PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 11, November 2009, Pages 3627-3635 S 0002-9939(09)09950-X Article electronically published on June 9, 2009

LYUBEZNIK RESOLUTIONS AND THE ARITHMETICAL RANK OF MONOMIAL IDEALS

KYOUKO KIMURA

(Communicated by Bernd Ulrich)

ABSTRACT. In this paper, we prove that the length of a Lyubeznik resolution of a monomial ideal gives an upper bound for the arithmetical rank of the ideal.

1. INTRODUCTION

Let S be a polynomial ring over a field K. Let I be a monomial ideal of S and $G(I) = \{m_1, m_2, \ldots, m_\mu\}$ the minimal set of monomial generators of I. In general, it is unknown how to construct a minimal graded free resolution of S/I. In 1960, Taylor [16] discovered a graded free resolution of S/I, which is called the *Taylor resolution* of I:

$$T_{\bullet}: 0 \longrightarrow T_{\mu} \xrightarrow{d_{\mu}} T_{\mu-1} \xrightarrow{d_{\mu-1}} \cdots \xrightarrow{d_1} T_0 \longrightarrow S/I \longrightarrow 0,$$

where

$$\begin{split} T_0 &= Se_{\emptyset}, \ T_s = \bigoplus_{1 \le i_1 < i_2 < \dots < i_s \le \mu} Se_{i_1 i_2 \dots i_s}, \\ d_s(e_{i_1 i_2 \dots i_s}) &= \sum_{j=1}^s (-1)^{j-1} \frac{\operatorname{lcm}(m_{i_1}, \dots, m_{i_s})}{\operatorname{lcm}(m_{i_1}, \dots, \widehat{m_{i_j}}, \dots, m_{i_s})} e_{i_1 \dots \widehat{i_j} \dots i_s}. \end{split}$$

Here $e_{i_1i_2\cdots i_s}$ $(1 \le i_1 < i_2 < \cdots < i_s \le \mu)$ are free basis elements of T_s , and the degree of $e_{i_1i_2\cdots i_s}$ is defined by

$$\deg e_{i_1i_2\cdots i_s} = \deg \operatorname{lcm}(m_{i_1}, m_{i_2}, \ldots, m_{i_s}).$$

In 1988, Lyubeznik [13] constructed a graded free resolution of S/I as a subcomplex of the Taylor resolution of I. This complex is called a *Lyubeznik resolution*.

We recall the definition of a Lyubeznik resolution. Let $1 \leq i_1 < i_2 < \cdots < i_s \leq \mu$. If m_q does not divide $lcm(m_{i_t}, m_{i_{t+1}}, \ldots, m_{i_s})$ for all t < s and for all $q < i_t$, then the symbol $e_{i_1 i_2 \cdots i_s}$ is said to be *L*-admissible. The Lyubeznik resolution of *I* is a subcomplex of the Taylor resolution of *I* generated by all *L*-admissible symbols. Note that a Lyubeznik resolution of *I* depends on the order of the generators $m_1, m_2, \ldots, m_{\mu}$. We define the *L*-length of *I* as the minimum length of Lyubeznik resolutions of *I*. The Taylor resolution of *I* is far from being a minimal graded free resolution in general, but a Lyubeznik resolution of *I* often gives a minimal graded

©2009 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors December 1, 2008, and, in revised form, February 26, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13E15; Secondary 13D02.

Key words and phrases. Lyubeznik resolution, L-admissible, L-length, arithmetical rank.

free resolution or a graded free resolution whose length is equal to the projective dimension of S/I.

The arithmetical rank of I is defined by

ara
$$I := \min \left\{ r \in \mathbb{N} : \text{ there exist } a_1, \dots, a_r \in I \text{ such that } \sqrt{(a_1, \dots, a_r)} = \sqrt{I} \right\}.$$

A trivial upper bound for ara I is the cardinality of the minimal set of monomial generators of I, denoted by $\mu(I) = \mu$, which is equal to the length of the Taylor resolution of I. In this paper, we prove the following theorem:

Theorem 1. Let I be a monomial ideal of S. If the L-length of I is λ , then

ara $I \leq \lambda$.

It is known from Lyubeznik [12] that if I is a squarefree monomial ideal, then $\operatorname{pd}_S S/I \leq \operatorname{ara} I$, where $\operatorname{pd}_S S/I$ is the projective dimension of S/I. It is natural to ask when $\operatorname{ara} I = \operatorname{pd}_S S/I$ holds for a squarefree monomial ideal I. The author together with Terai and Yoshida ([9, 10]; see also [11]) has proved that $\operatorname{ara} I = \operatorname{pd}_S S/I$ for squarefree monomial ideals I with $\mu(I)$ – height $I \leq 2$. Barile [3, 4, 5, 6, 7], Barile and Terai [8], and Schmitt and Vogel [15] also proved the same equality for some classes of squarefree monomial ideals. Since the projective dimension of S/I, we have the following corollary:

Corollary 2. Let I be a squarefree monomial ideal of S. If the L-length of I is equal to the projective dimension of S/I, then

ara
$$I = \operatorname{pd}_S S/I$$
.

In particular, if the Lyubeznik resolution of I with respect to some order of monomial generators is minimal, then the same assertion is true.

In Section 2, we prove Theorem 1 and several corollaries. In Section 3, we give examples of squarefree monomial ideals I whose L-length is equal to the projective dimension of S/I; see Barile [1, 2]. We also show that for the Stanley–Reisner ideal I of the triangulation of the projective plane with 6 vertices, the L-length of I coincides with ara I. Notice that Yan [17] proved that ara $I = 4 > 3 = \text{pd}_S S/I$ when char $K \neq 2$.

2. Proof of Theorem 1

In this section, we prove Theorem 1, which is the main result in this paper.

Proof of Theorem 1. Let $G(I) = \{m_1, m_2, \ldots, m_\mu\}$ be the minimal set of monomial generators of I. We consider the Lyubeznik resolution of I with respect to this order.

To prove the theorem, it is enough to find λ elements $g_1, g_2, \ldots, g_{\lambda}$ such that

$$\sqrt{(g_1, g_2, \dots, g_\lambda)} = \sqrt{I}$$

We set

$$\begin{cases} g_{1} = m_{1}, \\ g_{2} = m_{2} + \sum_{\substack{[i_{1}, i_{2}, \dots, i_{\lambda-1}] \in L_{\lambda-1} \\ i_{1} \ge 3 \end{cases}} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-1}}, \\ \vdots \\ g_{\ell} = m_{\ell} + \sum_{\substack{[i_{1}, i_{2}, \dots, i_{\lambda-\ell+1}] \in L_{\lambda-\ell+1} \\ i_{1} \ge \ell+1 \end{cases}} m_{i_{1}} m_{i_{2}} \cdots m_{i_{\lambda-\ell+1}}, \\ \vdots \\ g_{\lambda} = m_{\lambda} + \sum_{\substack{[i_{1}] \in L_{1} \\ i_{1} \ge \lambda+1 \end{cases}} m_{i_{1}} = m_{\lambda} + m_{\lambda+1} + \dots + m_{\mu}, \end{cases}$$

where

$$L_s := \left\{ [i_1, i_2, \dots, i_s] \in \mathbb{N}^s : \begin{array}{l} 1 \le i_1 < i_2 < \dots < i_s \le \mu, \\ e_{i_1 i_2 \cdots i_s} \text{ is } L\text{-admissible} \end{array} \right\}$$

Put $J = (g_1, g_2, \ldots, g_{\lambda})$. We prove that $m_{\ell} \in \sqrt{J}$ for all $\ell = 1, 2, \ldots, \mu$ by induction on ℓ . We need the following lemma:

Lemma 3. Suppose $[i_1, i_2, \ldots, i_s] \in L_s$. Then:

- (1) $[i_{j_1}, \ldots, i_{j_t}] \in L_t \text{ for all } t \leq s \text{ and for all } 1 \leq j_1 < \cdots < j_t \leq s.$ (2) If $i_1 > 1$, then $[1, i_1, i_2, \ldots, i_s] \in L_{s+1}$. In particular, if $[i_1, i_2, \ldots, i_\lambda] \in L_\lambda$, *then* $i_1 = 1$.
- (3) Suppose $\ell < i_1$. If $[\ell, i_1, i_2, \ldots, i_s] \notin L_{s+1}$, then $m_\ell m_{i_1} m_{i_2} \cdots m_{i_s}$ is divisible by at least one of $m_1, m_2, \ldots, m_{\ell-1}$.

Proof. These follow from the definition of *L*-admissibleness.

The case $\ell = 1$ is clear because $m_1 = g_1$. For $\ell = 2$, we consider m_2g_2 . Then

$$m_2g_2 = m_2^2 + \sum_{\substack{[i_1, i_2, \dots, i_{\lambda-1}] \in L_{\lambda-1} \\ i_1 \ge 3}} m_2m_{i_1}m_{i_2} \cdots m_{i_{\lambda-1}} \in J.$$

Since $[2, i_1, i_2, \ldots, i_{\lambda-1}] \notin L_{\lambda}$ by Lemma 3 (2), the second term is divisible by m_1 by Lemma 3 (3). Hence $m_2^2 \in J$, and thus $m_2 \in \sqrt{J}$.

We assume $\ell > 2$ and $m_1, m_2, ..., m_{\ell-1} \in \sqrt{J}$. Set $\nu = \nu_{\ell} = \min\{\ell - 2, \lambda - 2\}$. Then we show that

(2.1)
$$\sum_{[\ell,i_2,\ldots,i_s]\in L_s} m_\ell m_{i_2}\cdots m_{i_s} \in \sqrt{J}$$

by descending induction on s $(\lambda - \nu \leq s \leq \lambda - 1)$.

First, we consider $m_{\ell}g_2$. By a similar argument as in the case $\ell = 2$, we have (2.1) for $s = \lambda - 1$.

Next, we assume

(2.2)
$$\sum_{[\ell, i_2, \dots, i_{s+1}] \in L_{s+1}} m_\ell m_{i_2} \cdots m_{i_{s+1}} \in \sqrt{J}$$

and prove (2.1). Then $m_{\ell}g_{\lambda-s+1} \in J$ implies that

$$m_{\ell}m_{\lambda-s+1} + \sum_{\substack{[i_1,i_2,\ldots,i_s] \in L_s\\i_1 \ge \lambda-s+2}} m_{\ell}m_{i_1}m_{i_2}\cdots m_{i_s} \in J.$$

Since $\lambda - s + 1 \leq \nu + 1 < \ell$ by the definition of ν , we have

$$\sum_{\substack{[\ell,i_2,\ldots,i_s]\in L_s}} m_\ell^2 m_{i_2}\cdots m_{i_s} + \sum_{\substack{[i_1,i_2,\ldots,i_s]\in L_s\\i_1>\ell}} m_\ell m_{i_1}m_{i_2}\cdots m_{i_s} \in \sqrt{J}.$$

The second term can be written in the following form:

(2.3)
$$\sum_{[\ell,i_1,i_2,\ldots,i_s]\in L_{s+1}} m_\ell m_{i_1} m_{i_2} \cdots m_{i_s} + \sum_{[i_1,i_2,\ldots,i_s]\in L_s \atop [\ell,i_1,i_2,\ldots,i_s]\notin L_{s+1}} m_\ell m_{i_1} m_{i_2} \cdots m_{i_s}.$$

The first term of (2.3) is in \sqrt{J} by assumption (2.2). The second term of (2.3) is in \sqrt{J} by Lemma 3 (3). Therefore (2.1) is also satisfied for s. Hence, (2.1) is satisfied for all $s \ge \lambda - \nu$.

Now, we prove that $m_{\ell} \in \sqrt{J}$. If $\nu = \ell - 2$, then we consider $m_{\ell}g_{\ell}$. By a similar argument as above, we have

$$m_{\ell}^2 + \sum_{[\ell,i_1,i_2,\ldots,i_{\lambda-\ell+1}]\in L_{\lambda-\ell+2}} m_{\ell}m_{i_1}m_{i_2}\cdots m_{i_{\lambda-\ell+1}} \in \sqrt{J}.$$

Since (2.1) is satisfied for $s = \lambda - \nu = \lambda - \ell + 2$, we have $m_{\ell}^2 \in \sqrt{J}$ and so $m_{\ell} \in \sqrt{J}$ as required. For $\nu = \lambda - 2$, we consider $m_{\ell}g_{\lambda}$. By a similar argument as in the case of $\nu = \ell - 2$, we have $m_{\ell} \in \sqrt{J}$.

Proof of Corollary 2. By Lyubeznik [12], we have $pd_S S/I \leq ara I$. On the other hand, our theorem gives the opposite inequality.

We also have an upper bound on the arithmetical rank, which was proved by Terai.

Corollary 4 (Terai). Let I be a squarefree monomial ideal of S, and let $G(I) = \{m_1, m_2, \ldots, m_{\mu}\}$ be the minimal set of monomial generators of I. We set

$$l = \max \left\{ l : \begin{array}{c} m_{j_1} \neq \operatorname{lcm}(m_{j_1}, m_{j_2}) \neq \cdots \neq \operatorname{lcm}(m_{j_1}, m_{j_2}, \dots, m_{j_s}) \\ for \ some \ m_{j_1}, m_{j_2}, \dots, m_{j_s} \in G(I) \end{array} \right\}.$$

Then we have

ara $I \leq l$.

Proof. Let λ denote the length of a Lyubeznik resolution of I. If $e_{i_1i_2\cdots i_{\lambda}}$ is L-admissible, then

 $m_{i_{\lambda}} \neq \operatorname{lcm}(m_{i_{\lambda}}, m_{i_{\lambda-1}}) \neq \cdots \neq \operatorname{lcm}(m_{i_{\lambda}}, m_{i_{\lambda-1}}, \dots, m_{i_{1}})$

by the definition. Therefore $\lambda \leq l$ holds and Corollary 2 gives the desired inequality.

The next corollary was proved by Barile [1, 2].

Corollary 5 (Barile [1, Proposition 2.4], [2, Remark 3]). Let I be a squarefree monomial ideal and let $G(I) = \{m_1, m_2, \ldots, m_\mu\}$ be the minimal set of monomial generators of I. If there exists an integer s > 1 such that m_1 divides $m_{i_1} \cdots m_{i_s}$ for all $2 \le i_1 < \cdots < i_s \le \mu$, then

ara
$$I \leq s$$
.

Proof. The assumption implies that $L_{s+1} = \emptyset$. Then the assertion follows from Corollary 2.

3. Examples

In this section, we give some examples of Lyubeznik resolutions. For two *L*-admissible symbols $e_{i_1\cdots i_s}$ and $e_{j_1\cdots j_t}$, we say that

$$e_{i_1\cdots i_s} \le e_{j_1\cdots j_t}$$

if i_1, \ldots, i_s is a subsequence of j_1, \ldots, j_t . This induces a partial order on the set of all *L*-admissible symbols. Barile [2, Remark 1] pointed out that a necessary and sufficient condition for a Lyubeznik resolution of *I* to be minimal is that for all maximal *L*-admissible symbols $e_{i_1 \cdots i_s}$,

$$\operatorname{lcm}(m_{i_1},\ldots,m_{i_s}) \neq \operatorname{lcm}(m_{i_1},\ldots,\widehat{m_{i_j}},\ldots,m_{i_s}) \quad \text{for all } j=1,\ldots,s.$$

First, we consider an ideal I whose Lyubeznik resolution is minimal. The first example shows that a Lyubeznik resolution of I is minimal for an ideal I with $\mu(I)$ – height $I \leq 1$.

Example 6 (See [9, Theorem 2.1]). Let I be a squarefree monomial ideal with $\mu(I) - \text{pd}_S S/I \leq 1$. Then the *L*-length of I is equal to $\text{pd}_S S/I$. In particular, we have ara $I = \text{pd}_S S/I$ by Corollary 2.

Moreover we assume that $\mu(I)$ – height $I \leq 1$. The author classified these ideals in [9, Theorem 4.4] with Terai and Yoshida. Then it is easy to see that a Lyubeznik resolution of I is minimal.

Remark 7. For the ideal I in Example 6, there are many proofs of ara $I = \text{pd}_S S/I$. For example, we can also prove it by the method of Barile [2, Proposition 2].

When $\mu(I)$ – height I = 2, a Lyubeznik resolution of I is not necessarily minimal as the next example shows.

Example 8. Let $I = (m_1, m_2, m_3, m_4)$ be a squarefree monomial ideal with $\mu(I)$ – height I = 2. Assume that S/I is Cohen–Macaulay.

If m_1 divides $m_i m_j$ for all $2 \le i < j \le 4$ upon renumbering the generators, then the Lyubeznik resolution of I with respect to this order is minimal. Otherwise, the L-length of I is larger than the projective dimension of S/I, and thus Lyubeznik resolutions of I are not minimal for any order of generators.

Note that in both cases, ara $I = \text{pd}_S S/I = 2$ holds by [10, Proposition 4.5].

The next example was considered by Barile [1].

Example 9 (Barile [1, Example 2.6]). Let I be the squarefree monomial ideal generated by the following n + 2 elements:

$$\begin{cases} m_i = x_1 x_2 x_{2i+1} x_{2i+2}, & i = 1, 2, \dots, n-1, \\ m_n = x_1 x_3 x_5 \cdots x_{2n-1} x_{2n+1}, \\ m_{n+1} = x_1 x_4 x_6 x_8 \cdots x_{2n-2} x_{2n} x_{2n+1}, \\ m_{n+2} = x_2 x_3 \cdots x_{2n} x_{2n+1}. \end{cases}$$

Barile [1, 2] proved that ara $I = \text{pd}_S S/I = n$. She computed $\text{pd}_S S/I$ by proving that the Lyubeznik resolution of I with this order is minimal.

For another example, Novik [14] proved that a Lyubeznik resolution is minimal for the matroid ideal of a finite projective space.

Secondly, we exhibit several ideals whose Lyubeznik resolutions are not necessarily minimal, but which have *L*-length equal to the projective dimension. Let λ be the length of the Lyubeznik resolution of *I* with respect to some order of monomial generators of *I*. A sufficient condition for $\lambda = \text{pd}_S S/I$ to hold is that one of the *L*-admissible symbols $e_{i_1\cdots i_\lambda}$ must satisfy

(3.1)
$$\operatorname{lcm}(m_{i_1},\ldots,m_{i_{\lambda}}) \neq \operatorname{lcm}(m_{i_1},\ldots,\widehat{m_{i_{\lambda}}},\ldots,m_{i_{\lambda}})$$
 for all $j = 1,\ldots,\lambda$.

The next example is a generalization of [10, Lemma 5.1].

Example 10. Let $I = (m_1, m_2, \ldots, m_{\mu})$ be a squarefree monomial ideal with $\mu(I) - \text{pd}_S S/I = 2$. We assume that $m_i m_j$ is divisible by one of $m_1, m_2, \ldots, m_{\mu-3}$ for all $\mu - 2 \le i < j \le \mu$. Then the *L*-length of *I* is equal to $\text{pd}_S S/I$. In particular, we have ara $I = \text{pd}_S S/I$ by Corollary 2.

Remark 11. For an ideal I as in Example 10, we also have ara $I = \text{pd}_S S/I$ by the result of Schmitt–Vogel [15, Lemma].

The next example was considered by Barile [1, Example 2.7].

Example 12 (Barile [1, Example 2.7]). Let I be the squarefree monomial ideal generated by the following 8 elements:

```
x_1x_2x_3, x_1x_4x_5x_6, x_2x_7, x_3x_8, x_1x_9, x_4x_{10}, x_5x_{11}, x_6x_{12}.
```

Barile proved that $\operatorname{ara} I = \operatorname{pd}_S S/I = 6$.

In the left (resp. right) table below, the element in the *i*th column and *j*th row is $\beta_{i,i+j}^S(S/I) := \dim_K[\operatorname{Tor}_S^i(K, S/I)]_{i+j}$ (resp. the cardinality of the set $[t_1, \cdots, t_i] \in L_i : \deg e_{t_1 \cdots t_i} = i + j$):

-	-			,			
	0	1	2	3	4	5	6
0:	1						
1:		6					
2:		1	18	3			
3:		1	7	34	13		
4:			3	17	46	32	6
5:						1	1

The difference between these tables arises from the *L*-admissibility of e_{124678} , e_{123678} and e_{12678} . As these tables show, the Lyubeznik resolution of *I* is not minimal, but the *L*-length of *I* is equal to $pd_S S/I = 6$.

The next example is a generalization of the ideals in [10, Subsection 4.4].

Example 13. Let j, k, ℓ, n be integers with $1 \le j \le k \le \ell < n-2$. Let I be the squarefree monomial ideal generated by the following n elements:

$$m_1 = x_1 \cdots x_k y_{\ell+1} \cdots y_{n-2},$$

$$m_2 = x_1 \cdots x_k y_j \cdots y_\ell,$$

$$m_{i+2} = x_i y_i z_{t_i}, \qquad 1 \le i \le n-2$$

Set $x_i = 1$ for $k < i \le n-2$ and $y_i = 1$ for $1 \le i < j$. Then the product $m_3 \cdots m_n$ is divisible by m_1 . We consider the product $m_3 \cdots \widehat{m_i} \cdots m_n$. When $i \leq \ell$, a product $m_2m_3\cdots \widehat{m_i}\cdots m_n$ is divisible by m_1 . When $i > \ell$, a product $m_3\cdots \widehat{m_i}\cdots m_n$ is divisible by m_2 . This means that the L-length of I is at most n-2. Hence ara $I \leq n-2$.

In particular, we have ara $I = \text{pd}_S S/I = n - 2$ for the following cases:

- (1) $z_{t_i} = z_i$ for all i = 1, 2, ..., n 2. (2) $z_{t_k} = z_{t_{n-2}} = z_k$, and $z_{t_i} = z_i$ for $i \neq k, n 2$.

In fact, the ideal in case (1) satisfies $\mu(I)$ – height I = 2 (see [10, Subsection 4.4]). In case (2), $e_{1\cdots \widehat{k+2}\cdots n-1}$ is *L*-admissible and satisfies (3.1).

Remark 14. Let m_1, m_2, \ldots, m_n be squarefree monomials as in Example 13 and let w be a new variable. Put $T \subset \{3, 4, \ldots, n\}$ with $\sharp T \geq 2$. We set I' = $(m'_1, m'_2, \ldots, m'_n)$, where

$$\begin{cases} m'_{1} = m_{1}w, \\ m'_{2} = m_{2}, \\ m'_{i} = m_{i}w, & \text{if } i \in T, \\ m'_{i} = m_{i}, & \text{if } i \in \{3, 4, \dots, n\} \setminus T \end{cases}$$

Then the same assertion as in Example 13 is true. For example, for the ideal I'generated by the following 6 elements, we have ara $I' = pd_S S/I' = 4$:

$$x_1x_2y_4w, x_1x_2y_2y_3, x_1z_1w, x_2y_2z_2w, y_3z_3, y_4z_2.$$

Moreover, for this ideal I', it seems to be difficult to show ara $I' = pd_S S/I'$ by the method of Barile ([1, Proposition 1.1], [2, Propositions 1, 2]).

Finally, we give an ideal I whose L-length is not equal to the projective dimension of S/I but is equal to the arithmetical rank of I. In the following example, we consider the Stanley–Reisner ideal I of the triangulation of the projective plane with 6 vertices. The projective dimension of S/I depends on the characteristic of K, and Yan [17] proved that ara $I = 4 > 3 = pd_S S/I$ if char $K \neq 2$. Our theorem provides the best upper bound for $\operatorname{ara} I$.

Example 15 (Yan [17]). Let I be the squarefree monomial ideal generated by the following 10 elements:

 $x_1x_2x_3, x_1x_2x_5, x_1x_3x_6, x_1x_4x_5, x_1x_4x_6, x_2x_3x_4, x_2x_4x_6, x_2x_5x_6, x_3x_4x_5, x_3x_5x_6.$

This ideal is the Stanley–Reisner ideal of the triangulation of the projective plane with 6 vertices. Then a minimal graded free resolution of I is given by the following left (resp. right) diagram if char $K \neq 2$ (resp. if char K = 2):

K. KIMURA

	0	1	2	3		0	1	2	3	4
0:	1				0:	1				
1:					1:					
2:		10	15	6	2:		10	15	6	1
					3:				1	

Hence, the projective dimension of S/I is given by

$$\operatorname{pd}_{S} S/I = \begin{cases} 3 & \text{if char } K \neq 2, \\ 4 & \text{if char } K = 2. \end{cases}$$

Yan [17] proved that ara I = 4 for any characteristic of K.

On the other hand, the Lyubeznik resolution of I with respect to this order is given by the following diagram:

In particular, the length is 4. Therefore Theorem 1 implies that the L-length of I coincides with ara I.

Acknowledgments

The author is grateful to Professors Ken-ichi Yoshida and Naoki Terai for useful discussions.

References

- M. Barile, On the number of equations defining certain varieties, Manuscripta Math. 91 (1996), 483-494. MR1421287 (97m:13041)
- M. Barile, On ideals whose radical is a monomial ideal, Comm. Algebra 33 (2005), 4479–4490. MR2188323 (2006g:13039)
- [3] M. Barile, A note on monomial ideals, Arch. Math. (Basel) 87 (2006), 516–521. MR2283682 (2007h:13004)
- [4] M. Barile, A note on the edge ideals of Ferrers graphs, preprint, arXiv:math.AC/0606353.
- [5] M. Barile, On the arithmetical rank of the edge ideals of forests, Comm. Algebra 36 (2008), 4678–4703. MR2473354
- [6] M. Barile, On the arithmetical rank of certain monomial ideals, preprint, arXiv:math.AC/0611790.
- M. Barile, Arithmetical ranks of Stanley-Reisner ideals via linear algebra, Comm. Algebra 36 (2008), 4540–4556. MR2473347
- [8] M. Barile and N. Terai, Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone, preprint, arXiv:0809.2194.
- [9] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals of small arithmetic degree, J. Algebraic Combin. 29 (2009), 389–404.
- [10] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals of deviation two, submitted.
- [11] K. Kimura, N. Terai, and K. Yoshida, Arithmetical rank of squarefree monomial ideals whose Alexander duals have deviation two, in preparation.
- [12] G. Lyubeznik, On the local cohomology modules Hⁱ_a(R) for ideals a generated by monomials in an R-sequence, in Complete Intersections, Acircale, 1983 (S. Greco and R. Strano, eds.), Lecture Notes in Mathematics, No. 1092, Springer-Verlag, 1984, pp. 214–220. MR775884 (86f:14002)
- [13] G. Lyubeznik, A new explicit finite free resolution of ideals generated by monomials in an R-sequence, J. Pure Appl. Algebra 51 (1988), 193–195. MR941900 (89c:13020)

- I. Novik, Lyubeznik's resolution and rooted complexes, J. Algebraic Combin. 16 (2002), 97– 101. MR1941987 (2003j:13021)
- [15] T. Schmitt and W. Vogel, Note on set-theoretic intersections of subvarieties of projective space, Math. Ann. 245 (1979), 247–253. MR553343 (81a:14025)
- [16] D. Taylor, Ideals generated by monomials in an R-sequence, Ph.D. Thesis, Chicago University (1960).
- [17] Z. Yan, An étale analog of the Goresky-MacPherson formula for subspace arrangements, J. Pure Appl. Algebra 146 (2000), 305–318. MR1742346 (2000k:14041)

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan $E\text{-}mail\ address:\ mo4012w@math.nagoya-u.ac.jp$

Current address: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: kimura@math.sci.osaka-u.ac.jp