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TOTAL ABSOLUTE CURVATURE AND TIGHTNESS OF

NONCOMPACT MANIFOLDS

MARTIN VAN GEMMEREN

Abstract. In the first part we prove an extension of the Chern-Lashof in-
equality for noncompact immersed manifolds with finitely many ends. For this
we give a lower bound of the total absolute curvature in terms of topological
invariants of the manifold. In the second part we discuss tightness properties
for such immersions. Finally, we give an upper bound for the substantial
codimension.

1. Introduction

In 1957 S.-s. Chern and R.K. Lashof proved their famous inequality. This in-
equality states that the total absolute curvature of an immersion of a compact
manifold is bounded below by the Morse number which is a differential invariant
of the manifold. Further the Morse number is bounded below by the total Betti
number of the manifold, a topological invariant [7], [8].

For the first part of this inequality one shows that the total absolute curvature is
equal to the expectation value of the number of critical points of a random height
function [6], [12]. The second part of the inequality is given by the Morse inequality
[18, §5].

P. Wintgen [21] showed the Gauß-Bonnet formula for immersions F : X → Rm,
where X has finitely many ends [13] and F is proper with finitely many limit
directions and finite total absolute curvature [21]. We shall call such immersions
Wintgen immersions.

We want to consider the total absolute curvature of immersions of a noncompact
manifold by extending the Chern-Lashof inequality. In the noncompact case the
total absolute curvature is still bounded below by the Morse number. But the only
topological lower bound of the Morse number tends to be 0. Then we do not have
any information about the relation of critical points of a not necessarily proper
nondegenerate function defined on the manifold and the topology of the considered
manifold. So we cannot expect a topological lower bound of the Morse number.
Therefore we must guarantee that almost every height function is proper in order to
establish an extended Chern-Lashof inequality. For this reason we consider Wintgen
immersions, since they satisfy this condition. Now we get the (proper) Morse
number as a lower bound of the total absolute curvature of a Wintgen immersion.
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But the (proper) Morse number is not bounded below by the total Betti number.
As an example, if the manifold is given by a sphere with three points removed the
Morse number is equal to 1 and the total Betti number is equal to 3. For this reason
we shall generalize the Morse inequality [18, §5] for (proper) Morse functions of
manifolds with finitely many ends. This generalized Morse inequality relates again
the Morse number to a topological invariant of the considered manifold.

Equality in the Chern-Lashof inequality for an immersion of a compact manifold
holds if and only if for almost every closed halfspace the homomorphism induced by
the inclusion into the manifold in homology theory is injective. This is equivalent
to the fact that almost every height function has only linking type singularities [6,
§1.2], [19, III 28]. If an immersion satisfies one of these conditions the immersion is
called tight. We examine these properties for Wintgen immersions where they now
are inequivalent, in general. This yields a definition of tightness for the considered
immersions which shall be defined by equality in the generalized Chern-Lashof
inequality.

The paper finishes with a theorem about the codimension of tight, substantial
Wintgen immersions. In the case of compact manifolds the codimension of 0-tight
substantial immersions is bounded by a number which only depends on the dimen-
sion of the manifold. Cylinders over substantial not necessarily tight immersions
of compact manifolds are simple examples that such a bound cannot exist in the
case of noncompact manifolds. The crucial point for this is that in this case the
ends are not tightly immersed. If in addition the ends are tightly immersed we can
state an upper bound for 0-tight substantial immersions of manifolds with finitely
many ends. This bound depends on the dimension of the manifold and the number
of ends. Further in certain cases, e.g. for surfaces, we can improve it. But for
noncompact manifolds with less than three ends this bound is in any case even
smaller than for compact manifolds.

The related topic of taut immersions of noncompact manifolds is considered in
[5].

It is my pleasure to thank W. Kühnel for helpful discussions and remarks.
We first recall the topological definition of manifolds with finitely many ends

[13]:

Definition 1.1. Let X denote a manifold (or more generally a locally compact
Hausdorff space). Let B ⊆ P(X) be a base of the topology of X such that for
U, V ∈ B:

- ∂U is compact.
- U ∪ V ∈ B.
- U ∩ V ∈ B.
- X \ U ∈ B.

We call a subset B ⊆ B a B-binding family if every finite sequence U1, ..., Un ∈ B
satisfies

⋂n
ν=1 Uν 6= ∅. We define:

XB := {B ⊆ B | B maximal binding family }.
Now

OB := {UB ⊆ XB | U ∈ B},
where

UB := {B ∈ XB | there exists a V ∈ B such that V ⊆ U}



ABSOLUTE CURVATURE AND TIGHTNESS OF NONCOMPACT MANIFOLDS 2415

is a base for a compact Hausdorff topology on XB [11], [13].
The mapping

X → XB, x 7→ {U ∈ B | x ∈ U}

is a topological embedding.
For F := {U ⊆ X | U is open, ∂U is compact } we call XF the Freudenthal

compactification of X and the elements of XF \X are the ends of X [13].
For a definition of the Freudenthal compactification by using filters see [14]. For

A := {U ⊆ X | U is open, X \U is compact } XA is the Alexandroff compactifica-
tion.

Example 1.2. Let T ⊂ R3 be the solid torus. Then R3 \T is a manifold with two
ends. But (R3 \ T )F is not a manifold.

In the sequel X denotes an n-dimensional, smooth manifold with k ends ∞1, ...,
∞k, k ∈ N. We assume every considered function X → Rm, m ∈ N to be smooth.
We call such a function proper if the preimages of compact sets are always compact.

Definition 1.3. Let F : X → Rm be a proper immersion.
i) The determinant of the shape operator L : BX → R is called the Lipschitz-

Killing curvature defined as a function on the unit normal bundle BX . L is the
Gaussian curvature in the case of hypersurfaces.

In the case of orientable X the normalized Lebesgue integral

tac(X,F ) :=
1

cm−1

∫
BX

|L|dA, cm−1 := Vol(Sm−1),

where dA is the induced volume element of BX , is called the total absolute curvature
of F . Sm−1 denotes the sphere of unit vectors at the origin in Rm. For non-
orientable X one defines the total absolute curvature by using the orientable double
covering. For more details of these definitions see [6, §1.1], [11, §2].

ii) For e ∈ Sm−1 we call the mapping

he : X → R, x 7→ 〈F (x), e〉

the e-height function he with respect to e and F .
iii) For f : X → R, ν ∈ N the νth Morse number of f , µν(f), is defined by

µν(f) := {x ∈ X | x is a non-degenerate critical point for f of index ν}.

2. The generalized Chern-Lashof inequality

We define the ends of X with respect to a Morse function on X by the connected
components of the subsets below and above the smallest and greatest critical value,
respectively. We shall show that the homology of these subsets does not depend
on the specific Morse function and that they correspond uniquely to the ends of
the considered manifold. This yields a generalized Morse inequality. Hence we can
extend the Chern-Lashof inequality.

Proposition 2.1. Let f : X → R be a proper, non-degenerate function with finitely
many critical points (a Morse function for short). If f has critical points we denote
the smallest critical value by rf ∈ R, otherwise rf := 0. Ef := f−1((−∞, rf )) is
called the lower end of f .



2416 MARTIN VAN GEMMEREN

i) Every connected component of X\f−1([rf , r−f ]) is a punctured neighbourhood
of exactly one end. For every end of X there exists exactly one connected
component of X \ f−1([rf , r−f ]) which is a punctured open neighbourhood of
this end. We denote this punctured neighbourhood of the end∞κ by E(f,∞κ).

ii) Let (Uν) be a countable base of punctured neighbourhoods of ∞κ. Let H∗ be
a homology theory. Then

H∗(E(f,∞κ)) ∼= invlimν∈NH∗(Uν) =: H∗(∞κ).

Proof. i) X \ f−1([rf , r−f ]) is a punctured neighbourhood of every end of X since
f−1([rf , r−f ]) is compact. XF is a Hausdorff space. So we can choose disjoint,

punctured neighbourhoods U1, ..., Uk of ∞1, ...,∞k, respectively. X \
⋃k
κ=1 Uκ is

compact.
Since f is proper there exist r, r′ ∈ R, r < rf , r′ > r−f such that

X \ f−1((r, r′)) ⊆ X \
k⋃
κ=1

Uκ.

Hence X \ f−1((r, r′)) is a strong deformation retract of X \ f−1((s, s′)) for all
s, s′ ∈ R, r ≤ s < rf , r′ ≥ s′ > r−f [18]. For this reason X \ f−1((r, r′)) and
X \ f−1([rf , r−f ]) are of the same singular homology.

ii) For a definition of the inverse limit see [10]. Let κ ∈ {1, ..., k}. We may
assume E(f,∞κ) ⊆ f−1((−∞, rf )) without loss of generality. Since (Uν) is a base
of punctured neighbourhoods and f is proper, we can find a subsequence (Uνµ) of

(Uν) and a sequence (rµ) ∈ RN such that

(rµ)→ −∞ and Uνµ+1 ⊆ E(f,∞κ) ∩ f−1((−∞, rµ]) ⊆ Uνµ .
Now

H∗(E(f,∞κ) ∩ f−1((−∞, rµ+1])) ∼= H∗(E(f,∞κ) ∩ f−1((−∞, rµ]))(∗)
induced by the inclusion is an isomorphism. Then the sublevelset E(f,∞κ) ∩
f−1((−∞, rµ+1]) is a strong deformation retract of E(f,∞κ) ∩ f−1((−∞, rµ]) [18,
§3].

Thus, the mapping

invlimµ∈NH∗(E(f,∞κ) ∩ f−1((−∞, rµ])) → invlimµ∈NH∗(Uνµ)
(xµ) 7→ ((iµ)∗(xµ))

is an isomorphism, where iµ : E(f,∞κ) ∩ f−1((−∞, rµ]) → Uνµ denotes the inclu-
sion.

By equation (∗) we get

H∗(E(f,∞κ)) ∼= invlimµ∈NH∗(E(f ;∞κ) ∩ f−1((−∞, rµ]))

in singular homology. Since the considered subsets are CW-complexes this equation
is valid for every homology theory. This proves the assertion.

In the sequel H∗ denotes a homology theory with a field as coefficent group. We de-

note by βν(X) := dimHν(X), βν(∞κ) := dimHν(∞κ) or βν(∞) :=
∑k
κ=1 βν(∞κ)

the Betti numbers of X , ∞κ or ∞, respectively.
We now prove an inequality which enables us to generalize the Chern-Lashof

inequality. We shall call this inequality the Morse inequality since it relates the
number of critical points of a Morse function to a topological invariant of the
manifold.
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Theorem 2.2 (Morse inequality). Let f : X → R be a Morse function. Then

n∑
ν=0

µν(f) ≥
n∑
ν=0

|βν(X)− 1

2
βν(∞)|.

Proof. Set βν(X,Ef ) := dimHν(X,Ef ) for ν ∈ N, where Ef denotes the lower end
of f . We now get

n∑
ν=0

µν(f) ≥
n∑
ν=0

βν(X,Ef )

by the Morse inequality [18, §5]. The exact homology sequence

→ Hν(Ef )→ Hν(X)→ Hν(X,Ef )→ Hν−1(Ef )→ Hν−1(X)→

gives by consideration of the first or last triple

βν(X,Ef ) ≥ βν(X)− βν(Ef ),

βν(X,Ef ) ≥ βν−1(Ef )− βν−1(X),

respectively. By consideration of all five homology groups we get

βν(X,Ef ) ≥ βν(X)− βν(Ef )− (βν−1(X)− βν−1(Ef ))

for ν ∈ N. Now follows
n∑
ν=0

βν(X,Ef ) ≥
n∑
ν=0

|βν(X)− βν(Ef )|.

We conclude

µ(f) =
1

2
(µ(f) + µ(−f)) ≥

n∑
ν=0

|βν(X)− 1

2
βν(∞)|

by the triangle inequality and Proposition 2.1.

The crucial point in the proof above is to describe the topology of the ends in
terms of the critical points of a Morse function (Proposition 2.1).

Definition 2.3. Let f : X → R be a Morse function. We call
∑n
ν=0 µν(f) the (to-

tal) Morse number of f . The minimal (total) Morse number of all Morse functions
on X is called the Morse number of X .

Remark 2.4. The Morse inequality above is only valid for the (total) Morse number
of the considered Morse function f . Examples for µν(f) 6≥ |βν(X) − 1

2βν(∞)| can

easily be given. E.g. we have |β0(X) − 1
2β0(∞)| = 1

2 and µ0(X) = 0 if X denotes
a sphere with three points removed.

Topologically, the ends of a manifold are something like “topological directions”
how the manifold moves to infinity. For submanifolds of a euclidean space one can
characterize these directions more analytically by the so-called limit directions [21]:

Definition 2.5. A vector v ∈ Sm−1 is called a limit direction with respect to F
and ∞κ if there exists a sequence (xν) ∈ XN such that (xν) → ∞κ in XF and(

F (xν)
‖F (xν)‖

)
→ v in Sm−1. This definition is due to P. Wintgen [21].
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The concept of limit direction enables us to describe in a more analytical way
the property that with respect to an immersion almost every height function is
proper. This was done in [21]. Now we can extend the Chern-Lashof inequality in
an appropiate way:

Theorem 2.6 (Generalized Chern-Lashof inequality). Let F : X → Rm be a proper
immersion with finitely many limit directions. Then

tac(X,F ) ≥ µ(X) ≥
n∑
ν=0

|βν(X)− 1

2
βν(∞)|.

Proof. We may assume without loss of generality the total absolute curvature of F
is finite.

We can write

tac(X,F ) =
1

cm−1

∫
Sm−1

n∑
ν=0

µν(he)da(e)

as shown in [21]. In particular almost every height function with respect to F is
nondegenerate with only finitely many critical points. Since F has only finitely
many limit directions almost every height function is proper [21]. Hence almost
every height function is a Morse function. By Theorem 2.2 this shows the assertion.

Note that it is meaningful to call the inequality above (extended) Chern-Lashof
inequality since µ(X) is a differential invariant and

∑n
ν=0 |βν(X) − 1

2βν(∞)| is a
topological invariant. Furthermore for compact manifolds this inequality coincides
with the original Chern-Lashof inequality.

3. Tightness

P. Wintgen [21] considered immersions F : X → Rm of manifolds with finitely
many ends, where F is proper with only finitely many limit directions and finite
total absolute curvature. He proved the Gauß-Bonnet formula for such immer-
sions. We showed in Section 1 an extension of the Chern-Lashof inequality for such
immersions. This is the starting point for a discussion of tightness.

Definition 3.1. We call a proper immersion F : X → Rm with only finitely many
limit directions and finite total absolute curvature a Wintgen immersion [21]. This
definition is given in dedication to P. Wintgen.

One defines tightness for immersions of compact manifolds by using a homology
theory [6, §1.5]. Then an immersion is tight if and only if equality holds in the
Chern-Lashof inequality, in other words if and only if almost every height function
has only linking type singularities [6, §1.2], [19, III 29]. We examine these properties
for Wintgen immersions. This yields three different definitions for tightness of
Wintgen immersions, each by using the same (arbitrary) homology theory. One
definition is given by generalizing the homology property, one by generalizing the
property for critical points of height functions and the most appropriate is given
with respect to the generalized Chern-Lashof inequality.

Definition 3.2. Let F : X → Rm be a Wintgen immersion. We call Xr
e :=

h−1
e ((−∞, r]) the sublevelset with respect to r ∈ R and e ∈ Sm−1. Let ν ∈ N.
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i) F is called weak ν-tight if for 0 ≤ i ≤ ν for almost every e ∈ Sm−1

Hi(X
r
e , Ehe)→ Hi(X,Ehe)

is injective for r ∈ R.
ii) F is called ν-tight if for 0 ≤ i ≤ ν for almost every e ∈ Sm−1

Hi(X
r
e )⊕Hi(X

r
−e)→ Hi(X

r′

e )⊕Hi(X
r′

−e)

is injective for every r, r′ ∈ R, r < r′ or is surjective for every r, r′ ∈ R, r < r′.
iii) F is called strong ν-tight if for 0 ≤ i ≤ ν for almost every e ∈ Sm−1

Hi(X
r
e )→ Hi(X)

is injective for r ∈ R.
iv) We say F immerses∞κ ν-tightly if there exists a v ∈ Sm−1 such that 〈v, vκ〉 <

0, hv is a Morse function and F |E(v,∞κ)∩h−1
vκ (r) is ν-tight immersion for almost

all sufficiently large r ∈ R.

If F is (weak or strong) n-tight we call F (weak or strong) tight for short.

Our next aim is to analyse the relations between these definitions. We shall
see that strong tightness implies tightness and tightness implies weak tightness.
The converses are not true, in general. But the difference between tightness and
strong tightness depends only on the topology of the considered manifold. The
difference between tightness and weak tightness is more subtle. One can describe
this difference by the measure of bounded height functions if the ends are of the
homology of a sphere. In this case one can show that a Wintgen immersion of a
manifold with at least two ends is tight if and only if the total absolute curvature is
equal to β(X)−2. The idea can be described as follows: Let f : X → R be a Morse
function. If f is bounded (below or above) we get β(X,Ef ) = β(X) and if f is
unbounded we get β(X,Ef ) = β(X)− 2. One needs the Poincaré duality to prove
this. So we have to choose a homology theory with coefficents in Z2 to include the
non-orientable case. Then, in particular, a Wintgen immersion of a surface with at
least two ends is tight if and only if the surface is nowhere positively curved with
respect to this immersion. This result follows from the Gauß-Bonnet formula which
is proved in [21].

Theorem 3.3. Let F : X → Rm be a Wintgen immersion.

i) F is weak tight if and only if µ(he) =
∑n
ν=0 βν(X,Ehe) for almost all e ∈

Sm−1.
ii) F is tight if and only if µ(he) =

∑n
ν=0 |βν(X) − 1

2βν(∞)| for almost all

e ∈ Sm−1, so if and only if equality holds in the Chern-Lashof inequality.
iii) F is strong tight if and only if µ(he) =

∑n
ν=0(βν(X) − 1

2βν(∞)) for almost

all e ∈ Sm−1.
iv) F is strong tight if and only if F is tight and βν(X) ≥ 1

2βν(∞) for ν ∈ N.
v) F is tight if and only if F is weak tight and

β(X,Ehe) =
n∑
ν=0

|βν(X)− 1

2
βν(∞)|

for almost all e ∈ Sm−1.

Proof. We only have to modify slightly the proof for the compact case (given in [6,
§1.3], e.g.). The proof is again a computation of critical points of height functions.
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i) The proof is the same as for compact manifolds. We only have to use the
theory of linking and non-linking type singularities with respect to relative homol-
ogy theory [19, III 29] instead of the corresponding theory with respect to simple
homology theory in the compact case.

ii) Let e ∈ Sm−1 such that he is a Morse function. We denote the numbers
of linking type, non-linking type singularities of index ν with respect to simple
homology theory of he by λν ,Λν , respectively. For a definition of linking and non-
linking type singularity see: [19, III 28], where it is also proved:

µν(he) = λν(he) + Λν(he)

and

βν(X)− βν(Ehe) = λν(he)− Λν+1(he).

For this reason

λν(he) ≥ max{0, βν(X)− βν(Ehe)}

and

Λν+1(he) ≥ max{0, βν(Ehe)− βν(X)}.

Now we conclude

µ(he) ≥
n∑
ν=0

|βν(X)− βν(Ehe)|

where equality holds if and only if

λν(he) = max{0, βν(X)− βν(Ehe)}

and

Λν+1(he) = max{0, βν(Ehe)− βν(X)}

for ν ∈ N. In other words if and only if

λν(he) > 0⇒ Λν+1(he) = 0 for ν ∈ N.

Note this yields another proof of the Morse inequality (Theorem 2.2).
Now let F : X → Rm be a Wintgen immersion. We may assume for the sake of

simplicity that there is for every critical value of he only one critical point of he,
for almost all he. For this see [16] or more detailed [4].

By the discussion above we get F is tight if and only if

µ(he) =
n∑
ν=0

|βν(X)− βν(Ehe)|

and

(βν(X)− βν(Ehe))(βν(X)− βν(Eh−e)) ≥ 0

for almost every e ∈ Sm−1. The proof is finished by Proposition 2.1 and the triangle
inequality.

iii) The same proof as for the compact case by using Proposition 2.1.
iv) This is a direct consequence of part ii) and iii).
v) This is a direct consequence of part i) and ii).
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In the compact case one says that a 0-tight immersion satisfies the two-piece
property. Because in this case an immersion is 0-tight if and only if the preimages
with respect to F of almost every halfspace are connected [1] and [6, §1.5]. Evi-
dently we cannot expect the two-piece property (strong 0-tightness) for Wintgen
immersions of connected manifolds with more than two ends. Because in this case
β0(X) = 1 < 1

2β0(∞). The generalization of the two-piece property is in this case
0-tight, weak 0-tight, respectively.

Proposition 3.4. Let F : X → Rm be a Wintgen immersion. Then the following
are equivalent:

i) F is weak 0-tight.
ii) Almost every e ∈ Sm−1 satisfies: he has at most one minimum and at most

one maximum; he has a minimum (maximum) if and only if he is bounded
below (above).

Proof. We can carry over the proof for the compact case [6, §1.5].

Proposition 3.5. Let F : X → Rm be a Wintgen immersion. Then the following
are equivalent:

i) F is 0-tight.
ii) For almost all e ∈ Sm−1 he has:

- exactly two extrema if X has no ends,
- exactly one extremum if X has exactly one end,
- no extremum if X has at least two ends.

Proof. This follows by the same methods as for compact manifolds [6, §1.5].

4. The substantial codimension

For the discussion in Section 3 we did not need a correspondence between the
(topological) ends of a manifold and their analytical description by limit directions.
We only needed to guarantee that almost every height function is proper, a condition
which is satisfied by immersions with only finitely many limit directions. But now
we want to examine the codimension of substantial 0-tight Wintgen immersions.
This requires that there is for every end exactly one limit direction. Wintgen
immersions also satisfy this condition as shown below. The proof of this follows
immediately from the connectedness of the set of limit directions with respect to
one end.

Proposition 4.1. Let F : X → Rm be a proper immersion. Then with respect to
each end of X the set of limit directions is connected.

Proof. Let κ ∈ {1, ..., k}. Denote the set of limit directions with respect to ∞κ by
Dκ. For ε ∈ R+ define the open half cone by:

Cκ(ε) := {rv | r ∈ (1,∞), v ∈ Sm−1, dist(v,Dκ) < ε}.

By the definition of limit directions the preimmage of every open half cone aboutDκ

is a punctured neighbourhood of ∞κ. If now the compact set Dκ is disconnected,
there exists an open half cone about Dκ which preimage has at least two unbounded
connected components. These components yield to different ends of X by 1.1.; a
contradiction.
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Corollary 4.2. Let F : X → Rm be a Wintgen immersion. Then there exists for
every end ∞κ exactly one limit direction with respect to F and ∞κ. We denote this
direction by vκ.

Proof. Let κ ∈ {1, ..., k}. By the compactness of Sm−1 there is at least one limit
direction for ∞κ. By the Proposition 4.1 there is at most one.

The following theorem states in particular that in the case of 0-tight Wintgen
immersion the ends in the euclidean space have to contract to a single point by
moving to infinity if the manifold has at least two ends. More precisely the con-
vex hull of the levelset, Pvκ(F (P−1

vκ (t))), with respect to the limit direction vκ is
increasing. If the manifold has only one end this end has to expand by moving to
infinity.

Theorem 4.3. Let F : X → Rm be a weak 0-tight Wintgen immersion. Denote
the orthogonal projection onto 〈vκ〉⊥ by Pvκ .

i) We set for t ∈ R P tvκ := Pvκ(F (P−1
vκ (t))). Then conv(P tvκ ∪P−tvκ ) is monotone

increasing in t ∈ R if no limit direction is orthogonal to vκ. Further conv(P tvκ)
is monotone increasing in t ∈ R if vκ closes only positive angles with every
other limit direction.

ii) Let U be a punctured neighbourhood of ∞κ such that every other end can be
separated from U . If there exists for almost every e ∈ Sm−1 a limit direction
which closes a negative angle with e the following equation holds:

conv(Pvκ(F (U))) ⊆ conv(Pvκ(∂U)).

Proof. For the idea see also [21].
i) Let t, t′ ∈ R+, t < t′ and κ ∈ {1, ..., k} such that

conv(P tvκ ∪ P
−t
vκ ) 6⊆ conv(P t

′

vκ ∪ P
−t′
vκ ).

We choose

α0 ∈ conv(P tvκ ∪ P
−t
vκ ) \ conv(P t

′

vκ ∪ P
−t′
vκ ).

There exists the perpendicular α⊥ of α0 onto conv(P t
′

vκ ∪ P−t
′

vκ ).

We now show there exists a neighbourhood of w := α⊥−α0

‖α⊥−α0‖ in Sm−1 such that

every height function with respect to this neighbourhood has a local minimum.
This is in contradiction to Proposition 3.4 since w ⊥ vκ.
hw has a local minimum. Otherwise for all s ∈ R+, there exists an xs ∈

∂(Xs
vκ ∩ Xs

−vκ) such that hw(xs) = min(hw|Xsvκ∩Xs−vκ ). Hence we can find a

xt′ ∈ h−1
w ({t′,−t′}) such that

hw(xt′) ≤ hw(x) for all x ∈ h−1
w ({t′,−t′}).

Thus

〈w,Pvκ(F (xt′))〉 ≤ 〈w,Pvκ(F (x))〉 for all x ∈ h−1
w ({t′,−t′})

since w ⊥ vκ. Finally we get

〈w,Pvκ(F (xt′))〉 ≤ 〈w,α〉 for all α ∈ conv(P tvκ ∪ P
−t
vκ ).

In particular 〈w,α0〉 ≥ 〈w,Pvκ(F (xt′))〉.
But we also have 〈w,Pvκ(F (xt′))〉 ≥ 〈w,α⊥〉 since α⊥ is the perpendicular of α0

onto conv(P t
′

vκ ∪ P−t
′

vκ ).



ABSOLUTE CURVATURE AND TIGHTNESS OF NONCOMPACT MANIFOLDS 2423

Now it follows 〈w,α0〉 ≥ 〈w,α⊥〉. This implies −〈w,w〉 ≥ 0 in contradiction
to the choice of w. Since the minimum of hw is local we can find the desired
neighbourhood of w in Sm−1 ([15]).

ii) X has at least two ends and almost every height function is unbounded by
the assumption about the limit directions. So almost every height function has no
extremum, since F is weak 0-tight (Proposition 3.4). Let U be a neighbourhood as
in the theorem. Suppose there exists an

α0 ∈ conv(Pvκ(F (U))) \ conv(Pvκ(∂U)).

Define α⊥ to be the perpendicular of α0 onto conv(Pvκ(F (∂U))). One can show in
the same way as part i) hw|U , w := α⊥−α0

‖α⊥−α0‖ has no minimum which is an element

of ∂U . Thus there exists a x0 ∈ U such that hw(x0) < hw(x) for all x ∈ ∂U . Since
∂U is compact hvκ |∂U has a global minimum of value t1, say. Set t0 := hvκ(t0).
Now there exists t ∈ R+ such that

t(t1 − t0) > hw(x0)− hw(x) for all x ∈ ∂U
this means

〈tvκ + w, x0〉 < 〈tvκ + w, x〉 for all x ∈ ∂U.
Since t > 0 we now can find a height function with local minimum in U . This
finishes the proof as in part i).

Definition 4.4. An immersion F : X → Rm is called substantial if F (X) is not
contained in an affine hyperplane.

If X is compact the codimension of a 0-tight, substantial immersion is bounded
above by n

2 (n+ 3), where n is the dimension of X [17], [6, §1.5], [12, §5]. There is
no such bound for 0-tight, substantial Wintgen immersions [21]. But if the ends are
also 0-tightly immersed the codimension is bounded by a number, which depends
on the dimension n and the number of k ends of X . Then if the ends are 0-
tightly immersed they are contained in an affine hypersurface of dimension at most
n−1

2 (n + 2) by the compact case. This enables us to give an upper bound of the
substantial codimension for the immersion by the theorem above.

Theorem 4.5. Let F : X → Rm be a 0-tight, substantial Wintgen immersion with
0-tight immersed ends. Then

m ≤ (k − 1)
n

2
(n+ 1) if X has at least three ends

and

m ≤ n

2
(n+ 1) if X has one or two ends.

Proof. For κ ∈ {1, ..., k} choose eκ ∈ Sm−1, 〈vκ, eκ〉 < 0 such that heκ is a Morse
function and F |E(eκ,∞κ)∩h−1

vκ (r) is a 0-tight immersion for almost all sufficiently large

r ∈ R. Choose rκ ∈ R of this type. We may assume without loss of generality that
Erκ := E(eκ,∞κ) ∩ h−1

vκ (rκ) is an (n − 1)-dimensional compact manifold. By the
codimension theorem for tight immersions of compact manifolds Erκ is contained
in an affine hyperspace of dimension at most n−1

2 (n+ 2). We choose such an affine
subspace W rκ with smallest dimension.

Case 1. X has exactly one end.
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Define W :=
⋃
rκ
〈vκ,W rκ〉linear. (We denote by 〈 , 〉linear the linear hull.) Then

F (X) ⊆W by Theorem 4.3.i) and dim(W ) ≤ n−1
2 (n+2)+1 since 〈vκ,W rκ〉 linear ⊆

〈vκ,W t′κ〉linear for t < t′ also by Theorem 4.3.i).

Case 2. X has at least two ends.

The limit directions cannot be linearly independent, because in this case there
would exist a set of height functions of positive measure which are bounded below
in contradiction to Proposition 3.5. So we may assume without loss of generality
vk ∈ 〈v1, . . . , vk−1〉 linear. Define ĥvκ := hvκ |E(eκ), Uκ := ĥ−1

vκ (rκ,∞).

Now F (Uκ) ⊆ 〈vκ,W rκ〉linear by Theorem 4.3.ii). Since X \
⋃k−1
κ=1 Uκ is a punc-

tured neighbourhood of ∞κ from which the other ends are separated we get by
Theorem 4.3.ii) and the linear dependence of the limit directions:

F (X) ⊆ 〈
k−1⋃
κ=1

〈vκ,W rκ〉linear〉linear.

Hence

m ≤ dim(〈{v1, ..., vk−1}〉linear) + (k − 1)
n− 1

2
(n+ 2)

≤ (k − 1)

(
n− 1

2
(n+ 2) + 1

)
= (k − 1)

n

2
(n+ 1).

Remark 4.6. i) Assume the ends of X have the homology of a sphere. If now
F : X → Rm is a 0-tight, substantial Wintgen immersion with tightly immersed
ends we get

m ≤ (k − 1)(n+ 1) if X has at least three ends

and

m ≤ n+ 1 if X has one or two ends.

Then by Reeb’s theorem [18, §4] the ends Erκ are spheres. But tightly immersed
spheres are substantial hypersurfaces [6, §1.7]. Note that we have to claim tightly
immersed ends since for only 0-tightly immersed ends we cannot conclude they are
substantial hypersurfaces [2].

The ends of surfaces are always of spherical homology. So we get

m ≤ 3(k − 1) if X has at least three ends

and

m ≤ 3 if X has one or two ends

for 0-tight, substantial Wintgen immersions of surfaces X with tightly immersed
ends.

ii) An upper bound for the codimension of a 0-tight substantial Wintgen immer-
sion with tightly immersed ends cannot be independent of the number of ends, in
general. For this take a tight immersion f : S1 → R2 such that {0} × (−2, 2) ⊂
f(S1).

The mapping

F : S1 × R→ R3, (x, t) 7→ (f(x), t)
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is a tight Wintgen immersion with tightly immersed ends. Further

F (S1 × R) ⊂ {0} × U := {0} × (−2, 2)× R \ {(0, 0, 0)}.
By using the mapping

g : {0} × U → Rm

(0, x) 7→
{

(0, x, 0, ..., 0, h(x), 0, ..., 0), if x ∈ U1;

(0, x, 0, ..., 0, 0, 0, ..., 0), otherwise,

where h : U → R, x 7→ exp

(
2‖x‖2−1

(‖x‖2−1)‖x‖2

)
and U1 := U1((0, 0)) \ {(0, 0)}, one can

define by removing m−3 points of S1×R a substantial, 0-tight Wintgen immersion
G with tight ends

G : S1 × R \ {p1, ..., pm−3} → Rm.
Then with respect to g almost every height function has no extremum since

exp

(
2‖x‖2−1

(‖x‖2−1)‖x‖2

)
is monotone decreasing with respect to ‖x‖.

Altogether almost every height function with respect to G has no extremum.
Therefore G is 0-tight (Proposition 3.5). (Indeed G is tight.) Clearly G has tight
ends and is substantial.

Remark 4.7. If the number of ends of X is 0, i.e. if X is compact, the theory above
coincides with the usual theory for immersions of compact manifolds.
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5. T.E. Cecil, Taut immersions of non-compact surfaces into a Euclidean 3-space, J. Differential
Geometry 11 (1976), 451-459. MR 55:11275

6. T.E. Cecil and P.J. Ryan, Tight and Taut Immersions of Manifolds, Pitman, London, 1985.
MR 87b:53089

7. S.-s. Chern and R.K. Lashof, On the total curvature of immersed manifolds. I, Amer. J. Math.
79 (1957), 396-398. MR 18:927a

8. , On the total curvature of immersed manifolds. II, Mich. J. Math. 5 (1958), 5-12. MR
20:4301

9. A. Dold, Lectures on Algebraic Topology, Springer, Berlin, 1980. MR 82c:55001
10. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press,

Princeton, 1952. MR 14:398b
11. Ky Fan and N. Gottesman, On compactifications of Freudenthal and Wallman, Indag. Math.

14 (1952), 504-510. MR 14:669c
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