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LYUBEZNIK RESOLUTIONS AND

THE ARITHMETICAL RANK OF MONOMIAL IDEALS

KYOUKO KIMURA

(Communicated by Bernd Ulrich)

Abstract. In this paper, we prove that the length of a Lyubeznik resolution
of a monomial ideal gives an upper bound for the arithmetical rank of the
ideal.

1. Introduction

Let S be a polynomial ring over a field K. Let I be a monomial ideal of S and
G(I) = {m1,m2, . . . ,mµ} the minimal set of monomial generators of I. In general,
it is unknown how to construct a minimal graded free resolution of S/I. In 1960,
Taylor [16] discovered a graded free resolution of S/I, which is called the Taylor
resolution of I:

T• : 0 −→ Tµ
dµ−→ Tµ−1

dµ−1−→ · · · d1−→ T0 −→ S/I −→ 0,

where

T0 = Se∅, Ts =
⊕

1≤i1<i2<···<is≤µ

Sei1i2···is ,

ds(ei1i2···is) =
s∑

j=1

(−1)j−1 lcm(mi1 , . . . ,mis)

lcm(mi1 , . . . , m̂ij , . . . ,mis)
ei1···îj ···is .

Here ei1i2···is (1 ≤ i1 < i2 < · · · < is ≤ µ) are free basis elements of Ts, and the
degree of ei1i2···is is defined by

deg ei1i2···is = deg lcm(mi1 ,mi2 , . . . ,mis).

In 1988, Lyubeznik [13] constructed a graded free resolution of S/I as a subcomplex
of the Taylor resolution of I. This complex is called a Lyubeznik resolution.

We recall the definition of a Lyubeznik resolution. Let 1 ≤ i1 < i2 < · · · < is ≤
µ. If mq does not divide lcm(mit ,mit+1

, . . . ,mis) for all t < s and for all q < it,
then the symbol ei1i2···is is said to be L-admissible. The Lyubeznik resolution of I is
a subcomplex of the Taylor resolution of I generated by all L-admissible symbols.
Note that a Lyubeznik resolution of I depends on the order of the generators
m1,m2, . . . ,mµ. We define the L-length of I as the minimum length of Lyubeznik
resolutions of I. The Taylor resolution of I is far from being a minimal graded free
resolution in general, but a Lyubeznik resolution of I often gives a minimal graded
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free resolution or a graded free resolution whose length is equal to the projective
dimension of S/I.

The arithmetical rank of I is defined by

ara I := min
{
r ∈ N : there exist a1, . . . , ar ∈ I such that

√
(a1, . . . , ar) =

√
I
}
.

A trivial upper bound for ara I is the cardinality of the minimal set of monomial
generators of I, denoted by µ(I) = µ, which is equal to the length of the Taylor
resolution of I. In this paper, we prove the following theorem:

Theorem 1. Let I be a monomial ideal of S. If the L-length of I is λ, then

ara I ≤ λ.

It is known from Lyubeznik [12] that if I is a squarefree monomial ideal, then
pdS S/I ≤ ara I, where pdS S/I is the projective dimension of S/I. It is natural
to ask when ara I = pdS S/I holds for a squarefree monomial ideal I. The author
together with Terai and Yoshida ([9, 10]; see also [11]) has proved that ara I =
pdS S/I for squarefree monomial ideals I with µ(I)− height I ≤ 2. Barile [3, 4, 5,
6, 7], Barile and Terai [8], and Schmitt and Vogel [15] also proved the same equality
for some classes of squarefree monomial ideals. Since the projective dimension of
S/I is equal to the length of the minimal graded free resolution of S/I, we have
the following corollary:

Corollary 2. Let I be a squarefree monomial ideal of S. If the L-length of I is
equal to the projective dimension of S/I, then

ara I = pdS S/I.

In particular, if the Lyubeznik resolution of I with respect to some order of monomial
generators is minimal, then the same assertion is true.

In Section 2, we prove Theorem 1 and several corollaries. In Section 3, we give
examples of squarefree monomial ideals I whose L-length is equal to the projective
dimension of S/I; see Barile [1, 2]. We also show that for the Stanley–Reisner
ideal I of the triangulation of the projective plane with 6 vertices, the L-length of
I coincides with ara I. Notice that Yan [17] proved that ara I = 4 > 3 = pdS S/I
when charK �= 2.

2. Proof of Theorem 1

In this section, we prove Theorem 1, which is the main result in this paper.

Proof of Theorem 1. Let G(I) = {m1,m2, . . . ,mµ} be the minimal set of monomial
generators of I. We consider the Lyubeznik resolution of I with respect to this
order.

To prove the theorem, it is enough to find λ elements g1, g2, . . . , gλ such that√
(g1, g2, . . . , gλ) =

√
I.
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We set ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = m1,

g2 = m2 +
∑

[i1,i2,...,iλ−1]∈Lλ−1
i1≥3

mi1mi2 · · ·miλ−1
,

...

g� = m� +
∑

[i1,i2,...,iλ−�+1]∈Lλ−�+1
i1≥�+1

mi1mi2 · · ·miλ−�+1
,

...

gλ = mλ +
∑

[i1]∈L1
i1≥λ+1

mi1 = mλ +mλ+1 + · · ·+mµ,

where

Ls :=

{
[i1, i2, . . . , is] ∈ N

s :
1 ≤ i1 < i2 < · · · < is ≤ µ,

ei1i2···is is L-admissible

}
.

Put J = (g1, g2, . . . , gλ). We prove that m� ∈
√
J for all � = 1, 2, . . . , µ by

induction on �. We need the following lemma:

Lemma 3. Suppose [i1, i2, . . . , is] ∈ Ls. Then:

(1) [ij1 , . . . , ijt ] ∈ Lt for all t ≤ s and for all 1 ≤ j1 < · · · < jt ≤ s.
(2) If i1 > 1, then [1, i1, i2, . . . , is] ∈ Ls+1. In particular, if [i1, i2, . . . , iλ] ∈ Lλ,

then i1 = 1.
(3) Suppose � < i1. If [�, i1, i2, . . . , is] /∈ Ls+1, then m�mi1mi2 · · ·mis is divisi-

ble by at least one of m1,m2, . . . ,m�−1.

Proof. These follow from the definition of L-admissibleness. �

The case � = 1 is clear because m1 = g1. For � = 2, we consider m2g2. Then

m2g2 = m2
2 +

∑
[i1,i2,...,iλ−1]∈Lλ−1

i1≥3

m2mi1mi2 · · ·miλ−1
∈ J.

Since [2, i1, i2, . . . , iλ−1] /∈ Lλ by Lemma 3 (2), the second term is divisible by m1

by Lemma 3 (3). Hence m2
2 ∈ J , and thus m2 ∈

√
J .

We assume � > 2 and m1,m2, . . . ,m�−1 ∈
√
J . Set ν = ν� = min{� − 2, λ − 2}.

Then we show that

(2.1)
∑

[�,i2,...,is]∈Ls

m�mi2 · · ·mis ∈
√
J

by descending induction on s (λ− ν ≤ s ≤ λ− 1).
First, we consider m�g2. By a similar argument as in the case � = 2, we have

(2.1) for s = λ− 1.
Next, we assume

(2.2)
∑

[�,i2,...,is+1]∈Ls+1

m�mi2 · · ·mis+1
∈
√
J
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and prove (2.1). Then m�gλ−s+1 ∈ J implies that

m�mλ−s+1 +
∑

[i1,i2,...,is]∈Ls
i1≥λ−s+2

m�mi1mi2 · · ·mis ∈ J.

Since λ− s+ 1 ≤ ν + 1 < � by the definition of ν, we have∑
[�,i2,...,is]∈Ls

m2
�mi2 · · ·mis +

∑
[i1,i2,...,is]∈Ls

i1>�

m�mi1mi2 · · ·mis ∈
√
J.

The second term can be written in the following form:

(2.3)
∑

[�,i1,i2,...,is]∈Ls+1

m�mi1mi2 · · ·mis +
∑

[i1,i2,...,is]∈Ls
[�,i1,i2,...,is]/∈Ls+1

m�mi1mi2 · · ·mis .

The first term of (2.3) is in
√
J by assumption (2.2). The second term of (2.3) is in√

J by Lemma 3 (3). Therefore (2.1) is also satisfied for s. Hence, (2.1) is satisfied
for all s ≥ λ− ν.

Now, we prove that m� ∈
√
J . If ν = �− 2, then we consider m�g�. By a similar

argument as above, we have

m2
� +

∑
[�,i1,i2,...,iλ−�+1]∈Lλ−�+2

m�mi1mi2 · · ·miλ−�+1
∈
√
J.

Since (2.1) is satisfied for s = λ− ν = λ− �+2, we have m2
� ∈

√
J and so m� ∈

√
J

as required. For ν = λ− 2, we consider m�gλ. By a similar argument as in the case
of ν = �− 2, we have m� ∈

√
J . �

Proof of Corollary 2. By Lyubeznik [12], we have pdS S/I ≤ ara I. On the other
hand, our theorem gives the opposite inequality. �

We also have an upper bound on the arithmetical rank, which was proved by
Terai.

Corollary 4 (Terai). Let I be a squarefree monomial ideal of S, and let G(I) =
{m1,m2, . . . ,mµ} be the minimal set of monomial generators of I. We set

l = max

{
l :

mj1 �= lcm(mj1 ,mj2) �= · · · �= lcm(mj1 ,mj2 , . . . ,mjs)

for some mj1 ,mj2 , . . . ,mjs ∈ G(I)

}
.

Then we have

ara I ≤ l.

Proof. Let λ denote the length of a Lyubeznik resolution of I. If ei1i2···iλ is L-
admissible, then

miλ �= lcm(miλ ,miλ−1
) �= · · · �= lcm(miλ ,miλ−1

, . . . ,mi1)

by the definition. Therefore λ ≤ l holds and Corollary 2 gives the desired inequality.
�

The next corollary was proved by Barile [1, 2].
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Corollary 5 (Barile [1, Proposition 2.4], [2, Remark 3]). Let I be a squarefree
monomial ideal and let G(I) = {m1,m2, . . . ,mµ} be the minimal set of monomial
generators of I. If there exists an integer s > 1 such that m1 divides mi1 · · ·mis

for all 2 ≤ i1 < · · · < is ≤ µ, then

ara I ≤ s.

Proof. The assumption implies that Ls+1 = ∅. Then the assertion follows from
Corollary 2. �

3. Examples

In this section, we give some examples of Lyubeznik resolutions.
For two L-admissible symbols ei1···is and ej1···jt , we say that

ei1···is ≤ ej1···jt

if i1, . . . , is is a subsequence of j1, . . . , jt. This induces a partial order on the set
of all L-admissible symbols. Barile [2, Remark 1] pointed out that a necessary and
sufficient condition for a Lyubeznik resolution of I to be minimal is that for all
maximal L-admissible symbols ei1···is ,

lcm(mi1 , . . . ,mis) �= lcm(mi1 , . . . , m̂ij , . . . ,mis) for all j = 1, . . . , s.

First, we consider an ideal I whose Lyubeznik resolution is minimal. The first
example shows that a Lyubeznik resolution of I is minimal for an ideal I with
µ(I)− height I ≤ 1.

Example 6 (See [9, Theorem 2.1]). Let I be a squarefree monomial ideal with
µ(I)− pdS S/I ≤ 1. Then the L-length of I is equal to pdS S/I. In particular, we
have ara I = pdS S/I by Corollary 2.

Moreover we assume that µ(I)− height I ≤ 1. The author classified these ideals
in [9, Theorem 4.4] with Terai and Yoshida. Then it is easy to see that a Lyubeznik
resolution of I is minimal.

Remark 7. For the ideal I in Example 6, there are many proofs of ara I = pdS S/I.
For example, we can also prove it by the method of Barile [2, Proposition 2].

When µ(I)−height I = 2, a Lyubeznik resolution of I is not necessarily minimal
as the next example shows.

Example 8. Let I = (m1,m2,m3,m4) be a squarefree monomial ideal with µ(I)−
height I = 2. Assume that S/I is Cohen–Macaulay.

If m1 divides mimj for all 2 ≤ i < j ≤ 4 upon renumbering the generators, then
the Lyubeznik resolution of I with respect to this order is minimal. Otherwise, the
L-length of I is larger than the projective dimension of S/I, and thus Lyubeznik
resolutions of I are not minimal for any order of generators.

Note that in both cases, ara I = pdS S/I = 2 holds by [10, Proposition 4.5].

The next example was considered by Barile [1].
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Example 9 (Barile [1, Example 2.6]). Let I be the squarefree monomial ideal
generated by the following n+ 2 elements:⎧⎪⎪⎪⎨⎪⎪⎪⎩

mi = x1x2x2i+1x2i+2, i = 1, 2, . . . , n− 1,

mn = x1x3x5 · · ·x2n−1x2n+1,

mn+1 = x1x4x6x8 · · ·x2n−2x2nx2n+1,

mn+2 = x2x3 · · ·x2nx2n+1.

Barile [1, 2] proved that ara I = pdS S/I = n. She computed pdS S/I by proving
that the Lyubeznik resolution of I with this order is minimal.

For another example, Novik [14] proved that a Lyubeznik resolution is minimal
for the matroid ideal of a finite projective space.

Secondly, we exhibit several ideals whose Lyubeznik resolutions are not necessar-
ily minimal, but which have L-length equal to the projective dimension. Let λ be
the length of the Lyubeznik resolution of I with respect to some order of monomial
generators of I. A sufficient condition for λ = pdS S/I to hold is that one of the
L-admissible symbols ei1···iλ must satisfy

(3.1) lcm(mi1 , . . . ,miλ) �= lcm(mi1 , . . . , m̂ij , . . . ,miλ) for all j = 1, . . . , λ.

The next example is a generalization of [10, Lemma 5.1].

Example 10. Let I = (m1,m2, . . . ,mµ) be a squarefree monomial ideal with
µ(I)−pdS S/I = 2. We assume that mimj is divisible by one of m1,m2, . . . ,mµ−3

for all µ−2 ≤ i < j ≤ µ. Then the L-length of I is equal to pdS S/I. In particular,
we have ara I = pdS S/I by Corollary 2.

Remark 11. For an ideal I as in Example 10, we also have ara I = pdS S/I by the
result of Schmitt–Vogel [15, Lemma].

The next example was considered by Barile [1, Example 2.7].

Example 12 (Barile [1, Example 2.7]). Let I be the squarefree monomial ideal
generated by the following 8 elements:

x1x2x3, x1x4x5x6, x2x7, x3x8, x1x9, x4x10, x5x11, x6x12.

Barile proved that ara I = pdS S/I = 6.
In the left (resp. right) table below, the element in the ith column and jth row is

βS
i,i+j(S/I) := dimK [ToriS(K,S/I)]i+j (resp. the cardinality of the set [t1, · · · , ti] ∈

Li : deg et1···ti = i+ j}):
0 1 2 3 4 5 6

0: 1
1: 6
2: 1 18 3
3: 1 7 34 13
4: 3 17 46 32 6
5: 1 1

0 1 2 3 4 5 6
0: 1
1: 6
2: 1 18 3
3: 1 7 34 13
4: 3 17 46 33 8
5: 1 3 1

The difference between these tables arises from the L-admissibility of e124678,
e123678 and e12678. As these tables show, the Lyubeznik resolution of I is not
minimal, but the L-length of I is equal to pdS S/I = 6.

The next example is a generalization of the ideals in [10, Subsection 4.4].
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Example 13. Let j, k, �, n be integers with 1 ≤ j ≤ k ≤ � < n − 2. Let I be the
squarefree monomial ideal generated by the following n elements:

m1 = x1 · · ·xky�+1 · · · yn−2,

m2 = x1 · · ·xkyj · · · y�,
mi+2 = xiyizti , 1 ≤ i ≤ n− 2.

Set xi = 1 for k < i ≤ n−2 and yi = 1 for 1 ≤ i < j. Then the product m3 · · ·mn is
divisible by m1. We consider the product m3 · · · m̂i · · ·mn. When i ≤ �, a product
m2m3 · · · m̂i · · ·mn is divisible by m1. When i > �, a product m3 · · · m̂i · · ·mn

is divisible by m2. This means that the L-length of I is at most n − 2. Hence
ara I ≤ n− 2.

In particular, we have ara I = pdS S/I = n− 2 for the following cases:

(1) zti = zi for all i = 1, 2, . . . , n− 2.
(2) ztk = ztn−2

= zk, and zti = zi for i �= k, n− 2.

In fact, the ideal in case (1) satisfies µ(I)− height I = 2 (see [10, Subsection 4.4]).
In case (2), e

1···̂k+2···n−1
is L-admissible and satisfies (3.1).

Remark 14. Let m1,m2, . . . ,mn be squarefree monomials as in Example 13 and
let w be a new variable. Put T ⊂ {3, 4, . . . , n} with �T ≥ 2. We set I ′ =
(m′

1,m
′
2, . . . ,m

′
n), where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′
1 = m1w,

m′
2 = m2,

m′
i = miw, if i ∈ T ,

m′
i = mi, if i ∈ {3, 4, . . . , n} \ T .

Then the same assertion as in Example 13 is true. For example, for the ideal I ′

generated by the following 6 elements, we have ara I ′ = pdS S/I ′ = 4:

x1x2y4w, x1x2y2y3, x1z1w, x2y2z2w, y3z3, y4z2.

Moreover, for this ideal I ′, it seems to be difficult to show ara I ′ = pdS S/I ′ by the
method of Barile ([1, Proposition 1.1], [2, Propositions 1, 2]).

Finally, we give an ideal I whose L-length is not equal to the projective dimension
of S/I but is equal to the arithmetical rank of I. In the following example, we
consider the Stanley–Reisner ideal I of the triangulation of the projective plane
with 6 vertices. The projective dimension of S/I depends on the characteristic of
K, and Yan [17] proved that ara I = 4 > 3 = pdS S/I if charK �= 2. Our theorem
provides the best upper bound for ara I.

Example 15 (Yan [17]). Let I be the squarefree monomial ideal generated by the
following 10 elements:

x1x2x3, x1x2x5, x1x3x6, x1x4x5, x1x4x6, x2x3x4, x2x4x6, x2x5x6, x3x4x5, x3x5x6.

This ideal is the Stanley–Reisner ideal of the triangulation of the projective plane
with 6 vertices. Then a minimal graded free resolution of I is given by the following
left (resp. right) diagram if charK �= 2 (resp. if charK = 2):
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0 1 2 3
0: 1
1:
2: 10 15 6

0 1 2 3 4
0: 1
1:
2: 10 15 6 1
3: 1

Hence, the projective dimension of S/I is given by

pdS S/I =

{
3 if charK �= 2,

4 if charK = 2.

Yan [17] proved that ara I = 4 for any characteristic of K.
On the other hand, the Lyubeznik resolution of I with respect to this order is

given by the following diagram:

0 1 2 3 4
0: 1
1:
2: 10 15 18 9
3: 12 9

In particular, the length is 4. Therefore Theorem 1 implies that the L-length of I
coincides with ara I.
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