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Abstract. In the literature, several definitions of a preponderant derivative
exist. An old result of Jarńık implies that a typical continuous function on
[0, 1] has a (strong) preponderant derivative at no point. We show that a
typical continuous function on [0, 1] has an infinite (weak) preponderant
derivative at each point from a c-dense subset of (0, 1).

1. Introduction

Let C denote the set of continuous real functions defined on [0,1] furnished with
the metric of uniform convergence. As usual, when we say a typical f ∈ C has a
certain property, we mean that the set of f ∈ C with this property is residual in
C. References concerning differentiability properties of typical continuous functions
can be found in [2] and [11]. The first results of this type ([1], [7]) imply that a
typical f ∈ C has a derivative at no point. A result of Jarńık [5] (cf. [11],
Theorem J, (iii)) immediately implies that a typical f ∈ C has a preponderant
derivative (finite or infinite) at no point of (0,1), if we use a strong definition of a
preponderant derivative (cf. Definition 1 below) which was used e.g. by Bruckner
[3]. The same result holds true if we consider a slightly weaker definition of a
preponderant derivative used in [8].

The main result of the present article says that the situation changes if we use
another weaker notion of a preponderant derivative (cf. Definition 2 below), which
is still stronger than the notion of a preponderant derivative used by Denjoy [4].
Namely we prove that a typical function f ∈ C has this weaker preponderant
derivative f

′

pr(x) = ∞ at each point x from a c-dense subset of (0,1). Note that
the infiniteness of the preponderant derivative is essential, since a theorem of Jarńık
[5] (cf. [11], Theorem J, (ii)) immediately implies that a typical f ∈ C has at
no point a finite preponderant derivative (any existing definition of a preponderant
derivative can be used here). Further note that a slightly weaker version of the main
result of the present article is stated without a proof in [11] (Theorem 4, (ii)). The
main tools for the proof of our result is the Banach-Mazur game and an unusual
monotonicity theorem of [6].
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2. Preliminaries

If a > b , then the symbol (a, b) will denote the open interval (b, a). The symbol
µ will denote the Lebesgue measure on R. The open ball in a metric space P with
the center c ∈ P and the radius r > 0 is denoted by B(c, r).

The definition of the strong preponderant derivative used in [3] and mentioned
in the Introduction is the following.

Definition 1. We say that A is a strong preponderant derivative of a function f
at a point a ∈ R if there exists a measurable set E ⊂ R such that

limh→0+

µ(E ∩ (a, a+ h))

h
>

1

2
, limh→0+

µ(E ∩ (a− h, a))

h
>

1

2

and

lim
x→a,x∈E

f(x)− f(a)

x− a = A.

We shall work with the following weaker definition.

Definition 2. We say that a function f has at a point a the preponderant
derivative f

′

pr(a) = A if there exists a measurable set E ⊂ R such that

lim
x→a,x∈E

f(x)− f(a)

x− a = A

and µ(E∩I)
µ(I) > 1

2 for every interval I containing a .

One of the main tools of the present article is the Banach-Mazur game. It is the
following infinite game between two players.

Let P be a metric space and let Q ⊂ P be given. In the first step the first
player chooses an open ball B(g1, δ1). In the second step the second player chooses
an open ball B(f1, ε1) ⊂ B(g1, δ1) , in the third step the first player chooses an
open ball B(g2, δ2) ⊂ B(f1, ε1), and so on. If

∞⋂
i=1

B(fi, εi) ⊂ Q ,

then the second player wins. In the opposite case the first player wins.

We shall need the following theorem essentially due to Banach.

Theorem BM. The second player has the winning strategy in the Banach-Mazur
game if and only if Q is a residual subset of P .

A proof of this theorem can be found in [10] in the case P = (0, 1) ; the proof
in the general situation (cf. [9]) is essentially the same.

The second essential tool is the following basic lemma which is an easy conse-
quence of the main result of [6].
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Lemma 1. Let ϕ be a continuous function on [a, b] , let S be a countable set

and let ϕ(b)−ϕ(a)
b−a > K. Then there exists x ∈ (a, b) \ S for which

(1) µ{z ∈ (x, y) :
ϕ(z)− ϕ(x)

z − x > K} > 1

2
(y − x) for all y ∈ (x, b] and

(2) µ{z ∈ (y, x) :
ϕ(z)− ϕ(x)

z − x > K} > 1

2
(x− y) for all y ∈ [a, x).

Proof. Choose ε > 0 such that ϕ(b) − ϕ(a) > (K + ε)(b − a) and consider the
function f(x) := (K + ε)x − ϕ(x) . Since f(b) < f(a) and the conditions (B),
(C), (D) of Theorem 1 from [6] are clearly satisfied for α = 1/2 , we obtain that
(A) does not hold. Consequently there exists x ∈ (a, b) \ S such that

(3) µ{z ∈ (x, y) : (K+ε)z−ϕ(z) > (K+ε)x−ϕ(x)} < 1

2
(y−x) for all y ∈ (x, b]

and

(4) µ{z ∈ (y, x) : (K+ε)z−ϕ(z) > (K+ε)x−ϕ(x)} ≥ 1

2
(x−y) for all y ∈ [a, x).

It is easy to see that (3) immediately implies (1). Since f is continuous, it is
easy to prove that (4) implies (2).

We shall also need the following two easy lemmas.

Lemma 2. Let f be a measurable real function, let x ∈ R and let an ↗ x and
bn ↘ x be strictly monotone sequences such that, for all natural numbers n ,

µ{z ∈ (y, x) :
f(z)− f(x)

z − x > n} > |x− y|
2

whenever y ∈ [an, an+1] or y ∈ [bn+1, bn]. Then f
′

pr(x) =∞.
Proof. Fix a natural n . The function

h(y) =
1

|x− y|µ{z ∈ (y, x) :
f(z)− f(x)

z − x > n}

is clearly continuous on [an, an+1]∪[bn+1, bn]. Consequently there exists an εn > 0
such that

µ{z ∈ (y, x) :
f(z)− f(x)

z − x > n} > |x− y|(εn + 1/2)

for each y ∈ [an, an+1] ∪ [bn+1, bn] . Therefore we can find hn > 0 such that

µ{z ∈ (y, x) \ (−hn, hn) :
f(z)− f(x)

z − x > n} > (1/2)|x− y|

for each y ∈ [an, an+1] ∪ [bn+1, bn] . Now we put

E = (−∞, a1) ∪ (b1,∞) ∪
∞⋃
n=1

({z :
f(z)− f(x)

z − x > n} \ (−hn, hn)).

It is easy to prove that E has the properties from Definition 2 (with a = x and
A =∞ ).
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Lemma 3. Let 0 ≤ p < a < b ≤ 1, K > 0 and f ∈ C . Suppose that, for all
y ∈ [a, b],

µ{z ∈ (p, y) :
f(z)− f(p)

z − p > K} > 1

2
(y − p).

Then there exists 0 < η < a−p such that the conditions ‖f−f∗‖ < η, |p∗−p| < η
and y ∈ [a, b] imply

µ{z ∈ (p∗, y) :
f∗(z)− f∗(p∗)

z − p∗ > K} > 1

2
(y − p∗).

Proof. Suppose that no such η exists.
Then there exist sequences f∗n ∈ C, p∗n ∈ [0, 1], yn ∈ [a, b] such that f∗n → f in

C, p∗n → p and

(5) µ((p∗n, yn) ∩An) ≤ 1

2
(yn − p∗n),

where

An = {z ∈ [0, 1] :
f∗n(z)− f∗n(p∗n)

z − p∗n
> K}.

We can and will suppose that yn → y, where y ∈ [a, b]. Putting

A = {z ∈ [0, 1] :
f(z)− f(p)

z − p > K},

we know that

(6) µ(A ∩ (p, y)) >
1

2
(y − p).

But for each fixed z ∈ (p, y) obviously

f∗n(z)− f∗n(p∗n)

z − p∗n
→ f(z)− f(p)

z − p
and therefore

(7) A ∩ (p, y) ⊂ lim inf
n→∞

(An ∩ (p, y)).

Using (7) and (5) we obtain

µ(A ∩ (p, y)) ≤ lim inf
n→∞

µ(An ∩ (p, y))

≤ lim sup
n→∞

(µ(An ∩ (p∗n, yn)) + |p∗n − p|+ |y∗n − y|)

≤ lim sup
n→∞

1

2
(yn − p∗n) =

1

2
(y − p),

which contradicts (6).
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3. Main result

Theorem. For a typical f ∈ C the sets {x : f
′

pr(x) =∞} and {x : f
′

pr(x) =
−∞} are c-dense in (0, 1).

Proof. Since the mapping h→ −h is a homeomorphism of C on C and h
′

pr(x) =

−∞ iff (−h)
′

pr(x) =∞ , it is sufficient to prove that {x : f
′

pr(x) =∞} is c-dense
for a typical f ∈ C . Consequently it is sufficient to prove that for each fixed
interval (α, β) with rational endpoints the set

Q := {f ∈ C : card{x ∈ (α, β) : f
′

pr(x) =∞} = c}

is residual.
By Theorem BM it is sufficient to find a winning strategy for the second player

in the Banach-Mazur game for P = C and Q. To describe this strategy, put
Sn = {0, 1}n and S = {0, 1}N, where n ∈ N and N = {1, 2, ...}. By our strategy
the second player will construct in his nth move not only a ball B(fn, εn) ⊂ C but
also numbers ξn > 0, qn > 0 and 2n points {xsn : s ∈ Sn } such that the following
conditions (8)-(13) hold (where we have put asn = xsn − 50ξn , b

s
n = xsn + 50ξn) :

(8) {[asn, bsn] : s ∈ Sn} are pairwise disjoint subintervals of (α, β);

if we fix an arbitrary s = (s1, ..., sn) ∈ Sn and denote xk = x
(s1,...,sk)
k , ak =

a
(s1,...sk)
k and bk = b

(s1,...,sk)
k for 1 ≤ k ≤ n , then

(9) [an, bn] ⊂ (xn−1 − 4ξn−1, xn−1 + 4ξn−1) for n > 1;

(10) fn is linear on [xn − 5ξn, xn + 5ξn], constant on the intervals

[an, xn − 5ξn], [xn + 5ξn, bn] and
fn(bn)− fn(an)

bn − an
= qn > 10(n+ 1);

if n > 1, then for each x ∈ [xn − 4ξn, xn + 4ξn] and f ∈ B(fn, εn) we have

(11) µ{z ∈ (y, x) :
f(x)− f(z)

x− z > n− 1} > 1

2
(x− y) for y ∈ [an−1, an] and

(12) µ{z ∈ (x, y) :
f(z)− f(x)

z − x > n− 1} > 1

2
(y − x) for y ∈ [bn, bn−1] ;

(13) B(fn, εn) ⊂ B(gn, δn) and εn <
1

2
ξn.

If we prove that the second player can play according to this strategy in all moves,
we shall be done. In fact, (9) and (13) imply that ξn → 0, εn → 0,

⋂∞
n=1B(fn, εn)

consists of one function f and the set
⋂∞
n=1[a

(s1,...,sn)
n , b

(s1,...,sn)
n ] consists of

one point xs ∈ (a, b) for each s = (s1, s2, ...) ∈ S . Lemma 2, (9), (11) and (12)
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easily imply that f
′

pr(xs) =∞. Since (8) implies that xs 6= xs∗ for s 6= s∗ , we
obtain f ∈ Q .

Thus suppose that, for a fixed natural number m, the second player has played
m − 1 moves and the first player has played m moves such that the conditions
(8)-(13) hold for each n < m. We know that B(gm, δm) ⊂ B(fm−1, εm−1) (if
m > 1) and we can clearly suppose without any loss of generality that gm is a
piece-wise linear function. Our task is to construct

fm, εm, ξm, qm and {xsm : s ∈ Sm}

such that the conditions (8)-(13) hold for n = m .
If m = 1, then the conditions (9), (11) and (12) are trivially satisfied and the

construction of f1, ε1, ξ1, q1 and x
(0)
1 , x

(1)
1 such that the conditions (8), (10) and

(13) are satisfied for n = 1 is quite easy.
If m > 1 , we shall consider an arbitrary (s1, ..., sm−1) ∈ Sm−1 and the

function gm on the interval

[am−1, bm−1] := [a
(s1,...,sm−1)
m−1 , b

(s1,...,sm−1)
m−1 ].

Since (13) implies ‖gm − fm−1‖ < εm−1 <
1
2ξm−1 <

1
2 (bm−1 − am−1), we have

gm(bm−1)− gm(am−1)

bm−1 − am−1
>
fm−1(bm−1)− fm−1(am−1)

bm−1 − am−1
− 1 = qm−1 − 1.

Since gm is piece-wise linear, Lemma 1 ( used for ϕ = gm, [a, b] = [am−1, bm−1],

K = qm−1−1 ) implies that we can choose two points x
(s1,...,sm−1,0)
m , x

(s1,...,sm−1,1)
m

in (am−1, bm−1) such that, denoting any of them by xm, the following assertions
hold :

(14) gm is linear on a neighbourhood of xm,

(15) for each y ∈ (xm, bm−1] we have

µ{z ∈ (xm, y) :
gm(z)− gm(xm)

z − xm
> qm−1 − 1} > 1

2
(y − xm) and

(16) for each y ∈ [am−1, xm) we have

µ{z ∈ (y, xm) :
gm(z)− gm(xm)

z − xm
> qm−1 − 1} > 1

2
(xm − y).

Thus we have constructed for each s ∈ Sm a point xsm (denoted above as
xm ). In the following we shall suppose that s = (s1, ..., sm) is fixed and we shall
put for brevity as above

am−1 = a
(s1,...,sm−1)
m−1 , bm−1 = b

(s1,...,sm−1)
m−1 , xm−1 = x

(s1,...,sm−1)
m−1 , xm = xsm.
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Now we shall observe that

(17) xm ∈ (xm−1 − 4ξm−1, xm−1 + 4ξm−1).

In fact, suppose that (17) does not hold. We can suppose without any loss of
generality that xm ≥ xm−1 , the case xm ≤ xm−1 being quite symmetrical. Then

xm ∈ [xm−1 + 4ξm−1, xm−1 + 5ξm−1] or xm ∈ [xm−1 + 5ξm−1, bm−1].

In the first case (10) yields

fm−1(xm) ≥fm−1(xm−1 + 4ξm−1)

=fm−1(xm−1) +
4

10
(fm−1(bm−1)− fm−1(am−1))

=fm−1(xm−1) + 40qm−1ξm−1.

For each z ∈ [xm−1 + 25ξm−1, bm−1] we have by (10)

fm−1(z) = fm−1(bm−1) = fm−1(xm−1) + 50qm−1ξm−1 and z − xm ≥ 20ξm−1;

consequently
fm−1(z)− fm−1(xm)

z − xm
≤ 10qm−1ξm−1

20ξm−1
=
qm−1

2
.

Since ‖gm − fm−1‖ < 1
2ξm−1 we have

gm(z)− gm(xm)

z − xm
≤ qm−1

2
+

ξm−1

20ξm−1
<
qm−1 + 1

2
< qm−1 − 1

for each z ∈ [xm−1 + 25ξm−1, bm−1]. This clearly contradicts (15) for y = bm−1 .
If xm ∈ [xm−1 + 5ξm−1, bm−1] , we can obviously find

y ∈ [xm−1 + 5ξm−1, xm−1 + 50ξm−1] such that |y − xm| = 10ξm−1.

For each z ∈ (xm+y
2 , y) we have |z − xm| ≥ 5ξm−1. Thus, since fm−1(z) =

fm−1(xm) and ‖gm − fm−1‖ < 1
5ξm−1, we have

gm(z)− gm(xm)

z − xm
≤ ξm−1

5ξm−1
=

1

5
< qm−1 − 1.

This clearly contradicts (15) (if y > xm ) or (16) (if y < xm ).
Further observe that (14), (15) and (17) yield the existence of v = vs such that

(18) gm is linear on [xm − vs, xm + vs] ⊂ (xm−1 − 4ξm−1, xm−1 + 4ξm−1)

with a slope q = qs > qm−1 − 1 and the intervals

{[xsm − vs, xsm + vs] : s ∈ Sm} are pairwise disjoint.
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Using (15), we can apply Lemma 3 to

f = gm, p = xm, a = xm + v, b = bm−1, K = qm−1 − 1

and obtain η = ηs > 0 such that :

(19) whenever ‖h− gm‖ < η and |x− xm| < η, then

µ{z ∈ (x, y) :
h(z)− h(x)

z − x > qm−1 − 1} > 1

2
(y − x)

for all y ∈ [xm + v, bm−1].

Using (16) and the symmetrical version of Lemma 3, we obtain η = ηs > 0 such
that :

(20) whenever ‖h− gm‖ < η and |x− xm| < η, then

µ{z ∈ (y, x) :
h(z)− h(x)

z − x > qm−1 − 1} > 1

2
(x− y)

for all y ∈ [am−1, xm − v].

Now choose qm so big and ξm > 0 so small (note that qm and ξm do not depend
on s) that for each s ∈ Sm

(21) qm > max(qs, 10(m+ 1)),

(22) 50ξm < min(
ηs

2qm
,
ηs

2qm
),

(23) 50ξm <
qsvs

qm
and

(24) 50qmξm < δm.

On account of (21) we obtain 5ξm < 50ξmqm
qs and (23) implies that

Ism := [xsm −
50ξmqm
qs

, xsm +
50ξmqm
qs

] ⊂ [xsm − vs, xsm + vs].

Consequently (18) gives that {Ism : s ∈ Sm} are pairwise disjoint intervals.
On each interval Ism we now define the function fm by the following conditions:

fm(xsm) = gm(xsm),

fm is linear on [xsm − 5ξm, x
s
m + 5ξm] with the slope 10qm,

fm(x) = gm(xsm) + 50qmξm for x ∈ [xsm + 5ξm, x
s
m +

50ξmqm
qs

] and
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fm(x) = gm(xsm)− 50qmξm for x ∈ [xsm −
50ξmqm
qs

, xsm − 5ξm].

For x ∈ [0, 1] which belongs to no interval Ism , we put fm(x) = gm(x).
Using (18) we easily obtain that fm ∈ C. On account of (18) and the definition

of fm we easily see that ‖fm − gm‖ ≤ 50qmξm. Consequently (24) implies fm ∈
B(gm, δm). Thus we can choose an εm > 0 such that

(25) B(fm, εm) ⊂ B(gm, δm), εm <
ξm
2

and εm < min(
ηs

2
,
ηs

2
) for each s ∈ Sm.

Now we have to show that the conditions (8) - (13) hold for n = m.
By (21) we have [asm, b

s
m] ⊂ Ism, which implies (8).

In the following we shall suppose that an arbitrary s ∈ Sm is fixed and we shall
omit the index s.

The condition (9) easily follows from (18), since

[am, bm] ⊂ Im ⊂ [xm − v, xm + v].

Since [am, bm] ⊂ Im, the condition (10) follows immediately from the definition
of fm.

The condition (13) is contained in (25).
Thus it is sufficient to prove (11) and (12). We shall prove (12) only, the proof

of (11) being symmetrical. To prove (12), consider arbitrary

x ∈ [xm − 4ξm, xm + 4ξm], f ∈ B(fm, εm) and y ∈ [bm, bm−1].

We shall distinguish two possibilities :

y ∈ [xm + v, bm−1] and y ∈ [bm, xm + v).

In the first case (22) gives

‖fm − gm‖ ≤ 50qmξm <
η

2
.

Consequently (25) implies ‖f − gm‖ < η. By (22) also |x − xm| < η and conse-
quently (19) and (10) yield

(26) µ{z ∈ (x, y) :
f(z)− f(x)

z − x > 10m− 1} > 1

2
(y − x).

In the second case we shall estimate f(z)−f(x)
z−x separately for the cases

(27) z ∈ [xm + 5ξm, xm +
50ξmqm

q
] and

(28) z ∈ (xm +
50ξmqm

q
, xm + v).
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In the case (27) we have

fm(x) ≤ fm(xm + 4ξm) = fm(xm) + 40qmξm, fm(z) = fm(xm) + 50qmξm

and consequently fm(z)− fm(x) > 10qmξm. Since

z − x < 50ξmqm
q

+ 4ξm and ‖fm − f‖ <
1

2
ξm,

we obtain

f(z)− f(x)

z − x >
10qmξm − ξm
50ξmqm

q + 4ξm
>

9qm
54 qmq

=
q

6
>

1

6
(qm−1 − 1) >

10m− 1

6
> m.

In the case (28) observe that we have proved

fm(xm + 50ξmqm
q )− fm(x)

(xm + 50ξmqm
q )− x

>
q

6
,

fm(z)− fm(xm + 50ξmqm
q )

z − (xm + 50ξmqm
q )

= q and consequently

fm(z)−fm(x)
z−x > q

6 . Since ‖fm − f‖ < 1
2ξm and z − x > 45ξm, we have

f(z)− f(x)

z − x >
q

6
− 1 >

10m− 1

6
− 1 > m.

Consequently we have

(29) µ{z ∈ (x, y) :
f(z)− f(x)

z − x > m} ≥ µ[xm + 5ξm, y] >
1

2
(y − x).

From (29) and (26) we obtain (12) which completes the proof.
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