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Abstract. In this work we consider the analysis of unshearable, hemitropic hyper-

elastic rods under end thrust alone. Roughly speaking, a nominally straight hemitropic

rod is rotationally invariant about its centerline but lacks the reflection symmetries char-

acterizing isotropic rods. Consequently a constitutive coupling between extension and

twist is natural. We provide a rigorous bifurcation analysis for such structures under

“hard” axial loading. First, we show that the initial post-buckling behavior depends

crucially upon the boundary conditions: if both ends are clamped against rotation, the

initial buckled shape is spatial (nonplanar); if at least one end is unrestrained against

rotation, the buckled rod is twisted but the centerline is planar. Second, we show that

as with isotropic rods, nontrivial equilibria of hemitropic rods occur in discrete modes,

but unlike the isotropic case, such equilibria need not be compressive but could also be

tensile. Finally, we prove an exchange of stability between the trivial line of solutions

and “mode 1” bifurcating branches in accordance with the usual theory.

1. Introduction. Long slender structures often exhibit an orientation or handedness

in their natural relaxed states. Examples include biological filaments like idealized DNA

molecules and man-made objects like cables. Accordingly, a good mechanical model

of such structures should capture handedness or chirality. The simplest such model,

viz., a hemitropic rod, was proposed in [7]. Roughly speaking, a nominally straight,

hemitropic rod is rotationally invariant about its centerline but does not generally possess

the reflection symmetries characterizing isotropic rods. Hemitropy can be rigorously

obtained by starting with the class of rods having the symmetry of a regular cylindrical

helix and then taking the limit as the pitch goes to zero; cf. [8].
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In this work we consider the analysis of unshearable, hyperelastic hemitropic rods

under end thrust alone. What arises naturally here as the distinguishing feature is a

constitutive coupling between extension and twist. This phenomenon is well known in

the behavior of both wire rope [4] and long DNA molecules [13], and in each case simple

quadratic stored energy functions have been proposed. Here we give a rigorous bifurcation

analysis for such structures under “hard” axial loading. In particular, we show that the

behavior of the initial post-buckled configuration depends crucially upon the boundary

conditions: clamped rods (both ends restrained against end rotation) have nonplanar,

initial post-buckled configurations, while unclamped rods (i.e., those in which at least

one end rotation is unconstrained) always buckle in such a way that the centerline lies

in a plane.

Of course the buckling and post-buckling analysis of straight elastic rods subject to

end thrust dates back to the seminal work of Euler [5]. The literature on such problems

since that time is immense, and we make no attempt to account for it here. However,

we note that (to the best of our knowledge) the buckling and post-buckling analysis of

chiral elastic rods is absent from the literature.

The outline of this work is as follows: In Section 2 we summarize the basic field equa-

tions for hyperelastic rods, providing the definition of hemitropy and its subsequent repre-

sentation. In Section 3 we analyze a straight hemitropic rod under dead-load thrust with

fixed-free boundary conditions, i.e., one end totally clamped with the opposing, loaded

end unconstrained. Our approach here is completely classical. Exploiting hemitropy, we

introduce a semi-convected basis field, much like in the analysis of the Lagrange top [16].

We then readily demonstrate that all equilibria of the rod are characterized by a planar

centerline, generally accompanied by nonzero twist.

In Sections 4-6, which form the heart of the paper, we treat fixed-fixed hemitropic rods

subject to “hard-load” axial displacements at the ends. We employ a coordinate-free

approach and use modern bifurcation theory to study the initial post-buckling behavior,

which is completely distinct from that of fixed-free rods. In particular, we show that

the initial post-buckled shape is spatial (nonplanar). This is also in stark contrast to

the planar initial post-buckling of isotropic rods under pure end thrust. We identify and

exploit the O(2) ⊂ SO(3) symmetry inherent in the problem, which is necessary to carry

out the rigorous bifurcation analysis in Sections 4 and 5. We further conclude that all

local bifurcations are “pitchforks”. In Section 6 we examine the exchange of stability - via

minimum potential energy criterion - along the trivial (straight) solutions as the loading

parameter passes though the “first” critical value. Due to the presence of constraints, the

formulation here is not standard. Motivated by [12], we introduce appropriate projection

operators to identify an equivalent unconstrained eigenvalue problem that plays a crucial

role in the analysis of the second variation of the governing energy functional. We

demonstrate that solutions are stable for loading parameters below the first critical value.

2. General formulation. Throughout this work we denote vectors (elements of E3,

which denotes the tangent space of 3-dimensional Euclidean point space) by boldface,

lowercase symbols, e.g. a,x, etc. Linear transformations of E3 into itself are denoted by

boldface, uppercase symbols, e.g. A,T, etc.
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Let {e1, e2, e3} denote a standard right-handed, orthonormal basis for E3. We consider

a Special Cosserat rod that occupies a straight, stress-free reference configuration {se3 :

s ∈ [− 1
2 ,

1
2 ]}. Let r(s) ∈ E

3 denote the position vector (with respect to some fixed

origin) of the material point originally located at s in the reference configuration. We let

R(s) ∈ SO(3) denote the rotation of the cross-section originally located at s and spanned

by {e1, e2}. Three unit-vector fields of an orthonormal frame field, called directors, are

defined by

di(s) = R(s)ei, i = 1, 2, 3, (2.1)

and are used in the Special Cosserat theory to quantify the orientation of each cross

section in the deformed configuration. The deformed configuration of the rod is thus

uniquely specified by the fields r(s) and R(s) on [− 1
2 ,

1
2 ], as shown in Figure 1.

e2

e1

e3

d 2(s)

r(s
)

d 1(s)

d 3(s)

x1

x3 = s

x2

O

Fig. 1. Kinematics of the Special Cosserat rod

Differentiation of (2.1) yields

d′
i(s) = R′(s)RT (s)di(s), i = 1, 2, 3. (2.2)

Since the tensor field R′RT is skew-symmetric, there is a vector field κ such that

d′
i(s) = κ(s) × di(s), i = 1, 2, 3. (2.3)

We then express r′ and κ in terms of convected coordinates νi and κi, respectively, as

follows:

r′ = νidi and κ = κidi, (2.4)

where we employ the usual summation convention that repeated Latin indices imply

summation from 1 to 3.

We require each configuration of the rod to satisfy the nonpenetration condition

ν3 = d3 · r′ > 0. (2.5)

We let n(s) and m(s) denote the internal contact force and internal contact couple,

respectively, acting on the cross-section originally at s in the reference configuration. In
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the absence of body forces and body couples, the well-known local forms of linear and

angular momentum balance are given by

n′(s) = 0 (2.6)

and

m′(s) + r′(s) × n(s) = 0, (2.7)

for all s ∈ [− 1
2 ,

1
2 ]. Next we express the fields n and m also in terms of convected

components:

n = nidi and m = midi. (2.8)

Let D := R
2 × (0,∞) × R

3. For homogeneous hyperelastic rods, we assume the

existence of a stored-energy function W : D → R, viz., W (ν1, ν2, ν3, κ1, κ2, κ3), such that

nj =
∂W

∂νj
and mj =

∂W

∂κj
, j = 1, 2, 3. (2.9)

We henceforth assume that W is sufficiently smooth (of class Ck, k ≥ 3). If we define

the triples n = (n1, n2, n3), m = (m1,m2,m3), v = (ν1, ν2, ν3), and k = (κ1, κ2, κ3), and

also W(v, k) = W (ν1, ν2, ν3, κ1, κ2, κ3), then (2.9) takes the compact form

n =
∂W

∂v
and m =

∂W

∂k
. (2.10)

Next we discuss material (cross-sectional) symmetry. Let let Rθ ∈ S̃O(2) denote the

rotation matrix

Rθ =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎦ . (2.11)

We say that the rod is transversely hemitropic if

W(Rθv,Rθk) = W(v, k) for all θ ∈ R (mod 2π) (2.12)

and flip symmetric if

W(Ev,Ek) = W(v, k), (2.13)

where E denotes the reflection matrix

E =

⎡
⎣ 1 0 0

0 −1 0

0 0 1

⎤
⎦ . (2.14)

Flip-symmetric, hemitropic rods can be rigorously derived from corresponding rods hav-

ing the material symmetry of a regular, cylindrical helix, in the limit that the pitch of

the helix goes to zero [8].

By contrast, a rod is said to be transversely isotropic if it is transversely hemitropic

and, in addition, the stored-energy function satisfies

W(Ev,−Ek) = W(v, k), (2.15)

with E as defined in (2.14). Note the appearance of the minus sign in the second argument

above, which arises due to the change in orientation under the reflection E; cf. [7]. No

such change of sign occurs in (2.13) since the underlying symmetry of the flip is a proper

rotation; cf. [7], [8].
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In this work, we consider only flip-symmetric, hemitropic rods that are also unshear-

able, for which the constraints να = 0 are enforced or, equivalently,

r′ = λd3 (2.16)

is imposed. From (2.12), (2.13), and a representation theorem of Cauchy [2], we find that

the stored energy function for an unshearable hemitropic rod has the representation

W (νi, κi) = Υ(κακα, κ3, ν3), (2.17)

where we employ the convention that repeated Greek indices imply summation from 1

to 2. We henceforth assume that the 4×4 Hessian matrix,

H =

[
Wν3ν3

(·) Wν3k(·)
Wkν3

(·) Wkk(·)

]
, (2.18)

is positive definite on (0,∞)×R
3. Then the vector field nαdα is the Lagrange multiplier

that enforces the constraint (2.16).

3. Equilibria of the fixed-free rod. In this section we consider a general class of

axially loaded, unshearable, transversely hemitropic, fixed-free rods, as depicted in Figure

2. These rods are completely fixed (“welded”) to allow no displacement or rotation at

the end s = − 1
2 and are subjected to a horizontal, compressive “dead load”, −Pe3, at

the end s = 1
2 , which is otherwise unconstrained.

x2

x3

P

Fig. 2. Schematic of the fixed-free rod

Here we demonstrate that all equilibria of the nonlinear problem are planar. By planar

we mean that the field r belongs to a two-dimensional subspace of E3. This is striking,

for it demonstrates that hemitropy by itself is insufficient to cause nonplanarity.

By virtue of (2.17) and (2.18) we have

Υ̂,1(κακα, κ3, ν3) > 0 (3.1)
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for all (ν3, κi) ∈ (0,∞) × R
3, where Υ̂,1 = ∂Υ̂

∂(κακα) . This boundary value problem

is comprised of the field equations (2.6) - (2.10), (2.16) - (2.17), and (3.1), and the

boundary conditions

r(−1

2
) = 0, di(−

1

2
) = ei, i = 1, 2, 3, (3.2)

n(
1

2
) = −Pe3, m(

1

2
) = 0. (3.3)

Observe that integration of (2.6) using (3.3)1 yields

n ≡ −Pe3, (3.4)

and then integration of (2.7) leads to

m − Pr× e3 ≡ c. (3.5)

Taking the dot product of (3.5) with e3 reveals that

e3 ·m ≡ e3 · c, (3.6)

which together with (3.3)2 implies that

e3 ·m ≡ 0. (3.7)

Next we introduce a semi-convected basis field (similar to that employed in the usual

analysis of the Lagrange top; cf. [16]) as follows:

a1 = cos θ(cosψe1 + sinψe2) − sin θe3,

a2 = − sinψe1 + cosψe2,

d3 = a3 = sin θ(cosψe1 + sinψe2) + cos θe3, (3.8)

where ψ is the right-handed polar angle between e1 and the unit vector ê1 = cosψe1 +

sinψe2, and θ denotes the angle between e3 and d3 = a3. The rationale for these

definitions lies in the fact that d3 ∈ span{ê1, e3}, and if ψ′(s) ≡ 0, then d3 lies within

a fixed plane. Since r′ = λd3, by (2.16), it follows that r′, and hence r, lies in a fixed

plane, and hence the solution is planar. The following calculations demonstrate that

indeed either d3 ≡ e3 or ψ′ ≡ 0, from which planarity follows.

Differentiation of relations (3.8) yields

a′i = ω × ai, i = 1, 2, 3, (3.9)

where

ω = −ψ′ sin θa1 + θ′a2 + ψ′ cos θa3. (3.10)

We also introduce another (Euler) angle φ that relates the ai to the directors di, as

follows:

a1 = cosφd1 − sinφd2,

a2 = sinφd1 + cosφd2, (3.11)

and we then have

κ = ω + φ′d3

= ψ′ sin θa1 + θ′a2 + (ψ′ cos θ + φ′)d3, (3.12)
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where, again, κ is such that d′
i = κ × di, as defined in (2.3). We note, in passing, that

(3.12) is consistent with equations (8) on p. 386 of [11].

Inverting (3.8) to obtain

e3 = − sin θa1 + cos θa3, (3.13)

recalling (3.4), and employing {a1, a2, a3 = d3} as a fundamental basis, we obtain the

following expressions:

n = P (sin θa1 − cos θa3),

m = mαaα + m3d3,

κ = καaα + κ3d3,

ω = καaα + ω3d3. (3.14)

Substitution of (2.16) and (3.14) into the moment balance equation (2.7) yields

m′
1 − m2ω3 + m3κ2 = 0,

m′
2 + m1ω3 − m3κ1 + λP sin θ = 0,

m′
3 − m1κ2 + m2κ1 = 0, (3.15)

where the components ω3 and κα are as defined in (3.10) and (3.12), respectively. Noting

the invariance κακα = κακα, we deduce from (2.9) and (2.17) that

mβ = 2Υ̂,1(κακα, κ3, λ)κβ , β = 1, 2. (3.16)

Substitution of (3.16) into (3.15)3 reveals that m′
3(s) ≡ 0, and finally, upon imposing the

boundary condition (3.3)2, we find that

m3 ≡ 0. (3.17)

Then, recalling (3.7) and employing (3.13) with a3 = d3, we compute

0 = m · e3
= (m1a1 + m2a2) · (− sin θa1 + cos θd3)

= −m1 sin θ. (3.18)

Thus, either sin θ ≡ 0 or m1 ≡ 0.

In the first case, suppose sin θ ≡ 0. Then (3.8) implies that d3 = e3. Since r′ = λd3

by (2.16), it follows that r′ = λe3, i.e. the rod is straight (parallel to the constant vector

e3) and thus planar.

In the second case, observe from (3.1) and (3.16) that m̄1 = 0 ⇔ κ̄1 = 0 . Thus from

(3.12) we find that

ψ′ sin θ = 0, (3.19)

from which we immediately conclude that ψ′ ≡ 0. This implies that ψ is constant, and

as was indicated near the beginning of this section, this also implies that the rod must

be planar. Thus we have proved the following:

Theorem 3.1. All equilibria of an axially loaded, unshearable, hemitropic, “fixed-free”

rod are planar.



736 TIMOTHY J. HEALEY AND CHRISTOPHER M. PAPADOPOULOS

Remark 3.2. The proof of Theorem 3.1 depends crucially on (2.16), which is the

assumption of unshearability, or r′ = λd3. Equilibria of shearable rods may, perhaps, be

nonplanar.

We conclude this section by summarizing the remaining field equations governing the

planar equilibria. We exclude the trivial case sin θ ≡ 0, which we demonstrated would

imply that the rod remain straight. Due to the rotational symmetry in our problem,

without loss of generality, we may choose ψ ≡ 0, in which case (3.8), (3.10), and (3.12)

specialize to

a1 = cos θe1 − sin θe3,

a2 = e2,

d3 = a3 = sin θe1 + cos θe3, (3.20)

and

ω = θ′a2 and κ = θ′a2 + φ′d3, (3.21)

respectively. With this choice, by virtue of (3.17) and the fact that m1 = 0, both (3.15)1
and (3.15)3 vanish identically, while (3.15)2 becomes

2[Υ̂,1((θ
′)2, φ′, λ)θ′]′ + λP sin θ = 0. (3.22)

Now (3.4) and (3.20)3 imply that

n3 = n · d3 = −Pe3 · d3 = −P cos θ. (3.23)

Using (2.9), (2.17), and (3.17) we obtain

n3 = Υ̂,3((θ
′)2, φ′, λ) = −P cos θ (3.24)

and

m3 = Υ̂,2((θ
′)2, φ′, λ) = 0. (3.25)

From (3.2)2 and (3.20)3, it follows that

cos θ(−1

2
) = 0, (3.26)

and from (3.3)2 and (3.16), we have

m(
1

2
) · d2 = m2(

1

2
) = 0

⇔ κ2 = 0

⇔ θ′(
1

2
) = 0. (3.27)

Field equations (3.22), (3.24), and (3.25), together with boundary conditions (3.26) and

(3.27), determine the planar equilibria of the rod. In view of (2.17) and (2.18), we

conclude that (3.24) and (3.25) determine λ and φ′ uniquely in terms of P, θ and θ′, sub-

stitution of which into (3.22) yields a standard “generalized” elastica problem, amenable

to detailed analysis. We do not pursue this here, but refer to [1] (and the references

therein) for the analysis of similar problems for planar, nonlinearly elastic rods.
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4. The fixed-fixed rod: Governing equations, symmetry, and linearized

solutions. The fixed-fixed rod that we consider is clamped at each end and guided by

rollers that prevent displacement perpendicular to the e3 axis and all rotation. End

displacements of equal magnitude and opposite direction along the e3-axis are specified

by the parameter λ ∈ (0,∞), which represents the distance between the two ends; cf.

Figure 3.

x2

x3 = s

)/2 )/2

Fig. 3. Schematic of the fundamental problem

4.1. Governing equations. We again consider hemitropic, unshearable rods. For def-

initeness, we choose a specific class of hemitropy that allows both chirality and infinite

compressive force under ultimate compression, governed by the following stored energy

function:

Υ =
1

2
[Cκακα + Bκ2

3 + Φ(ν3) + 2Aκ3(ν3 − 1)]. (4.1)

From (2.9) the following consitutive equations direcly follow:

n3 = g(ν3) + Aκ3,

m3 = A(ν3 − 1) + Bκ3,

mα = Cκα, (4.2)

where g := Φ′ : (0,∞) → R. In view of (2.18), and accounting for unshearability, we see

that the moduli B,C > 0, and g′(·) > 0 on (0,∞). Assumption (2.18) also implies that

g′(ν)B −A2 > 0 for all ν ∈ (0,∞). We further assume that g(ν) → −∞ as ν → 0.

The modulus A represents the degree of hemitropy inherent in the rod and has no

restriction on its sign. As discussed in [7], the sign of A governs the chirality or “handed-

ness” of the rod. Note that the rod is isotropic if A = 0. The moduli B and C represent

the twisting and bending stiffness, respectively, and are each positive. Near the trivial

solution and when A = 0, B and C respectively correspond exactly to modulus of rigidity

“GJ” and bending stiffness “EI”, as typically denoted in linear beam theory [15]. Note

that equations (4.2)1,2 explicitly reveal a coupling of extension and twist.

Upon substituting the constitutive laws (4.2) into the general field equations (2.6)

and (2.7), and nondimensionalizing the equations such that C = 1, the boundary value
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problem for the fixed-fixed rod becomes

d

ds

[
nα(s)Reα(s) +

(
g(ν3(s)) + Aκ3(s)

)
Re3(s)

]
= 0, (4.3)

d

ds

[
κα(s)Reα(s) +

(
A(ν3(s) − 1) + Bκ3(s)

)
Re3(s)

]
+ r′(s) ×

[
nα(s)Reα(s) +

(
g(ν3(s)) + Aκ3(s)

)
Re3(s)

]
= 0, (4.4)

r′(s) ·Reα(s) = 0, (4.5)

r(±1

2
) =

±λ

2
e3, (4.6)

R(±1

2
) = I (4.7)

for s ∈ (− 1
2 ,

1
2 ). Note that here we enforce the unshearability explicitly via (4.5) and

that the last term in (4.4) vanishes due to the fact that Re3 is parallel to r′.

With the aid of (2.1) and (2.4), equations (4.3) - (4.7) define a mapping of differentiable

functions x = (r,R, nα), α = 1, 2, in

X ≡ {C1([−1

2
,
1

2
],E3 × SO(3) × R

2) s.t. (4.6) and (4.7) hold}

into Y ≡ C0([− 1
2 ,

1
2 ],E3 ×E

3 ×R
2). Denoting this mapping via F : R×X → Y , we may

represent (4.3) - (4.7) abstractly via

F(λ,x) = 0. (4.8)

4.2. Symmetries and equivariance properties. The fixed-fixed rod possesses important

symmetry properties that are exploited in our analysis. It is straightforward to show

(cf. [14]) that the mapping (4.8) is equivariant with respect to the group consisting of

arbitrary rotations of magnitude θ about the e3 axis and rotations by π about any axis

perpendicular to e3 at the center of the rod. By equivariance we mean here that the

nonlinear mapping F(λ, ·) commutes with the group action as follows:

F(λ,Γx) = Γ̃F(λ,x), (4.9)

for all Γ ∈ {Qθ, EQθ : X → X , 0 ≤ θ < 2π} and for all Γ̃ ∈ {Q̃θ, ẼQ̃θ : Y → Y , 0 ≤ θ <

2π}. Table 1 provides explicit representations of these symmetry operations on the field

variables (r,R, nα) and other relevant quantities.

Table 1. Symmetry transformations.

Quantity q Qθq Eq
r(s) Qθr(s) Er(−s)

R(s) QθR(s)QT
θ ER(−s)E

nα(s) (Qθ)αβnβ(s) −Eαβnβ(−s)

ν3(s) (Qθ)3jνj(s) −E3jνj(−s)

κi(s) (Qθ)ijκj(s) −Eijκj(−s)
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In Table 1 the tensors Qθ and E are defined by their components relative to the fixed

basis via

[Qθ] =

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎦ , [E] =

⎡
⎣ 1 0 0

0 −1 0

0 0 −1

⎤
⎦ . (4.10)

Note that the boundary conditions (4.6) and (4.7) are invariant under all group actions

Γ(r,R, nα). The action Γ̃ on (4.3) - (4.5) is defined as follows: for the first two arguments,

corresponding to the two vector-valued equations (4.3) - (4.4), the action is the same as

that indicated for r in Table 1; the two scalar equations in (4.5) transform like κα, α =

1, 2, respectively, in Table 1.

The transformations Qθ (and Q̃θ) and E (and Ẽ) represent proper rotations. In par-

ticular, the symmetry operation E is isomorphic to Z2 and represents a “flip” (rotation

of π radians) about the x axis. Therefore, the underlying equations are equivariant with

respect to representations of SO(2)⊕Z2 = O(2) ⊂ SO(3). The actions of O(2) appearing

in (4.9) are each faithful on X and Y , respectively. As will be seen, the presence of the

flip E is essential for our analysis.

4.3. Linearized equations. Observe that for any λ ∈ (0,∞) the following straight so-

lution satisifies the boundary value problem (BVP) (4.3) - (4.7):

r(s) ≡ λse3, R(s) ≡ I, nα(s) ≡ 0. (4.11)

It follows that r′ ≡ λe3, να ≡ 0, ν3 ≡ λ, and κi ≡ 0, i = 1, 2, 3. Physically, under

such straight solutions, the rod undergoes change of length but does not twist, bend,

or shear. Note further that within the family of straight solutions, the rod develops

both a uniform internal axial force n(s) = g(λ)e3 and an internal axial twisting torque

m(s) = A(λ− 1)e3.

The linearization of the BVP (4.3) - (4.7) is obtained by perturbing the straight

solution as follows:

r(s) = λse3 + ερ(s), R(s) = exp[εΨ(s)], nα(s) = εηα(s), (4.12)

where Ψ is a skew-symmetric tensor field with axial vector ψ ≡ axial(Ψ), i.e., ψ(s)×v ≡
Ψ(s)v for all v ∈ E. Substituting (4.12) into (4.3) - (4.7) and retaining only terms of

first order in ε yields the linearize BVP:

η′αeα + g(λ)ψ′ × e3 = 0, (4.13)

(g′(λ)ρ′′ + Aψ′′) · e3 = 0, (4.14)

ψ′′ · eαeα + A(λ− 1)ψ′ × e3

+ g(λ)ρ′ × e3 + λe3 × (ηαeα + g(λ)ψ × e3) = 0, (4.15)

(Aρ′′ + Bψ′′) · e3 = 0, (4.16)

(ρ′ − λψ × e3) · eα = 0, (4.17)

ρ(±1

2
) = 0, (4.18)

ψ(±1

2
) = 0. (4.19)
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Equations (4.14) and (4.16), boundary conditions (4.18) and (4.19), and the convexity

condition (2.18) (cf. (2.17) and (4.1)) imply that ρ and ψ lie in span{e1, e2}.
Next we substitute (4.17) and the integral of (4.13) into (4.15), yielding

ψ′′ + A(λ− 1)ψ′ × e3 − λg(λ)ψ = λc× e3, (4.20)

where c ∈ span{e1, e2} is the constant of integration coming from (4.13). Observe that

the integral of (4.17), with the aid of (4.18), implies∫ 1
2

− 1
2

ψ(s) ds = 0. (4.21)

Then the integral of (4.20), together with (4.19) and (4.21), gives

ψ′(
1

2
) −ψ′(−1

2
) = λc× e3, (4.22)

i.e., (4.20), (4.22) and (4.19) lead to the following stand-alone BVP for ψ:

ψ′′ + A(λ− 1)ψ′ × e3 − λg(λ)ψ = ψ′(
1

2
) −ψ′(−1

2
), (4.23)

ψ(±1

2
) = 0. (4.24)

Once we solve (4.23) and (4.24), the other perturbative fields in (4.12) are determined

by back-substitution into (4.17) and (4.13):

ρ(s) = λ

∫ s

− 1
2

ψ(τ ) dτ × e3 (4.25)

and

ηα(s)eα = g(λ)e3 ×ψ(s) + e3 ×
ψ′( 12 ) − ψ′(− 1

2 )

λ
. (4.26)

Defining coefficients

a = ã(λ) = A(λ− 1), Ω = Ω̃(λ) = −λg(λ), (4.27)

we rewrite (4.23) as

ψ′′(s) + aψ′(s) × e3 + Ωψ(s) = ψ′(
1

2
) −ψ′(−1

2
). (4.28)

We now define the “spatial frequencies” ω1 and ω2 as

ω1 =
a +

√
a2 + 4Ω

2
, ω2 =

a−
√
a2 + 4Ω

2
, (4.29)

and we note that

a = ω1 + ω2, Ω = −ω1ω2. (4.30)

For a2 + 4Ω ≥ 0, the general solution of (4.28) is, in component form w.r.t. {e1, e2},

[ψ(s)] = C1

[
cos(ω1s) − 2ω1

Ω sin ω1

2

sin(ω1s)

]
+ C2

[
cos(ω2s) − 2ω2

Ω sin ω2

2

sin(ω2s)

]

C3

[
sin(ω1s)

− cos(ω1s) + 2ω1

Ω sin ω1

2

]
+ C4

[
sin(ω2s)

− cos(ω2s) + 2ω2

Ω sin ω2

2

]
.

(4.31)
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Remark 4.1. It is also possible to write the general solution of (4.28) for the case

a2 +4Ω < 0. However, a lengthy but straightforward calculation shows that the solution

set of the BVP (4.28) and (4.24) contains only the trivial solution.

The solution set of the BVP (4.28) and (4.24) is a subspace of the span of the general

solution (4.31). Due to the presence of the underlying SO(2) symmetry, the dimension

of this subspace of solutions must be at least 2, which would generally pose problems in

bifurcation analysis. These problems are overcome, however, by exploiting equivariance.

In view of (4.9), we may rigorously restrict F(λ, ·) in (4.8) to a fixed-point space

corresponding to any subgroup of O(2), e.g., [6]. We choose to work in the fixed-point

space of functions that are invariant under the “flip” E , i.e. {x = (r,R, nα, α = 1, 2) :

Ex = x}. Of course, this restriction is inherited by the linearization, which we now

exploit.

4.4. Linearized solutions using symmetry reduction. Flip-invariant solutions of the

linearized problem (4.13) - (4.19) have the property that E(ψ,ρ, ηα) = (ψ,ρ, ηα) for

some appropriate action E of Z2 representing the flip about e1. From (4.10) and Table

1 we can read the Z
2 action directly as follows:

E(ψ(s),ρ(s), ηα(s)) = (Eψ(−s),Eρ(−s),−Eαβηβ(−s)). (4.32)

With respect to components relative to the fixed basis, flip-invariance is then equivalent

to

ρ1(s) = ρ1(−s), ρ2(s) = −ρ2(−s),

ψ1(s) = ψ1(−s), ψ2(s) = −ψ2(−s),

η1(s) = −η1(−s), η2(s) = η2(−s). (4.33)

Returning to the general solution (4.31) of (4.28), we see that (4.33)2 holds iff C3 =

C4 = 0, i.e., the general solutions of the reduced problem in the fixed-point space is given

by

[ψ(s)] = C1

[
cos(ω1s) − 2ω1

Ω sin ω1

2

sin(ω1s)

]
+ C2

[
cos(ω2s) − 2ω2

Ω sin ω2

2

sin(ω2s)

]
.

(4.34)

With this reduction, it is enough to enforce, say, the boundary condition (4.24) at s = 1
2 ,

ψ( 12 ) = 0 (the remaining boundary condition ψ(− 1
2 ) = 0 follows from Z

2 invariance),

yielding the following linear equations in C1 and C2:[
cos ω1

2 − 2ω1

Ω sin ω1

2 cos ω2

2 − 2ω2

Ω sin ω2

2

sin ω1

2 sin ω2

2

] [
C1

C2

]
=

[
0

0

]
. (4.35)

Therefore, nontrivial solutions of the linearized BVP (4.28) and (4.24) that are flip-

invariant are in 1-1 correspondence with nontrivial solutions of (4.35).

Before proceeding, we note here a simple yet crucial result that will be used in the

ensuing bifurcation analysis.

Theorem 4.2. The dimension of the space of flip-invariant nontrivial solutions of the

BVP (4.28) and (4.24) is at most 1.
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Proof. The dimension of the solution space of the linear equations (4.35) is clearly at

most 2. If it were 2, then each term of the matrix would be 0. This would necessitate

sin ωi

2 = cos ωi

2 = 0 for i = 1, 2, which obviously cannot occur. �
Nontrivial solutions of (4.35) occur for values of (a,Ω) for which∣∣∣∣ cos ω1

2 − 2ω1

Ω sin ω1

2 cos ω2

2 − 2ω2

Ω sin ω2

2

sin ω1

2 sin ω2

2

∣∣∣∣ = 0. (4.36)

Expanding the determinant, the resulting characteristic equation is

f(a,Ω) = −ω1ω2 sin
ω1 − ω2

2
+ 2(ω1 − ω2) sin

ω1

2
sin

ω2

2
= 0. (4.37)

Substituting from (4.29) reveals that solutions of (4.37) lie on a family of characteristic

curves in the a−Ω plane, labelled Ci in Figure 4. These curves intersect the a-axis at the

points labelled ci. Because f(a,Ω) vanishes identically for Ω = 0, the ci are determined

by expanding f(a,Ω) about Ω and determining the condition on a for which the leading

term (in this case, the second order term) vanishes. As a result, the numbers ci are

determined to be the positive solutions of the equation

tan
a

2
=

a

2
. (4.38)

The ci form a monotone increasing sequence such that c1 < c2 < . . ., and they have the

property that ci ∼ (2i + 1)π as i → ∞.

Next, the infinite sequence of intersection points along the Ω-axis coincide with the

classical (normalized) buckling loads of a compressed, planar, clamped-clamped rod; cf.

[15]. To see this, we set a = 0 in (4.37), which in view of (4.29) reduces to

Ω sin
√

Ω − 4
√

Ω sin2

√
Ω

2
= 0

or

sin

√
Ω

2

[√
Ωcos

√
Ω

2
− 2 sin

√
Ω

2

]
= 0. (4.39)

Hence, either Ω2n−1 = (2nπ)2 or Ω2n = c2n, n = 1, 2, 3, ....

 

 

= 1 = 0

Increasing 

Decreasing 

 = 0

4
a2 4

a2

(2 )2

(4 )2

c2
2

c2
1

a

c
1

c
5

c
4

c
3

c
2

C
5

C
1

C
4 C

3 C
2

-40 -30 -20 -10 0 10 20 4030

300

100

150

250

200

50

0

Fig. 4. Characteristic curves and parametric constitutive curves
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We summarize below three important properties of the characteristic curves which are

suggested by inspection of Figure 4 and which have been verified.

(1) Nesting of characteristic curves. The characteristic curves are nested - that

is, they comprise a family of nonintersecting curves that that montonically em-

anate away from the origin. The curves can be enumerated C1, C2, ... such that

the region between C1 and the a-axis contains no other characteristic curves, and

the region between Ci and the a-axis strictly contains Ci−1 for i = 2, 3, 4, ....

(2) Exhaustiveness of characteristic curves. The characteristic curves Ci, i =

1, 2, ..., capture all solutions of (4.37). As shown above, the sequence of points

(0, (2π)2), (0, c21), (0, (4π)2), (0, c22), ... are the only nontrivial points along the

Ω-axis that satisfy the characteristic equation, and the curves Ci are in direct

correspondence with these points.

(3) Symmetry properties. Figure 4 reveals that each modal curve is symmetrical

about the Ω-axis and is equivalent to an invariance of solutions of (4.37) under

the transformation a → −a. This transformation is equivalent to a reversal of

the hemitropic sense of the rod’s material (A → −A) and demonstrates what is

intuitively obvious, viz., the emergence of a nontrivial solution should not depend

on the sense of the rod’s chiralty.

For given constitutive data (4.27), nontrivial flip-invariant solutions of the BVP (4.28)

and (4.24) occur whenever λ = λo is a root of the characteristic equation (4.37), viz.,

f̃(λo) ≡ f(ã(λo), Ω̃(λo)) = 0. (4.40)

Equivalently, the point (ã(λo), Ω̃(λo)), defined in (4.27), lies on a characteristic curve. In

fact, (4.27) can be viewed as defining a curve (ã(λ), Ω̃(λ)) parameterized by λ. Clearly,

this parametric curve incorporates the constitutive properties given by A (degree of

hemitropy) and g (the axial load response function), and will henceforth be referred to

as the parametric constitutive curve.

With this in mind, geometrically, a nontrivial solution of the linearized BVP (4.28)

and (4.24) exists when a parametric constitutive curve intersects a characteristic curve.

This is illustrated in Figure 4, which provides three examples of parametric constitutive

curves. The nesting property of the characteristic curves guarantees that these nontrivial

solutions occur in discrete modes, in analogy to the behavior of isotropic rods. Note that

due to (4.27) and the constitutive assumption that g′(·) > 0 (cf. Section 4.1), solutions

for which Ω > 0 (equivalently λ < 1) are compressive, i.e., the ends of the rod have been

pushed toward each other. Conversely, solutions for which Ω < 0 (equivalently λ > 1)

are tensile, i.e., the ends of the rod have been pulled away from each other.

As is apparent in Figure 4, it is possible for a given problem to generate any finite

number (including 0) or an infinite number of nontrivial solutions to the linearized BVP

(4.28) and (4.24). Note that for λ = 1 (which represents the reference state of the

rod, i.e. no applied end displacement), all parametric constitutive curves pass through

(a,Ω) = (0, 0). As λ is varied away from λ = 1, observe that the “first” potential

bifurcations occur at the intersection of the parametric curve with the characteristic

curve C1. These solutions will be referred to as “mode 1” solutions.
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We now suppose that λ = λ0 is a root as in (4.40), i.e., the parametric constitutive

curve intersects one of the characteristic curves, as shown in Figure 4. Then from (4.35),

we may choose the nontrivial solution as follows, according to whether the characteristic

curve has an odd or even subscript, respectively:

C1 = cos
ωo
2

2
+

2

ωo
1

sin
ωo
2

2
, C2 = −cos

ωo
1

2
− 2

ωo
2

sin
ωo
1

2
,

C1 = sin
ωo
2

2
, C2 = −sin

ωo
1

2
, (4.41)

where, in view of (4.27) and (4.30), we have

A(λo − 1) = ωo
1 + ωo

2 , λog(λo) = ωo
1ω

o
2 . (4.42)

The two choices in (4.41) ensure a nonvanishing of the constants in the isotropic case

A = 0. With the values of the constants C1, C2, ω
o
1 , and ωo

2 given by (4.41) and (4.42),

equation (4.34), and in turn (4.25) and (4.26), yield a nontrivial solution to the linearized

problem (4.13) - (4.19), which we denote by

ξo ≡ (ρo,ψo, (ηo)α). (4.43)

It is easy to verify that Eξo = ξo, i.e., ξo is Z2-invariant.

We now suppose that (4.40) and (4.43) are associated with mode 1, i.e., an intersection

with C1, in which case we employ the first set of constants in (4.41). In order to under-

stand the effects of hemitropy, we assume that ã(λo) = A(λo − 1) is small but nonzero.

A lengthy but straightforward expansion of (4.34) and (4.25) reveals the out-of-plane

deformation due to hemitropy, as illustrated in Figure 5:

ψo(s) =

[
0

−2 sin 2πs

]
+

[
s sin 2πs− 1+cos 2πs

2π

0

]
ã(λo) + ... ,

ρo(s) =

[
λ 1+cos2πs

π

0

]
+

[
0

λs 1+cos 2πs
2π

]
ã(λo) + .... (4.44)

Fig. 5. The centerline ρo(s) corresponding to a mode 1, compressive,
helical buckled configuration (A = −37.5, g(λ) = 75(λ− 1)).

The first terms in each expression of (4.44) correspond to the classical planar solution

for an isotropic rod [15]. Observe that A > 0 (“right-handed” chirality; cf. [7]) implies
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that ã(λo) < 0, in which case (4.44)2 yields a “right-handed” helical shape. Obviously

A < 0 gives a “left-handed” helical shape, as depicted in Figure 5. Note that the reversal

of chirality via the transformation A → −A corresponds to a reflection of the solution

about the e1 − e2 and e1 − e3 planes.

5. Existence of local bifurcation of solutions of the fixed-fixed rod. In the

previous section, we thoroughly examined the linearized solutions about straight con-

figurations. Next we seek to prove that these linearized solutions correspond to local

nontrivial solutions to the original nonlinear BVP (2.1) - (2.4), (4.3) - (4.7). To show

this, we verify the standard transversality condition [3]:

〈ξ̂o,L′(λo)ξo〉 �= 0, (5.1)

where L(λ) denotes the linearization of the operator F (defined in (4.8)) and is such that

the linearized BVP (4.13) - (4.19) is equivalent to L(λ)ξ = 0; ξo = [ρo,ψo, (ηo)α] is a

given solution (4.43), i.e. satisfying L(λo)ξo = 0; ξ̂o is the adjoint null solution, satisfying

L∗(λo)ξ̂o = 0; and 〈·, ·〉 is the standard L2 inner product, i.e.,

〈ξ1, ξ2〉 =

∫ 1
2

− 1
2

[ ρ1(s) · ρ2(s) + ψ1(s) ·ψ2(s) + (η1)α(η2)α ] ds ∀ξ1, ξ2. (5.2)

In order to draw rigorous conclusions from (5.1), the operator L(λo) must have a one-

dimensional null space. According to Theorem 4.2, this condition is satisfied for the

fixed-fixed rod in the Z
2 fixed-point space.

5.1. Adjoint operator. Given the operator L(λ), the adjoint operator L∗(λ) is deter-

mined by integration by parts, using the definition

〈L∗(λ)ξ̂, ξ〉 = 〈ξ̂,L(λ)ξ〉. (5.3)

A straightforward calculation [14] shows that the adjoint BVP L∗(λo)ξ̂ = 0 is equivalent

to the following:

−η̂′α(s)eα + g(λ)ψ̂
′
(s) × e3 = 0, (5.4)

(g′(λ)ρ̂′′(s) + Aψ̂
′′
(s)) · e3 = 0, (5.5)

ψ̂
′′
(s) · eαeα + A(λ− 1)ψ̂

′ × e3

+ g(λ)ρ̂′(s) × e3 + λe3 × (−η̂αeα + g(λ)ψ̂(s) × e3) = 0, (5.6)

(Aρ̂′′(s) + Bψ̂
′′
(s)) · e3 = 0, (5.7)

−(ρ̂′(s) − λψ̂(s) × e3) · eα = 0, (5.8)

ρ̂(±1

2
) = 0, (5.9)

ψ̂(±1

2
) = 0. (5.10)

By inspection, it is clear that the adjoint null solution is

ξ̂o = [ρ̂, ψ̂, η̂α] = [ρo,ψo,−(ηo)α], (5.11)

where the components on the left side of (5.11) are as given in (4.43).
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5.2. Transversality condition. Using the expressions (5.4) - (5.10), we now calculate

the left side of (5.1). As demonstrated in [14],

〈ξ̂o, L′(λo)ξo〉 = −(λog
′(λo) + g(λo))

∫ 1
2

− 1
2

|ψo(s)|2ds + A

∫ 1
2

− 1
2

(ψo(s) ×ψ′
o(s)) · e3ds.

(5.12)

In principle, this expression may vanish for particular constitutive data but is generically

nonzero, as we now show. Recalling (4.27), we see that ã′(λ) = A and Ω̃′(λ) = −(λg′(λ)+

g(λ)). Therefore, (5.12) can be rewritten as

〈ξ̂o, L′(λo)ξo〉 = Ω̃′(λo)

∫ 1
2

− 1
2

|ψo(s)|2ds + ã′(λo)

∫ 1
2

− 1
2

[ψo(s) ×ψ′
o(s)] · e3ds. (5.13)

We now give (5.13) a geometric interpretation. As in (4.40), we substitute (4.27) and

(4.29) into (4.37), yielding

f̃(λ) ≡ f(ã(λ), Ω̃(λ)). (5.14)

By virtue of (4.40), we see that f̃ has a zero at λ = λo, and by the chain rule we have

f̃ ′(λo) =
∂f

∂a
(ã(λo), Ω̃(λo))ã

′(λo) +
∂f

∂Ω
(ã(λo), Ω̃(λo))Ω̃

′(λo)

≡ ∂fo

∂a
ã′(λo) +

∂fo

∂Ω
Ω̃′(λo). (5.15)

Thus f̃ has a simple zero at λo when (5.15) does not vanish, and we observe the resem-

blence between (5.13) and (5.15). Indeed, an argument employing the shooting method

[9] shows that (5.1) holds iff the left side of (5.15) does not vanish. We record this

observation as

Lemma 5.1. Given (4.40), condition (5.1) is equivalent to a transverse intersection of the

parametric constitutive (ã(λ), Ω̃(λ)), λ ∈ R
+, with a characteristic curve, given implicitly

by (4.37), at λ = λo.

Proof. The right side of (5.15) corresponds to the inner product of the tangent to

the parametric constitutive curve at the point of intersection, (ã′(λo), Ω̃
′(λo)), with the

normal to the characteristic curve, (∂f
o

∂a , ∂fo

∂Ω ). �
Finally we have

Theorem 5.2. If (5.13) does not vanish, or equivalently if (5.15) does not vanish, then

there is a smooth local “pitchfork” curve of solutions bifurcating from (0, λo) of the form

x ≡ [r,R, nα] = x̂(ε) = xo + [ερo, εΨo, ε(ηo)α] + o(ε),

λ = λ̂(ε) = λo + o(ε), (5.16)

where xo ≡ [λse3, I, (0, 0)] denotes the straight (trivial) solution (cf. (4.11)) and Ψo is

the unique skew tensor field such that axial(Ψo) = ψo, the latter of which is given in

(4.43).

Proof. The existence of such a curve of solutions via the Implicit Function Theo-

rem is standard; cf. [3], [10]. It remains only to show that λ̂′(0) = 0 in (5.16)2.

Given the nonvanishing of (5.13), then in general, λ̂′(0) is proportional to the quantity
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〈ξ̂o,Fxx(λo,xo)[ξo, ξo]〉 (cf. [10]), where F(λ, ·) is the mapping defined in (4.8) repre-

senting the nonlinear problem. From (4.9) it follows that

〈Γ̃ξ̂o,Fxx(λo,xo)[Γξo,Γξo]〉 = 〈Γ̃ξ̂o, Γ̃Fxx(λo,xo)[ξo, ξo]〉
= 〈ξo,Fxx(λo,xo)[ξo, ξo]〉, (5.17)

for all group actions. In particular, for the rotation Γ = Qπ (as detailed in Table 1), we

have Qπξo = −ξo and Q̃πξ̂o = −ξ̂o, the substitution of which into (5.17) implies that

〈ξ̂o,Fxx(λo,xo)[ξo, ξo]〉 = 0. �

6. Local stability analysis of equilibria of the fixed-fixed rod. Having demon-

strated the existence of locally bifurcating (nonplanar) solutions from the trivial solution,

we now turn to the question of local stability. Here we adopt the standard energy crite-

rion. An equilibrium solution is stable if it corresponds to a local minimum of the total

potential energy in the usual C1 topology (weak minimum); otherwise it is unstable.

In this section, we demonstrate that the compressed straight rod with fixed-fixed end

conditions is stable for all λ ∈ (λ1
o, 1] and unstable for all λ ∈ (λ1

o − ε, λ1
o), where ε > 0

is sufficiently small and where λ1
o denotes the first transversal crossing of the parametric

constitutive curve with the characteristic curve C1 as λ is decreased from the reference

state λ = 1 (cf. Sections 4.4 and 5.2). We note, however, that this analysis is also

valid whenever λ1
o > 1 is the first transversal crossing of the consitutive curve with C1,

representing a nontrivial solution in tension (cf. Figure 4 with Ω < 0). In this case, the

trivial solution is stable for all λ ∈ [1, λ1
o) and unstable for all λ ∈ (λ1

o, λ
1
o + ε).

6.1. Stability of trivial solution. We begin with the potential energy functional

V (r,R;nα) =

∫ 1
2

− 1
2

[
Υ(κακα, κ3, ν3) − nαr

′ ·Reα

]
ds, (6.1)

where the components of the shear force nα are the Lagrange multiplier fields that enforce

unshearability, and Υ is defined as in (4.1). In accordance with Section 4.3, we perturb

the trivial solution via (4.12). Since (4.11) represents the family of straight equilibria,

we find that the first variation of the energy evaluated there vanishes, viz.,

δVo =
d

dε

[
V (λse3 + ερ(s), exp[εΨ(s)]; εηα)

]
ε=0

, (6.2)

for all smooth variations ρ(s), ψ(s) = axial(Ψ(s)), and ηα satisfying the linearized

unshearability condition (4.17) and the boundary conditions (4.18) and (4.19).

Next we compute the second variation about the trivial line of solutions. A lengthy

but straightforward calculation yields

δ2Vo ≡ d2

dε2

[
V (λse3 + ερ(s), exp[εΨ(s)]; εηα)

]
ε=0

=

∫ 1
2

− 1
2

[
[(ψ′

1)
2 + (ψ′

2)
2] − A(λ− 1)(ψ′

1ψ2 − ψ1ψ
′
2) + λg(λ)(ψ2

1 + ψ2
2)
]

+

∫ 1
2

− 1
2

[
B(ψ′

3)
2 + 2Aψ′

3ρ
′
3 + g′(λ)(ρ′3)

2
]
ds, (6.3)



748 TIMOTHY J. HEALEY AND CHRISTOPHER M. PAPADOPOULOS

for all admissible variations as above. Due to the assumed convexity of Υ (cf. (2.18) and

(4.1)) the second of the integrals of the right side of (6.3) is nonnegative for all λ ∈ (0,∞).

Indeed, the underlying 2×2 Hessian matrix is positive definite, and thus∫ 1
2

− 1
2

[
B(ψ′

3)
2 + 2Aψ′

3ρ
′
3 + g′(λ)(ρ′3)

2
]
ds ≥ Cλ

∫ 1
2

− 1
2

[
(ψ′

3)
2 + (ρ′3)

2
]
ds

≥ Cλπ
2

∫ 1
2

− 1
2

[
ψ2
3 + ρ23

]
ds, (6.4)

for some positive constant Cλ, where the second (Poincaré) inequality follows from

the Raleigh quotient characterization of the lowest eigenvalue, subject to the linearized

boundary conditions (4.18) and (4.19). Thus, it is sufficient to consider only the first of

the integrals on the right side of (6.3).

As in Section 4.3, we first replace (4.17) and (4.18) with their integral equivalent

(4.21). We then consider the quadratic functional

J(ψ, λ) ≡
∫ 1

2

− 1
2

[
[(ψ′

1)
2 + (ψ′

2)
2] − A(λ− 1)(ψ′

1ψ2 −ψ1ψ
′
2) +λg(λ)(ψ2

1 +ψ2
2)
]
ds (6.5)

subject to (4.21) and (4.24), where ψ(s) = ψα(s)eα. Integrating by parts, using (4.24)

shows that (6.5) has the equivalent form

J(ψ, λ) = −
∫ 1

2

− 1
2

[
ψ′′ + A(λ− 1)ψ′ × e3 − λg(λ)ψ

]
·ψ ds, (6.6)

subject to (4.21) and (4.24). But J in (6.6) is also related to (4.21) and (4.23) as follows:

take the dot product of (4.23) with ψ and integrate over (− 1
2 ,

1
2 ). Observe that the

constant term on the right side of (4.23) makes no contribution due to (4.21). This

hints at a Rayleigh-quotient characterization of the minimum eigenvalue of the operator

associated with (4.23) and (4.24), which we now pursue.

We first introduce the projection operator P defined as

P[ψ] =

∫ 1
2

− 1
2

ψ(s) ds. (6.7)

Clearly P maps any function in U ≡ C2([− 1
2 ,

1
2 ],E2) (equipped with the usual maximum

topology) into its average value. Further, P is both linear and continuous in both the

C0 and C2 topologies.

Likewise, we introduce the projection

Q = I−P, (6.8)

which maps onto the complement V ≡ QU , where I denotes the identity operator. Note

that

V = {u ∈ U :

∫ 1
2

− 1
2

u(s)ds = 0}. (6.9)

Next, in view of (4.23) and (6.6), we define the operator

D(λ)ψ ≡ −[ψ′′ + A(λ− 1)ψ′ × e3 − λg(λ)ψ], (6.10)
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and we consider the following eigenvalue problem:

D(λ)ψ + [ψ(
1

2
) −ψ(−1

2
)] = σψ, (6.11)

for all ψ ∈ V , subject to (4.24). A direct calculation from (6.7) and (6.10) shows that

for all such ψ,

PD(λ)ψ = −[ψ(
1

2
) −ψ(−1

2
)]. (6.12)

Next we define the linear operator H via its action

H(λ)ψ ≡ QD(λ)ψ, (6.13)

for all ψ ∈ V , and the associated eigenvalue problem

H(λ)ψ = σψ. (6.14)

Observe that (6.11) is equivalent to (6.12) and (6.14). Note further that (6.12) is inde-

pendent of the eigenvalue σ, while (6.14) contains no inhomogeneous boundary terms.

By virtue of (6.6) and (4.21), it follows that

J(ψ, λ) =

∫ 1
2

− 1
2

ψ(s) ·H(λ)ψ(s) ds, (6.15)

and it is easy to demonstrate that H is formally self-adjoint. Therefore, the minimization

of the quadratic functional (6.15) on the appropriate unit sphere (cf. [12]) yields the

following characterization of the minimum eigenvalue of (6.11), denoted by σ1:

J(ψ, λ) ≥ σ1

∫ 1
2

− 1
2

ψ(s) ·ψ(s) ds, (6.16)

for all ψ ∈ V satisfying (4.24). With this background, we now demonstrate that the trivial

solution is stable “up until” the first critical value λ1
o and that the stability changes as λ

crosses λ1
o.

Theorem 6.1. The straight (trivial) state, characterized by (4.11), is stable for all λ ∈
(λ1

o, 1] (or λ ∈ [1, λ1
o)).

Proof. Consider the eigenvalue problem (6.11), or equivalently (6.12) and (6.14) on V ,

which can be written as

ψ′′ + A(λ− 1)ψ′ × e3 + [σ − λg(λ)]ψ = ψ(
1

2
) −ψ(−1

2
), (6.17)

subject to (4.21) and (4.24). But (6.17) can be solved by the same reasoning as in Section

4. In analogy with (4.27), we define

a = A(λ− 1), Ω̂ = σ − λg(λ). (6.18)

Then (6.17) has the same form as (4.28), which has nontrivial solutions iff (a, Ω̂) belongs

to one of the characteristic curves Ci, i = 1, 2, 3, ...; cf. Figure 4. Thus for any fixed

λ ∈ (0,∞), we obtain a sequence of eigenvalues σi, i = 1, 2, 3, ..., in correspondence

with the vertical line a = A(λ− 1) with the characteristic curves. In particular, for any

λ ∈ (λ1
o, 1], the least eigenvalue satisfies σ1 = Ω̂1(λ)+λg(λ) > 0, where (A(λ−1), Ω̂1(λ))
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denotes the point of intersection of the aforementioned vertical line with the characteristic

curve C1. The claim now follows directly from (6.16). �

Theorem 6.2. The straight (trivial) state, characterized by (4.11), is unstable for all

λ ∈ (λ1
o − ε, λ1

o) (or λ ∈ (λ1
o, λ

1
o + ε)) for ε > 0 sufficiently small.

Proof. As in Section 4.4, we restrict (6.14) to the Z
2 fixed point space; cf. (4.32):

VZ2 = {ψ ∈ V : Eψ(−s) = ψ(s) on (−1

2
,
1

2
)}. (6.19)

In view of the equivalence of (6.11) and (6.14), the same argument used in the proof of

Theorem 6.1 shows that H(λ1
o) has a simple zero eigenvalue with accompanying nullvector

ψo. We further assume that ψo is normalized such that 〈ψo,ψo〉 = 1. Then, dotting

each side of (6.14) with ψo, integrating over (− 1
2 ,

1
2 ), and differentiating with respect to

λ, we have

σ′(λ1
o) =

∫ 1
2

− 1
2

ψo(s) ·H′(λ1
o)ψ(s) ds

= A

∫ 1
2

− 1
2

(ψo(s) ×ψ′
o(s)) · e3 ds − (λog

′(λo) + g(λo))

∫ 1
2

− 1
2

|ψo(s)|2ds.
(6.20)

Note that the right side of (6.20) is equivalent to the right side of (5.12).

The local continuity of the simple eigenvalue σ(λ) for |λ−λ1
o| < ε is readily established

via the Implicit Function Theorem [10], and the transversality condition (5.12) implies

that the zero eigenvalue changes sign as λ “crosses” λ1
o. Thus we have

J(ψo, λ) =

∫ 1
2

− 1
2

ψo(s) ·H(λ)ψo(s) ds

= σ(λ)

< 0 for all λ ∈ (λ1
o − ε, λ1

o). (6.21)

Finally, recalling (6.3) and (6.6), we choose ψα(s)eα = ψo(s) with ψ3(s) = ρ3(s) = 0,

and thus conclude that δ2Vo < 0 for all λ ∈ (λ1
o − ε, λ1

o). �
6.2. Local stability of mode 1 bifurcating branches. Having established the change of

stability of the trivial solution at a mode 1 bifurcation point λ = λ1
o, we now turn to the

question of the local orbital stability of mode 1 bifurcating branches. We use “orbital”

here to signify that, due to (4.9), all nontrivial solutions belong to SO(2)-generated

orbits of solutions. Given the flip symmetry of this problem, the bifurcating branches

form “pitchforks”; cf. (5.16). For bifurcation points λo at compressive (tensile) states, λ

decreases (increases) across λo as the trivial solution passes from stable to unstable. By

virtue of standard exchange-of-stability results, e.g., [10], we find that the compressive

(tensile) bifurcating branch is orbitally, locally stable if the pitchfork opens to the left

(right) along the positive λ axis. In both cases this leads to the condition

〈ξ̂1o,Fxxx(λ1
o,x

1
o)[ξ

1
o, ξ

1
o, ξ

1
o]〉 < 0, (6.22)
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where x1
o = [r1o,R

1
o, (n

1
o)α]=[λse3, I, (0, 0)], ξ1o=[ρ1

o,ψ
1
o, (η

1
o)α], and ξ̂

1

o = [ρ1
o,ψ

1
o,−(η1o)α]

are the trivial solution, linearized solution (cf. (4.43)), and adjoint linearized solution (cf.

(5.11)) at λ = λ1
o, respectively.

A very long but straightforward calculation reveals that

〈ξ̂1o,Fxxx(λ1
o,x

1
o)[ξ

1
o, ξ

1
o, ξ

1
o]〉

=

∫ 1
2

− 1
2

[
(−3λ2g′(λ) − 5λg(λ))|ψ1

o(s)|4 + (7 + 3B)[(ψ1
o(s) × (ψ1

o)
′(s)) · e3]2

+ A(λ− 6)|ψ1
o(s)|2(ψ1

o(s) × (ψ1
o)

′(s)) · e3 − 16(ψ′
1)

1
o(

1
2 )|ψ1

o(s)|2(ψ1)
1
o(s)

]
ds .

(6.23)

Observe that the right side of (6.23) depends on the specific form of the eigenfunction

ψ1
o(s) and upon all of the principal constitutive data: the response function g(·), the

hemitropic modulus A, and twisting modulus B (and implicitly on the bending modulus

C = 1; cf. Section 4.1). It is difficult to verify (6.22) at the level of generality of (6.23).

Nonetheless, it can be shown that the expression (6.23) is invariant under the transfor-

mation A → −A, which is reassuring. It’s also worth noting that in the case of isotropy,

A = 0, where all but the first term in the integrand of (6.23) vanish, by virtue of (4.44).

In particular, we find for normalized ψ1
o,

〈ξ̂1o,Fxxx(λ1
o,x

1
o)[ξ

1
o, ξ

1
o, ξ

1
o]〉 = −3

2
(3λ2g′(λ) + 5λg(λ)) + O(A2). (6.24)

In view of (6.22), we conclude:

Theorem 6.3. For A2 sufficiently small, the local nontrivial branch of solutions (5.16),

associated with the a mode 1 bifurcation point at λ = λo, is orbitally stable if

g′(λ) >
−5g(λ)

3λ
for all λ > 0. (6.25)

7. Conclusions. We present a description of unshearable, hemitropic rods in terms

of the Cosserat theory. Our basic model indicates what is commonly observed, viz., that

such rods have an intrinsic coupling between extension and twist. This is analogous to

the Poisson effect in which axial and transverse deformation are coupled.

We first consider unshearable hemitropic rods under fixed-free end conditions and

subject to dead axial load. We demonstrate the striking result that despite the presence

of hemitropy, all solutions are planar. A physical explanation is that under axial thrust,

although the rod twists, it does not develop internal axial torque.

We next consider the behavior of unshearable hemitropic rods under fixed-fixed end

conditions and subject to prescribed axial displacement. In this case an internal axial

torque develops in the straight loaded state, leading to an initial, nonplanar buckled

state (cf. Figure 5). This is in stark contrast to the initial, planar buckling of isotropic

rods under end thrust. By virtue of (4.44), the magnitude of the out-of-plane component

of the displacement, to first order, is proportional to the hemitropic modulus A. In

particular, the linearized solutions reduce to those of the isotropic rod in the limit as

A → 0.
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In analogy to the isotropic case, the bifurcating solutions for the hemitropic case occur

in discrete modes. Indeed, as illustrated in Figure 4, a set of nested, nonintersecting

characteristic curves specify the general combinations of axial thrust and hemitropic

modulus that must be satisfied by any nontrivial solution within the constitutive class

that we consider. We further prove the genericity of the existence of bifurcation for rods

of our constitutive class, and in particular, present an equivalent geometric condition

that is graphically clear: if the parametrically defined constitutive data curve intersects

a characteristic curve nontangentially, then nontrivial solutions exist at that point (cf.

Figure 4). We infer from Figure 4 that the presence of hemitropy (A �= 0) lowers the first

compressive buckling load compared to the isotropic case (A = 0). We also note that

while the determination of bifurcation is critically dependent on the hemitropic modulus

A, it is independent of the twisting modulus B (cf. (5.13)).

In addition to the nonplanarity, the solutions of the fixed-fixed hemitropic rod differ

from the fixed-fixed isotropic rod in another important way. Nontrivial solutions for

isotropic rods are necessarily compressive; the impossibility of such nontrivial tensile

solutions can be inferred from Figure 4 (with a = 0). However, it is possible to attain

both compressive and tensile nontrivial solutions for hemitropic rods, as also illustrated

in Figure 4. This is similar to the instability of highly twisted isotropic rods in tension;

cf. [11].

Our results further provide local stability properties of equilibria of the fixed-fixed

hemitropic rod. The trivial solution is stable for all values of prescribed end displacement

below a critical threshhold. We further provide a calculation for the determination of

the orbital stability of mode 1 bifurcating branches that is, in general, dependent on

the given constitutive data. We note that while the stability of the trivial solution is

independent of the twisting modulus B (cf. Section 6.1), the stability of the bifurcating

branches generally depends on B; cf. (6.23).

The specific form of the stored energy function (4.1) employed in Sections 4-6 is for

convenience only, i.e., we could easily obtain the same results for a more general class

of convex hemitropic stored energy functions. Finally we mention that, with the local

analysis in hand, a detailed global bifurcation analysis of the problem (4.3) - (4.7) can

be carried out via methods similar to those employed in [1]. This will be pursued in a

future work.
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