
TMCM-142

TMCL[™] Firmware Manual

Version: 1.05 2009-NOV-17

Trinamic Motion Control GmbH & Co KG

Hamburg, Germany

Table of contents

1	•	ife support policy				
2		S				
3		odes				
4		W				
5	-	the TMCM-142 into operation				
		rting up				
		sting with a simple TMCL [™] program				
	•	erating the module in direct mode				
6		and TMCL-IDE				
		ary command format				
	-	oly format				
	6.2.1	Status codes				
		nd-alone applications				
		ICL [™] command overview				
	6.4.1	Motion commands				
	6.4.2	Parameter commands				
	6.4.3	I/O port commands				
	6.4.4	Control commands				
	6.4.5	Calculation commands				
		ICL [™] commands				
		e ASCII interface				
	6.6.1	Format of the command line				
	6.6.2	Format of a reply				
	6.6.3	Commands that can be used in ASCII mode				
	6.6.4	Configuring the ASCII interface				
		mmands				
	6.7.1	ROR (rotate right)				
	6.7.2	ROL (rotate left)				
	6.7.3	MST (motor stop)				
	6.7.4	MVP (move to position)				
	6.7.5	SAP (set axis parameter)				
	6.7.6	GAP (get axis parameter)				
	6.7.7	STAP (store axis parameter)				
	6.7.8	RSAP (restore axis parameter)				
	6.7.9	SGP (set global parameter)				
		GGP (get global parameter)				
		STGP (store global parameter) RSGP (restore global parameter)				
		RFS (reference search)				
		SIO (set output)				
		GIO (get input/output)				
		CALC (calculate)				
		COMP (compare)				
		JC (jump conditional)				
		JA (jump always)				
		CSUB (call subroutine)				
	6.7.21	RSUB (return from subroutine)				
	-	WAIT (wait for an event to occur)				
		STOP (stop TMCL [™] program execution)				
		SCO (set coordinate)				
		GCO (get coordinate)				
		CCO (capture coordinate)				
		ACO (accu to coordinate)				
		CALCX (calculate using the X register)				
		AAP (accumulator to axis parameter)				
	-		-			

	6.7.3	O AGP (accumulator to global parameter)	
	6.7.3	1 CLE (clear error flags)	
	6.7.3	2 Customer specific TMCL [™] command extension (UF0UF7/user function)	
	6.7.3	3 Request target position reached event	
	6.7.3	4 BIN (return to binary mode)	
	6.7.3	5 TMCL [™] Control Functions	
7	Axis	parameters	
7	.1	Real world units vs. units of the TMC457	97
8	Glob	al parameters	
8	.1	Bank 0	
8	.2	Bank 1	
8	.3	Bank 2	
9		s and tips	
9	.1	PID controller of the TMC457 - easyPID [™]	
9	.2	Reference search	
9	.3	Fixing microstep errors	
9	.4	Using the RS485 interface	
10	Revi	sion history	
1	0.1	Firmware revision	
10.2 Document Revision			
11	Refe	rences	

1 Life support policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

© TRINAMIC Motion Control GmbH & Co. KG 2009

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

2 Features

The TMCM-142 is a high-performance single axis stepper motor controller/driver with encoder feedback. The integrated TMC457 motion controller provides superior performance with regard to microstep resolution (up to 1024), maximum velocity (integrated chopsync[™]), ramp calculation (S-shaped ramps, calculated in real-time) and encoder feedback support (closing the loop in hardware with PID regulator). The driver stage supports motors with up to 5A RMS coil current and offers exceptional low power dissipation.

Together with the TMCM-IF standard add-on interface/adapter board a large number of interface options is available.

Applications

- Compact high-resolution/high-performance stepper motor controller/driver solutions
- Smooth movements with high microstep resolution and S-shaped ramps
- High precision and high repeatability with encoder feedback and PID position regulator

Electrical data

- Supply voltage: +18V... +78.5V DC
- Motor current: up to 7A peak / 5A RMS (programmable)

Supported motors

- Two phase bipolar motors with 1A to 5A RMS coil current
- Incremental encoder (a/b + optional index channel, differential, open-collector or single ended signals)

Interfaces

- Optically isolated inputs for home and stop switches
- general purpose analogue and digital inputs and outputs
- RS422, RS232, CAN and USB serial interfaces available
- RS422, RS485, RS232, CAN or USB serial interfaces available on standard add-on interface board TMCM-IF

Features

- 1024 times micro stepping
- Automatic ramp generation (trapezoid and S-shaped) in real-time in hardware
- On the fly alteration of motion parameters (e.g. position, velocity, acceleration)
- Uses TMC457 high performance controller
- Chopsync[™] for high speed
- High-efficient operation, low power dissipation
- Integrated protection: overtemperature/undervoltage

Software

- Stand-alone operation using TMCL[™] or remote controlled operation
- Memory for 2048 TMCL[™] commands
- PC-based application development software TMCL-IDE included
- CANopen ready

3 Order codes

The TMCM-142 is currently available with the standard adapter/interface add-on board TMCM-IF:

Order code	Description	Dimensions [mm ³]
TMCM-142-IF	Single axis stepper motor controller/driver, 5A RMS, 75V, with encoder feedback and the standard adapter/interface board TMCM-IF	76x70x33
Related motors		
QSH-5718	57mm/NEMA23, 1.8° step angle	57.2 x 57.2 x 41/55/
		78.5 mm
QSH-6018	60mm/NEMA24, 1.8° step angle	60.5 x 60.5 x 45/56/
		65/86 mm

Table 3.1: Order codes

Versions without the standard adapter/interface board TMCM-IF (just the baseboard) or custom interface boards are available on request.

4 Overview

As with most TRINAMIC modules the software running on the microprocessor of the TMCM-142 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains – normally – untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (<u>http://www.trinamic.com</u>).

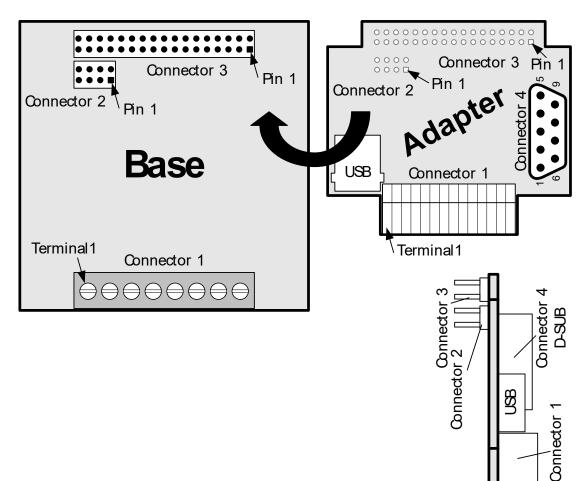
The firmware shipped with this module is related to the standard TMCL[™] firmware shipped with most of TRINAMIC modules with regard to protocol and commands. Corresponding, this module is based on the TMC457 motion controller for stepper motors and the TMC239 power driver and supports the standard TMCL[™] with a special range of values. All commands and parameters available with this unit are explained on the following pages.

5 Putting the TMCM-142 into operation

Here you can find basic information for putting your module into operation. Further text contains a simple example for a TMCL[™] program and a short description of operating the module in direct mode.

The things you need:

- TMCM-142-IF, consisting of TMCM-142 base and standard TMCM-IF adapter/interface add-on board.
- Interface (RS232, RS485, USB or CAN) suitable to your TMCM-142-IF with cables
- Nominal supply voltage +24V DC (+18...+78.5V DC) for your module
- A stepper motor which fit to your module, for example QSH-5718 or QSH-6018.
- TMCL-IDE program and PC
- Encoder optional


Precautions:

- Do not connect or disconnect the TMCM-142 and the TMCM-IF while powered!
- Do not connect or disconnect the motor while powered!
- Do not mix up connections or short-circuit pins.
- Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply.
- Do not exceed the maximum power supply of 78.5V DC.
- Start with power supply OFF!

5.1 Starting up

1. Connect the TMCM-142 and the TMCM-IF

Usually TRINAMIC delivers the base board and the add-on board connected. If not for any reason, this figure will show you how to do this.

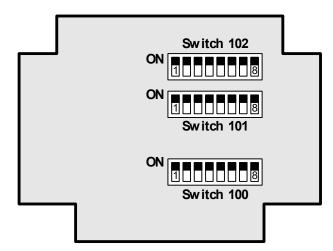
Side View

Figure 5.1: Connectors of the TMCM-142 and the TMCM-IF

2. Connect the motor and the power supply

Connect the motor and the power supply with *connector 1* of the TMCM-142:

0	Pin	Label	Description
	1	NC	Not connected
	2	NC	Not connected
(P)	3	GND	Supply ground
	4	+V	Supply Voltage
	5	B 2	Motor connection, Coil B
	6	B 1	Motor connection, Coil B
	7	A 2	Motor connection, Coil A
8	8	A 1	Motor connection, Coil A


Table 5.1: Base connector 1 - 1x8 pin, 5mm pitch screw connectorAttention: Do not exceed the maximum power supply of 78.5V DC.

3. <u>Connect the interface</u>

In this case we choose the USB interface for serial communication. USB is one out of five different interfaces available for communication with the TMCM-142-IF. You can refer to the hardware manuals of the TMCM-142 and the TMCM-IF for further information about the pinning of other interfaces.

Connect the USB interface:

Choose the USB port of the TMCM-IF and connect the interface with a USB cable. Accordingly, adjust the DIP switches.

Switch 101 and 102 select the different interfaces (RS422 or RS232, CAN, RS485 and USB).

DIP switch 100 adjusts the address of the CAN and RS-422 interfaces

Figure 5.2: Overview of DIP switches

For selecting the USB interface, configure the DIP switches 101 and 102 as shown below:

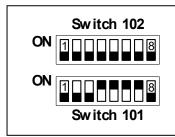


Figure 5.3: Configuration of DIP switches for USB

4. <u>Connect the encoder</u>

Differential and single ended incremental encoders with/without zero/index channel are supported.

If you want to use an encoder to meet your needs, you can connect as follows:

- Single ended encoder: GND to pin 20
 - +5V to pin 16 A to pin 34 N to pin 29 B to pin 33
- Differential encoder: GND to pin 20

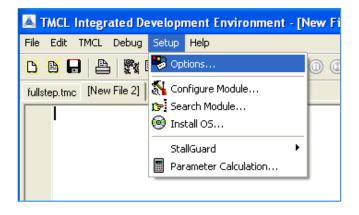
+5V to pin 16 A+ to pin 34, A- to pin 12 N+ to pin 29, N- to pin 18 B+ to pin 33, B- to pin 14

Pin	Name	Function	PIN	Name	Function
1	тх-	X- RS422 Transmit – (data out from indexer)		TX+	RS422 Transmit + (data out from indexer)
3	RX-	RS422 Receive – (data into indexer)	4	RX+	RS422 Receive + (data out from indexer)
5		Internally pulled down via 2k7 resistor. Not supported by TMCL [™] .	6	INO_A/D	Analog user controlled input #0. No internal resistors.
7	REF R	Optically isolated, active low limit switch input <i>Right</i>	8	STEP_ OUT/RXD	Step clock output from indexer RS232 option: RS232 receive
9	OUT_1	User controlled output #1. No internal resistors.	10	DIR_OUT/TXD	Direction output from indexer. RS232 option: RS232 transmit
11	IN7	Digital user controlled input #7. Optically isolated, active low (needs power supply on pin 15)	12	ENC_A-	Differential encoder: Channel A- input (optional)
13	IN2_A/D	Analog user controlled input #2. No internal resistors.	14	ENC_B-	Differential encoder: Channel B- input (optional)
15	+5V	DC bias for input opto couplers	16	+5VDC	Logic supply out for encoder
17	OUT_0 User controlled output #0. No internal resistors.		18	ENC_N-	Differential encoder: Channel N- input (optional)
19	REF L	REF L Optically isolated, active low limit switch input <i>Left</i>		GND	Logic supply ground connection
21	Digital user controlled input #3 No		22	OUT_2	User controlled output #2. No internal resistors.
23	IN8	Digital user controlled input #8. Optically isolated, active low (needs power supply on pin 15)	24		Not supported by TMCL™.
25	IN5	Digital user controlled input #5. No internal resistors. (TTL)	26	IN1_A/D	Analog user controlled input #1. No internal resistors.
27	ALARM High voltage open collector output indicating driver fault condition.		28		Not supported by TMCL™.
29	ENC_N+	Encoder option: Single ended: Channel N input Differential: Channel N+ input	30	IN6	Digital user controlled input #6. No internal resistors. (TTL)
31	FS	Active for one clock pulse at each on-pole fullstep position.	32	IN4	Digital user controlled input #4. No internal resistors. (TTL)
33	Encoder option:		34	ENC_A+	Encoder option: Single ended: Channel A input Differential: Channel A+ input

Table 5.2: TMCM-IF connector 3 and TMCM-142 connector 3

5. Switch power supply ON

The LED for power should glow now. This indicates that the on-board +5V supply is available.


If this does not occur, switch power OFF and check your connections as well as the power supply.

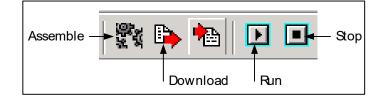
6. Start the TMCL-IDE software development environment

The TMCL-IDE is on hand on the TechLibCD and on www.trinamic.com.

Installing the TMCL-IDE:

- Make sure the COM port you intend to use is not blocked by another program.
- Open TMCL-IDE by clicking *TMCL.exe*.
- Choose *Setup* and *Options* and thereafter the *Connection tab*.

• Choose COM port and type with the parameters shown below (baud rate 9600). Click OK.

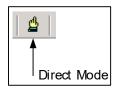

🔺 Options 🛛 🔀
Assembler Connection
Type: RS232 / RS485 (COM port)
RS232 / RS485
Port: COM4 💌
<u>B</u> aud: 9600 -
Address: 1 🚖 Search
<u> </u>

5.2 Testing with a simple TMCL[™] program

Open the file test2.tmc. The following source code appears on the screen:

```
//A simple example for using \texttt{TMCL}^{\texttt{IM}} and \texttt{TMCL-IDE}
        ROL 0, 500000
                                         //Rotate motor 0 with speed 500000
        WAIT TICKS, 0, 500
        MST 0
        ROR 0, 250000
                                         //Rotate motor 1 with 250000
        WAIT TICKS, 0, 500
        MST 0
        SAP 4, 0, 500000
                                         //Set max. Velocity
        SAP 5, 0, 50000
                                         //Set max. Acceleration
                                         //Move to Position 10000
        MVP ABS, 0, 1000000
Loop:
        WAIT POS, 0, 0
                                         //Wait until position reached
        MVP ABS, 0, -1000000
                                         //Move to Position -10000
        WAIT POS, 0, 0
                                         //Wait until position reached
        JA Loop
                                         //Infinite Loop
```

description for the TMCL[™] commands can be found in Appendix A.



- 7. Click on Icon *Assemble* to convert the TMCL[™] into machine code.
- 8. Then download the program to the TMCM-142 module via the icon *Download*.
- 9. Press icon *Run*. The desired program will be executed.
- 10. Click *Stop* button to stop the program.

А

5.3 Operating the module in direct mode

1. Start TMCL[™] Direct Mode.

- 2. If the communication is established the TMCM-142-IF is automatically detected. *If the module is not detected, please check all points above (cables, interface, power supply, COM port, baud rate).*
- 3. Issue a command by choosing *instruction, type* (if necessary), *motor*, and *value* and click *Execute* to send it to the module.

A TMCL Direct Mode - TMCM-142 / TMCM-809 / Eval-457	X
TMCL Instruction Selector Instruction: S - SAP set axis parameter Image: Set axis parameter	Motor / Bank: Value: ▼ 0 • Motor 0 ▼ 0 €
Execute	Copy to editor
Manual Instruction Input Address Instruction Type Motor/Bank Value 1 0 0 ↓ 0 ↓	Datagram: 01 00 00 00 00 00 00 00 01
E <u>x</u> ecute	
Answer Host Target Status Instr. Value	Datagram:
	<u>C</u> lose

Examples:

- ROR rotate right, motor 0, value 500 -> Click *Execute*. The first motor is rotating now.
- MST motor stop, motor 0 -> Click *Execute*. The first motor stops now.

You will find a description of all TMCL[™] commands in the following chapters.

6 TMCL[™] and TMCL-IDE

The TMCM-142 supports TMCL[™] direct mode (binary commands or ASCII interface) and stand-alone TMCL[™] program execution. You can store up to 2048 TMCL[™] instructions on it.

In direct mode and most cases the TMCL[™] communication over RS485, RS232, RS422, USB or CAN follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the TMCM-142. The TMCL[™] interpreter on the module will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over RS485/RS232/RS422/USB/CAN to the bus master. Only then should the master transfer the next command. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus.

The Trinamic Motion Control Language (TMCL[™]) provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored in an EEPROM on the TMCM[™] module to form programs that run stand-alone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating).

Every command has a binary representation and a mnemonic. The binary format is used to send commands from the host to a module in direct mode, whereas the mnemonic format is used for easy usage of the commands when developing stand-alone TMCL[™] applications using the TMCL-IDE (Integrated Development Environment).

There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL[™] commands and their usage.

6.1 Binary command format

Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent via RS232, RS422, RS485 or USB interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.

This is different when communicating is via the CAN bus. Address and checksum are included in the CAN standard and do not have to be supplied by the user.

Bytes Meaning	
1	Module address
1	Command number
1	Type number
1	Motor or Bank number
4	Value (MSB first!)
1	Checksum

The binary command format for RS232/RS422/RS485/USB is as follows:

- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, just leave out the first byte (module address) and the last byte (checksum).

Checksum calculation

As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here are two examples to show how to do this:

```
in C:
 unsigned char i, Checksum;
 unsigned char Command[9];
 //Set the "Command" array to the desired command
 Checksum = Command[0];
 for(i=1; i<8; i++)</pre>
    Checksum+=Command[i];
 Command[8]=Checksum; //insert checksum as last byte of the command
 //Now, send it to the module
in Delphi:
var
  i, Checksum: byte;
  Command: array[0...8] of byte;
  //Set the "Command" array to the desired command
  //Calculate the Checksum:
  Checksum:=Command[0];
  for i:=1 to 7 do Checksum:=Checksum+Command[i];
  Command[8]:=Checksum;
  //Now, send the "Command" array (9 bytes) to the module
```

6.2 Reply format

Every time a command has been sent to a module, the module sends a reply.

The reply format for RS485/RS422/RS232/USB is as follows:

Bytes	Meaning
1	Reply address
1	Module address
1	Status (e.g. 100 means no error)
1	Command number
4	Value (MSB first!)
1	Checksum

- The checksum is also calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!

6.2.1 Status codes

The reply contains a status code.

The status code can have one of the following values:

Code	Meaning		
100	Successfully executed, no error		
101	Command loaded into TMCL [™]		
	program EEPROM		
1	Wrong checksum		
2	Invalid command		
3	Wrong type		
4	Invalid value		
5	Configuration EEPROM locked		
6	Command not available		

6.3 Stand-alone applications

The module is equipped with an EEPROM for storing TMCLTM applications. You can use TMCL-IDE for developing standalone TMCLTM applications. You can load them down into the EEPROM and then it will run on the module. The TMCL-IDE contains an editor and a *TMCLTM assembler* where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there.

6.4 TMCL[™] command overview

In this section a short overview of the TMCL[™] commands is given.

6.4.1 Motion commands

These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in stand-alone mode.

Mnemonic	Command number	Meaning
ROL	2	Rotate left
ROR	1	Rotate right
MVP	4	Move to position
MST	3	Motor stop
RFS	13	Reference search
SCO	30	Store coordinate
CCO	32	Capture coordinate
GCO	31	Get coordinate

6.4.2 Parameter commands

These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in stand-alone mode.

Mnemonic	Command number	Meaning
SAP	5	Set axis parameter
GAP	6	Get axis parameter
STAP	7	Store axis parameter into EEPROM
RSAP	8	Restore axis parameter from EEPROM
SGP	9	Set global parameter
GGP	10	Get global parameter
STGP	11	Store global parameter into EEPROM
RSGP	12	Restore global parameter from EEPROM

6.4.3 I/O port commands

These commands control the external I/O ports and can be used in direct mode and in stand-alone mode.

Mnemonic	Command number	Meaning
SIO	14	Set output
GIO	15	Get input

6.4.4 Control commands

These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for stand-alone mode only.

Mnemonic	Command number	Meaning		
JA	22	Jump always		
JC	21	Jump conditional		
COMP	20	Compare accumulator with constant value		
CLE	36	Clear error flags		
CSUB	23	Call subroutine		
RSUB	24	Return from subroutine		
WAIT	27	Wait for a specified event		
STOP	28	End of a TMCL [™] program		

6.4.5 Calculation commands

These commands are intended to be used for calculations within $TMCL^{TM}$ applications. Although they could also be used in direct mode it does not make much sense to do so.

Mnemonic	Command number	Meaning		
CALC	19	Calculate using the accumulator and a constant value		
CALCX	33	Calculate using the accumulator and the X register		
AAP	34	Copy accumulator to an axis parameter		
AGP	35	Copy accumulator to a global parameter		
ACO	39	Copy accu to coordinate		

For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a $TMCL^{TM}$ program (in stand-alone mode), all $TMCL^{TM}$ commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator.

When a command that reads a value is executed in direct mode the accumulator will not be affected. This means that while a TMCL[™] program is running on the module (stand-alone mode), a host can still send commands like GAP, GGP or GIO to the module (e.g. to query the actual position of the motor) without affecting the flow of the TMCL[™] program running on the module.

Command	Command Number Parameter		Description		
GCO	31	<coordinate number="">, <motor number=""></motor></coordinate>	Get coordinate		
CCO	32	<coordinate number="">, <motor number=""></motor></coordinate>	Capture coordinate		
CALCX	33	<pre><operation></operation></pre>	Process accumulator & X-register		
AAP	Number 34	Parameter <parameter>, <motor number=""></motor></parameter>	Description Accumulator to axis parameter		
AGP	35	<motor number="">, <velocity> <parameter>, <bank></bank></parameter></velocity></motor>	Rotate right with specified velocity Accumulator to global parameter		
ACO	29 39	<motor number="">, <velocity> <coordinate <motor="" number="" number,=""></coordinate></velocity></motor>	Rotate left with specified velocity		
MST	3	<motor number=""></motor>	Stop motor movement		
MVP	4	ABS REL COORD, <motor number="">, <position offset></position offset></motor>	Move to position (absolute or relative)		
SAP	5	<parameter>, <motor number="">, <value></value></motor></parameter>	Set axis parameter (motion control specific settings)		
GAP	6	<parameter>, <motor number=""></motor></parameter>	Get axis parameter (read out motion control specific settings)		
STAP	7	<parameter>, <motor number=""></motor></parameter>	Store axis parameter permanently (non volatile)		
RSAP	8	<parameter>; <motor number=""></motor></parameter>	Restore axis parameter		
SGP	9	<parameter>, <bank number="">, <value></value></bank></parameter>	Set global parameter (module specific settings, e.g. communication settings, or TMCL [™] user variables)		
GGP	10	<parameter>, <bank number=""></bank></parameter>	Get global parameter (read out module specific settings e.g. communication settings, or TMCL [™] user variables)		
STGP	11	<parameter>, <bank number=""></bank></parameter>	Store global parameter (TMCL™ user variables only)		
RSGP	12	<parameter>, <bank></bank></parameter>	Restore global parameter (TMCL™ user variables only)		
RFS	13	START STOP STATUS, <motor number=""></motor>	Reference search		
SIO	14	<port number="">, <bank number="">, <value></value></bank></port>	Set digital output to specified value		
GIO	15	<port number="">, <bank number=""></bank></port>	Get value of analogue/digital input		
CALC	19	<operation>, <value></value></operation>	Process accumulator & value		
COMP	20	<value></value>	Compare accumulator <-> value		
JC	21	<condition>, <jump address=""></jump></condition>	Jump conditional		
JA	22	<jump address=""></jump>	Jump absolute		
CSUB	23	<subroutine address=""></subroutine>	Call subroutine		
RSUB	24		Return from subroutine		
WAIT	27	<condition>, <motor number="">, <ticks></ticks></motor></condition>	Wait with further program execution		
STOP	28		Stop program execution		
SCO	30	<coordinate number="">, <motor number="">, <position></position></motor></coordinate>	Set coordinate		

6.5 TMCL[™] commands

The following TMCL[™] commands are currently supported:

TMCL[™] control commands:

Instruction	Description	Туре	Mot/Bank	Value
128 – stop application	a running TMCL™ standalone application is stopped	(don't care)	(don't care)	(don't care)
129 – run application	TMCL [™] execution is started (or continued)	0 - run from current address 1 - run from specified address	(don't care)	(don't care) starting address
130 – step application	only the next command of a TMCL™ application is executed	(don't care)	(don't care)	(don't care)
131 – reset application	the program counter is set to zero, and the standalone application is stopped (when running or stepped)	(don't care)	(don't care)	(don't care)
132 – start download mode	target command execution is stopped and all following commands are transferred to the TMCL [™] memory	(don't care)	(don't care)	starting address of the application
133 – quit download mode	target command execution is resumed	(don't care)	(don't care)	(don't care)
134 – read TMCL™ memory	the specified program memory location is read	(don't care)	(don't care)	<memory address=""></memory>
135 – get application status	one of these values is returned: 0 – stop 1 – run 2 – step 3 – reset	(don't care)	(don't care)	(don't care)
136 – get firmware version	return the module type and firmware revision either as a string or in binary format		(don't care)	(don't care)
137 – restore factory settings	reset all settings stored in the EEPROM to their factory defaults This command does not send back a reply.	(don't care)	(don't care)	must be 1234

6.6 The ASCII interface

Since TMCLTM V3.21 there is also an ASCII interface that can be used to communicate with the module and to send some commands as text strings.

- The ASCII command line interface is entered by sending the binary command 139 (enter ASCII mode).
- Afterwards the commands are entered as in the TMCL-IDE. Please note that only those commands, which can be used in direct mode, also can be entered in ASCII mode.
- For leaving the ASCII mode and re-enter the binary mode enter the command BIN.

6.6.1 Format of the command line

As the first character, the address character has to be sent. The address character is A when the module address is 1, B for modules with address 2 and so on. After the address character there may be spaces (but this is not necessary). Then, send the command with its parameters. At the end of a command line a <CR> character has to be sent.

Here are some examples for valid command lines:

```
AMVP ABS, 1, 50000
A MVP ABS, 1, 50000
AROL 2, 500
A MST 1
ABIN
```

These command lines would address the module with address 1. To address e.g. module 3, use address character *C* instead of *A*. The last command line shown above will make the module return to binary mode.

6.6.2 Format of a reply

After executing the command the module sends back a reply in ASCII format. This reply consists of:

- the address character of the host (host address that can be set in the module)
- the address character of the module
- the status code as a decimal number
- the return value of the command as a decimal number
- a <CR> character

So, after sending AGAP 0, 1 the reply would be BA 100 –5000 if the actual position of axis 1 is –5000, the host address is set to 2 and the module address is 1. The value *100* is the status code 100 that means *command successfully executed*.

6.6.3 Commands that can be used in ASCII mode

The following commands can be used in ASCII mode: ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP, RSGP, RFS, SIO, GIO, SAC, SCO, GCO, CCO, UF0, UF1, UF2, UF3, UF4, UF5, UF6, and UF7.

There are also special commands that are only available in ASCII mode:

- BIN: This command quits ASCII mode and returns to binary TMCL[™] mode.
- RUN: This command can be used to start a TMCL[™] program in memory.
- STOP: Stops a running TMCL[™] application.

6.6.4 Configuring the ASCII interface

The module can be configured so that it starts up either in binary mode or in ASCII mode. *Global parameter 67 is used for this purpose* (please see also chapter 8.1). Bit 0 determines the startup mode: If this bit is set, the module starts up in ASCII mode, else it will start up in binary mode (default). Bit 4 and Bit 5 determine how the characters that are entered are echoed back. Normally, both bits are set to zero. In this case every character that is entered is echoed back when the module is addressed. A Character can also be erased using the backspace character (press the backspace key in a terminal program). When bit 4 is set and bit 5 is clear the characters that are entered are not echoed back immediately but the entire line will be echoed back after the <CR> character has been sent. When bit 5 is set and bit 4 is clear there will be no echo, only the reply will be sent. This may be useful in RS485 systems.

6.7 Commands

The module specific commands are explained in more detail on the following pages. They are listed according to their command number.

6.7.1 ROR (rotate right)

With this command the motor will be instructed to rotate with a specified velocity in *right* direction (increasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (*target velocity*).

The module is based on the TMC457 motor controller and the TMC239 power driver. This makes possible choosing a velocity between 0 and 2147483647.

When axis parameter #255 (unit conversion mode) is set to 1 the speed must be given as microsteps per second. In this case the range for the speed is 0...31999999 microsteps/second.

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR 0, <velocity>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
1	(don't care)	0*	<velocity></velocity>
			0 2147483647

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Rotate right, motor #0, velocity = 350 *Mnemonic:* ROR 0, 350

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$01	\$00	\$02	\$00	\$00	\$01	\$5e	\$62

6.7.2 ROL (rotate left)

With this command the motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (*target velocity*).

The module is based on the TMC457 motor controller and the TMC239 power driver. This makes possible choosing a velocity between 0 and 2147483647.

When axis parameter #255 (unit conversion mode) is set to 1 the speed must be given as microsteps per second. In this case the range for the speed is 0...31999999 microsteps/second.

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL 0, <velocity>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
2	(don't care)	0*	<velocity></velocity>
			0 2147483647

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Rotate left, motor #0, velocity = 1200 *Mnemonic:* ROL 0, 1200

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$02	\$00	\$00	\$00	\$00	\$04	\$b0	\$b8

6.7.3 MST (motor stop)

With this command the motor will be instructed to stop either with deceleration ramp (soft stop) or without (hard stop). Please note: Depending on motor speed a hard stop might lead to step losses.

Internal function: The axis parameter *target velocity* is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST 0

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
3	(don't care)	0*	(don't care)

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Stop motor Mnemonic: MST 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$03	\$00	\$00	\$00	\$00	\$00	\$00	\$05

6.7.4 MVP (move to position)

With this command the motor will be instructed to move to a specified relative or absolute position or a preprogrammed coordinate. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #5.

Three operation types are available:

- Moving to an absolute position in the range from -2147483648...+2147483647.
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.
- Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Internal function: A new position value is transferred to the axis parameter #2 target position".

Related commands: SAP, GAP, SCO, CCO, GCO, MST

Mnemonic: MVP <ABS|REL|COORD>, 0, <position|offset|coordinate number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
4	0 ABS – absolute	0*	<position></position>
	1 REL – relative	0*	<offset></offset>
	2 COORD –	0*	<coordinate number<="" th=""></coordinate>
	coordinate		(020)

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Move motor to (absolute) position 90000 *Mnemonic:* MVP ABS, 0, 9000

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$04	\$00	\$00	\$00	\$01	\$5f	\$90	\$f6

Example:

Move motor from current position 1000 steps backward (move relative –1000) *Mnemonic:* MVP REL, 0, -1000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$04	\$01	\$00	\$ff	\$ff	\$fc	\$18	\$18

Example:

Move motor to previously stored coordinate #8 Mnemonic: MVP COORD, 0, 8

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$04	\$02	\$00	\$00	\$00	\$00	\$08	\$11

[•] When moving to a coordinate, the coordinate has to be set properly in advance with the help of the SCO, CCO or ACO command.

6.7.5 SAP (set axis parameter)

With this command most of the motion control parameters of the module can be specified. The settings will be stored in SRAM and therefore are volatile. That is, information will be lost after power off. *Please use command STAP (store axis parameter) in order to store any setting permanently.*

Internal function: The parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate device.

Related commands: GAP, STAP, RSAP, AAP

Mnemonic: SAP <parameter number>, 0, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
5	<parameter number></parameter 	0*	<value></value>

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Axis parameters, which can be used for SAP:

Please note, that for the binary representation <parameter number> has to be filled with the number and the <value> has to be filled with a value from range.

Number	Axis parameter	Description	Range [Unit]
0	Target position		-2147483648
			+2147483647
			[µsteps]
1	Actual position		-2147483648
			+2147483647
			[µsteps]
2	Target speed		-2147483648
			+2147483647
			[µsteps/t]
3	Actual speed		-2147483648
			+2147483647
			[µsteps/t]
4	Max. positioning speed	Speed used for positioning (MVP	02147483647
		commands).	[µsteps/t]
5	Max. acceleration and	Sets acceleration and deceleration to	116777215
	deceleration	the same value.	[µsteps/t ²]
6	Max. current	Current when motor is running. 0	015
		means 0%, 15 means 100% of the	
		maximum possible current.	
7	Standby current	Current when motor is standing. 0	015
		means 0%, 15 means 100% of the	
		maximum possible current.	
12	Right limit switch disable	Deactivates the function of the right	0/1
		limit switch when set to 1.	
13	Left limit switch disable	Deactivates the function of the left	0/1
		limit switch when set to 1.	

14 Switch mode Bit 2: left stop switch polarity Bit 3: right stop switch polarity Bit 4: swap left and right stop switch Bit 5: enable soft stop 18 Bit 2: left stop switch polarity Bit 4: swap left and right stop switch going active Bit 5: enable soft stop 19 Stop deceleration Deceleration 116777215 [µsteps/t²] 18 Stop deceleration Deceleration when touching a stop switch going inactive Bit 12: latch encoder position on stop switch event 116777215 [µsteps/t²] 16 Max. acceleration Acceleration 116777215 [µsteps/t²] 17 Max. deceleration Deceleration 116777215 [µsteps/t²] 18 Bow 0 trapezoidal ramps, corresponds to an infinite bow value 018 [µsteps/t³] 18 Bow 0 trapezoidal ramps, corresponds to an infinite bow value 018 [µsteps/t³] 19 Shaft Reverses the motor direction when set to 1. 0/1 20 Standby delay Time after the motor has stopped until the current is changed to standby current. 0/1 21 Mixed decay run 0: no mixed decay when running 1: use mixed decay when standing 0/1 22 Mixed decay standby 0: no mixed decay when standing 1: use mixed decay when standing 0/1	Number	Axis parameter	Descript	tion	Range [Unit]
Bit 4: swap left and right stop switch Bit 5: enable soft stop Bit 8: latch position on left stop switch going active Bit 9: latch position on left stop switch going active Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 11: latch position on right stop switch going inactive Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event116777215 [µsteps/t²]15Stop deceleration Max. accelerationAcceleration when touching a stop switch event116777215 [µsteps/t²]16Max. acceleration Max. decelerationAcceleration corresponds to an infinite bow value116777215 [µsteps/t²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value = 1, 2, 4 262144 The resulting Dow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when running 1: use mixed decay when standing0/1	14	Switch mode	Bit 2: le	ft stop switch polarity	
Bit 5: enable soft stop Bit 8: latch position on left stop switch going active Bit 9: latch position on left stop switch going inactive Bit 10: latch position on right stop switch going inactive Bit 11: latch position on right stop switch going inactive Bit 11: latch position on right stop switch going inactive Bit 11: latch position on stop switch event116777215 [µsteps/t²]15Stop deceleration Max. accelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. acceleration Max. accelerationDeceleration 116777215 [µsteps/t²]116777215 [µsteps/t²]17Max. deceleration Max. accelerationDeceleration 116777215 [µsteps/t²]018 [µsteps/t²]18Bow0 Image and trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run 1: use mixed decay when running 1: use mixed decay when standing0/1			Bit 3: rig	sht stop switch polarity	
Bit 8: latch position on left stop switch going active Bit 9: latch position on left stop switch going inactive Bit 10: latch position on right stop switch going antive Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event116777215 [µsteps/t²]15Stop deceleration Max. accelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. acceleration Max. decelerationAcceleration 116777215 [µsteps/t²]116777215 [µsteps/t²]17Max. deceleration Max. decelerationDeceleration116777215 [µsteps/t²]18Bow0 118 S-shaped ramps in logarithmic representation. bow_value = 1, 2, 3 18 bow_value = 1, 2, 4 262144 The resulting bow, value must not exceed A_MAX or D_MAX setting bow value must not exceed A_AMAX or D_MAX setting bow value m					
going active Bit 9: latch position on left stop switch going inactive Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event116777215 [µsteps/t²]15Stop decelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. accelerationDeceleration116777215 [µsteps/t²]17Max. decelerationDeceleration116777215 [µsteps/t²]18Bow0trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]18Bow0trapezoidal ramps in logarithmic representation. bow_value = 1, 2, 3 18 bow_value = 1, 2, 426244 The resulting bow_value018 [µsteps/t³]19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until to 1.04095 [1/fcu / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing0/1				•	
Bit 9: latch position on left stop switch going inactive Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch necoder position on stop switch eventI16777215 [µsteps/t²]15Stop deceleration Max. accelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. acceleration Max. decelerationAcceleration116777215 [µsteps/t²]17Max. decelerationDeceleration suitch.116777215 [µsteps/t²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]18Bow0 suitch:trapezoidal ramps, corresponds to an infinite bow_index = 1, 2, 318 ex bow_index = 1, 2, 4262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until ti to 1.04095 [1/fcux / 216]21Mixed decay run 1: use mixed decay when running 1: use mixed decay when standing 1: use mixed decay when standing 1: use mixed decay when standing0/1					
going inactive Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch eventI16777215 [Listeps/t ²]15Stop decelerationDeceleration when touching a stop switch.116777215 [Listeps/t ²]16Max. accelerationAcceleration116777215 [Listeps/t ²]17Max. decelerationDeceleration116777215 [Listeps/t ²]18Bow0trapezoidal ramps, corresponds to an infinite bow value018 (Justeps/t ³]18Bow118S-shaped ramps in logarithmic representation. bow_value = 1, 2, 3 18 \Leftrightarrow bow_value = 1, 44.26144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1					
Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch eventImage: Comparison of the stop switch event15Stop decelerationDeceleration when touching a stop switch event116777215 [µsteps/t ²]16Max. accelerationAcceleration116777215 [µsteps/t ²]17Max. decelerationDeceleration116777215 [µsteps/t ²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t ²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t ²]19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run 0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing0/1					
switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event116777215 [µsteps/t²]15Stop decelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. accelerationAcceleration116777215 [µsteps/t²]17Max. decelerationDeceleration116777215 [µsteps/t²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing0/1					
Image: Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch eventImage: Bit 12: latch encoder position on stop switch event15Stop decelerationDeceleration when touching a stop switch event116777215 [µsteps/t ²]16Max. accelerationAcceleration116777215 [µsteps/t ²]17Max. decelerationDeceleration116777215 [µsteps/t ²]18Bow0trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t ²]18Bow118 s-shaped ramps in logarithmic representation. bow_value = 1, 2, 3 18 ⇔ bow_value = 1, 2, 4 262144 The resulting bow value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when standing 1: use mixed decay when standing0/1					
switch going inactive Bit 12: latch encoder position on stop switch event16777215 [µsteps/t²]15Stop decelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. accelerationAcceleration116777215 [µsteps/t²]17Max. decelerationDeceleration116777215 [µsteps/t²]18Bow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t²]18Bow118 S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 3 18 bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.04095 [1/fctk / 2 ¹⁶]20Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when standing 1: use mixed decay when standing0/1			-	-	
Image: switch eventswitch eventImage: switch eventImage: switch eventImage: switch event15Stop decelerationDeceleration when touching a stop switch.116777215 [µsteps/t²]16Max. accelerationAcceleration116777215 [µsteps/t²]17Max. decelerationDeceleration116777215 [µsteps/t²]18Bow0trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t³]18Bow118 s-shaped ramps in logarithmic representation. bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.04095 [1/fcux / 2 ¹⁶]20Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcux / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing0/1					
15 Stop deceleration Deceleration when touching a stop switch. 116777215 16 Max. acceleration Acceleration 116777215 17 Max. deceleration Deceleration 116777215 18 Bow 0 trapezoidal ramps, corresponds to an infinite bow value 018 18 Bow 118 S-shaped ramps in logarithmic representation. bow_value = 1, 2, 3 18 bow_index = 1, 2, 3 18 bow_value = 1, 2, 4 262144 018 19 Shaft Reverses the motor direction when standing 04095 20 Standby delay Time after the motor has stopped until the current is changed to standby current. 04095 21 Mixed decay run 0: no mixed decay when running 1: use mixed decay when standing 0/1 22 Mixed decay standby 0: no mixed decay when standing 0/1			Bit 12: la	atch encoder position on stop	
Image: switch in the second			switch e	event	
16 Max. acceleration Acceleration 116777215 17 Max. deceleration Deceleration 116777215 18 Bow 0 trapezoidal ramps, corresponds to an infinite bow value 018 118 S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 3 18 <> bow_value = 1, 2, 4 262144 0 19 Shaft Reverses the motor direction when set to 1. 0/1 20 Standby delay Time after the motor has stopped until the current is changed to standby current. 04095 21 Mixed decay run 0: no mixed decay when running 0/1 22 Mixed decay standby 0: no mixed decay when standing 0/1	15	Stop deceleration	Decelera	ation when touching a stop	
Image: 10 minimum line in the section in the sect					
17Max. decelerationDecelertion116777215 [µsteps/t²]18Bow0trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t³]18Bow118S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 318 ⇔ bow_value = 1, 2, 4262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverse the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcux / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1	16	Max. acceleration	Accelera	ation	
18Bow0trapezoidal ramps, corresponds to an infinite bow value018118S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 3 18 <> bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.0/121Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1	47	Name data da di			
18 B BowBow0 trapezoidal ramps, corresponds to an infinite bow value018 [µsteps/t³]18. B Section bow value118 Image: Section bow_value = 2^{(bow_index-1)} bow_index = 1, 2, 318 bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.018 [µsteps/t³]19ShaftReverse the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current.04095 [1/fcuk / 216]21Mixed decay run0: no mixed decay when running 1: use mixed decay when running 1: use mixed decay when standing0/1	17	Max. deceleration	Decelera	ation	
Image: space of the systemImage: space of the systemcorresponds to an infinite bow value[μsteps/t³]118S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 318 ⇔ bow_value = 1, 2, 4262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.19Shaft0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fclk / 216]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing 1: use mixed decay when standing 1: use mixed decay when standing0/1	10	Bow	0	tranezoidal ramps	
bow value118S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 318 <> bow_value = 1, 2, 4262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcuk / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/1	18	BOW	0		
Image:				-	[µsteps/t]
Image:			118		
bow_value = 2^(bow_index-1) bow_index = 1, 2, 3 18 ⇔ bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcux / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1					
bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcuk / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1					
Image:					
not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.0/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcLK / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1					
setting. Otherwise oscillations may result.setting. Otherwise oscillations may result.19ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcLK / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1					
Image result.may result.O/119ShaftReverses the motor direction when set to 1.0/120Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcLK / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when standing 1: use mixed decay when standing0/1					
to 1.to 1.20Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcLK / 2 ¹⁶]21Mixed decay run0: no mixed decay when running 1: use mixed decay when running0/122Mixed decay standby 1: use mixed decay when standing 1: use mixed decay when standing0/1				may result.	
20Standby delayTime after the motor has stopped until the current is changed to standby current.04095 [1/fcLK / 216]21Mixed decay run0: no mixed decay when running 1: use mixed decay when running0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1	19	Shaft		s the motor direction when set	0/1
the current is changed to standby current.[1/fcLK / 216]21Mixed decay run0: no mixed decay when running 1: use mixed decay when running0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing 1: use mixed decay when standing0/1	20	Standby dalay		or the motor has stopped uptil	0 4005
current. current. 21 Mixed decay run 0: no mixed decay when running 1: use mixed decay when running 0/1 22 Mixed decay standby 0: no mixed decay when standing 1: use mixed decay when standing 0/1	20	Standby delay			
21Mixed decay run0: no mixed decay when running 1: use mixed decay when running0/122Mixed decay standby0: no mixed decay when standing 1: use mixed decay when standing0/1				• •	[1/ICLK / Z]
22 Mixed decay standby 0: no mixed decay when standing 0/1 1: use mixed decay when standing 1: use mixed decay when standing 1	21	Mixed decay run			0/1
22 Mixed decay standby 0: no mixed decay when standing 0/1 1: use mixed decay when standing 1				,	
1: use mixed decay when standing	22	Mixed decay standby			0/1
23 Chopper clock divider Chopper clock frequency divider. Do 96818		. ,		, .	
	23	Chopper clock divider	Choppe	r clock frequency divider. Do	96818
not change!					
Chopper clock = 16MHz/value					
Default = 444					
27 Microstep resolution 0 2048 micro steps 011	27	Microstep resolution			011
1 1024 micro steps				·	
2 512 micro steps				·	
3 256 micro steps 4 128 micro steps				·	
4 128 micro steps 5 64 micro steps					
6 32 micro steps					
7 16 micro steps					
8 8 micro steps					
9 4 micro steps					
10 2 micro steps				-	
11 1 full step			10 1		

Number	Axis parameter	Description	Range [Unit]
28	PID tolerance	Tolerance for PID regulation	0 1048575
		If the absolute value of the error <i>pid_e</i>	[µsteps]
		is below <i>pid_tolerance</i> after an exact	
		hit, then the pid_error_in becomes 0	
		and <i>pid_i_sum</i> is set to zero, until the	
		tolerance zone is left again.	
29	Sine wave offset	The sine wave offset can be adapted	0255
		for optimum microstep performance	[1/1024 of sine
		on zero crossing of the coil currents. A	wave amplitude]
		too low offset leads to the motor	
		turning too slow during zero transition,	
		a too high offset leads to a larger step.	
		This parameter can be optimized for	
		the motor type. It mainly depends on	
		motor inductivity and coil resistance.	
30	PID p factor	P parameter (unsigned)	01677215
		update frequency f _{CLK} /128;	
		Result: <i>pid_e*pid_p</i> /256	
		(becomes clipped to +/-2^31)	
31	PID i factor	I parameter (unsigned)	01677215
		Result: (pid_isum/256)*pid_i/256	
		(becomes clipped to +/-2^31)	
32	PID d factor	D parameter (unsigned),	01677215
		<pre>pid_e is sampled with a frequency of</pre>	
		(f _{CLK} [Hz]/128/ <i>pid_d_clkdiv</i>).	
		Result: (<i>pid_e_</i> last- <i>pid_e_</i> now) *	
		pid_d	
		(The delta-error (<i>pid_e_</i> last–	
		<pre>pid_e_now) becomes clipped to +/-</pre>	
		127)	
33	PID i clipping	Clipping parameter for <i>pid_isum</i>	032640
		Clipping of (pid_isum*2^16*pid_iclip)	
35	PID d clock divider	Clock divider for D part calculation	0255
		D-part is calculated with a frequency	
		of:	
		f _{CLK} / (pid_d_clkdiv*128)	
		(attention: <i>pid_d_clkdiv</i> =0 results in	
		256)	
37	PID dv clipping	Clipping parameter for PID calculation	02147483647
		result <i>pid_v_actual</i>	[µsteps/t]
		pid_v_actual = v_actual +	
40	DID mad -	clip(PID_result, <i>pid_dv_clip</i>)	0/1
40	PID mode	0: do not use PID	0/1
12	Encodor constant	1: use PID	0 2147492647
42	Encoder constant	With every pulse this constant is	02147483647 [µsteps/2 ¹⁶]
		added to or subtracted from the	or decimal:
		encoder position register. This	Bits 31-16:
		constant is given in units of 1/65536	0 32767 [µsteps]
		when bit 13 in param. 43 is not set or	Bits 15-0:
		in 1/10000 when bit 13 in param. 43 is	0 9999
		set.	[1/1000 µsteps]

Number	Axis parameter	Description	Range [Unit]
43	Encoder mode	Bit 0: polarity of channel A when null	
		channel is active	
		Bit 1: polarity of channel B when null	
		channel is active	
		Bit 2: polarity of null channel	
		Bit 3: ignore polarity of A and B	
		channel when null channel is active	
		Bit 4: continuous clear while null	
		channel is active	
		Bit 5: clear once at next null channel	
		event.	
		Bit 6: null channel is positive edge	
		triggered	
		Bit 7: null channel is negative edge	
		triggered Bit 8: clear encoder position on null	
		event (otherwise it is latched only)	
		Bit 13: Encoder divisor selection	
		(0=encoder constant/65535,	
		1=encoder constant/10000).	
47	Encoder warn distance	Maximum deviation between motor	[µsteps]
		and encoder.	
48	Compare position	Tbd	-2147483648
			+2147483647
			[µsteps]
50	Right position limit	Position limit when moving in positive	-2147483648
		direction.	+2147483647
			[µsteps]
51	Left position limit	Position limit when moving in negative	-2147483648
		direction.	+2147483647
			[µsteps]
52	Right position limit enable	The motor cannot drive beyond the	0/1
		right position limit when set to 1.	- 4-
53	Left position limit enable	The motor cannot drive beyond the	0/1
62		left position limit when set to 1.	0.0101
63	Microstep table position	Position of the microstep table	08191
64	Stop pulse length	pointer.	0.255
64	Step pulse length	Length of the step pulses on the step/direction output.	0255 [1/16 MHz]
128	Ramp mode	Normally set automatically by the ROL,	03
120	Kamp mode	ROR, MVP and MST commands.	05
		0: positioning mode	
		1: reserved	
		2: velocity mode	
		3: hold mode	
193	Reference search mode	1 – Only the left reference switch is	1/2/3
		searched.	
		2 – The right switch is searched and	
		afterwards the left switch is	
		searched.	
		3 – Three-switch-mode: the right	
		switch is searched first and	
		afterwards the reference switch will	
		be searched.	
		Please see 9.2 for details on	
		reference search	

Number	Axis parameter	Description	Range [Unit]
194	Reference search speed	Specifies the reference search speed.	02147483647 [µsteps/t]
195	Reference switch speed	Specifies the speed for the exact reference switch calibration.	02147483647
212	Maximum encoder deviation	When the actual position (param. 1) and the encoder position (param. 41) differ more than the value set here, the motor will be stopped. Setting this parameter to 0 disables this function.	02147483647 [μsteps]
255	Unit conversion mode	Units to use for velocity and acceleration: 0: use TMC457 units 1: use PPS units	0/1

Please use the TMC457 calculations data file (<u>www.trinamic.com</u>) for getting best values.

Please refer to 7.1 for information about real world units vs. units of the TMC457.

Example:

Set the absolute maximum current of motor to 200mA *Mnemonic:* SAP 6, 0, 200

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$05	\$06	\$00	\$00	\$00	\$00	\$c8	\$d5

6.7.6 GAP (get axis parameter)

Most parameters of the TMCM-142 can be adjusted individually for the axis. With this parameter they can be read out. In stand-alone mode the requested value is also transferred to the accumulator register for further processing purposes (such as conditioned jumps). In direct mode the value read is only output in the *value* field of the reply (without affecting the accumulator).

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SAP, STAP, AAP, RSAP

Mnemonic: GAP <parameter number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
6	<parameter number=""></parameter>	0*	(don't care)

*motor number is always O as only one motor is involved

Reply in direct mode:

STATUS	VALUE	
100 – OK	(don't care)	

Axis parameters, which can be used for GAP:

Please note, that for the binary representation cparameter number> has to be filled with the number and the <value> has to be filled with a value from range.

Number	Axis parameter	Description	Range [Unit]
0	Target position		-2147483648
			+2147483647
			[µsteps]
1	Actual position		-2147483648
			+2147483647
			[µsteps]
2	Target speed		-2147483648
			+2147483647
			[µsteps/t]
3	Actual speed		-2147483648
			+2147483647
			[µsteps/t]
4	Max. positioning speed	Speed used for positioning (MVP	02147483647
		commands).	[µsteps/t]
5	Max. acceleration and	Sets acceleration and deceleration to	116777215
	deceleration	the same value.	[µsteps/t ²]
6	Max. current	Current when motor is running. 0	015
		means 0%, 15 means 100% of the	
		maximum possible current.	
7	Standby current	Current when motor is standing. 0	015
		means 0%, 15 means 100% of the	
		maximum possible current.	
8	Position reached	1 when the target position and the	0/1
		actual position are equal.	

Number	Axis parameter	Description	Range [Unit]
9	Switch status	Bit 0: left limit switch status (same as	
		par. 11)	
		Bit 1: right limit switch status (same as	
		par. 12)	
		Bit 2: latch left ready (cleared when	
		read)	
		Bit 3: latch right ready (cleared when	
		read)	
		Bit 4: stop left condition due to stop switch	
		Bit 5: stop right condition due to stop	
		switch	
10	Right limit switch status	Logic state of the right switch.	0/1
11	Left limit switch status	Logic state of the left switch.	0/1
12	Right limit switch disable	Deactivates the function of the right	0/1
		limit switch when set to 1.	
13	Left limit switch disable	Deactivates the function of the left	0/1
		limit switch when set to 1.	
14	Switch mode	Bit 2: left stop switch polarity	
		Bit 3: right stop switch polarity	
		Bit 4: swap left and right stop switch	
		Bit 5: enable soft stop	
		Bit 8: latch position on left stop switch going active	
		Bit 9: latch position on left stop switch	
		going inactive	
		Bit 10: latch position on right stop	
		switch going active	
		Bit 11: latch position on right stop	
		switch going inactive	
		Bit 12: latch encoder position on stop	
		switch event	
15	Stop deceleration	Deceleration when touching a stop	116777215
4.6		switch.	[µsteps/t ²]
16	Max. acceleration	Acceleration	116777215 [μsteps/t ²]
17	Max. deceleration	Deceleration	116777215
1/		Deceleration	[µsteps/t ²]
18	Bow	0 trapezoidal ramps,	018
		corresponds to an infinite	[µsteps/t ³]
		bow value	
		118 S-shaped ramps in	
		logarithmic representation.	
		bow_value = 2^(bow_index-1)	
		<i>bow_index</i> = 1, 2, 3 18 ⇔ bow_value = 1, 2, 4 262144	
		The resulting bow_value must	
		not exceed A_MAX or D_MAX	
		setting. Otherwise oscillations	
10		may result.	0/4
19	Shaft	Reverses the motor direction when set	0/1
20	Standby dolay	to 1.	04095
20	Standby delay	Time after the motor has stopped until the current is changed to standby	04095 [1/f _{CLK} / 2 ¹⁶]
		current.	
21	Mixed decay run	0: no mixed decay when running	0/1
		1: use mixed decay when running	
		, , ,	

Number	Axis parameter	Description	Range [Unit]
22	Mixed decay standby	0: no mixed decay when standing	0/1
		1: use mixed decay when standing	
23	Chopper clock divider	Chopper clock frequency divider. Do	96818
		not change!	
		Chopper clock = 16MHz/value	
		Default = 444	
25	Actual load value	The actual load value.	07
		7 = low load	
		0 = high load	
26	Driver status	Bit 0: driver error	
		Bit 1: over temperature pre-warning	
27	Microstep resolution	0 2048 micro steps	011
		1 1024 micro steps	
		2 512 micro steps	
		3 256 micro steps	
		4 128 micro steps	
		5 64 micro steps	
		6 32 micro steps	
		7 16 micro steps	
		8 8 micro steps	
		9 4 micro steps	
		10 2 micro steps	
		11 1 full step	
28	PID tolerance	Tolerance for PID regulation	0 1048575
		If the absolute value of the error <i>pid_e</i>	[µsteps]
		is below <i>pid_tolerance</i> after an exact	
		hit, then the pid_error_in becomes 0	
		and <i>pid_i_sum</i> is set to zero, until the	
		tolerance zone is left again.	
29	Sine wave offset	The sine wave offset can be adapted	0255
		for optimum microstep performance	[1/1024 of sine
		on zero crossing of the coil currents. A	wave amplitude]
		too low offset leads to the motor	
		turning too slow during zero transition,	
		a too high offset leads to a larger step.	
		This parameter can be optimized for	
		the motor type. It mainly depends on	
		motor inductivity and coil resistance.	
30	PID p factor	P parameter (unsigned)	01677215
		update frequency f _{CLK} /128;	
		Result: <i>pid_e*pid_p</i> /256	
		(becomes clipped to +/-2^31)	
31	PID i factor	I parameter (unsigned)	01677215
		Result: (<i>pid_isum</i> /256)* <i>pid_i</i> /256	
22		(becomes clipped to +/-2^31)	0.4677245
32	PID d factor	D parameter (unsigned),	01677215
		pid_e is sampled with a frequency of	
		(fclk[Hz]/128/pid_d_clkdiv).	
		Result: (<i>pid_e_</i> last- <i>pid_e_</i> now) *	
		pid_d	
		(The delta-error (<i>pid_e_</i> last- <i>pid_e_</i> now) becomes clipped to +/-	
		127)	
33	PID i clipping	Clipping parameter for <i>pid_isum</i>	032640
			1 0

Number	Axis parameter	Description	Range [Unit]
34	PID i sum	PID integrator sum (signed)	
		Updated with f _{CLK} [Hz]/128	
		Cleared to zero upon write access	
35	PID d clock divider	Clock divider for D part calculation	0255
		D-part is calculated with a frequency	
		of:	
		f _{ськ} / (<i>pid_d_clkdiv</i> *128)	
		(attention: <i>pid_d_clkdiv</i> =0 results in	
		256)	
37	PID dv clipping	Clipping parameter for PID calculation	02147483647
		result <i>pid_v_actual</i>	[µsteps/t]
		pid_v_actual = v_actual +	
		<pre>clip(PID_result, pid_dv_clip)</pre>	
38	PID error	Position deviation (for monitoring)	[µsteps]
		$pid_e = enc_x - x_actual$	
		(clipped to +/-2^23)	
39	PID Vactual	PID calculation result (with	[µsteps/t]
		PID_base=0)	
		resp. PID_result + v_actual	
		(PID_base=1)	
		(clipped to +/-2^31)	
40	PID mode	0: do not use PID	0/1
		1: use PID	
41	Encoder position	Actual position of the encoder.	-2147483648
			+2147483647
			[µsteps/t]
42	Encoder constant	With every pulse this constant is	02147483647
		added to or subtracted from the	[µsteps/2 ¹⁶]
		encoder position register. This	or decimal:
		constant is given in units of 1/65536	Bits 31-16:
		when bit 13 in param. 43 is not set or	0 32767 [µsteps]
		in 1/10000 when bit 13 in param. 43 is	Bits 15-0: 0 9999
		set.	0 9999 [1/1000 μsteps]
43	Encoder mode	Bit 0: polarity of channel A when null	
73		channel is active	
		Bit 1: polarity of channel B when null	
		channel is active	
		Bit 2: polarity of null channel	
		Bit 3: ignore polarity of A and B	
		channel when null channel is active	
		Bit 4: continuous clear while null	
		channel is active	
		Bit 5: clear once at next null channel	
		event.	
		Bit 6: null channel is positive edge	
		triggered	
		Bit 7: null channel is negative edge	
		triggered	
		Bit 8: clear encoder position on null	
		event (otherwise it is latched only)	
		Bit 13: Encoder divisor selection	
		(0=encoder constant/65535,	
		1=encoder constant/05555,	
44	Encoder status	1 when an encoder null channel event	0/1
44		has been detected.	0/1
		Cleared after reading.	
		Ciedieu ditel reduilig.	

Number	Axis parameter	Description	Range [Unit]
45	Encoder latch	Encoder position latched on N channel event.	[µsteps]
46	Position latch	Motor position latched on stop switch event.	
47	Encoder warn distance	Maximum deviation between motor and encoder.	[µsteps]
48	Compare position	Tbd	-2147483648 +2147483647
			[µsteps]
50	Right position limit	Position limit when moving in positive	-2147483648
		direction.	+2147483647
			[µsteps]
51	Left position limit	Position limit when moving in negative	-2147483648
		direction.	+2147483647
			[µsteps]
52	Right position limit enable	The motor cannot drive beyond the right position limit when set to 1.	0/1
53	Left position limit enable	The motor cannot drive beyond the	0/1
<u></u>		left position limit when set to 1.	0.0101
63	Microstep table position	Position of the microstep table pointer.	08191
64	Step pulse length	Length of the step pulses on the	0255
0-1		step/direction output.	[1/16 MHz]
128	Ramp mode	Normally set automatically by the ROL,	03
-		ROR, MVP and MST commands.	
		0: positioning mode	
		1: reserved	
		2: velocity mode	
		3: hold mode	
129	Status flags	Bit 0: target position reached (same as	
		parameter 8)	
		Bit 1: target velocity reached (same as	
		parameter 130)	
		Bit 2: motor not moving (v=0)	
120	Valacity waashad	Bit 3: encoder warn distance exceeded	0/1
130	Velocity reached	Reads 1 when the actual speed is	0/1
193	Reference search mode	equal to the target speed 1 – Only the left reference switch is	1/2/3
195	Nererence search moue	searched.	1/2/3
		2 – The right switch is searched and	
		afterwards the left switch is	
		searched.	
		3 – Three-switch-mode: the right	
		switch is searched first and	
		afterwards the reference switch will	
		be searched.	
		Please see 9.2 for details on	
		reference search	
194	Reference search speed	Specifies the reference search speed.	02147483647
195	Reference switch speed	Specifies the speed for the exact	[µsteps/t] 02147483647
190	nererence switch speed	reference switch calibration.	0214/40304/
196	End switch distance	Provides the distance between the two	02147483647
		end switches after executing a	[µsteps]
		reference search in mode 2 or 3.	

Number	Axis parameter	Description	Range [Unit]
207	Error flags	Bit 1: motor has been stopped due to	1/2/3
		encoder deviation error	
		These two flags are cleared after	
		reading.	
212	Maximum encoder	When the actual position (param. 1)	02147483647
	deviation	and the encoder position (param. 41)	[µsteps]
		differ more than the value set here,	
		the motor will be stopped.	
		Setting this parameter to 0 disables	
		this function.	
255	Unit conversion mode	Units to use for velocity and	0/1
		acceleration:	
		0: use TMC457 units	
		1: use PPS units	

Please refer to 7.1 for information about real world units vs. units of the TMC457.

Example:

Get the actual position of motor *Mnemonic:* GAP 0, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$06	\$01	\$00	\$00	\$00	\$00	\$00	\$0a

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	\$64	\$06	\$00	\$00	\$02	\$c7	\$36

⇒ status=no error, position=711

6.7.7 STAP (store axis parameter)

An axis parameter previously set with a *Set Axis Parameter* command (SAP) will be stored permanent. Most parameters are automatically restored after power up.

Internal function: An axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM after next power up.

Related commands: SAP, RSAP, GAP, AAP

Mnemonic: STAP <parameter number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
7	<parameter number=""></parameter>	0*1	(don't care)* ²	

*¹motor number is always O as only one motor is involved

*2 the value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved.

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Parameter ranges:

Parameter number	Motor number	Value
s. chapter 7	0	s. chapter 7

Axis parameters, which can be used for STAP:

Please note, that for the binary representation cpreameter number> has to be filled with the number and the <value> has to be filled with a value from range.

Number	Axis parameter	Description
0	Target position	
1	Actual position	
2	Target speed	
3	Actual speed	
4	Max. positioning speed	Speed used for positioning (MVP commands).
5	Max. acceleration and deceleration	Sets acceleration and deceleration to the same value.
6	Max. current	Current when motor is running. 0 means 0%, 15 means 100% of the maximum possible current.
7	Standby current	Current when motor is standing. 0 means 0%, 15 means 100% of the maximum possible current.
12	Right limit switch disable	Deactivates the function of the right limit switch when set to 1.
13	Left limit switch disable	Deactivates the function of the left limit switch when set to 1.

Number	Axis parameter	Descrip	otion
14	Switch mode		eft stop switch polarity
			ght stop switch polarity
			wap left and right stop switch
			nable soft stop
		Bit 8: la	atch position on left stop switch
		going a	ctive
		Bit 9: la	atch position on left stop switch
		going i	nactive
		Bit 10	latch position on right stop
		switch	going active
			latch position on right stop
			going inactive
			latch encoder position on stop
		switch	
15	Stop deceleration		ration when touching a stop
10		switch.	
16	Max. acceleration	Acceler	
17	Max. deceleration	Decele	
18	Bow	0	trapezoidal ramps, corresponds to an infinite
			bow value
		118	
		110	logarithmic representation.
			bow_value = 2^(bow_index-1)
			bow_index = 1, 2, 3 18 ⇔
			bow_value = 1, 2, 4 262144
			The resulting bow_value must
			not exceed A_MAX or D_MAX
			setting. Otherwise oscillations may result.
19	Shaft	Reverse	es the motor direction when set
10		to 1.	
20	Standby delay	Time a	fter the motor has stopped until
			irrent is changed to standby
			t (in units of 4.069ms).
21	Mixed decay run		nixed decay when running
			mixed decay when running
22	Mixed decay standby		nixed decay when standing
			mixed decay when standing
23	Chopper clock divider		er clock frequency divider. Do
		not cha	8
			er clock = 16MHz/value
27		Default	
27	Microstep resolution	0	2048 micro steps
		1	1024 micro steps
		2	512 micro steps
		3	256 micro steps
		4	128 micro steps
		5	64 micro steps
		6	32 micro steps
		7	16 micro steps
		8	8 micro steps
		9	4 micro steps
		10	2 micro steps
		11	1 full step

Number	Axis parameter	Description
28	PID tolerance	Tolerance for PID regulation If the absolute value of the error <i>pid_e</i> is below <i>pid_tolerance</i> after an exact hit, then the pid_error_in becomes 0 and <i>pid_i_sum</i> is set to zero, until the tolerance zone is left again.
29	Sine wave offset	The sine wave offset can be adapted for optimum microstep performance on zero crossing of the coil currents. A too low offset leads to the motor turning too slow during zero transition, a too high offset leads to a larger step. This parameter can be optimized for the motor type. It mainly depends on motor inductivity and coil resistance.
30	PID p factor	P parameter (unsigned) update frequency f _{CLK} /128; Result: <i>pid_e*pid_p</i> /256 (becomes clipped to +/-2^31)
31	PID i factor	I parameter (unsigned) Result: (<i>pid_isum</i> /256)* <i>pid_i</i> /256 (becomes clipped to +/-2^31)
32	PID d factor	D parameter (unsigned), pid_e is sampled with a frequency of (fclk[Hz]/128/pid_d_clkdiv). Result: (pid_e_last-pid_e_now) * pid_d (The delta-error (pid_e_last- pid_e_now) becomes clipped to +/- 127)
33	PID i clipping	Clipping parameter for <i>pid_isum</i> Clipping of (<i>pid_isum</i> *2^16* <i>pid_iclip</i>)
35	PID d clock divider	Clock divider for D part calculation D-part is calculated with a frequency of: f _{CLK} / (<i>pid_d_clkdiv</i> *128) (attention: <i>pid_d_clkdiv</i> =0 results in 256)
37	PID dv clipping	Clipping parameter for PID calculation result <i>pid_v_actual</i> <i>pid_v_actual</i> = <i>v_actual</i> + clip(PID_result, <i>pid_dv_clip</i>)
40	PID mode	0: do not use PID 1: use PID
42	Encoder constant	With every pulse this constant is added to or subtracted from the encoder position register. This constant is given in units of 1/65536 when bit 13 in param. 43 is not set or in 1/10000 when bit 13 in param. 43 is set.

Number	Axis parameter	Description
43	Encoder mode	Bit 0: polarity of channel A when null
		channel is active
		Bit 1: polarity of channel B when null
		channel is active
		Bit 2: polarity of null channel
		Bit 3: ignore polarity of A and B channel
		when null channel is active
		Bit 4: continuous clear while null
		channel is active
		Bit 5: clear once at next null channel
		event.
		Bit 6: null channel is positive edge
		triggered
		Bit 7: null channel is negative edge triggered
		Bit 8: clear encoder position on null
		event (otherwise it is latched only)
		Bit 13: Encoder divisor selection
		(0=encoder constant/65535,
		1=encoder constant/10000).
47	Encoder warn distance	Maximum deviation between motor
		and encoder.
48	Compare position	Tbd
50	Right position limit	Position limit when moving in positive
		direction.
51	Left position limit	Position limit when moving in negative
		direction.
52	Right position limit enable	The motor cannot drive beyond the
		right position limit when set to 1.
53	Left position limit enable	The motor cannot drive beyond the left
		position limit when set to 1.
63	Microstep table position	Position of the microstep table pointer.
64	Step pulse length	Length of the step pulses on the
420	De vere vere el e	step/direction output.
128	Ramp mode	Normally set automatically by the ROL, ROR, MVP and MST commands.
		0: positioning mode
		1: reserved
		2: velocity mode
		3: hold mode
193	Reference search mode	1 – Only the left reference switch is
		searched.
		2 – The right switch is searched and
		afterwards the left switch is
		searched.
		3 – Three-switch-mode: the right
		switch is searched first and
		afterwards the reference switch will
		be searched.
		Please see 9.2 for details on
		reference search
194	Reference search speed	Specifies the reference search speed.
195	Reference switch speed	Specifies the speed for the exact
		reference switch calibration.

Number	Axis parameter	Description
212	Maximum encoder deviation	When the actual position (param. 1) and the encoder position (param. 41) differ more than the value set here, the motor will be stopped. Setting this parameter to 0 disables this function.
255	Unit conversion mode	Units to use for velocity and acceleration: 0: use TMC457 units 1: use PPS units

Example:

Store the maximum speed of motor #0 *Mnemonic:* STAP 4, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$07	\$04	\$00	\$00	\$00	\$00	\$00	\$0d

Note: The STAP command will not have any effect when the configuration EEPROM is locked (refer to 8.1). In direct mode, the error code 5 (configuration EEPROM locked, see also section 6.2.1) will be returned in this case.

6.7.8 RSAP (restore axis parameter)

For all configuration-related axis parameters non-volatile memory locations are provided. By default, most parameters are automatically restored after power up. A single parameter that has been changed before can be reset by this instruction also.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
8	<parameter number=""></parameter>	0*	(don't care)		

*motor number is always O as only one motor is involved

Reply structure in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Axis parameters, which can be used for RSAP:

Please note, that for the binary representation parameter number> has to be filled with the number and the binary
representation <value> has to be filled with a value from range.

Number	Axis parameter	Description
0	Target position	
1	Actual position	
2	Target speed	
3	Actual speed	
4	Max. positioning speed	Speed used for positioning (MVP commands).
5	Max. acceleration and deceleration	Sets acceleration and deceleration to the same value.
6	Max. current	Current when motor is running. 0 means 0%, 15 means 100% of the maximum possible current.
7	Standby current	Current when motor is standing. 0 means 0%, 15 means 100% of the maximum possible current.
12	Right limit switch disable	Deactivates the function of the right limit switch when set to 1.
13	Left limit switch disable	Deactivates the function of the left limit switch when set to 1.

Number	Axis parameter	Descrip	otion			
14	Switch mode	Bit 2: left stop switch polarity				
		Bit 3: right stop switch polarity				
		Bit 4: swap left and right stop switch				
		Bit 5: enable soft stop				
		Bit 8: latch position on left stop switch				
		going active				
		Bit 9: latch position on left stop switch				
		going inactive				
		Bit 10: latch position on right stop				
		switch going active				
		Bit 11: latch position on right stop				
		switch going inactive Bit 12: latch encoder position on sto				
		switch				
15	Stop deceleration		ration when touching a stop			
10		switch.				
16	Max. acceleration	Acceler				
17	Max. deceleration	Decelei				
18	Bow	0	trapezoidal ramps,			
10	bow	0	corresponds to an infinite			
			bow value			
		118				
		110	logarithmic representation.			
			bow value = 2^(bow_index-1)			
			bow_index = 1, 2, 3 18 ⇔			
		bow_value = 1, 2, 4 262144				
		The resulting bow_value must				
			not exceed A_MAX or D_MAX			
			setting. Otherwise oscillations			
10			may result.			
19	Shaft	to 1.	es the motor direction when set			
20	Standby delay		fter the motor has stopped until			
			irrent is changed to standby			
		current (in units of 4.069ms).				
21	Mixed decay run	0: no mixed decay when running				
	,		nixed decay when running			
22	Mixed decay standby		nixed decay when standing			
			nixed decay when standing			
23	Chopper clock divider		er clock frequency divider. Do			
		not cha				
			er clock = 16MHz/value			
		Default	-			
27	Microstep resolution	0	2048 micro steps			
		1	1024 micro steps			
		2	512 micro steps			
		3	256 micro steps			
		4	128 micro steps			
		5	64 micro steps			
		6	32 micro steps			
		7	16 micro steps			
			-			
		8	8 micro steps			
		9	4 micro steps			
		40	-			
		10 11	2 micro steps 1 full step			

Number	Axis parameter	Description
28	PID tolerance	Tolerance for PID regulation If the absolute value of the error <i>pid_e</i> is below <i>pid_tolerance</i> after an exact hit, then the pid_error_in becomes 0 and <i>pid_i_sum</i> is set to zero, until the tolerance zone is left again.
29	Sine wave offset	The sine wave offset can be adapted for optimum microstep performance on zero crossing of the coil currents. A too low offset leads to the motor turning too slow during zero transition, a too high offset leads to a larger step. This parameter can be optimized for the motor type. It mainly depends on motor inductivity and coil resistance.
30	PID p factor	P parameter (unsigned) update frequency f _{CLK} /128; Result: <i>pid_e*pid_p</i> /256 (becomes clipped to +/-2^31)
31	PID i factor	I parameter (unsigned) Result: (<i>pid_isum</i> /256)* <i>pid_i</i> /256 (becomes clipped to +/-2^31)
32	PID d factor	D parameter (unsigned), pid_e is sampled with a frequency of (fcLk[Hz]/128/pid_d_clkdiv). Result: (pid_e_last-pid_e_now) * pid_d (The delta-error (pid_e_last- pid_e_now) becomes clipped to +/- 127)
33	PID i clipping	Clipping parameter for <i>pid_isum</i> Clipping of (<i>pid_isum</i> *2^16* <i>pid_iclip</i>)
35	PID d clock divider	Clock divider for D part calculation D-part is calculated with a frequency of: f _{CLK} / (<i>pid_d_clkdiv</i> *128) (attention: <i>pid_d_clkdiv</i> =0 results in 256)
37	PID dv clipping	Clipping parameter for PID calculation result <i>pid_v_actual</i> <i>pid_v_actual</i> = <i>v_actual</i> + clip(PID_result, <i>pid_dv_clip</i>)
40	PID mode	0: do not use PID 1: use PID
42	Encoder constant	With every pulse this constant is added to or subtracted from the encoder position register. This constant is given in units of 1/65536 when bit 13 in param. 43 is not set or in 1/10000 when bit 13 in param. 43 is set.

Number	Axis parameter	Description			
43	Encoder mode	Bit 0: polarity of channel A when null			
		channel is active			
		Bit 1: polarity of channel B when null			
		channel is active			
		Bit 2: polarity of null channel			
		Bit 3: ignore polarity of A and B channel			
		when null channel is active			
		Bit 4: continuous clear while null			
		channel is active Bit 5: clear once at next null channel			
		event.			
		Bit 6: null channel is positive edge			
		triggered			
		Bit 7: null channel is negative edge			
		triggered			
		Bit 8: clear encoder position on null			
		event (otherwise it is latched only)			
		Bit 13: Encoder divisor selection			
		(0=encoder constant/65535,			
		1=encoder constant/10000).			
47	Encoder warn distance	Maximum deviation between motor			
		and encoder.			
48	Compare position	Tbd			
50	Right position limit	Position limit when moving in positive			
F1	Loft position limit	direction.			
51	Left position limit	Position limit when moving in negative direction.			
52	Right position limit enable	The motor cannot drive beyond the			
52	ingre posición inne chabic	right position limit when set to 1.			
53	Left position limit enable	The motor cannot drive beyond the left			
		position limit when set to 1.			
63	Microstep table position	Position of the microstep table pointer.			
64	Step pulse length	Length of the step pulses on the			
		step/direction output.			
128	Ramp mode	Normally set automatically by the ROL,			
		ROR, MVP and MST commands.			
		0: positioning mode			
		1: reserved			
		2: velocity mode			
193	Reference search mode	3: hold mode 1 – Only the left reference switch is			
192	Reference search mode	searched.			
		2 – The right switch is searched and			
		afterwards the left switch is			
		searched.			
		3 – Three-switch-mode: the right			
		switch is searched first and			
		afterwards the reference switch will			
		be searched.			
		Please see 9.2 for details on			
		reference search			
194	Reference search speed	Specifies the reference search speed.			
195	Reference switch speed	Specifies the speed for the exact			
		reference switch calibration.			

Number	Axis parameter	Description					
212	Maximum encoder deviation	When the actual position (param. 1) and the encoder position (param. 41) differ more than the value set here, the motor will be stopped. Setting this parameter to 0 disables this function.					
255	Unit conversion mode	Units to use for velocity and acceleration: 0: use TMC457 units 1: use PPS units					

Example:

Restore the maximum current of motor #0 *Mnemonic:* RSAP 6, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target- address	Instruction Number	Туре	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0	Checksum
Value (hex)	\$01	\$08	\$06	\$00	\$00	\$00	\$00	\$00	\$10

6.7.9 SGP (set global parameter)

With this command most of the module specific parameters not directly related to motion control can be specified and the TMCL[™] user variables can be changed. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in *banks* to allow a larger total number for future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables.

All module settings will automatically be stored non-volatile (internal EEPROM of the processor). The TMCLTM user variables will not be stored in the EEPROM automatically, but this can be done by using STGP commands.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate (on board) device.

Related commands: GGP, STGP, RSGP, AGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
9	<parameter number></parameter 	<bank number=""></bank>	<value></value>

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Global parameters of bank 0, which can be used for SGP:

Number	Global parameter	Descri	iption		Range		
64	EEPROM magic	Settin	g this parameter to a dif	ferent value as \$E4 will cause re-	0255		
		initiali	zation of the axis and	global parameters (to factory			
		defau	lts) after the next power	up. This is useful in case of miss-			
		config	uration.				
65	RS232/RS485 baud rate	0	9600 baud	Default	011		
		1	14400 baud				
		2	19200 baud				
		3	28800 baud				
		4	38400 baud				
		5	57600 baud				
		6	76800 baud	Not supported by Windows!			
		7	115200 baud				
		8	230400 baud				
		9	250000 baud	Not supported by Windows!			
		10	500000 baud	Not supported by Windows!			
		11	1000000 baud	Not supported by Windows!			
66	serial address	The m	odule (target) address fo	or RS-232/RS-485.	0255		
67	ASCII mode	Config	gure the TMCL [™] ASCII in	terface:			
		Bit 0:	0 – start up in binary (no	rmal) mode			
		1 – start up in ASCII mode					
		Bits 4 and 5:					
		00 – Echo back each character					
		01 – E	cho back complete com	mand			
		10 – D	10 – Do not send echo, only send command reply				

Number	Global parameter	Descri	ption		Range		
69	CAN bit rate	1	10kBit/s		17		
		2	20kBit/s				
		3	50kBit/s				
		4	100kBit/s				
		5	125kBit/s				
		6	250kBit/s				
		7	500kBit/s				
		8	1000kBit/s	Default			
70	CAN reply ID	The CA	AN ID for replies from the	board (default: 2)	07ff		
71	CAN ID		odule (target) address fo		07ff		
73	configuration EEPROM		1234 to lock the EEPRON		0/1		
	lock flag	Read:	1=EEPROM locked, 0=EE	PROM unlocked.			
75	telegram pause time			ia RS232 or RS485 is sent. For	0255		
		RS232	set to 0.				
		For R	5485 it is often necessa	ary to set it to 15 (for RS485			
		adapters controlled by the RTS pin).					
		For CA	N interface this paramet	er has no effect!			
76	serial host address	Host a	Host address used in the reply telegrams sent back via RS232				
		or RS485.					
77	auto start mode	0: Do not start TMCL [™] application after power up (default).					
		1: Star	1: Start TMCL [™] application automatically after power up.				
80	shutdown pin	Select	the functionality of the S	HUTDOWN pin	02		
	functionality	0 – no function					
		1 – high active					
			v active				
81	TMCL [™] code protection	Protec	t a TMCL [™] progran	n against disassembling or	0,1,2,3		
		overw	riting.				
			protection				
		-	otection against disassem	-			
		-	otection against overwrit	-			
			otection against disassem	•			
				n against disassembling, the			
			am will be erased first!				
		-	ing this value from 1 or 3	3 to 0 or 2, the TMCL™			
		progra	am will be wiped off.				
83	CAN secondary address			Switched off when set to zero.	07ff		
84	coordinate storage			ne RAM only (but can be copied	0 or 1		
			tly between RAM and EE				
		1 – co	ordinates are always stor	ed in the EEPROM only			
132	tick timer		-	incremented by one every			
		millise	cond. It can also be reset	t to any start value.			

Global parameters of bank 1, which can be used for SGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands these variables form the interface between extensions of the firmware (written in C) and TMCL[™] applications. Please contact TRINAMIC if you are interested in this.

Global parameters of bank 2, which can be used for SGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #0	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2055	general purpose variables #20#55	for use in TMCL [™] applications	-2 ³¹ +2 ³¹

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Set the serial address of the target device to 3 *Mnemonic:* SGP 66, 0, 3

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$09	\$42	\$00	\$00	\$00	\$00	\$03	\$4f

6.7.10 GGP (get global parameter)

All global parameters can be read with this function. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in *banks* to allow a larger total number for future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables. Please refer to chapter 0 for a complete parameter list.

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SGP, STGP, RSGP, AGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
10	(see chapter 7)	<bank number=""></bank>	(don't care)	
		see chapter 7		

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Global parameters of bank 0, which can be used for GGP:

Number	Global parameter	Descr	iption		Range			
64	EEPROM magic	Settin	g this parameter to a diff	erent value as \$E4 will cause re-	0255			
		initiali	zation of the axis and	global parameters (to factory				
		defau	Its) after the next power	up. This is useful in case of miss-				
		config	configuration.					
65	RS232/RS485 baud rate	0	9600 baud	Default	011			
		1	14400 baud					
		2	19200 baud					
		3	28800 baud					
		4	38400 baud					
		5	57600 baud					
		6	76800 baud	Not supported by Windows!				
		7	115200 baud					
		8	230400 baud					
		9	250000 baud	Not supported by Windows!				
		10	500000 baud	Not supported by Windows!				
		11	1000000 baud	Not supported by Windows!				
66	serial address	The m	odule (target) address fo	or RS-232/RS-485.	0255			
67	ASCII mode	Config	gure the TMCL [™] ASCII int	terface:				
		Bit 0:	0 – start up in binary (noi	rmal) mode				
		1	- start up in ASCII mode					
		Bits 4 and 5:						
		00 – Echo back each character						
		01 – Echo back complete command						
		10 – Do not send echo, only send command reply						

Number	Global parameter	Description					
69	CAN bit rate	1	10kBit/s		17		
		2	20kBit/s				
		3	50kBit/s				
		4	100kBit/s				
		5	125kBit/s				
		6	250kBit/s				
		7	500kBit/s				
		8	1000kBit/s	Default			
70	CAN reply ID	The CA	N ID for replies from the	board (default: 2)	07ff		
71	CAN ID	The mo	odule (target) address fo	r CAN (default: 1)	07ff		
73	configuration EEPROM	Write:	1234 to lock the EEPRON	۸, 4321 to unlock it.	0/1		
	lock flag	Read: 1	1=EEPROM locked, 0=EE	PROM unlocked.			
75	telegram pause time	Pause	time before the reply v	ia RS232 or RS485 is sent. For	0255		
		RS232	set to 0.				
		For RS	485 it is often necessa	ary to set it to 15 (for RS485			
			ers controlled by the RTS				
			N interface this paramet				
76	serial host address	Host a	ddress used in the reply	telegrams sent back via RS232	0255		
		or RS4			0/1		
77	auto start mode		0: Do not start TMCL [™] application after power up (default).				
			1: Start TMCL [™] application automatically after power up.				
80	shutdown pin	Select the functionality of the SHUTDOWN pin					
	functionality		function				
		-	h active				
	Th4		/ active		0,1,2,3		
81	TMCL [™] code protection						
		overwi	•				
			protection				
		-	tection against disassem	-			
		-	tection against overwrit	-			
		-	tection against disassem	against disassembling, the			
			m will be erased first!	against aisussembing, the			
			ing this value from 1 or 3	3 to 0 or 2 the TMCI TM			
		-	m will be wiped off.				
83	CAN secondary address	1		Switched off when set to zero.	07ff		
84	coordinate storage			ne RAM only (but can be copied	0 or 1		
-			tly between RAM and EE		5 0. I		
			ordinates are always stor				
128	TMCL [™] application	0 –stop			03		
	status	1 – run					
		2 – ste					
		3 – res					
129	download mode		mal mode		0/1		
			wnload mode		-		
130	TMCL [™] program counter			uted TMCL [™] instruction.			
132	tick timer		•	incremented by one every			
			cond. It can also be reset				
133	random number		e a random number. Rea		021474		
				-	83647		

Global parameters of bank 1, which can be used for GGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands these variables form the interface between extensions of the firmware (written in C) and TMCLTM applications. Please contact TRINAMIC if you are interested in this.

Global parameters of bank 2, which can be used for GGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #0	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2055	general purpose variables #20#55	for use in TMCL [™] applications	-2 ³¹ +2 ³¹

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Get the serial address of the target device *Mnemonic:* GGP 66, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target- address	Instruction Number	Туре	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0	Checksum
Value (hex)	\$01	\$0a	\$42	\$00	\$00	\$00	\$00	\$00	\$4d

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	\$64	\$0a	\$00	\$00	\$00	\$01	\$72

⇒ Status=no error, Value=1

6.7.11 STGP (store global parameter)

This command is used to store TMCL[™] user variables permanently in the EEPROM of the module. Some global parameters are located in RAM memory, so without storing modifications are lost at power down. This instruction enables enduring storing. Most parameters are automatically restored after power up (see the list of global parameters in chapter 0).

Internal function: The specified parameter is copied from its RAM location to the configuration EEPROM.

Related commands: SGP, GGP, RSGP, AGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
11	(see chapter 8)	<bank number=""> (see chapter 8)</bank>	(don't care)

Reply in direct mode:

STATUS	VALUE		
100 – OK	(don't care)		

Global parameters of bank 0, which can be used for STGP:

The global parameter bank 0 is not required for the STGP command, because these parameters are automatically stored with the SGP command in EEPROM.

Global parameters of bank 1, which can be used for STGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands these variables form the interface between extensions of the firmware (written in C) and TMCL[™] applications. Please contact TRINAMIC if you are interested in this.

Global parameters of bank 2, which can be used for STGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description
0	general purpose variable #0	for use in TMCL [™] applications
1	general purpose variable #1	for use in TMCL [™] applications
2	general purpose variable #2	for use in TMCL [™] applications
3	general purpose variable #3	for use in TMCL [™] applications
4	general purpose variable #4	for use in TMCL [™] applications
5	general purpose variable #5	for use in TMCL [™] applications
6	general purpose variable #6	for use in TMCL [™] applications
7	general purpose variable #7	for use in TMCL [™] applications
8	general purpose variable #8	for use in TMCL [™] applications
9	general purpose variable #9	for use in TMCL [™] applications
10	general purpose variable #10	for use in TMCL [™] applications
11	general purpose variable #11	for use in TMCL [™] applications
12	general purpose variable #12	for use in TMCL [™] applications
13	general purpose variable #13	for use in TMCL [™] applications
14	general purpose variable #14	for use in TMCL [™] applications

Number	Global parameter	Description
15	general purpose variable #15	for use in TMCL [™] applications
16	general purpose variable #16	for use in TMCL [™] applications
17	general purpose variable #17	for use in TMCL [™] applications
18	general purpose variable #18	for use in TMCL [™] applications
19	general purpose variable #19	for use in TMCL [™] applications
2055	general purpose variables #20#55	for use in TMCL [™] applications

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Store the serial address of the target device *Mnemonic:* STGP 42, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$0b	\$42	\$00	\$00	\$00	\$00	\$00	\$4e

Note: The STAP command will not have any effect when the configuration EEPROM is locked (refer to 8.1). In direct mode, the error code 5 (configuration EEPROM locked, see also section 6.2.1) will be returned in this case. Please refer to chapter 7 for more information about bank 0 to 2.

6.7.12 RSGP (restore global parameter)

With this command the contents of a TMCLTM user variable can be restored from the EEPROM. For all configurationrelated axis parameters, non-volatile memory locations are provided. By default, most parameters are automatically restored after power up (see axis parameter list in chapter 0). A single parameter that has been changed before can be reset by this instruction.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
8	<parameter number=""></parameter>	0*	(don't care)

*motor number is always O if only one motor is involved

Reply structure in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Global parameters of bank 0, which can be used for RSGP:

The global parameter bank 0 is not required for the RSGP command, because these parameters are automatically stored with the SGP command in EEPROM.

Global parameters of bank 1, which can be used for RSGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands these variables form the interface between extensions of the firmware (written in C) and TMCL[™] applications. Please contact TRINAMIC if you are interested in this.

Global parameters of bank 2, which can be used for RSGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #0	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL [™] applications	-2 ³¹ +2 ³¹

Number	Global parameter	Description	Range
15	general purpose variable #15	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2055	general purpose variables #20#55	for use in TMCL [™] applications	-2 ³¹ +2 ³¹

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Restore the maximum current of motor #0 *Mnemonic:* RSAP 6, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$08	\$06	\$00	\$00	\$00	\$00	\$00	\$10

6.7.13 RFS (reference search)

The TMCM-142 has a built-in reference search algorithm which can be used. The reference search algorithm provides switching point calibration and three switch modes. The status of the reference search can also be queried to see if it has already finished. (In a TMCL program it is better to use the WAIT command to wait for the end of a reference search.) Please see the appropriate parameters in the axis parameter table to configure the reference search algorithm to meet your needs (chapter7). The reference search can be started, stopped, and the actual status of the reference search can be checked.

Internal function: The reference search is implemented as a state machine, so interaction is possible during execution.

Related commands: WAIT

Mnemonic: RFS <START|STOP|STATUS>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
13	0 START – start ref. search	0*	(don't care)
	1 STOP – abort ref. search		
	2 STATUS – get status		

*motor number is always O if only one motor is involved

Reply in direct mode:

When using type 0 (START) or 1 (STOP):

STATUS	VALUE		
100 – OK	(don't care)		

When using type 2 (STATUS):

STATUS	VALUE
100 – OK	0 – no ref. search active
	other values – ref. search
	is active

Example:

Start reference search of motor #0 *Mnemonic:* RFS START, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$0d	\$00	\$00	\$00	\$00	\$00	\$00	\$0f

6.7.14 SIO (set output)

This command sets the status of the general digital output either to low (0) or to high (1).

Internal function: The passed value is transferred to the specified output line.

Related commands: GIO, WAIT

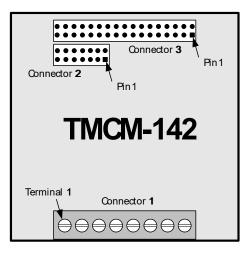
Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO. TYPE		MOT/BANK	VALUE		
14	<port number=""></port>	<bank number=""></bank>	<value></value>		

Reply structure:

STATUS	VALUE
100 – OK	(don't care)


Example:

Set OUT_7 to high (bank 2, output 7; general purpose output) *Mnemonic:* SIO 7, 2, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$0e	\$07	\$02	\$00	\$00	\$00	\$01	\$19

Available I/O ports of TMCM-142:

Pin (connector 3)	I/O port	Command	Range
17	OUT_0	SIO 0, 2, <n>, (n=0/1)</n>	1/0
9	OUT_1	SIO 1, 2, <n>, (n=0/1)</n>	1/0
22	OUT_2	SIO 2, 2, <n>, (n=0/1)</n>	1/0
-	OUT_7	SIO 7, 2, <n>, (n=0/1)</n>	1/0

Addressing all output lines with one SIO command:

- Set the type parameter to 255 and the bank parameter to 2.
- The value parameter must then be set to a value between 0...255, where every bit represents one output line.
- Furthermore, the value can also be set to -1. In this special case, the contents of the lower 8 bits of the accumulator are copied to the output pins.

Example:

Set all output pins high. *Mnemonic:* SIO 255, 2, 255

The following program will show the states of the input lines on the output lines:

Loop: GIO 255, 0 SIO 255, 2,-1 JA Loop

6.7.15 GIO (get input/output)

With this command the status of the two available general purpose inputs of the module can be read out. The function reads a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channels deliver their 10 bit result in the range of 0...1023. In stand-alone mode the requested value is copied to the *accumulator* (accu) for further processing purposes such as conditioned jumps. In direct mode the value is only output in the *value* field of the reply, without affecting the accumulator. The actual status of a digital output line can also be read.

Internal function: The specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE		MOT/BANK	VALUE		
15	<port number=""></port>	<bank number=""></bank>	(don't care)		

Reply in direct mode:

STATUS	VALUE
100 – OK	<status of="" th="" the<=""></status>
	port>

Example:

Get the analogue value of ADC channel 3 *Mnemonic:* GIO 3, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$0f	\$03	\$01	\$00	\$00	\$00	\$00	\$14

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	\$64	\$0f	\$00	\$00	\$01	\$fa	\$72

⇒ value: 506

Connector 2 Pin 1	Pin 1					
TMCM-142						
Terminal 1 Connector 1]					

64

6.7.15.1 I/O bank 0 – digital inputs

The ADIN lines can be read as digital or analogue inputs at the same time. The digital states can be accessed in bank 0.

Pin (connector 3)	I/O port	Command	Range
6	ADIN_0	GIO 0, 0	0/1
26	ADIN_1	GIO 1, 0	0/1
13	ADIN_2	GIO 2, 0	0/1
21	IN_3	GIO 3, 0	0/1
32	IN_4	GIO 4, 0	0/1
25	IN_5	GIO 5, 0	0/1
30	IN_6	GIO 6, 0	0/1
11	IN_7	GIO 7, 0	0/1
23	IN_8 (Home)	GIO 8, 0	0/1

Reading all digital inputs with one GIO command:

- Set the type parameter to 255 and the bank parameter to 0.
- In this case the status of all digital input lines will be read to the lower eight bits of the accumulator.

Use following program to represent the states of the input lines on the eight output lines:

```
Loop: GIO 255, 0
SIO 255, 2,-1
JA Loop
```

6.7.15.2 I/O bank 1 – analogue inputs

The ADIN lines can be read as digital or analogue inputs at the same time. The analogue values can be accessed in bank 1.

Pin (connector 3)	I/O port	Command	Range	
6	ADIN_0	GIO 0, 1	01023	
26	ADIN_1	GIO 1, 1	01023	
13	ADIN_2	GIO 2, 1	01023	

6.7.15.3 I/O bank 2 – status information

The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2.

Pin (connector 3)	I/O port	Command	Range
17	OUT_0	GIO 0, 2, <n></n>	1/0
9	OUT_1	GIO 1, 2, <n></n>	1/0
22	OUT_2	GIO 2, 2, <n></n>	1/0
-	OUT_7	GIO 7, 2, <n></n>	1/0

6.7.16 CALC (calculate)

A value in the accumulator variable, previously read by a function such as GAP (get axis parameter), can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be specified. The result is written back to the accumulator, for further processing like comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <op>, <value>

where <op> is ADD, SUB, MUL, DIV, MOD, AND, OR, XOR, NOT or LOAD

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
19	0 ADD – add to accu	(don't care)	<operand></operand>
	1 SUB – subtract from accu		
	2 MUL – multiply accu by		
	3 DIV – divide accu by		
	4 MOD – modulo divide by		
	5 AND – logical and accu with		
	6 OR – logical or accu with		
	7 XOR – logical exor accu with		
	8 NOT – logical invert accu		
	9 LOAD – load operand to accu		

Example:

Multiply accu by –5000 *Mnemonic:* CALC MUL, -5000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$13	\$02	\$00	\$FF	\$FF	\$EC	\$78	\$78

6.7.17 COMP (compare)

The specified number is compared to the value in the accumulator register. The result of the comparison can for example be used by the conditional jump (JC) instruction. This command is intended for use in stand-alone operation only.

Note that the host address and the reply is only used to transfer this instruction to the $TMCL^{TM}$ program memory during downloading of a $TMCL^{TM}$ program. It does not make sense to use this command in direct mode.

Internal function: The specified value is compared to the internal *accumulator*, which holds the value of a preceding get or calculate instruction (see GAP/GGP/GIO/CALC/CALCX). The internal arithmetic status flags are set according to the comparison result.

Related commands: JC (jump conditional), GAP, GGP, GIO, CALC, CALCX

Mnemonic: COMP <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
20	(don't care)	(don't care)	<comparison value=""></comparison>	

Example:

Jump to the address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 2, 0//get axis parameter, type: no. 1 (actual position), motor: 0, value:0 (don't care)COMP 1000//compare actual value to 1000

JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$14	\$00	\$00	\$00	\$00	\$03	\$e8	\$00

6.7.18 JC (jump conditional)

The JC instruction enables a conditional jump to a fixed address in the TMCLTM program memory, if the specified condition is met. The conditions refer to the result of a preceding comparison. Please refer to COMP instruction for examples. This function is for stand-alone operation only.

Note that the host address and the reply is only used to transfer this instruction to the TMCL[™] program memory. See the host-only control functions for details. It is not possible to use this command in direct mode.

Internal function: the TMCLTM program counter is set to the passed value if the arithmetic status flags are in the appropriate state(s).

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label> where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL|EDV|EPO

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
21	0 ZE - zero	(don't care)	<jump address=""></jump>
	1 NZ - not zero		
	2 EQ - equal		
	3 NE - not equal		
	4 GT - greater		
	5 GE - greater/equal		
	6 LT - lower		
	7 LE - lower/equal		
	8 ETO - time out error		
	9 EAL – external alarm		
	12 ESD – shutdown error		

Example:

Jump to address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 0, 0	<pre>//get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 (don't care)</pre>
COMP 1000	//compare actual value to 1000
JC GE, Label	//jump, type: 5 greater/equal
Label: ROL 0, 10	000

Binary format of "JC GE, Label" when Label is at address 10:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$15	\$05	\$00	\$00	\$00	\$00	\$0a	\$25

6.7.19 JA (jump always)

Jump to a fixed address in the TMCL[™] program memory. This command is intended for stand-alone operation only.

Note that the host address and the reply is only used to transfer this instruction to the TMCL[™] program memory. This command cannot be used in direct mode.

Internal function: the TMCL[™] program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
22	(don't care)	(don't care)	<jump address=""></jump>		

Example: An infinite loop in TMCL[™]

Loop: MVP ABS, 0, 10000 WAIT POS, 0, 0 MVP ABS, 0, 0 WAIT POS, 0, 0 JA Loop

//Jump to the label "Loop"

Binary format of "JA Loop" assuming that the label "Loop" is at address 20:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$16	\$00	\$00	\$00	\$00	\$00	\$14	\$2b

6.7.20 CSUB (call subroutine)

This function calls a subroutine in the TMCL[™] program memory. It is intended for stand-alone operation only.

Note that the host address and the reply is only used to transfer this instruction to the TMCL[™] program memory. This command cannot be used in direct mode.

Internal function: The actual TMCL[™] program counter value is saved to an internal stack, afterwards overwritten with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
23	(don't care)	(don't care)	<subroutine address=""></subroutine>		

Example: Call a subroutine

Loop: MVP ABS, 0, 10000 CSUB SubW //Save program counter and jump to label "SubW" MVP ABS, 0, 0 JA Loop

SubW: WAIT POS, 0, 0

WAIT TICKS, 0, 50 RSUB

//Continue with the command following the CSUB command

Binary format of the "CSUB SubW" command assuming that the label "SubW" is at address 100:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$17	\$00	\$00	\$00	\$00	\$00	\$64	\$7c

6.7.21 RSUB (return from subroutine)

Return from a subroutine to the command after the CSUB command. This command is intended for use in stand-alone mode only.

Note that the host address and the reply is only used to transfer this instruction to the TMCL[™] program memory. This command cannot be used in direct mode.

Internal function: The TMCL program counter is set to the last value of the stack. The command will be ignored if the stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
24	(don't care)	(don't care)	(don't care)		

Example: please see the CSUB example (section 6.7.20).

Binary format of RSUB:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$18	\$00	\$00	\$00	\$00	\$00	\$00	\$19

6.7.22 WAIT (wait for an event to occur)

This instruction interrupts the execution of the TMCL[™] program until the specified condition is met. This command is intended for stand-alone operation only.

Note that the host address and the reply is only used to transfer this instruction to the TMCL[™] program memory. This command is not to be used in direct mode.

There are five different wait conditions that can be used:

- TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.
- POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- REFSW: Wait until the reference switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- LIMSW: Wait until a limit switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- RFS: Wait until the reference search of the motor specified by the <motor> field has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check for such errors or clear the error using the CLE command.

Internal function: The TMCL[™] program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, 0, <ticks> where <condition> is TICKS|POS|REFSW|LIMSW|RFS

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
27	0 TICKS - timer ticks ^{*1}	(don't care)	<no. of="" ticks*=""></no.>
	1 POS - target position reached	0*2	<no. for="" of="" ticks*="" timeout="">,</no.>
			0 for no timeout
	2 REFSW – reference switch	0	<no. for="" of="" ticks*="" timeout="">,</no.>
			0 for no timeout
	3 LIMSW – limit switch	0	<no. for="" of="" ticks*="" timeout="">,</no.>
			0 for no timeout
	4 RFS – reference search completed	0	<no. for="" of="" ticks*="" timeout="">,</no.>
			0 for no timeout

*1 one tick is 10 milliseconds (in standard firmware)

*2 motor number is always O as only one motor is involved

Example:

wait for motor #0 to reach its target position, without timeout *Mnemonic:* WAIT POS, 0, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$1b	\$01	\$00	\$00	\$00	\$00	\$00	\$1e

6.7.23 STOP (stop TMCL[™] program execution)

This function stops executing a TMCL[™] program. The host address and the reply are only used to transfer the instruction to the TMCL[™] program memory.

This command should be placed at the end of every stand-alone TMCL[™] program. It is not to be used in direct mode.

Internal function: TMCL[™] instruction fetching is stopped.

Related commands: none Mnemonic: STOP

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
28	(don't care)	(don't care)	(don't care)

Example:

Mnemonic: STOP

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$1c	\$00	\$00	\$00	\$00	\$00	\$00	\$1d

6.7.24 SCO (set coordinate)

Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD command. This command sets a coordinate to a specified value. *Please note that the coordinate number 0 is only stored in RAM, all others are also stored in the EEPROM.*

Internal function: The passed value is stored in the internal position array.

Related commands: GCO, CCO, MVP

Mnemonic: SCO <coordinate number>, 0, <position>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
30	<coordinate number=""></coordinate>	0*	<pre><position> </position></pre>
	(020)		(-2 ²³ +2 ²³)

* motor number is always 0 as only one motor is involved

Reply in direct mode:

STATUS	VALUE		
100 – OK	(don't care)		

Example:

Set coordinate #1 of motor to 1000 *Mnemonic:* SCO 1, 0, 1000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$1e	\$01	\$00	\$00	\$00	\$03	\$e8	\$0d

6.7.25 GCO (get coordinate)

This command makes possible to read out a previously stored coordinate. In stand-alone mode the requested value is copied to the accumulator register for further processing purposes such as conditioned jumps. In direct mode, the value is only output in the value field of the reply, without affecting the accumulator. *Please note that the coordinate number 0 is stored in RAM only, all others are also stored in the EEPROM.*

Internal function: The desired value is read out of the internal coordinate array, copied to the accumulator register and -in direct mode- returned in the *value* field of the reply.

Related commands: SCO, CCO, MVP

Mnemonic: GCO <coordinate number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
31	<coordinate number=""></coordinate>	0*	(don't care)
	(020)		

* motor number is always 0 as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Get motor #0 value of coordinate 1 *Mnemonic:* GCO 1, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$1f	\$01	\$00	\$00	\$00	\$00	\$00	\$23

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	\$64	\$0a	\$00	\$00	\$00	\$00	\$86

⇒ Value: 0

6.7.26 CCO (capture coordinate)

The actual position of the axe is copied to the selected coordinate variable. *Note that the coordinate number 0 is stored in RAM only and all others are also stored in the EEPROM.*

Internal function: The selected (24 bit) position values are written to the 20 by 3 bytes wide coordinate array.

Related commands: SCO, GCO, MVP

Mnemonic: CCO <coordinate number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
32	<coordinate number=""> (020)</coordinate>	0*	(don't care)

* motor number is always 0 as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Store current position of the axe to coordinate 3 *Mnemonic:* CCO 3, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$20	\$03	\$00	\$00	\$00	\$00	\$00	\$2b

6.7.27 ACO (accu to coordinate)

With the ACO command the actual value of the accumulator is copied to a selected coordinate of the motor. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in RAM only).

Please note, that this command is valid from TMCL[™] version 4.18 and TMCL-IDE version 1.77 on.

Please note also that the coordinate number 0 is always stored in RAM only. For Information about storing coordinates refer to the SCO command.

Internal function: The actual value of the accumulator is stored in the internal position array.

Related commands: GCO, CCO, MVP COORD, SCO

Mnemonic: ACO <coordinate number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
39	<coordinate number=""> (020)</coordinate>	0*	(don't care)

* motor number is always 0 as only one motor is involved

Reply in direct mode:

STATUS	VALUE		
100 – OK	(don't care)		

Example:

Copy the actual value of the accumulator to coordinate 1 of motor #0 *Mnemonic:* ACO 1, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$27	\$01	\$00	\$00	\$00	\$00	\$00	\$29

6.7.28 CALCX (calculate using the X register)

This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>

with <operation>=ADD|SUB|MUL|DIV|MOD|AND|OR|XOR|NOT|LOAD|SWAP

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
33	0 ADD – add X register to accu	(don't care)	(don't care)
	1 SUB – subtract X register from accu		
	2 MUL – multiply accu by X register		
	3 DIV – divide accu by X-register		
	4 MOD – modulo divide accu by x-register		
	5 AND – logical and accu with X-register		
	6 OR – logical or accu with X-register		
	7 XOR – logical exor accu with X-register		
	8 NOT – logical invert X-register		
	9 LOAD – load accu to X-register		
	10 SWAP – swap accu with X-register		

Example:

Multiply accu by X-register *Mnemonic:* CALCX MUL

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$21	\$02	\$00	\$00	\$00	\$00	\$00	\$24

6.7.29 AAP (accumulator to axis parameter)

The content of the accumulator register is transferred to the specified axis parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. (See chapter XXX for a complete list of axis parameters.)

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, GCO, CALC, CALCX

Mnemonic: AAP <parameter number>, 0

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
34	<parameter< th=""><th>0*</th><th><don't care=""></don't></th></parameter<>	0*	<don't care=""></don't>
	number>		

* motor number is always 0 as only one motor is involved

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

List of basic parameters, which can be used for AAP:

Please note, that for the binary representation cpreameter number> has to be filled with the number and the <value> has to be filled with a value from range.

Number	Axis parameter	Description
0	Target position	
1	Actual position	
2	Target speed	
3	Actual speed	
4	Max. positioning speed	Speed used for positioning (MVP commands).
5	Max. acceleration and deceleration	Sets acceleration and deceleration to the same value.
6	Max. current	Current when motor is running. 0 means 0%, 15 means 100% of the maximum possible current.
7	Standby current	Current when motor is standing. 0 means 0%, 15 means 100% of the maximum possible current.
12	Right limit switch disable	Deactivates the function of the right limit switch when set to 1.
13	Left limit switch disable	Deactivates the function of the left limit switch when set to 1.
14	Switch mode	Bit 2: left stop switch polarity Bit 3: right stop switch polarity Bit 4: swap left and right stop switch Bit 5: enable soft stop Bit 8: latch position on left stop switch going active Bit 9: latch position on left stop switch going inactive Bit 10: latch position on right stop switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event

Number	Axis parameter	Description				
15	Stop deceleration	-	ation when touching a stop			
		switch.				
16	Max. acceleration	Accelera	ation			
17	Max. deceleration	Deceler	ation			
18	Bow	0	trapezoidal ramps,			
			corresponds to an infinite			
			bow value			
		118	S-shaped ramps in			
			logarithmic representation.			
			bow_value = 2^(<i>bow_index-1</i>) <i>bow_index</i> = 1, 2, 3 18 ⇔			
			bow_muex = 1, 2, 3 18 \			
			The resulting bow_value must			
			not exceed A_MAX or D_MAX			
			setting. Otherwise oscillations			
10	Ch - th	Dever	may result.			
19	Shaft	to 1.	es the motor direction when set			
20	Standby delay		ter the motor has stopped until			
			rrent is changed to standby			
			(in units of 4.069ms).			
21	Mixed decay run	0: no m	ixed decay when running			
		1: use mixed decay when running				
22	Mixed decay standby		ixed decay when standing			
		1: use mixed decay when standing				
23	Chopper clock divider	Chopper clock frequency divider. Do not change!				
		Chopper clock = 16MHz/value Default = 444				
27	Microstep resolution		2048 micro steps			
27	Where step resolution	-	1024 micro steps			
			512 micro steps			
			256 micro steps			
			128 micro steps			
			64 micro steps			
			32 micro steps			
			16 micro steps			
		8	8 micro steps			
		9	4 micro steps			
		10	2 micro steps			
		11	1 full step			
28	PID tolerance		ce for PID regulation			
			psolute value of the error <i>pid_e</i>			
			w pid_tolerance after an exact			
			n the pid_error_in becomes 0			
			<u>i</u> sum is set to zero, until the			
29	Sine wave offset		ce zone is left again.			
23	Sine wave Ulisel	The sine wave offset can be adapted for optimum microstep performance on				
		zero crossing of the coil currents. A too low offset leads to the motor turning				
			w during zero transition, a too			
			fset leads to a larger step. This			
		-	ter can be optimized for the			
		-	type. It mainly depends on			
		motor i	nductivity and coil resistance.			

Number	Axis parameter	Description
30	PID p factor	P parameter (unsigned)
		update frequency f _{CLK} /128;
		Result: <i>pid_e*pid_p</i> /256
		(becomes clipped to +/-2^31)
31	PID i factor	I parameter (unsigned)
-		Result: (pid_isum/256)*pid_i/256
		(becomes clipped to $+/-2^{31}$)
32	PID d factor	D parameter (unsigned),
		<i>pid e</i> is sampled with a frequency of
		$(f_{CLK}[Hz]/128/pid_d_clkdiv).$
		Result: (<i>pid_e_last-pid_e_now</i>) * <i>pid_d</i>
		(The delta-error (<i>pid_e_</i> last–
		<i>pid_e_</i> now) becomes clipped to +/-
		127)
33	PID i clipping	Clipping parameter for <i>pid</i> isum
55		Clipping of (<i>pid_isum</i> *2^16* <i>pid_iclip</i>)
35	PID d clock divider	Clock divider for D part calculation
55		D-part is calculated with a frequency of:
		f_{CLK} / (pid d clkdiv*128)
		(attention: <i>pid_d_clkdiv</i> =0 results in
		256)
37	PID dv clipping	Clipping parameter for PID calculation
57		result pid_v_actual
		pid_v_actual = v_actual +
40	ND mede	clip(PID_result, <i>pid_dv_clip</i>)
40	PID mode	0: do not use PID
42	For a day an estant	1: use PID
42	Encoder constant	With every pulse this constant is added
		to or subtracted from the encoder
		position register. This constant is given
		in units of 1/65536 when bit 13 in
		param. 43 is not set or in 1/10000 when
42	Francisco da se se a da	bit 13 in param. 43 is set.
43	Encoder mode	Bit 0: polarity of channel A when null
		channel is active
		Bit 1: polarity of channel B when null
		channel is active
		Bit 2: polarity of null channel
		Bit 3: ignore polarity of A and B channel when null channel is active
		Bit 4: continuous clear while null
		channel is active
		Bit 5: clear once at next null channel
		event.
		Bit 6: null channel is positive edge
		triggered
		Bit 7: null channel is negative edge
		triggered
		Bit 8: clear encoder position on null
		event (otherwise it is latched only)
		Bit 13: Encoder divisor selection
		(0=encoder constant/65535,
		1=encoder constant/10000).
47	Encoder warn distance	Maximum deviation between motor
		and encoder.
48	Compare position	Tbd

Number	Axis parameter	Description
50	Right position limit	Position limit when moving in positive direction.
51	Left position limit	Position limit when moving in negative direction.
52	Right position limit enable	The motor cannot drive beyond the right position limit when set to 1.
53	Left position limit enable	The motor cannot drive beyond the left position limit when set to 1.
63	Microstep table position	Position of the microstep table pointer.
64	Step pulse length	Length of the step pulses on the step/direction output.
128	Ramp mode	Normally set automatically by the ROL, ROR, MVP and MST commands. 0: positioning mode 1: reserved 2: velocity mode 3: hold mode
193	Reference search mode	 1 – Only the left reference switch is searched. 2 – The right switch is searched and afterwards the left switch is searched. 3 – Three-switch-mode: the right switch is searched first and afterwards the reference switch will be searched. Please see 9.2 for details on reference search
194	Reference search speed	Specifies the reference search speed.
195	Reference switch speed	Specifies the speed for the exact reference switch calibration.
212	Maximum encoder deviation	When the actual position (param. 1) and the encoder position (param. 41) differ more than the value set here, the motor will be stopped. Setting this parameter to 0 disables this function.
255	Unit conversion mode	Units to use for velocity and acceleration: 0: use TMC457 units 1: use PPS units

Example:

Positioning motor by a potentiometer connected to the analogue input #0:

Start: GIO 0,1 // get value of analogue input line 0 CALC MUL, 4 // multiply by 4 AAP 0,0 // transfer result to target position of motor 0 JA Start // jump back to start

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$22	\$00	\$00	\$00	\$00	\$00	\$00	\$23

6.7.30 AGP (accumulator to global parameter)

The content of the accumulator register is transferred to the specified global parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. *Note that the global parameters in bank 0 are EEPROM-only and thus should not be modified automatically by a stand-alone application.* (See chapter 0 for a complete list of global parameters).

Related commands: AAP, SGP, GGP, SAP, GAP, GIO

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
35	<parameter< th=""><th><bank number=""></bank></th><th>(don't care)</th></parameter<>	<bank number=""></bank>	(don't care)
	number>		

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Global parameters of bank 0, which can be used for AGP:

Number	Global parameter	Descri	Description I Setting this parameter to a different value as \$E4 will cause re- I					
64	EEPROM magic	Settin	Setting this parameter to a different value as \$E4 will cause re-					
		initialization of the axis and global parameters (to factory						
			defaults) after the next power up. This is useful in case of miss-					
			uration.		011			
65	RS232/RS485 baud rate	0	0 9600 baud Default					
		1	14400 baud					
		2	19200 baud					
		3	28800 baud					
		4	38400 baud					
		5	57600 baud					
		6	76800 baud	Not supported by Windows!				
		7	115200 baud					
		8	230400 baud					
		9	250000 baud	Not supported by Windows!				
		10	500000 baud	Not supported by Windows!				
		11	1000000 baud	Not supported by Windows!				
66	serial address	The module (target) address for RS-232/RS-485.						
	ASCII mode	Configure the TMCL [™] ASCII interface:						
		Bit 0: 0 – start up in binary (normal) mode						
		1 – start up in ASCII mode						
		Bits 4 and 5:						
		00 – Echo back each character						
		01 – Echo back complete command						
		10 – Do not send echo, only send command reply						
69	CAN bit rate	1	10kBit/s		17			
		2	20kBit/s					
		3	50kBit/s					
		4	100kBit/s					
		5	125kBit/s					
		6	250kBit/s					
		7	500kBit/s					
		8	1000kBit/s	Default				
70	CAN reply ID	The C/	AN ID for replies from th	e board (default: 2)	07ff			
71	CAN ID	The m	odule (target) address for	or CAN (default: 1)	07ff			

Number	Global parameter	Description	Range
73	configuration EEPROM	Write: 1234 to lock the EEPROM, 4321 to unlock it.	0/1
	lock flag	Read: 1=EEPROM locked, 0=EEPROM unlocked.	
75	telegram pause time	Pause time before the reply via RS232 or RS485 is sent. For	0255
		RS232 set to 0.	
		For RS485 it is often necessary to set it to 15 (for RS485	
		adapters controlled by the RTS pin).	
		For CAN interface this parameter has no effect!	
76	serial host address	Host address used in the reply telegrams sent back via RS232	0255
		or RS485.	
77	auto start mode	0: Do not start TMCL [™] application after power up (default).	0/1
		1: Start TMCL [™] application automatically after power up.	
80	shutdown pin	Select the functionality of the SHUTDOWN pin	02
	functionality	0 – no function	
		1 – high active	
		2 – low active	
81	TMCL [™] code protection	Protect a TMCL [™] program against disassembling or	0,1,2,3
		overwriting.	
		0 – no protection	
		1 – protection against disassembling	
		2 – protection against overwriting	
		3 – protection against disassembling and overwriting	
		If you switch off the protection against disassembling, the	
		program will be erased first!	
		Changing this value from 1 or 3 to 0 or 2, the TMCL TM	
		program will be wiped off.	
83	CAN secondary address	Second CAN ID for the module. Switched off when set to zero.	07ff
84	coordinate storage	0 – coordinates are stored in the RAM only (but can be copied	0 or 1
		explicitly between RAM and EEPROM)	
		1 – coordinates are always stored in the EEPROM only	
132	tick timer	A 32 bit counter that gets incremented by one every	
		millisecond. It can also be reset to any start value.	

Global parameters of bank 1, which can be used for AGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands these variables form the interface between extensions of the firmware (written in C) and TMCL[™] applications. Please contact TRINAMIC if you are interested in this.

Global parameters of bank 2, which can be used for AGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #0	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL [™] applications	-2 ³¹ +2 ³¹
2055	general purpose variables #20#55	for use in TMCL [™] applications	-2 ³¹ +2 ³¹

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Copy accumulator to $TMCL^{TM}$ user variable #3 *Mnemonic:* AGP 3, 2

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$23	\$03	\$02	\$00	\$00	\$00	\$00	\$29

6.7.31 CLE (clear error flags)

This command clears the internal error flags. *It is intended for use in stand-alone mode only and must not be used in direct mode.*

The following error flags can be cleared by this command (determined by the <flag> parameter):

- ALL: clear all error flags.
- ETO: clear the timeout flag.
- EAL: clear the external alarm flag
- EDV: clear the deviation flag
- EPO: clear the position error flag

Related commands: JC

Mnemonic: CLE <flags>

where <flags>=ALL|ETO|EDV|EPO

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
36	0 – (ALL) all flags	(don't care)	(don't care)
	1 – (ETO) timeout flag		
	2 – (EAL) alarm flag		
	3 – (EDV) deviation flag		
	4 – (EPO) position flag		
	5 – (ESD) shutdown flag		

Example:

Reset the timeout flag *Mnemonic:* CLE ETO

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$24	\$01	\$00	\$00	\$00	\$00	\$00	\$26

6.7.32 Customer specific TMCL[™] command extension (UF0...UF7/user function)

The user definable functions UF0 through UF7 are predefined, *empty* functions for user specific purposes. Contact TRINAMIC for customer specific programming of these functions.

Internal function: Call user specific functions implemented in C by TRINAMIC.

Related commands: none

Mnemonic: UF0 ... UF7

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
6471	(user defined)	(user defined)	(user defined)		

Reply in direct mode:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	(user	6471	(user	(user	(user	(user	<checksum< th=""></checksum<>
			defined)		defined)	defined)	defined)	defined)	>

6.7.33 Request target position reached event

This command is the only exception to the TMCLTM protocol, as it sends two replies: One immediately after the command has been executed (like all other commands also), and one additional reply that will be sent when the motor has reached its target position. *This instruction can only be used in direct mode (in stand-alone mode, it is covered by the WAIT command) and hence does not have a mnemonic.*

Internal function: Send an additional reply when the motor has reached its target position

Mnemonic: ---

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
138	(don't care)	(don't care)	0*1	

* Motor number

Reply in direct mode (right after execution of this command):

	10								
Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	100	138	\$00	\$00	\$00	Motor bit	<checksum< th=""></checksum<>
								mask* ²	>

Additional reply in direct mode (after motors have reached their target positions):

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$02	\$01	128	138	\$00	\$00	\$00	Motor bit	<checksum< th=""></checksum<>
								mask* ²	>

*1 Motor number is always O as only one motor is involved.

*2 Reasonable values for the motor bit mask (of modules with one axis like the TMCM-142) are 0 and 1.

6.7.34 BIN (return to binary mode)

This command can only be used in ASCII mode. It quits the ASCII mode and returns to binary mode.

Related Commands: none

Mnemonic: BIN

Binary representation: This command does not have a binary representation as it can only be used in ASCII mode.

6.7.35 TMCL[™] Control Functions

The following functions are for host control purposes only and are not allowed for stand-alone mode. In most cases, there is no need for the customer to use one of those functions (except command 139). They are mentioned here only for reasons of completeness. These commands have no mnemonics, as they cannot be used in TMCL[™] programs. The Functions are to be used only by the TMCL-IDE to communicate with the module, for example to download a TMCL[™] application into the module.

The only control commands that could be useful for a user host application are:

- *get firmware revision* (command 136, please note the special reply format of this command, described at the end of this section)
- 129 (run application)

All other functions can be achieved by using the appropriate functions of the TMCL-IDE.

Instruction	Description	Туре	Mot/Bank	Value
128 – stop application	a running TMCL [™] standalone application is stopped	(don't care)	(don't care)	(don't care)
129 – run application	TMCL [™] execution is started (or continued)	0 - run from current address 1 - run from specified address	(don't care)	(don't care) starting address
130 – step application only the next command of TMCL [™] application is executed		(don't care)	(don't care)	(don't care)
131 – reset application	the program counter is set to zero, and the standalone application is stopped (when running or stepped)	(don't care)	(don't care)	(don't care)
132 – start download mode	target command execution is stopped and all following commands are transferred to the TMCL TM memory	(don't care)	(don't care)	starting address of the application
133 – quit download mode	target command execution is resumed	(don't care)	(don't care)	(don't care)
134 – read TMCL [™] memory	the specified program memory location is read	(don't care)	(don't care)	<memory address=""></memory>
135 – get application status	one of these values is returned: 0 – stop 1 – run 2 – step 3 – reset	(don't care)	(don't care)	(don't care)
136 – get firmware version	return the module type and firmware revision either as a string or in binary format	-	(don't care)	(don't care)
137 – restore factory settings	reset all settings stored in the EEPROM to their factory defaults This command does not send back a reply.	(don't care)	(don't care)	must be 1234
139 – enter ASCII mode	Enter ASCII command line (see chapter 6.6)	(don't care)	(don't care)	(don't care)

Special reply format of command 136:

Type set to 0 - reply as a string:

Byte index	Contents
1	Host Address
29	Version string (8 characters, e.g. 140V2.50

- There is no checksum in this reply format!
- To get also the last byte when using the CAN bus interface, just send this command in an eight byte frame instead of a seven byte frame. Then, eight bytes will be sent back, so you will get all characters of the version string.

Type set to 1 - version number in binary format:

- Please use the normal reply format.
- The version number is output in the *value* field of the reply in the following way:

Byte index in value field	Contents			
1	Version number, low byte			
2	Version number, high byte			
3	Type number, low byte (currently not used)			
	(currently not used)			
4	Type number, high byte			
	(currently not used)			

7 Axis parameters

The following section describes all axis parameters that can be used with the SAP, GAP, AAP, STAP and RSAP commands.

Meaning of the letters in column Access:

- R = readable (GAP)
- W = writable (SAP)
- E = automatically restored from EEPROM after reset or power-on

Number	Axis parameter	Description	Range [Unit]	Access
0	Target position		-2147483648	RW
			+2147483647	
			[µsteps]	
1	Actual position		-2147483648	RW
			+2147483647	
			[µsteps]	
2	Target speed		-2147483648	RW
			+2147483647	
			[µsteps/t]	
3	Actual speed		-2147483648	RW
			+2147483647	
			[µsteps/t]	
4	Max. positioning speed	Speed used for positioning (MVP	02147483647	RWE
		commands).	[µsteps/t]	
5	Max. acceleration and	Sets acceleration and deceleration to	116777215	RWE
	deceleration	the same value.	[µsteps/t ²]	
6	Max. current	Current when motor is running. 0	015	RWE
		means 0%, 15 means 100% of the		
		maximum possible current.		
7	Standby current	Current when motor is standing. 0	015	RWE
		means 0%, 15 means 100% of the		
		maximum possible current.		
8	Position reached	1 when the target position and the	0/1	R
		actual position are equal.		
9	Switch status	Bit 0: left limit switch status (same as		R
		par. 11)		
		Bit 1: right limit switch status (same as		
		par. 12)		
		Bit 2: latch left ready (cleared when		
		read)		
		Bit 3: latch right ready (cleared when		
		read)		
		Bit 4: stop left condition due to stop		
		switch		
		Bit 5: stop right condition due to stop		
		switch		
10	Right limit switch status	Logic state of the right switch.	0/1	R
11	Left limit switch status	Logic state of the left switch.	0/1	R
12	Right limit switch disable	Deactivates the function of the right	0/1	RWE
		limit switch when set to 1.		
13	Left limit switch disable	Deactivates the function of the left	0/1	RWE
		limit switch when set to 1.		

Number	Axis parameter	Description	Range [Unit]	Access
14	Switch mode	DescriptionBit 2: left stop switch polarityBit 3: right stop switch polarityBit 4: swap left and right stop switchBit 5: enable soft stopBit 8: latch position on left stop switchgoing activeBit 9: latch position on left stop switchgoing inactiveBit 10: latch position on right stop		RWE
		switch going active Bit 11: latch position on right stop switch going inactive Bit 12: latch encoder position on stop switch event		
15	Stop deceleration	Deceleration when touching a stop switch.	116777215 [μsteps/t ²]	RWE
16	Max. acceleration	Acceleration	116777215 [μsteps/t ²]	RWE
17	Max. deceleration	Deceleration	116777215 [μsteps/t ²]	RWE
18	Bow	0 trapezoidal ramps, corresponds to an infinite bow value 118 S-shaped ramps in logarithmic representation. bow_value = 2^(bow_index-1) bow_index = 1, 2, 3 18 ⇔ bow_value = 1, 2, 4 262144 The resulting bow_value must not exceed A_MAX or D_MAX setting. Otherwise oscillations may result.	018 [μsteps/t ³]	RWE
19	Shaft	Reverses the motor direction when set to 1.	0/1	RWE
20	Standby delay	Time after the motor has stopped unti the current is changed to standby current.	04095 [1/f _{CLK} / 2 ¹⁶]	RWE
21	Mixed decay run	0: no mixed decay when running 1: use mixed decay when running	0/1	RWE
22	Mixed decay standby	0: no mixed decay when standing 1: use mixed decay when standing	0/1	RWE
23	Chopper clock divider	Chopper clock frequency divider. Do not change! Chopper clock = 16MHz/value Default = 444	96818	RWE
25	Actual load value	The actual load value. 7 = low load 0 = high load	07	R
26	Driver status	Bit 0: driver error Bit 1: over temperature pre-warning		R

Number Axis parameter		Description	Description		Access
27	Microstep resolution		nicro steps	Range [Unit] 011	RWE
			nicro steps		
			icro steps		
			icro steps		
			icro steps		
			cro steps		
			cro steps		
			cro steps		
			o steps		
			o steps		
			o steps		
		11 1 full s			
28	PID tolerance		PID regulation	0 1048575	RWE
			e value of the error <i>pid_e</i>	[µsteps]	
			olerance after an exact		
			oid_error_in becomes 0		
		·	is set to zero, until the		
		tolerance zone			
29 Sine wave offset	Sine wave offset		offset can be adapted	0255	RWE
			nicrostep performance	[1/1024 of s	
			ng of the coil currents. A	wave amplitud	e]
			leads to the motor		
		-	ow during zero transition,		
		-	set leads to a larger step.		
			er can be optimized for		
			e. It mainly depends on		
		motor inductiv	vity and coil resistance.		
30	PID p factor	P parameter (0	01677215	RWE
		update freque	-		
		Result: <i>pid_e</i> *			
		(becomes clip	ped to +/-2^31)		
31	PID i factor	l parameter (u	insigned)	01677215	RWE
		Result: (pid_is	um/256)*pid_i/256		
		(becomes clip	ped to +/-2^31)		
32	PID d factor	D parameter (unsigned),	01677215	RWE
		pid_e is sampl	ed with a frequency of		
		(f _{CLK} [Hz]/128/µ	pid_d_clkdiv).		
		Result: (pid_e	_last <i>_pid_e_</i> now) *		
		pid_d			
		(The delta-err	or (<i>pid_e_</i> last–		
		pid_e_now) be	ecomes clipped to +/-		
		127)			
33	PID i clipping	Clipping paran	neter for <i>pid_isum</i>	032640	RWE
			d_isum*2^16*pid_iclip)		
34	PID i sum	PID integrator			R
		Updated with			
			o upon write access		
35	PID d clock divider		or D part calculation	0255	RWE
			lated with a frequency	5200	
		of:	acca with a nequency		
		бі: f _{clк} / (pid_d_cl	(kdiv*128)		
			l_d_clkdiv=0 results in		
		Trailention: D/O	i u likuiv=u results in		

Number	Axis parameter	Description	Range [Unit]	Access
37	PID dv clipping	Clipping parameter for PID calculation result <i>pid_v_actual</i> <i>pid_v_actual</i> = <i>v_actual</i> +	02147483647 [μsteps/t]	RWE
		clip(PID_result, <i>pid_dv_clip</i>)		
38	PID error	Position deviation (for monitoring)	[µsteps]	R
		$pid_e = enc_x - x_actual$	[horeho]	
		(clipped to +/- 2^23)		
39	PID Vactual	PID calculation result (with	[µsteps/t]	R
		PID base=0)		
		resp. PID_result + v_actual		
		(PID_base=1)		
		(clipped to +/-2^31)		
40	PID mode	0: do not use PID	0/1	RWE
		1: use PID		
41	Encoder position	Actual position of the encoder.	-2147483648	R
			+2147483647	
			[µsteps/t]	
42	Encoder constant	With every pulse this constant is	02147483647	RWE
		added to or subtracted from the	[µsteps/2 ¹⁶]	
		encoder position register. This	or decimal: Bits 31-16:	
		constant is given in units of 1/65536	0 32767 [µsteps]	
		when bit 13 in param. 43 is not set or	Bits 15-0:	
		in 1/10000 when bit 13 in param. 43 is	0 9999	
		set.	[1/1000 µsteps]	
43	Encoder mode	Bit 0: polarity of channel A when null		RWE
		channel is active		
		Bit 1: polarity of channel B when null		
		channel is active		
		Bit 2: polarity of null channel		
		Bit 3: ignore polarity of A and B		
		channel when null channel is active		
		Bit 4: continuous clear while null channel is active		
		Bit 5: clear once at next null channel		
		event. Bit 6: null channel is positive edge		
		triggered		
		Bit 7: null channel is negative edge		
		triggered		
		Bit 8: clear encoder position on null		
		event (otherwise it is latched only)		
		Bit 13: Encoder divisor selection		
		(0=encoder constant/65535,		
		1=encoder constant/10000).		
44	Encoder status	1 when an encoder null channel event	0/1	R
		has been detected.		
		Cleared after reading.		
45	Encoder latch	Encoder position latched on N channel	[µsteps]	R
		event.		
46	Position latch	Motor position latched on stop switch		R
		event.		
47	Encoder warn distance	Maximum deviation between motor	[µsteps]	RWE
		and encoder.		
48	Compare position	Tbd	-2147483648	RWE
			+2147483647	
			[µsteps]	

Number	Axis parameter	Description	Range [Unit]	Access
50	Right position limit	Position limit when moving in positive	-2147483648	RWE
		direction.	+2147483647	
			[µsteps]	
51	Left position limit	Position limit when moving in negative	-2147483648	RWE
		direction.	+2147483647	
			[µsteps]	
52	Right position limit enable	The motor cannot drive beyond the	0/1	RWE
		right position limit when set to 1.	-/-	
53	Left position limit enable	The motor cannot drive beyond the	0/1	RWE
		left position limit when set to 1.	0, -	
63	Microstep table position	Position of the microstep table	08191	RW
00		pointer.	0	
64	Step pulse length	Length of the step pulses on the	0255	RWE
04	Step pulse length	step/direction output.	[1/16 MHz]	
128	Ramp mode	Normally set automatically by the ROL,	03	RW
120	Ramp mode	ROR, MVP and MST commands.	05	1. VV
		0: positioning mode		
		1: reserved		
		2: velocity mode		
		3: hold mode		
129	Status flags			R
129	Status hags	Bit 0: target position reached (same as		к
		parameter 8)		
		Bit 1: target velocity reached (same as		
		parameter 130)		
		Bit 2: motor not moving (v=0)		
400		Bit 3: encoder warn distance exceeded	0/4	
130	Velocity reached	Reads 1 when the actual speed is	0/1	R
		equal to the target speed		
193	Reference search mode	1 – Only the left reference switch is	1/2/3	RWE
		searched.		
		2 – The right switch is searched and		
		afterwards the left switch is		
		searched.		
		3 – Three-switch-mode: the right		
		switch is searched first and		
		afterwards the reference switch will		
		be searched.		
		Please see 9.2 for details on		
		reference search		
194	Reference search speed	Specifies the reference search speed.	02147483647	RWE
			[µsteps/t]	
195	Reference switch speed	Specifies the speed for the exact	02147483647	RWE
		reference switch calibration.		
196	End switch distance	Provides the distance between the two	02147483647	R
		end switches after executing a	[µsteps]	
		reference search in mode 2 or 3.		
207	Error flags	Bit 1: motor has been stopped due to	1/2/3	R
		encoder deviation error		
		These two flags are cleared after		
		reading.		
212	Maximum encoder	When the actual position (param. 1)	02147483647	RWE
	deviation	and the encoder position (param. 41)	[µsteps]	
		differ more than the value set here,	[h3(ch3]	
		the motor will be stopped.		
		Setting this parameter to 0 disables		
		this function.		

Number	Axis parameter	Description	Range [Unit]	Access
255	Unit conversion mode	Units to use for velocity and	0/1	RWE
		acceleration:		
		0: use TMC457 units		
		1: use PPS units		

Please use the TMC457 calculations data file (<u>www.trinamic.com</u>) for getting best values.

7.1 Real world units vs. units of the TMC457

Parameter vs. units		
Parameter / symbol	Unit	Calculation / description / comment
fclk[Hz]	[Hz]	clock frequency of the TMC457 in [Hz]
S	[s]	second
US	microstep	
FS	fullstep	
velocity v[Hz]	microsteps / s	v[Hz] = v[457] * (2 * f _{CLK} [Hz] / 2^31)
acceleration a[Hz/s]	microsteps / s^2	a[Hz/s] = a[457] * f _{CLK} [Hz]^2 / (16*256) / 2^30
micro step resolution USR	counts	micro step resolution in number of microsteps (i.e.
(used U instead of μ for micro)		the number of microsteps between two fullsteps)
v[FS] @ USR	US/s	v[FS/s] = v[US/2] / USR USR ⇔ microstep resolution
a[FS/^2] @ USR	US/s^2	$a[FS/s^2] = a[US/s] / USR$
		rs = 2 * (v[457])^2 / (a[457]) / 2^18
ramp_steps[457] = rs	[457]	micro steps during linear acceleration ramp
		(if v_max is really reached during acceleration)

Please refer to the TMC457 datasheet (<u>www.trinamic.com</u>) for more information about the units and examples.

8 Global parameters

The global parameters apply for all types of TMCM modules.

They are grouped into 3 banks:

- bank 0 (global configuration of the module)
- bank 1 (user C variables)
- bank 2 (user TMCL[™] variables)

Please use SGP and GGP commands to write and read global parameters (see sections XXX and XXY).

8.1 Bank 0

Parameters 64...132

Parameters with numbers from 64 on configure stuff like the serial address of the module RS232/RS485/USB baud rate or the CAN bit rate. Change these parameters to meet your needs. The best and easiest way to do this is to use the appropriate functions of the TMCL-IDE. The parameters with numbers between 64 and 128 are stored in EEPROM only. A SGP command on such a parameter will always store it permanently and no extra STGP command is needed.

Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way.

Meaning of the letters in column Access:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

Number	Global parameter	Descr	iption		Range	Access
64	EEPROM magic	Setting this parameter to a different value as \$E4 will cause re-			0255	RWE
		initial	ization of the axis ar	nd global parameters (to factory		
		defau	Its) after the next pow	er up. This is useful in case of miss-		
		config	guration.			
65	RS232/RS485 baud rate	0	9600 baud	Default	011	RWE
	1	14400 baud				
		2	19200 baud			
		3	28800 baud			
		4	38400 baud			
		5	57600 baud			
		6	76800 baud	Not supported by Windows!		
		7	115200 baud			
		8	230400 baud			
		9	250000 baud	Not supported by Windows!		
		10	500000 baud	Not supported by Windows!		
		11	1000000 baud	Not supported by Windows!		
66	serial address	The m	odule (target) address	for RS-232/RS-485.	0255	RWE
67	ASCII mode	Configure the TMCL [™] ASCII interface:			RWE	
		Bit 0:	0 – start up in binary (normal) mode		
		1	1 – start up in ASCII mode			
		Bits 4 and 5:				
		00 – E	cho back each charact	er		
		01 – E	cho back complete co	mmand		
		10 – C	o not send echo, only	send command reply		

Number	Global parameter	Descri	ption	Range	Access
69	CAN bit rate	1	10kBit/s	17	RWE
		2	20kBit/s		
		3	50kBit/s		
		4	100kBit/s		
		5	125kBit/s		
		6	250kBit/s		
		7	500kBit/s		
		8	1000kBit/s Default		
70	CAN reply ID	-	AN ID for replies from the board (default: 2)	07ff	RWE
71	CAN ID		odule (target) address for CAN (default: 1)	07ff	RWE
73	configuration EEPROM		1234 to lock the EEPROM, 4321 to unlock it.	0/1	RWE
/5	lock flag		1=EEPROM locked, 0=EEPROM unlocked.	0/1	
75	telegram pause time		time before the reply via RS232 or RS485 is sent. For	0255	RWE
/ 5	telegram pause time		set to 0.	0255	
			5485 it is often necessary to set it to 15 (for RS485		
			ers controlled by the RTS pin).		
			N interface this parameter has no effect!		
76	serial host address		ddress used in the reply telegrams sent back via RS232	0255	RWE
/0	serial flost address	or RS4	–	0235	NVVE
77	auto start modo		not start TMCL TM application after power up (default).	0/1	RWE
//	auto start mode			0/1	RVVE
00	1: Start TMCL™ application automatically after power up.			0.2	
80 shutdown pin functionality	shutdown pin		the functionality of the SHUTDOWN pin	02	RWE
	functionality		function		
		-	hactive		
04				0400	DIALE
81	TMCL [™] code protection		t a TMCL [™] program against disassembling or	0,1,2,3	RWE
		overw	•		
			protection		
		-	otection against disassembling		
		-	otection against overwriting		
			otection against disassembling and overwriting		
			switch off the protection against disassembling, the		
			am will be erased first!		
		-	ing this value from 1 or 3 to 0 or 2, the TMCL [™]		
0.2	CAN secondary address		am will be wiped off.	0.7ff	
83	CAN secondary address		d CAN ID for the module. Switched off when set to zero.	07ff	RWE
84	coordinate storage		ordinates are stored in the RAM only (but can be copied	0 or 1	RWE
		-	tly between RAM and EEPROM)		
120	TMCITMonniation		ordinates are always stored in the EEPROM only	0.2	D
128	TMCL [™] application	0 –sto		03	R
	status	1 – rur			
		2 – ste	•		
4.2.0		3 – res		0/4	-
129	download mode		rmal mode	0/1	R
			wnload mode		-
130	TMCL [™] program counter		dex of the currently executed TMCL [™] instruction.		R
132	tick timer		bit counter that gets incremented by one every		RW
			cond. It can also be reset to any start value.		
133	random number	Choos	e a random number. Read only!	021474	R
				83647	

8.2 Bank 1

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 7.3) these variables form the interface between extensions of the firmware (written in C) and $TMCL^{TM}$ applications.

8.3 Bank 2

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Up to 56 user variables are available.

Meaning of the letters in column Access:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

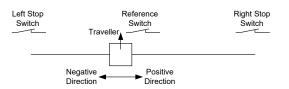
Number	Global parameter	Description	Range	Access
0	general purpose variable #0	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
1	general purpose variable #1	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
2	general purpose variable #2	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
4	general purpose variable #4	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
6	general purpose variable #6	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
7	general purpose variable #7	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
8	general purpose variable #8	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
9	general purpose variable #9	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
10	general purpose variable #10	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
11	general purpose variable #11	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
12	general purpose variable #12	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
13	general purpose variable #13	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
14	general purpose variable #14	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
15	general purpose variable #15	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
16	general purpose variable #16	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
17	general purpose variable #17	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
18	general purpose variable #18	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
19	general purpose variable #19	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
2055	general purpose variables #20#55	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE

9 Hints and tips

9.1 PID controller of the TMC457 - easyPID[™]

The PID (Proportional Integral Differential) controller calculates a velocity v based on a position difference error pid_e = $enc_x - x_actual$ where enc_x is the actual position - the real mechanical position - determined by the incremental encoder interface and x_actual is the actual position of the micro step sequencer - the position the TMC457 assumes to be the actual one. With this, the TMC457 moves with this (signed) velocity v until the actual position - measured by the incremental encoder - match. The velocity v to minimize the error e is calculated by

$$v = P \cdot e(t) + \int_{0}^{t} I \cdot e(t) \cdot dt + D \cdot \frac{d}{dt} e(t)$$


The motor moves with this velocity $v = pid_v_actual until the error e(t) vanishes resp. falls below a programmed limit – the hysteresis pid_tolerance. Primary, the PID regulator is parameterized by its basic parameter P, I, D represented by registers pid_p, pid_i, pid_d. Setting pid_d = 0 makes a PI regulator, additionally setting pid_i = 0 makes a P regulator. For micro controller interaction, the parameter pid_dv_cpu is added to the pid_v_actual. The readable register pid_dv_clip holds the actual value of clipping done by the PID controller of the TMC457.$

Due to constraints of practical real word application, the integer part of the PID regulator can be clipped to a limit named pid_iclip. Without this, the integral part of the PID regulator pid_isum increases with each time step by pid_i*pid_e as long as the motor does not follow. The actual error can be read out from register pid_e. The integration over time of the error e is done with a fixed clock frequency of fPID_INTEGRAL[Hz] = fCLK[Hz] / 128. The time scaling for the deviation with respect to time of the error is controlled by the register named pid_clk_div.

A stabilization of the target position by programmable hysteresis is integrated to avoid oscillations of regulation when the actual position is close to the real mechanical position. The PID controller of the TMC457 is fast – programmable up to approximate 100kHz update rate at fCLK = 16 MHz of the TMC457 – so that it can be used during motion to stabilized the motion. The parameterization of the PID controller of the TMC457 occurs in a direct way. Due to this, it is named easyPIDTM. Nevertheless, the parameterization of a PID controller might need a detailed knowledge of the application and the dynamic of the mechanics that is controlled by the PID controller. Additionally, a special control register allows software interaction for additional feedback control algorithms that can be implemented within the micro controller used to parameterize the TMC457.

9.2 Reference search

The built-in reference search features switching point calibration and support of one or two reference switches. The internal operation is based on three individual state machines (one per axis) that can be started, stopped and monitored (instruction RFS, no. 13). The settings of the automatic stop functions corresponding to the switches (axis parameters 12 and 13) have no influence on the reference search.

Definition of the switches

- Selecting the referencing mode (axis parameter 193): in modes 1 and 2, the motor will start by moving *left* (negative position counts). In mode 3 (three-switch mode), the right stop switch is searched first to distinguish the left stop switch from the reference switch by the order of activation when moving left (reference switch and left limit switch share the same electrical function).
- Until the reference switch is found for the first time, the searching speed is identical to the maximum positioning speed (axis parameter 4), unless reduced by axis parameter 194.
- After hitting the reference switch, the motor slowly moves right until the switch is released. Finally the switch is reentered in left direction, setting the reference point to the center of the two switching points. This low calibrating speed is a quarter of the maximum positioning speed by default (axis parameter 195).
- In figure 9.1 the connection of the left and the right limit switch is shown. Figure 9.2 shows the connection of three switches as left and right limit switch and a reference switch for the reference point. The reference switch is connected in series with the left limit switch. The differentiation between the left limit switch and the reference switch is made through software. Switches with open contacts (normally closed) are used.
- In circular systems there are no end points and thus only one reference switch is used for finding the reference point.

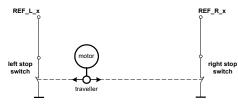


Figure 9.1: Two limit switches

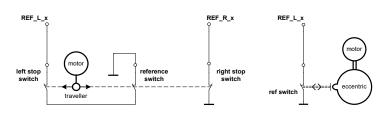


Figure 9.2: Limit switch with extra reference Figure 9.3: Circular switch system

9.3 Fixing microstep errors

Due to the *zero crossing problem* of the TMC249 stepper motor drivers, microstep errors may occur with some motors as the minimum motor current that can be reached is slightly higher than zero (depending on the inductivity, resistance and supply voltage of the motor).

There are two ways two solve this problem:

- 1) Using an offset on the microstep sine wave: Such an offset can be set using axis parameter 29. This will put an offset on the sine wave so that zero crossing problems will not occur any more. Please bear in mind that after changing parameter 29, parameter 27 must also be set once again.
- 2) Using mixed decay: This can be switched on by setting parameter21 to the value 1. Then, the motor will run with mixed decay turned on. The minimum reachable motor current then is always near zero which also leads to better microstepping results.

9.4 Using the RS485 interface

With most RS485 converters that can be attached to the COM port of a PC the data direction is controlled by the RTS pin of the COM port. Please note that this will only work with Windows 2000, Windows XP or Windows NT4, not with Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). Another problem is that Windows 2000/XP/NT4 switches the direction back to *receive* too late. To overcome this problem, set the *telegram pause time* (global parameter #75) of the module to 15 (or more if needed) by issuing an *SGP 75, 0, 15* command in direct mode. The parameter will automatically be stored in the configuration EEPROM.

For RS232 set the telegram pause time to zero for maximum data throughput.

10.1Firmware revision

Version	Date	Author	Description	
4.17	2009-FEB-28	ОК	First version supporting all TMCL [™] features	

10.2Document Revision

Version	Date	Author	Description
1.00	2009-FEB-28	SD	Initial version
1.01	2009-JUL-10	SD	Information about easyPID [™] added, minor changes
1.02	2009-JUL-15	ОК	Minor corrections
1.03	2009-JUL-17	ОК	MVP COORD command corrected
1.04	2009-JUL-31	SD	GIO and SIO commands corrected, minor changes
1.05	2009-NOV-17	SD	Minor corrections

11 References

[TMCL[™]]TMCL[™] reference and programming manual (see http://www.trinamic.com)[TMCM-142-IF]TMCM-142-IF hardware manual (see http://www.trinamic.com)[TMCM-IF)TMCM-IF hardware manual (see http://www.trinamic.com)