LYUBEZNIK RESOLUTIONS AND THE ARITHMETICAL RANK OF MONOMIAL IDEALS

KYOUKO KIMURA

(Communicated by Bernd Ulrich)

Abstract

In this paper, we prove that the length of a Lyubeznik resolution of a monomial ideal gives an upper bound for the arithmetical rank of the ideal.

1. Introduction

Let S be a polynomial ring over a field K. Let I be a monomial ideal of S and $G(I)=\left\{m_{1}, m_{2}, \ldots, m_{\mu}\right\}$ the minimal set of monomial generators of I. In general, it is unknown how to construct a minimal graded free resolution of S / I. In 1960, Taylor [16] discovered a graded free resolution of S / I, which is called the Taylor resolution of I :

$$
T_{\bullet}: 0 \longrightarrow T_{\mu} \xrightarrow{d_{\mu}} T_{\mu-1} \xrightarrow{d_{\mu-1}} \cdots \xrightarrow{d_{1}} T_{0} \longrightarrow S / I \longrightarrow 0,
$$

where

$$
\begin{aligned}
T_{0}=S e_{\emptyset}, T_{s} & =\bigoplus_{1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq \mu} S e_{i_{1} i_{2} \cdots i_{s}} \\
d_{s}\left(e_{i_{1} i_{2} \cdots i_{s}}\right) & =\sum_{j=1}^{s}(-1)^{j-1} \frac{\operatorname{lcm}\left(m_{i_{1}}, \ldots, m_{i_{s}}\right)}{\operatorname{lcm}\left(m_{i_{1}}, \ldots, \widehat{m_{i_{j}}}, \ldots, m_{i_{s}}\right)} e_{i_{1} \cdots \widehat{i_{j} \cdots i_{s}}}
\end{aligned}
$$

Here $e_{i_{1} i_{2} \cdots i_{s}}\left(1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq \mu\right)$ are free basis elements of T_{s}, and the degree of $e_{i_{1} i_{2} \cdots i_{s}}$ is defined by

$$
\operatorname{deg} e_{i_{1} i_{2} \cdots i_{s}}=\operatorname{deg} \operatorname{lcm}\left(m_{i_{1}}, m_{i_{2}}, \ldots, m_{i_{s}}\right)
$$

In 1988, Lyubeznik [13] constructed a graded free resolution of S / I as a subcomplex of the Taylor resolution of I. This complex is called a Lyubeznik resolution.

We recall the definition of a Lyubeznik resolution. Let $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq$ μ. If m_{q} does not divide $\operatorname{lcm}\left(m_{i_{t}}, m_{i_{t+1}}, \ldots, m_{i_{s}}\right)$ for all $t<s$ and for all $q<i_{t}$, then the symbol $e_{i_{1} i_{2} \cdots i_{s}}$ is said to be L-admissible. The Lyubeznik resolution of I is a subcomplex of the Taylor resolution of I generated by all L-admissible symbols. Note that a Lyubeznik resolution of I depends on the order of the generators $m_{1}, m_{2}, \ldots, m_{\mu}$. We define the L-length of I as the minimum length of Lyubeznik resolutions of I. The Taylor resolution of I is far from being a minimal graded free resolution in general, but a Lyubeznik resolution of I often gives a minimal graded

[^0]free resolution or a graded free resolution whose length is equal to the projective dimension of S / I.

The arithmetical rank of I is defined by
$\operatorname{ara} I:=\min \left\{r \in \mathbb{N}:\right.$ there exist $a_{1}, \ldots, a_{r} \in I$ such that $\left.\sqrt{\left(a_{1}, \ldots, a_{r}\right)}=\sqrt{I}\right\}$.
A trivial upper bound for ara I is the cardinality of the minimal set of monomial generators of I, denoted by $\mu(I)=\mu$, which is equal to the length of the Taylor resolution of I. In this paper, we prove the following theorem:

Theorem 1. Let I be a monomial ideal of S. If the L-length of I is λ, then

$$
\operatorname{ara} I \leq \lambda
$$

It is known from Lyubeznik [12] that if I is a squarefree monomial ideal, then $\operatorname{pd}_{S} S / I \leq \operatorname{ara} I$, where $\operatorname{pd}_{S} S / I$ is the projective dimension of S / I. It is natural to ask when ara $I=\operatorname{pd}_{S} S / I$ holds for a squarefree monomial ideal I. The author together with Terai and Yoshida (9, [10]; see also [11) has proved that ara $I=$ $\operatorname{pd}_{S} S / I$ for squarefree monomial ideals I with $\mu(I)$ - height $I \leq 2$. Barile [3, 4, 5, 6, 7, Barile and Terai [8, and Schmitt and Vogel [15] also proved the same equality for some classes of squarefree monomial ideals. Since the projective dimension of S / I is equal to the length of the minimal graded free resolution of S / I, we have the following corollary:

Corollary 2. Let I be a squarefree monomial ideal of S. If the L-length of I is equal to the projective dimension of S / I, then

$$
\operatorname{ara} I=\operatorname{pd}_{S} S / I
$$

In particular, if the Lyubeznik resolution of I with respect to some order of monomial generators is minimal, then the same assertion is true.

In Section 2, we prove Theorem 1 and several corollaries. In Section 3, we give examples of squarefree monomial ideals I whose L-length is equal to the projective dimension of S / I; see Barile [1, 2]. We also show that for the Stanley-Reisner ideal I of the triangulation of the projective plane with 6 vertices, the L-length of I coincides with ara I. Notice that Yan [17] proved that ara $I=4>3=\operatorname{pd}_{S} S / I$ when char $K \neq 2$.

2. Proof of Theorem 1

In this section, we prove Theorem [1 which is the main result in this paper.

Proof of Theorem 1. Let $G(I)=\left\{m_{1}, m_{2}, \ldots, m_{\mu}\right\}$ be the minimal set of monomial generators of I. We consider the Lyubeznik resolution of I with respect to this order.

To prove the theorem, it is enough to find λ elements $g_{1}, g_{2}, \ldots, g_{\lambda}$ such that

$$
\sqrt{\left(g_{1}, g_{2}, \ldots, g_{\lambda}\right)}=\sqrt{I}
$$

We set

$$
\left\{\begin{array}{l}
g_{1}=m_{1}, \\
g_{2}=m_{2}+\sum_{\substack{\left[i_{1}, i_{2}, \ldots, i_{\lambda-1}\right] \in L_{\lambda-1} \\
i_{1} \geq 3}} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-1}} \\
\\
\quad \vdots \\
g_{\ell}= \\
\\
\\
\\
g_{\lambda}= \\
m_{\ell}+m_{\substack{\left[i_{1}, i_{2}, \ldots, i_{\lambda-\ell+1}\right] \in L_{\lambda-\ell+1} \\
i_{1} \geq \ell+1}}+\sum_{\substack{\left[i_{1}\right] \in L_{1} \\
i_{1} \geq \lambda+1}} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-\ell+1}}=m_{\lambda}+m_{\lambda+1}+\cdots+m_{\mu}
\end{array}\right.
$$

where

$$
L_{s}:=\left\{\left[i_{1}, i_{2}, \ldots, i_{s}\right] \in \mathbb{N}^{s}: \begin{array}{l}
1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq \mu \\
e_{i_{1} i_{2} \cdots i_{s}} \text { is } L \text {-admissible }
\end{array}\right\}
$$

Put $J=\left(g_{1}, g_{2}, \ldots, g_{\lambda}\right)$. We prove that $m_{\ell} \in \sqrt{J}$ for all $\ell=1,2, \ldots, \mu$ by induction on ℓ. We need the following lemma:
Lemma 3. Suppose $\left[i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s}$. Then:
(1) $\left[i_{j_{1}}, \ldots, i_{j_{t}}\right] \in L_{t}$ for all $t \leq s$ and for all $1 \leq j_{1}<\cdots<j_{t} \leq s$.
(2) If $i_{1}>1$, then $\left[1, i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s+1}$. In particular, if $\left[i_{1}, i_{2}, \ldots, i_{\lambda}\right] \in L_{\lambda}$, then $i_{1}=1$.
(3) Suppose $\ell<i_{1}$. If $\left[\ell, i_{1}, i_{2}, \ldots, i_{s}\right] \notin L_{s+1}$, then $m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{s}}$ is divisible by at least one of $m_{1}, m_{2}, \ldots, m_{\ell-1}$.

Proof. These follow from the definition of L-admissibleness.
The case $\ell=1$ is clear because $m_{1}=g_{1}$. For $\ell=2$, we consider $m_{2} g_{2}$. Then

$$
m_{2} g_{2}=m_{2}^{2}+\sum_{\substack{\left[i_{1}, i_{2}, \ldots, i_{\lambda-1}\right] \in L_{\lambda-1} \\ i_{1} \geq 3}} m_{2} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-1}} \in J
$$

Since $\left[2, i_{1}, i_{2}, \ldots, i_{\lambda-1}\right] \notin L_{\lambda}$ by Lemma 3 (2), the second term is divisible by m_{1} by Lemma 3 (3). Hence $m_{2}^{2} \in J$, and thus $m_{2} \in \sqrt{J}$.

We assume $\ell>2$ and $m_{1}, m_{2}, \ldots, m_{\ell-1} \in \sqrt{J}$. Set $\nu=\nu_{\ell}=\min \{\ell-2, \lambda-2\}$. Then we show that

$$
\begin{equation*}
\sum_{\left[\ell, i_{2}, \ldots, i_{s}\right] \in L_{s}} m_{\ell} m_{i_{2}} \cdots m_{i_{s}} \in \sqrt{J} \tag{2.1}
\end{equation*}
$$

by descending induction on $s(\lambda-\nu \leq s \leq \lambda-1)$.
First, we consider $m_{\ell} g_{2}$. By a similar argument as in the case $\ell=2$, we have (2.1) for $s=\lambda-1$.

Next, we assume

$$
\begin{equation*}
\sum_{\left[\ell, i_{2}, \ldots, i_{s+1}\right] \in L_{s+1}} m_{\ell} m_{i_{2}} \cdots m_{i_{s+1}} \in \sqrt{J} \tag{2.2}
\end{equation*}
$$

and prove (2.1). Then $m_{\ell} g_{\lambda-s+1} \in J$ implies that

$$
m_{\ell} m_{\lambda-s+1}+\sum_{\substack{\left[i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s} \\ i_{1} \geq \lambda-s+2}} m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{s}} \in J
$$

Since $\lambda-s+1 \leq \nu+1<\ell$ by the definition of ν, we have

$$
\sum_{\left[\ell, i_{2}, \ldots, i_{s}\right] \in L_{s}} m_{\ell}^{2} m_{i_{2}} \cdots m_{i_{s}}+\sum_{\substack{\left[i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s} \\ i_{1}>\ell}} m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{s}} \in \sqrt{J}
$$

The second term can be written in the following form:

$$
\begin{equation*}
\sum_{\left[\ell, i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s+1}} m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{s}}+\sum_{\substack{\left[i_{1}, i_{2}, \ldots, i_{s}\right] \in L_{s} \\\left[\ell, i_{1}, i_{2}, \ldots, i_{s}\right] \notin L_{s}+1}} m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{s}} \tag{2.3}
\end{equation*}
$$

The first term of (2.3) is in \sqrt{J} by assumption (2.2). The second term of (2.3) is in \sqrt{J} by Lemma 3 (3). Therefore (2.1) is also satisfied for s. Hence, (2.1) is satisfied for all $s \geq \lambda-\nu$.

Now, we prove that $m_{\ell} \in \sqrt{J}$. If $\nu=\ell-2$, then we consider $m_{\ell} g_{\ell}$. By a similar argument as above, we have

$$
m_{\ell}^{2}+\sum_{\left[\ell, i_{1}, i_{2}, \ldots, i_{\lambda-\ell+1}\right] \in L_{\lambda-\ell+2}} m_{\ell} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-\ell+1}} \in \sqrt{J}
$$

Since (2.1) is satisfied for $s=\lambda-\nu=\lambda-\ell+2$, we have $m_{\ell}^{2} \in \sqrt{J}$ and so $m_{\ell} \in \sqrt{J}$ as required. For $\nu=\lambda-2$, we consider $m_{\ell} g_{\lambda}$. By a similar argument as in the case of $\nu=\ell-2$, we have $m_{\ell} \in \sqrt{J}$.

Proof of Corollary 2, By Lyubeznik [12], we have $\operatorname{pd}_{S} S / I \leq \operatorname{ara} I$. On the other hand, our theorem gives the opposite inequality.

We also have an upper bound on the arithmetical rank, which was proved by Terai.

Corollary 4 (Terai). Let I be a squarefree monomial ideal of S, and let $G(I)=$ $\left\{m_{1}, m_{2}, \ldots, m_{\mu}\right\}$ be the minimal set of monomial generators of I. We set

$$
l=\max \left\{l: \begin{array}{c}
m_{j_{1}} \neq \operatorname{lcm}\left(m_{j_{1}}, m_{j_{2}}\right) \neq \cdots \neq \operatorname{lcm}\left(m_{j_{1}}, m_{j_{2}}, \ldots, m_{j_{s}}\right) \\
\text { for some } m_{j_{1}}, m_{j_{2}}, \ldots, m_{j_{s}} \in G(I)
\end{array}\right\}
$$

Then we have

$$
\operatorname{ara} I \leq l
$$

Proof. Let λ denote the length of a Lyubeznik resolution of I. If $e_{i_{1} i_{2} \cdots i_{\lambda}}$ is L admissible, then

$$
m_{i_{\lambda}} \neq \operatorname{lcm}\left(m_{i_{\lambda}}, m_{i_{\lambda-1}}\right) \neq \cdots \neq \operatorname{lcm}\left(m_{i_{\lambda}}, m_{i_{\lambda-1}}, \ldots, m_{i_{1}}\right)
$$

by the definition. Therefore $\lambda \leq l$ holds and Corollary 2 gives the desired inequality.

The next corollary was proved by Barile [1, 2].

Corollary 5 (Barile [1, Proposition 2.4], [2, Remark 3]). Let I be a squarefree monomial ideal and let $G(I)=\left\{m_{1}, m_{2}, \ldots, m_{\mu}\right\}$ be the minimal set of monomial generators of I. If there exists an integer $s>1$ such that m_{1} divides $m_{i_{1}} \cdots m_{i_{s}}$ for all $2 \leq i_{1}<\cdots<i_{s} \leq \mu$, then

$$
\operatorname{ara} I \leq s
$$

Proof. The assumption implies that $L_{s+1}=\emptyset$. Then the assertion follows from Corollary 2.

3. Examples

In this section, we give some examples of Lyubeznik resolutions.
For two L-admissible symbols $e_{i_{1} \cdots i_{s}}$ and $e_{j_{1} \cdots j_{t}}$, we say that

$$
e_{i_{1} \cdots i_{s}} \leq e_{j_{1} \cdots j_{t}}
$$

if i_{1}, \ldots, i_{s} is a subsequence of j_{1}, \ldots, j_{t}. This induces a partial order on the set of all L-admissible symbols. Barile [2, Remark 1] pointed out that a necessary and sufficient condition for a Lyubeznik resolution of I to be minimal is that for all maximal L-admissible symbols $e_{i_{1} \cdots i_{s}}$,

$$
\operatorname{lcm}\left(m_{i_{1}}, \ldots, m_{i_{s}}\right) \neq \operatorname{lcm}\left(m_{i_{1}}, \ldots, \widehat{m_{i_{j}}}, \ldots, m_{i_{s}}\right) \quad \text { for all } j=1, \ldots, s
$$

First, we consider an ideal I whose Lyubeznik resolution is minimal. The first example shows that a Lyubeznik resolution of I is minimal for an ideal I with $\mu(I)$ - height $I \leq 1$.

Example 6 (See [9, Theorem 2.1]). Let I be a squarefree monomial ideal with $\mu(I)-\operatorname{pd}_{S} S / I \leq 1$. Then the L-length of I is equal to $\operatorname{pd}_{S} S / I$. In particular, we have ara $I=\operatorname{pd}_{S} S / I$ by Corollary 2.

Moreover we assume that $\mu(I)$ - height $I \leq 1$. The author classified these ideals in [9, Theorem 4.4] with Terai and Yoshida. Then it is easy to see that a Lyubeznik resolution of I is minimal.

Remark 7. For the ideal I in Example 6, there are many proofs of ara $I=\operatorname{pd}_{S} S / I$. For example, we can also prove it by the method of Barile [2, Proposition 2].

When $\mu(I)$ - height $I=2$, a Lyubeznik resolution of I is not necessarily minimal as the next example shows.

Example 8. Let $I=\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ be a squarefree monomial ideal with $\mu(I)-$ height $I=2$. Assume that S / I is Cohen-Macaulay.

If m_{1} divides $m_{i} m_{j}$ for all $2 \leq i<j \leq 4$ upon renumbering the generators, then the Lyubeznik resolution of I with respect to this order is minimal. Otherwise, the L-length of I is larger than the projective dimension of S / I, and thus Lyubeznik resolutions of I are not minimal for any order of generators.

Note that in both cases, ara $I=\operatorname{pd}_{S} S / I=2$ holds by [10, Proposition 4.5].
The next example was considered by Barile [1].

Example 9 (Barile [1] Example 2.6]). Let I be the squarefree monomial ideal generated by the following $n+2$ elements:

$$
\left\{\begin{aligned}
m_{i} & =x_{1} x_{2} x_{2 i+1} x_{2 i+2}, \quad i=1,2, \ldots, n-1 \\
m_{n} & =x_{1} x_{3} x_{5} \cdots x_{2 n-1} x_{2 n+1} \\
m_{n+1} & =x_{1} x_{4} x_{6} x_{8} \cdots x_{2 n-2} x_{2 n} x_{2 n+1} \\
m_{n+2} & =x_{2} x_{3} \cdots x_{2 n} x_{2 n+1}
\end{aligned}\right.
$$

Barile [1, 2] proved that ara $I=\operatorname{pd}_{S} S / I=n$. She computed $\operatorname{pd}_{S} S / I$ by proving that the Lyubeznik resolution of I with this order is minimal.

For another example, Novik [14] proved that a Lyubeznik resolution is minimal for the matroid ideal of a finite projective space.

Secondly, we exhibit several ideals whose Lyubeznik resolutions are not necessarily minimal, but which have L-length equal to the projective dimension. Let λ be the length of the Lyubeznik resolution of I with respect to some order of monomial generators of I. A sufficient condition for $\lambda=\operatorname{pd}_{S} S / I$ to hold is that one of the L-admissible symbols $e_{i_{1} \cdots i_{\lambda}}$ must satisfy

$$
\begin{equation*}
\operatorname{lcm}\left(m_{i_{1}}, \ldots, m_{i_{\lambda}}\right) \neq \operatorname{lcm}\left(m_{i_{1}}, \ldots, \widehat{m_{i_{j}}}, \ldots, m_{i_{\lambda}}\right) \quad \text { for all } j=1, \ldots, \lambda \tag{3.1}
\end{equation*}
$$

The next example is a generalization of [10, Lemma 5.1].
Example 10. Let $I=\left(m_{1}, m_{2}, \ldots, m_{\mu}\right)$ be a squarefree monomial ideal with $\mu(I)-\operatorname{pd}_{S} S / I=2$. We assume that $m_{i} m_{j}$ is divisible by one of $m_{1}, m_{2}, \ldots, m_{\mu-3}$ for all $\mu-2 \leq i<j \leq \mu$. Then the L-length of I is equal to $\operatorname{pd}_{S} S / I$. In particular, we have ara $I=\operatorname{pd}_{S} S / I$ by Corollary 2 .
Remark 11. For an ideal I as in Example 10, we also have ara $I=\operatorname{pd}_{S} S / I$ by the result of Schmitt-Vogel [15, Lemma].

The next example was considered by Barile [1, Example 2.7].
Example 12 (Barile [1, Example 2.7]). Let I be the squarefree monomial ideal generated by the following 8 elements:

$$
x_{1} x_{2} x_{3}, x_{1} x_{4} x_{5} x_{6}, x_{2} x_{7}, x_{3} x_{8}, x_{1} x_{9}, x_{4} x_{10}, x_{5} x_{11}, x_{6} x_{12}
$$

Barile proved that ara $I=\operatorname{pd}_{S} S / I=6$.
In the left (resp. right) table below, the element in the i th column and j th row is $\beta_{i, i+j}^{S}(S / I):=\operatorname{dim}_{K}\left[\operatorname{Tor}_{S}^{i}(K, S / I)\right]_{i+j}$ (resp. the cardinality of the set $\left[t_{1}, \cdots, t_{i}\right] \in$ $\left.\left.L_{i}: \operatorname{deg} e_{t_{1} \cdots t_{i}}=i+j\right\}\right)$:

	0	1	2	3	4	5	6
$0:$	1						
$1:$		6					
$2:$		1	18	3			
$3:$		1	7	34	13		
$4:$			3	17	46	32	6
$5:$						1	1

	0	1	2	3	4	5	6
$0:$	1						
1:		6					
2:		1	18	3			
3:		1	7	34	13		
4:			3	17	46	33	8
5:					1	3	1

The difference between these tables arises from the L-admissibility of e_{124678}, e_{123678} and e_{12678}. As these tables show, the Lyubeznik resolution of I is not minimal, but the L-length of I is equal to $\operatorname{pd}_{S} S / I=6$.

The next example is a generalization of the ideals in [10, Subsection 4.4].

Example 13. Let j, k, ℓ, n be integers with $1 \leq j \leq k \leq \ell<n-2$. Let I be the squarefree monomial ideal generated by the following n elements:

$$
\begin{aligned}
m_{1} & =x_{1} \cdots x_{k} y_{\ell+1} \cdots y_{n-2} \\
m_{2} & =x_{1} \cdots x_{k} y_{j} \cdots y_{\ell} \\
m_{i+2} & =x_{i} y_{i} z_{t_{i}}, \quad 1 \leq i \leq n-2
\end{aligned}
$$

Set $x_{i}=1$ for $k<i \leq n-2$ and $y_{i}=1$ for $1 \leq i<j$. Then the product $m_{3} \cdots m_{n}$ is divisible by m_{1}. We consider the product $m_{3} \cdots \widehat{m_{i}} \cdots m_{n}$. When $i \leq \ell$, a product $m_{2} m_{3} \cdots \widehat{m_{i}} \cdots m_{n}$ is divisible by m_{1}. When $i>\ell$, a product $m_{3} \cdots \widehat{m_{i}} \cdots m_{n}$ is divisible by m_{2}. This means that the L-length of I is at most $n-2$. Hence $\operatorname{ara} I \leq n-2$.

In particular, we have ara $I=\operatorname{pd}_{S} S / I=n-2$ for the following cases:
(1) $z_{t_{i}}=z_{i}$ for all $i=1,2, \ldots, n-2$.
(2) $z_{t_{k}}=z_{t_{n-2}}=z_{k}$, and $z_{t_{i}}=z_{i}$ for $i \neq k, n-2$.

In fact, the ideal in case (1) satisfies $\mu(I)$ - height $I=2$ (see [10, Subsection 4.4]). In case (2), $e_{1 \cdots k+2 \cdots n-1}$ is L-admissible and satisfies (3.1).

Remark 14. Let $m_{1}, m_{2}, \ldots, m_{n}$ be squarefree monomials as in Example 13 and let w be a new variable. Put $T \subset\{3,4, \ldots, n\}$ with $\sharp T \geq 2$. We set $I^{\prime}=$ $\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right)$, where

$$
\begin{cases}m_{1}^{\prime}=m_{1} w, \\ m_{2}^{\prime}=m_{2}, \\ m_{i}^{\prime}=m_{i} w, & \text { if } i \in T \\ m_{i}^{\prime}=m_{i}, & \text { if } i \in\{3,4, \ldots, n\} \backslash T\end{cases}
$$

Then the same assertion as in Example 13 is true. For example, for the ideal I^{\prime} generated by the following 6 elements, we have ara $I^{\prime}=\operatorname{pd}_{S} S / I^{\prime}=4$:

$$
x_{1} x_{2} y_{4} w, x_{1} x_{2} y_{2} y_{3}, x_{1} z_{1} w, x_{2} y_{2} z_{2} w, y_{3} z_{3}, y_{4} z_{2}
$$

Moreover, for this ideal I^{\prime}, it seems to be difficult to show ara $I^{\prime}=\operatorname{pd}_{S} S / I^{\prime}$ by the method of Barile ([1, Proposition 1.1], [2, Propositions 1, 2]).

Finally, we give an ideal I whose L-length is not equal to the projective dimension of S / I but is equal to the arithmetical rank of I. In the following example, we consider the Stanley-Reisner ideal I of the triangulation of the projective plane with 6 vertices. The projective dimension of S / I depends on the characteristic of K, and Yan [17] proved that ara $I=4>3=\operatorname{pd}_{S} S / I$ if char $K \neq 2$. Our theorem provides the best upper bound for ara I.

Example 15 (Yan [17]). Let I be the squarefree monomial ideal generated by the following 10 elements:

$$
x_{1} x_{2} x_{3}, x_{1} x_{2} x_{5}, x_{1} x_{3} x_{6}, x_{1} x_{4} x_{5}, x_{1} x_{4} x_{6}, x_{2} x_{3} x_{4}, x_{2} x_{4} x_{6}, x_{2} x_{5} x_{6}, x_{3} x_{4} x_{5}, x_{3} x_{5} x_{6}
$$

This ideal is the Stanley-Reisner ideal of the triangulation of the projective plane with 6 vertices. Then a minimal graded free resolution of I is given by the following left (resp. right) diagram if char $K \neq 2$ (resp. if char $K=2$):

	0	1	2	3
$0:$	1			
$1:$				
$2:$		10	15	6

	0	1	2	3	4
$0:$	1				
1:					
2:		10	15	6	1
3:				1	

Hence, the projective dimension of S / I is given by

$$
\operatorname{pd}_{S} S / I= \begin{cases}3 & \text { if char } K \neq 2 \\ 4 & \text { if char } K=2\end{cases}
$$

Yan 17 proved that ara $I=4$ for any characteristic of K.
On the other hand, the Lyubeznik resolution of I with respect to this order is given by the following diagram:

	0	1	2	3	4
$0:$	1				
1:					
$2:$		10	15	18	9
$3:$			12	9	

In particular, the length is 4 . Therefore Theorem 1 implies that the L-length of I coincides with ara I.

Acknowledgments

The author is grateful to Professors Ken-ichi Yoshida and Naoki Terai for useful discussions.

References

[1] M. Barile, On the number of equations defining certain varieties, Manuscripta Math. 91 (1996), 483-494. MR1421287 (97m:13041)
[2] M. Barile, On ideals whose radical is a monomial ideal, Comm. Algebra 33 (2005), 44794490. MR2188323 (2006g:13039)
[3] M. Barile, A note on monomial ideals, Arch. Math. (Basel) 87 (2006), 516-521. MR2283682 (2007h:13004)
[4] M. Barile, A note on the edge ideals of Ferrers graphs, preprint, arXiv:math.AC/0606353.
[5] M. Barile, On the arithmetical rank of the edge ideals of forests, Comm. Algebra 36 (2008), 4678-4703. MR2473354
[6] M. Barile, On the arithmetical rank of certain monomial ideals, preprint, arXiv:math.AC/0611790.
[7] M. Barile, Arithmetical ranks of Stanley-Reisner ideals via linear algebra, Comm. Algebra 36 (2008), 4540-4556. MR2473347
[8] M. Barile and N. Terai, Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone, preprint, arXiv:0809.2194.
[9] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals of small arithmetic degree, J. Algebraic Combin. 29 (2009), 389-404.
[10] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals of deviation two, submitted.
[11] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals whose Alexander duals have deviation two, in preparation.
[12] G. Lyubeznik, On the local cohomology modules $H_{\mathfrak{a}}^{i}(R)$ for ideals \mathfrak{a} generated by monomials in an R-sequence, in Complete Intersections, Acireale, 1983 (S. Greco and R. Strano, eds.), Lecture Notes in Mathematics, No. 1092, Springer-Verlag, 1984, pp. 214-220. MR775884 (86f:14002)
[13] G. Lyubeznik, A new explicit finite free resolution of ideals generated by monomials in an R-sequence, J. Pure Appl. Algebra 51 (1988), 193-195. MR941900 (89c:13020)
[14] I. Novik, Lyubeznik's resolution and rooted complexes, J. Algebraic Combin. 16 (2002), 97101. MR1941987(2003j:13021)
[15] T. Schmitt and W. Vogel, Note on set-theoretic intersections of subvarieties of projective space, Math. Ann. 245 (1979), 247-253. MR553343 (81a:14025)
[16] D. Taylor, Ideals generated by monomials in an R-sequence, Ph.D. Thesis, Chicago University (1960).
[17] Z. Yan, An étale analog of the Goresky-MacPherson formula for subspace arrangements, J. Pure Appl. Algebra 146 (2000), 305-318. MR. 1742346 (2000k:14041)

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
E-mail address: m04012w@math.nagoya-u.ac.jp
Current address: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: kimura@math.sci.osaka-u.ac.jp

[^0]: Received by the editors December 1, 2008, and, in revised form, February 26, 2009.
 2000 Mathematics Subject Classification. Primary 13E15; Secondary 13D02.
 Key words and phrases. Lyubeznik resolution, L-admissible, L-length, arithmetical rank.

