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A CRITERION FOR STABLE CHARACTERISTIC EXPONENTS*
By AUREL WINTNER (The Johns Hopkins University)

1. Let f(t) be a real-valued, continuous, periodic function and let the unit of length
on the /-axis be so chosen that the period of/(/) becomes 1. Then the linear differential
equation

*"+/(/)* = 0 (1)

has two solutions of the form

x = eytg(t), x = e~uh(t), (2)

where g(t) and h(t) have the period, 1, oif {t) and do not vanish identically. The num-
bers + X occurring in (2), the characteristic exponents of (1), are determined mod 2nri
only. If X is not a multiple of iri, it is clear that the two solutions (2) are linearly inde-
pendent. If X is a multiple of iri, it depends on the elementary divisors of certain linear
substitutions whether (1) does or does not possess two linearly independent solutions
of the form (2) (in the second case, the general solution of (1) contains a secular term,
that is, a term containing the factor t).

Let the differential equation (1) be called of stable type if every solution, x(t), re-
mains bounded as t—*± °°, and let the characteristic exponents +X of (1) be called
of stable type if they are purely imaginary (including 0). Then it is clear that (1)
cannot be of stable type unless the characteristic exponents are, and that (1) must be
of stable type if the characteristic exponents are of stable type and distinct. Needless to
say, the two characteristic exponents, X and —X, are considered as distinct if and only
if they are distinct mod 2iri (that is, if X is not a multiple of iri).

2. The usual way of calculating X is supplied by Hill's method of infinite determi-
nants (the zeros of the resulting transcendental equation being all possible values,

i X, i X + 2iri, + X + Airi, ■ • • ,

of the characteristic exponent). For certain purposes, a less elaborate procedure is
more convenient. Quite a direct procedure happens to be contained in the classical
proof (Cauchy-Fuchs-Floquet) for the mere existence of solutions of the form (2). In
fact, this existence proof is based on the consideration of the linear substitutions of
the "monodromy group." These are binary substitutions of determinant 1, have a
common pair of latent roots, and the logarithms of these roots are precisely the char-
acteristic exponents. In other words, e±x is the root of a reciprocal quadratic equation,
say

e±2x _ 2ae±x +1 = 0, (3)

where a is a constant uniquely determined by the periodic coefficient function of (1).
Accordingly, the calculation of X can be reduced to the calculation of a. But a can

be calculated from/(/), by applying the method of successive approximations to those
two solutions of (1) which are determined by the initial conditions

* Received March 12, 1947.
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£(0) = 1, »'(0) = 0 and x(0) = 0, #'(()) = 1.

This procedure, which seems to go back to Liapounoff (cf. pp. 425-431 of vol. IV,
part III (1902) of Forsyth's Theory of Differential Equations), leads to the following
representation of a:

Put

F(t) = f f(tQ)dt0 ' (4)
•/ 0

and

Fn = {F(l) - F{h) + F(tn) } II \F(tk) - F(tk+i) }, (5)
1

I

where n = 1, 2, • • • (with the understanding that

n— 1

XI = 1 if n — 1>
k~ 1

that is, if the product is vacuous); so that

Fn = Fn(h, • ■ • , in).

Then, if the constants a\, an, • • • are defined by

1 C 1 c 'i r '»-i
an = — I dh I dt% ■ ■ ■ I Fn(tu • • • , tn)dtn

2 J a J o J o
(6)

(that is, if the integral of (5) over the w-dimensional polytope

0 gtng tn-1 g g <i ^ 1 (7)

is denoted by 2ar), the series

a = 1 — on + oci — ■ • ■ + (— \)kctk + • • • (8)

is convergent and represents the coefficient in (3). This is the substance of the veri-
fications which will be found loc. cit.

This method does not seem to be generally known among applied mathematicians;
it is not mentioned in Strutt's usually quite complete monograph.

3. Since (6), hence (8), is real-valued, and since the roots of the quadratic equa-
tion (3) are

e±x = a + (a2 — l)1'2,

it is clear that the characteristic exponents ±X are of stable type (that is, purely
imaginary, including 0) if and only if

- 1 ^ a g 1,

and that they are of stable type and distinct (mod 2iri) if and only if

- 1 < a < 1. (9)
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Hence, the stability of (1) depends on whether the sum of the numerical series (8)
does or does not satisfy these conditions.

Liapounoff has used this method in order to show that, if /(/) =/(< +1) is positive
throughout, the characteristic exponents of (1) must be of stable type whenever the
average value of /(/), that is, the constant term in the Fourier expansion of /(/), is
sufficiently small; namely, less than 4 (cf. loc. cit.). Liapounoff's proof can be inter-
preted as amounting to an application of the second mean-value theorem in integral
calculus. By using the first mean-value theorem instead of the second, two stability
criteria of quite another type will be deduced in the sequel. Neither of them will
assume that f(t) 3:0. The first of them is as follows:

(i) Let f{t) be a real-valued, continuous function of period 1. Suppose that its average

ix — f f(t)dt
J 0

(10)

and its absolute maximum

satisfy the inequalities

M = max | f{t) \ (11)

£ Mn/(2n *— 1)! < /* = 1 (12)
71=2

{which are compatible with min f(t) <0)\for instance, that

M2eM < 6/x £ 6. (13)

Then the characteristic exponents of (I) are of stable type and distinct.
That (13) is sufficient for (12), is seen by comparing coefficients.
As to the possibility mentioned parenthetically after (12), it is sufficient to observe

that, while (11) and (12) imply that

ix > 0, (14)

(14) and (10) do not imply that/(/) is non-negative throughout.
4. According to (4), the first factor on the right of (5) is identical with the differ-

ence

Cf(t)dt- f"f(t)dt,
^ 0 ^ *n

where 0^ tn j£/i?£l. It follows therefore from (11) and (5) that

n—1

l^-l ^ MH\F(tk) — F(tk+i) |.
/if=l

On the other hand, from (4) and (11),

| F(tk) — F(t]c+1) | ^ M(tk — th+1),

where tk+i^tk, by (7). Hence, the inequality

I Fn I g M»Dn (15)
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holds at every point of the polytype (7), if Dn = Dn(h, •■■,/„) is an abbreviation for
the product

n—1

D„ = (tie — tk+l), (16)
k-1

the (non-negative) square-root of the discriminant of the polynomial 1(2 — /*)•
The integral of the product (16) over the polytope (7) is known to have the value

l/(2w —1)!. It follows therefore from (6) and (15) that

| «, | SS iJf »/(2» - 1) I.' (17)
Hence, by the first of the inequalities (12),

00

£ I I < Im- (18)
n=2

According to (5) and the parenthetical remark which follows (5), the function F\
is identical with the constant F(l). It follows therefore from (6) that «i = ^F(l). In
view of (4) and (10), this means that

«i = 5M- (19)

Consequently, from (8) and (18),

I « - (1 — §ju) | < |m-
In view of the second of the inequalities (12), the last formula line implies that

0 < a <• 1. (20)

Since this, in turn, implies that (9) is satisfied, the proof is complete.
The first of the assumptions (12) can.be improved somewhat. In fact, it is clear

from the proof of (15) that (15) can be refined to

|F„| g MnDn - M"(h - tn)Dn, (21)

where (h — tn)Dn is positive (within the polytope).
5. Since only (9) was needed but (20) was deduced, it is natural tQ ask after a

condition which, in contrast to (12), leads to the a-range complementary to (21),
that is, to the range

- 1 < a ^ 0. (22)

Such a condition is contained in the following dual of (i):
(ii) The pair of assumptions, (12), of (i) can be replaced by

00

X) Mn/(2n — 1)!<4 — ju = 2; (23)
n=2

for instance, (13) can be replaced by

M2eM < 24 - 6m ̂  12. (24)

In fact, (17) and (19) were obtained without any hypothesis and are therefore
applicable whether (12) is assumed or not. But (17), (19) and (8) imply that
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00

|«U | 1 - b\ + §£M»/(2« - 1)!-
n—2

Hence, by the first of the inequalities (23),

| a | < | 1 — \n | + 2 — $n.
On the other hand, the second of the inequalities (23) can be written in the form
V ̂  2, which means that

| 1 — iM I - — 1.
This completes the proof, since the last two formula lines imply the inequality | a| <1,
which is (9).

Conclusion. If n, M are defined by (10), (11), then either (12) or (23) [and so, in
particular, either (13) or (24)] is sufficient for stability.

As an illustration, let

/(/) = (a + b cos 2ir/)_1, where 0 < b < a\

so that (1) becomes the equation known from the problem of frequency modulation.
In this case, (10) and (11) reduce to

n = (a2 — b2)~1/2 and M = (a — J)-1,

and so the above inequalities supply explicit conditions for pairs (a, b) which are sure
to be of stable type. Needless to say, the resulting inequalities for a and b are just
sufficient for stability. Incidentally, since/(/) is now positive, Liapounoff's criterion,
/x < 4, also is applicable.

LOWER BUCKLING LOAD IN THE NON-LINEAR BUCKLING
THEORY FOR THIN SHELLS*

By HSUE-SHEN TSIEN (Massachusetts Institute of Technology)

For thin shells the relation between the load P and the deflection € beyond the
classical buckling load is very often non-linear. For instance, when a uniform thin
circular cylinder is loaded in the axial direction, the load P when plotted against the
end-shortening e has the characteristic shown in Fig. 1. If the strain energy 5 and the
total potential <p = S — Pt are calculated, their behavior can be represented by the
curves shown in Figs. 2 and 3. It can be demonstrated that the branches OC and AB
corresponds to stable equilibrium configurations and the branch BC to unstable equi-
librium configurations. The point B is then the point of transition from stable to un-
stable equilibrium configurations.

It was proposed by the author in a previous paper1 that the point A was the criti-
cal point for buckling of the structure under external disturbances, using the S, e curve
for "testing machine" loading and the p, P curve for "deadweight" loading. The load
P for the unbuckled configuration of the shell corresponding to the point A was called
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