∈ (λ+ δ)Bf .

Proof of Theorem 2.1. (a) ⇒ (b) Let us fix a point u 6∈ K. There exists a hyper-
plane which strictly separates u and K; this means that there exist a and γ in Rn,
such that

〈γ|u− a〉 > 0 ,(9)

〈γ|x− a〉 < 0 , for any x ∈ K .(10)

The set of all γ ’s satisfying (9)-(10) (for a fixed a) is open, because K is compact.
Therefore, as we are assuming (a), there exists γ ∈ ∇(F) satisfying (9)-(10). Ac-
cordingly, let v ∈ Rn and f ∈ F be such that f(v) = 1, f differentiable at v and
∇f(v) = γ.
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Obviously, f is differentiable at τv, for any positive τ , and γ = ∇f(τv). There-
fore, for x ∈ Rn:

f(x) ≥ f(τv) + 〈γ|x− τv〉 = τ + 〈γ|x− τv〉 .(11)

Choose δ > 0 in such a way that

〈γ|u− a〉 > δ〈γ|v〉 .(12)

If we let x := u − a + λv and τ := λ + δ, where λ is an arbitrary positive real
number, we obtain from (11):

f(u− a+ λv) ≥ λ+ δ + 〈γ|u− a− δv〉 > λ+ δ .

This means that, for any λ > 0:

u 6∈ (λ+ δ)Bf + a− λv .(13)

By Lemma 3.2 applied to L := K − a, there exists a positive λ0 such that K − a+
λ0v ⊂ (λ0 + δ)Bf , i.e.

K ⊂ (λ0 + δ)Bf + a− λ0v .(14)

The relations (13)-(14) show that (λ0 + δ)Bf + a− λ0v separates u and K, and so
(b) is proved.

(b)⇒(a). We shall apply (b) with K = Be, the Euclidean unit ball. Fix ε > 0
and u ∈ Rn such that ‖u‖ = 1. By (b), there exist f ∈ F and w ∈ Rn such that
Bf + w separates (1 + ε)u from Be , i.e. one has

f(x− w) ≤ 1 , for x ∈ Be,(15)

f((1 + ε)u− w) > 1 .(16)

Define z := (1 + ε)u− w. Let ζ be any element of ∂f(z), the subdifferential of
f at z (see [5, Part V]). For each x ∈ Rn we have:

f(x)− f(z) ≥ 〈ζ|x− z〉 .(17)

Combining (15)-(17) we get, for all x ∈ Rn:

f(x− w) − 1 > 〈ζ|x− (1 + ε)u〉 .
Therefore, 〈ζ|x − (1 + ε)u〉 < 0, for all x ∈ Be. Applying this to x := ‖ζ‖−1ζ we
obtain

〈‖ζ‖−1ζ|u〉 > 1

1 + ε
> 1− ε .

Hence, we may draw the following conclusion:∥∥∥∥ ζ

‖ζ‖ − u
∥∥∥∥ < √2ε , for any ζ ∈ ∂f(z) .(18)

On the other hand (cf. [5, Theorem 25.5]), we know that the set of points where
f is differentiable is dense in Rn. Moreover (cf. [5, Theorem 25.6]), if (zm) is a
sequence of points where f is differentiable, and (zm) converges to z, then

lim
m→∞

∇f(zm) ∈ ∂f(z) .

Therefore there exists ζ0 ∈ ∂f(z) and k ∈ N, such that the vector c := ∇f(zk) is
nonzero and ∥∥∥∥ ζ0

‖ζ0‖
− c

‖c‖

∥∥∥∥ < ε .(19)
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The inequalities (18) and (19) yield∥∥∥∥u− c

‖c‖

∥∥∥∥ < √2ε + ε .(20)

Our assumption (3) implies ‖c‖−1f ∈ F . It is also clear that

‖c‖−1c = ∇(‖c‖−1f)(zk) .

Therefore ‖c‖−1c ∈ ∇(F), and so (20) proves item (a) of our theorem.
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