Data Semantics, Sketches and Q-Trees

Category Theory Octoberfest

28 October 2017

Ralph L. Wojtowicz

Shepherd University Shepherdstown, WV rwojtowi@shepherd.edu

Baker Mountain Research Corporation Yellow Spring, WV ralphw@bakermountain.org

Introduction ●○○	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000
Backgro	und an	d Perspective			

Project Experience

- Consultant: Senior Hadoop Analyst for PNC Financial Services. 2015
- Consultant: Statistical analysis and model development for Flexible Plan Investments, Bloomfield Hills, MI. 2014–2016
- Established Shepherd Laboratory for Big Data Analytics
- Co-Investigator with S. Bringsjord (RPI) and J. Hummel (UIUC): Great Computational Intelligence. AFOSR. 2011–14
- PI with N. Yanofsky (CUNY): *Quantum Kan Extensions*. IARPA. 2011–12
- Analyst. Passive Sonar Algorithm Development. ONR. 2010
- Technical Lead. *Exposing/Influencing Hidden Networks*. ONR. 2009–10
- PI: Robust Decision Making. AFOSR. 2008–2010
- Analyst: TradeNet Integration into Global Trader. ONI. 2009
- PI with S. Awodey (CMU): Categorical Logic as a Foundation for Reasoning Under Uncertainty. Phase I–II SBIR. MDA. 2005–8

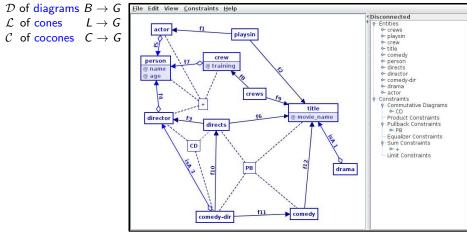
Aspects of Knowledge Technologies

- Mathematical Logic (1879)
 - $\bullet\,$ Availability of automated theorem provers (Prover9, Vampire, $\dots)$
 - High computational complexity of some predicate calculus fragments
 - Complexity of the syntactic category used for knowledge alignment
 - Challenging to develop a human interface
- Databases + SQL (1968)
 - Excellent software infrastructure
 - Limited notion of context/view (a single table), static schema, \ldots
- Semantic Web OWL/RDF + Description Logic (1999)
 - Excellent software infrastructure (Apache Jena, Protégé, ...)
 - Lack of modularity: meta-data, instance data and uncertainty integrated into a monolithic ontology
 - Limited compositional algebra: (disjoint) unions of ontologies
 - Need for constraint-preserving maps
- Sketch Theory (1968/2000) + Q-Trees (1990)
 - Few software tools (however, see www.mta.ca/ \sim rrosebru/project/Easik)
 - Mature mathematical framework including sketch and model maps
 - Visual/graphical modeling
 - Deduction system?

		rical Timeline			
Introduction	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000

- 1943: Eilenberg and Mac Lane introduce category theory
- 1958: Kan introduces the concept of adjoints
- 1963: Lawvere characterizes quantifiers and other logical operations as adjoints
- 1968: C. Ehresman introduces sketch theory
- 1985: KL-ONE First implementation of a description logic system
- 1985: Barr and Wells publish Toposes, Triples and Theories
- 1989: J. W. Gray publishes Category of Sketches as a Model for Algebraic Semantics
- 1990: Barr and Wells publish Categories for Computing Science
- 1995: Carmody and Walters publish algorithm for computing left Kan extensions
- 1999: RDF becomes a W3C recommendation
- 2000: Johnson and Rosebrugh apply sketch data model to database interoperability
- 2000: DARPA begins development of DAML
- 2001: Dampney, Johnson and Rosebrugh apply sketches to view update problem
- 2001: W3C forms the Web-Ontology Working Group
- 2004: RDFS and OWL become W3C recommendations
- 2008: Johnson and Rosebrugh release Easik software
- 2009: OWL2 becomes a W3C recommendation
- 2012: Johnson, Rosebrugh and Wood use sketches to formulate lens concept of view updates

- All semantic constraints in a sketch are expressed using graph maps.
- A sketch (G, D, L, C) consists of:
- An underlying graph G and sets



www.bakermountain.org/talks/cmu2017.pdf

Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Categorical Semantics of Sketches

- Vertices are interpreted as objects
- Edges are interpreted as morphisms
- Classes of constraints (cones and cocones) are distinguished by the shapes of their base graphs.
- Classes of sketches are distinguished by their classes of constraints.
- Like logics and OWL species, these have different expressive powers.

Sketch Class			Stoch. Matrices			Dempster Shafer	Fuzzy Sets	
linear	٠	•	•	•	•	٠	•	•
Finite Limit	•	•	×	×	×	×	•	•
Finite Coproduct	•	•	•	٠	٠	٠	•	•
Entity-Attribute	•	•	×	×	×	×	•	•
Mixed	٠	•	×	×	×	×	•	٠

Small sample of the sketch semantics landscape

www.bakermountain.org/talks/cmu2017.pdf

Introduction 000	Sketches ○○●	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000
Questio	ns				

- EA sketch instance data (models) can be implemented using relational database features such as foreign keys and triggers.
- What features are required to store instance data for more expressive classes of sketches?
- What technologies support management of large, distributed models of sketches?
- How would relevant algorithms need to be reformulated in a distributed setting?

Introduction 000	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000
Presenta	ations				

- A sketch | first-order theory | ontology is a presentation of knowledge.
- Presentations generate additional knowledge needed for alignment (e.g., 'uncle = brother o parent')

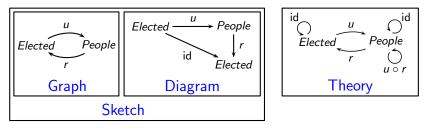
Framework	Alignment Tool
Ontology	rules
Sketch S	theory of a sketch $\mathcal{T}(\mathbb{S})$
Logical theory T	syntactic category $\mathcal{C}_{\mathbb{T}}$

- Different presentations may generate 'equivalent' structures.
- Theory of a (linear) sketch
 - Carmody-Walters algorithm for computing left Kan extensions: generalizes Todd-Coxeter procedure used in computational group theory
 - Complexity difficult to characterize: can depend on order of constraints

Introduction	Sketches	Sketches and Alignment	Theories and Alignment	Reasoning	Translations
000	000	○●○○○		000000	000
Civics S	ketch S	21			

First formulation of a civics concept:

- Two classes: People and Elected officials
- People have Elected representatives via r.
- Elected officials are instances of people via *u*.
- Elected officials represent themselves via a diagram.

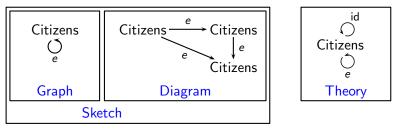


• The diagram truncates the infinite list of composites (property chains). $u \circ r$ $r \circ u$ $u \circ r \circ u$ $r \circ u \circ r$...

Introduction 000	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000
Civics S	ketch 🖇	$\mathbf{\tilde{z}}_2$			

Alternative formulation of the civics concept:

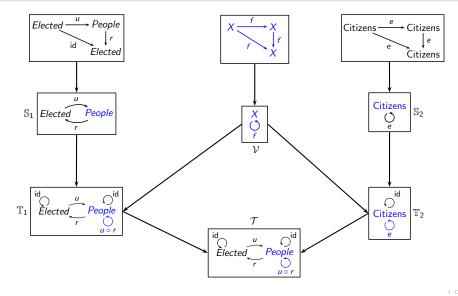
- One class: Citizens
- Citizens have elected representatives via e.
- Elected officials represent themselves via a diagram.



- Number and names of vertices in \mathbb{S}_1 and \mathbb{S}_2 differ.
- The edges u and r of S₁ have no corresponding edges in S₂.
- The edge *e* of S₂ has no corresponding edge in S₁.

Introduction Sketches **Sketches and Alignment** Theories and Alignment Reasoning Translations

Alignment of the Civics Sketches



 Introduction
 Sketches
 Sketches and Alignment
 Theories and Alignment
 Reasoning
 Translations

 Sketch Alignment:
 Questions
 Questions

- What algorithms are available for computing the theory of a sketch?
 - Carmody-Walters for linear sketches
 - Others?
 - Lazy algorithms?
- To what extent can the sketch alignment problem be automated?
 - Find appropriate intersection(s)/views
 - Rename of vertices and edges
- Can instance data be used to support sketch alignment?

• \mathbb{T}_1

- Sorts: People, Elected
- Function symbols:
 - $u: \mathsf{Elected} \longrightarrow \mathsf{People} \qquad r: \mathsf{People} \longrightarrow \mathsf{Elected}$
- Axiom: elected officials represent themselves

$$\top \vdash_x (r(u(x)) = x)$$

• \mathbb{T}_2

- Sorts: Citizens
- Function symbols:

 $e: \mathsf{Citizens} \longrightarrow \mathsf{Citizens}$

• Axiom: elected officials represent themselves $\top \vdash_x (e(e(x)) = e(x))$

- Provable equivalence: applicable to theories over the same signature
- Theories \mathbb{T}_1 and \mathbb{T}_2 are Morita equivalent if their categories of models $Mod_{\mathbb{T}}(\mathcal{D})$ (in any category \mathcal{D} of the appropriate class) are equivalent.

$$\mathsf{Mod}_{\mathbb{T}_1}(\mathcal{D})\,\cong\,\mathsf{Mod}_{\mathbb{T}_2}(\mathcal{D})$$

• Theories are Morita equivalent iff their syntactic categories are.

$$\mathcal{C}_{\mathbb{T}_1}\cong \mathcal{C}_{\mathbb{T}_2}$$

- This solves the alignment problem for the civics theories.
- It can be difficult to use in practice.
 - Types are interpreted as equivalence classes of formulae
 - Functions and relations are interpreted as provable equivalence classes
 - Syntactic categories are typically infinite, even for simple theories
 - No general algorithm
 - Could one develop a lazy algorithm?

			-				
000	000		00	0000	000000	000000	000
Introduction	Sketc	ches	Sk	etches and Alignment	Theories and Alignment	Reasoning	Translations

First-Order Logic: Sequent Calculus

	C:		Implication				
	Structural Rules ¹		Implication				
$(\varphi \vdash_{\vec{x}} \varphi)$	$\frac{(\varphi \vdash_{\vec{x}} \psi)}{\left(\varphi[\vec{s}/\vec{x}] \vdash_{\vec{y}} \psi[\vec{s}/\vec{x}]\right)}$	$\frac{(\varphi \vdash_{\vec{x}} \psi) (\psi \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} \chi)}$	$\frac{((\varphi \land \psi) \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} (\psi \Rightarrow \chi))}$				
	Equality	Quanti	fication ²				
$(\top \vdash_x (x =$	$ x)) \\ ((\vec{x} = \vec{y}) \land \varphi \vdash_{\vec{z}} \varphi[\vec{y}/\vec{x}]) $	$\frac{\left(\varphi \vdash_{\vec{x},y} \psi\right)}{\left((\exists y)\varphi \vdash_{\vec{x}} \psi\right)}$	$\frac{\left(\varphi \vdash_{\vec{x}, y} \psi\right)}{\left(\varphi \vdash_{\vec{x}} (\forall y)\psi\right)}$				
	Con	junction	$(\alpha \vdash a \psi) ((\alpha \vdash a \chi))$				
$(\varphi \vdash_{\vec{x}} \top)$	$((\varphi \wedge \psi) \vdash_{\vec{x}} \varphi) ($	$(\varphi \wedge \psi) \vdash_{\vec{x}} \psi)$	$\frac{\varphi \vdash_{\vec{x}} \psi) (\varphi \vdash_{\vec{x}} \chi)}{(\varphi \vdash_{\vec{x}} (\psi \land \chi))}$				
	Disj	unction (a	$\varphi \vdash_{\vec{x}} \chi$) $(\psi \vdash_{\vec{x}} \chi)$				
$(\perp \vdash_{\vec{x}} \varphi)$	$(\varphi \vdash_{\vec{x}} (\varphi \lor \psi)) \qquad ($	$\psi \vdash_{\vec{x}} (\varphi \lor \psi)) \stackrel{\underline{\land}}{=}$	$\frac{((\varphi \lor \psi) \vdash_{\vec{x}} \chi)}{((\varphi \lor \psi) \vdash_{\vec{x}} \chi)}$				
		utive Law ³ $_{\overrightarrow{\epsilon}}(\varphi \wedge \psi) \lor (\varphi \wedge \chi))$					
	$\begin{array}{c} \textbf{Frobenius Axiom}^3\\ ((\varphi \land ((\exists y)\psi) \ \vdash_{\vec{x}} (\exists y) (\varphi \land \psi)) \end{array}$						
	Excluded Middle $(\top \vdash_{x} (\varphi \lor \neg \varphi))$						

ī. Contexts are suitable for the formulae that occur on both sides of ١X contains all the variables of In the substitution rule, \vec{y} -

2

Bound variables do not also occur free in any sequent. e

The Distributive Law and Frobenius Axiom are derivable in full,

first-order logic.

	000 Catam	00000	000000	000000	000
Syntactio	: Categ	ories			

• Let $\mathbb T$ be a regular theory. There is a regular category $\mathcal C_{\mathbb T}$ that has a model of $\mathbb T.$

objects:	$lpha$ -equivalence classes of formulae-in-context: $\{ec{x}.arphi\}$ where $arphi$ is regular over $\mathbb T$				
morphisms :	\mathbb{T} -provable equivalence classes $[\theta]$ with $\{\vec{x}.\varphi\} \xrightarrow{[\theta]} \{\vec{y}.\psi\}$				
	$\theta \vdash_{\vec{x}, \vec{y}} \varphi \land \psi \qquad \varphi \vdash_{\vec{x}} (\exists \vec{y}) \theta \qquad \theta \land \theta[\vec{z}/\vec{y}] \vdash_{\vec{x}, \vec{y}, \vec{z}} (\vec{z} = \vec{y})$				
composition:	$\{\vec{x}.\varphi\} \xrightarrow{[\theta]} \{\vec{y}.\psi\}$				
	$[(\exists \vec{y})(\theta \land \gamma)] \qquad \qquad$				
identity:	$\{\vec{x}.\varphi\} \xrightarrow{[\varphi \land (\vec{x}'=\vec{x})]} \{\vec{x'}.\varphi[\vec{x'}/\vec{x}]\}$				

 Introduction
 Sketches
 Sketches and Alignment
 Theories and Alignment
 Reasoning
 Translations

 Syntactic Categories (Continued)
 Social Stategories
 Continued
 Social Stategories
 Social

• $\mathcal{C}_{\mathbb{T}}$ contains a model of \mathbb{T} .

sorts	A	$\{x.\top\}$ for $x:A$
types	1	{[].⊤}
_	$A_1 \times \cdots \times A_n$	$\{\vec{x}.\top\}$ for $x_i:A_i$
function symbols	$f: A_1 \times \cdots \times A_n \to B$	$\{\vec{x}.\top\} \xrightarrow{[f(x_1,\ldots,x_n)=y]} \{y.\top\}$
		for $x_i : A_i$ and $y : B$
relation symbols	$R \rightarrowtail A_1 \times \cdots \times A_n$	$\{\vec{x}.R(\vec{x})\} \longrightarrow \{\vec{x}.\top\}$

Introduction	Sketches	Sketches and Alignment	Theories and Alignment	Reasoning	Translations
000	000		○○○○○●○	000000	000
Soundne	ess				

• Soundness Theorem: Let \mathbb{T} be a Horn theory and let M be a model of \mathbb{T} in a cartesian category. If $\varphi \vdash_{\vec{X}} \psi$ is provable from \mathbb{T} in Horn logic, then the sequent is satisfied in M.

Proof: Induction on inference rules using the categorical properties used to define semantics of terms- and formulae-in-context.

• We can replace Horn and cartesian with other combinations:

Logic	Category
Regular	Regular
Coherent	Coherent
First-order	Heyting
Classical first-order	Boolean coherent
Linear	*-autonomous
Intuitionistic higher-order	Topos
S4 modal (predicate)	sheaves on a topological space

Introduction 000	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations 000
Complet	teness				

- Completeness Theorem: Let T be a regular theory. If φ ⊢_{x̄} ψ is a regular sequent that is satisfied in all models of T in regular categories D, then it is provable from T in regular logic.
 - **Proof**: Construct the syntactic category $\mathcal{C}_{\mathbb{T}}$ with a generic model $M_{\mathbb{T}}$

category of models of ${\mathbb T}$ in ${\mathcal D}$	\simeq	category of regular functors $\mathcal{C}_{\mathbb{T}} \to \mathcal{D}$
$Mod_{\mathbb{T}}(\mathcal{D})$	\simeq	$Reg(\mathcal{C}_{\mathbb{T}},\mathcal{D})$

• We can replace regular theories and categories with:

Logic	Category	
Cartesian	Cartesian	
Coherent	Coherent	
First-order	Heyting	

• The Completeness Theorem also holds if we replace $\mathcal D$ by Set.

 $\begin{array}{c|c} \text{Introduction} & \text{Sketches} & \text{Sketches and Alignment} & \text{Theories and Alignment} & \text{Reasoning} & \text{Translations} \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \end{array}$ $\begin{array}{c} \text{Proof of } (u(x) = u(y)) \vdash_{x,y} (x = y) \text{ for Civics Theory } \mathbb{T}_1 \end{array}$

$(u(y) - u(y)) \vdash (u(y) - u(y))$	اما
$(u(x) = u(y)) \vdash_{x,y} (u(x) = u(y)) \dots $	T
$(u(x) = u(y)) \vdash_{x,y} \top \dots$	
$ T \vdash_{x} (r(u(x)) = x) \dots $	
($(x = y) \land (r(x) = z) \vdash_{x,y,z} (r(y) = z)$	
$ (u(x) = u(y)) \land (r(u(x)) = x) ⊢_{x,y,z} (r(u(y)) = x) \ldots \ldots \ldots $	Subs (6)
(a $(u(x) = u(y)) \land (r(u(x)) = x) \vdash_{x,y} (r(u(y)) = x) \ldots \ldots$	
($x = y$) ⊢ _{x,y} ($y = x$)	
$(r(u(y)) = x) \vdash_{x,y} (x = r(u(y))) \dots \dots$	
$(u(x) = u(y)) \land (r(u(x)) = x) \vdash_{x,y} (x = r(u(y))) \dots \dots \dots$	
$(2) (x = y) \land (y = z) \vdash_{x,y,z} (x = z) \dots $	previous proof
$(3) (x = r(u(y))) \land (r(u(y)) = y) \vdash_{x,y,z} (x = y) \dots $	
$(x = r(u(y))) \land (r(u(y)) = y) \vdash_{x,y} (x = y) \dots $	
$(u(x) = u(y)) \vdash_{x,y} (r(u(x)) = x) \dots$	
$(u(x) = u(y)) \vdash_{x,y} (u(x) = u(y)) \land (r(u(x)) = x) \ldots \ldots$	
$ (u(x) = u(y)) \vdash_{x,y} (u(x) = u(y)) \land ((u(x)) = x) \land \dots \land $	
$(u(x) = u(y)) \vdash_{x,y} (r(u(y)) = y) \dots$	
$(u(x) = u(y)) \vdash_{x,y} (x = r(u(y))) \land (r(u(y)) = y) \ldots \ldots$. , . ,
$\textcircled{0} (u(x) = u(y)) \vdash_{x,y} (x = y) \dots$	Cut (19), (14)

www.bakermountain.org/talks/cmu2017.pdf

000	000	Sketches and Alignment	Theories and Alignment	Reasoning 0●0000	Translations 000
Prover9	Proof				

 Input file: formulas(assumptions). all x (r(u(x)) = x). end_of_list. formulas(goals). all x all y (u(x) = u(y)) -> (x end_of_list. 	x = y).
<pre>2 (all x all y u(x) = u(y)) -> x 3 r(u(x)) = x</pre>	<pre># label(non_clause). [assumption]. = y# label(non_clause)</pre>

- The shorter proof by contradiction uses classical first-order logic.
- First-order horn logic has lower computational complexity.

Sketch Ir	ference	Strategies			
Introduction	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning ○○●○○○	Translations 000

How do we show that a property P, that is not an explicit constraint, holds in a sketch?

- Add a constraint for *P* then show that the resulting sketch is Morita equivalent to the original one.
 - This could change the sketch class (e.g., from linear to finite limit)
- Show that *P* holds in every model then apply a completeness theorem.
- Translate the sketch into a Morita equivalent theory, then use a sequent calculus.
- Show that P holds in the theory $\mathcal{T}(\mathbb{S})$ of the sketch
 - Express P as a constraint D then determine if T(S) satisfies the constraint D → T(S)
 - Express *P* as satisfaction of a *Q*-tree. *P* may be expressible using different *Q*-trees.

- P. Freyd and A. Scedrov. Categories, Allegories. 1990
- A *Q*-sequence Q = (A, a, Q) in a category \mathcal{D} consists of lists of
 - objects A_0, \ldots, A_n
 - morphisms $a_i : A_i \to A_{i+1}$ for $0 \le i < n$
 - quantifiers Q_0, \ldots, Q_n

•
$$\sigma \mathcal{Q}$$
 is: $A_1 \stackrel{Q_1}{\mid} \cdots \stackrel{Q_{n-1}}{\mid} A_n \stackrel{Q_n}{\mid}$

A morphism A₀ → B satisfies Q if one of the following holds:
 n = 0 and Q₀ = ∀

• n > 0, $Q_0 = \forall$, and for every commutative triangle $A_0 \xrightarrow{a_0} A_1$, the morphism $A_1 \xrightarrow{f_1} B$ satisfies σQ

morphism $A_1 \xrightarrow{f_1} B$ satisfies σQ $n > 0, Q_0 = \exists$, and there exists a commutative triangle $A_0 \xrightarrow{a_0} A_1$

for which
$$A_1 \stackrel{{\scriptscriptstyle f_1}}{\longrightarrow} B$$
 satisfies $\sigma \, \mathcal{Q}$

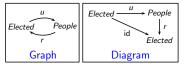
• Q-trees generalize Q-sequences by allowing branching.

www.bakermountain.org/talks/cmu2017.pdf

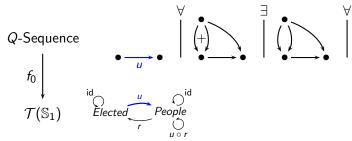
ralphw@bakermountain.org

Sketch Ir	oference				
Introduction 000	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning ○○○○●○	Translations 000

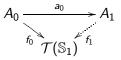
In civics sketch \mathbb{S}_1 , we may conclude that Elected is a subclass of People.



• In Cat, the indicated f_0 satisfies the given Q-sequence.



- There are two commutative triangles
- In both cases, f_1 satisfies σQ .



Sket					
Introduct 000	tion Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning ○○○○○●	Translations 000

- Categories, Allegories 1.398. Equivalence functors between categories preserve and reflect satisfaction of those Q-trees all of whose functors separate objects.
 - Morita equivalent sketches (those having equivalent theories) satisfy the same *Q*-trees.
- Categories, Allegories 1.3(10). For any elementary property on diagrams preserved and reflected by equivalence functors, there is a finitely presented Q-tree all of whose functors separate objects.
 - A completeness theorem for sketches?
- What algorithms have been developed for verifying satisfaction of Q-trees?
- Different *Q*-trees can express the same constraint. Is there a notion of map/equivalence between *Q*-trees?

Introduction 000	Sketches 000	Sketches and Alignment	Theories and Alignment	Reasoning 000000	Translations ●00		
Transforming Sketches into First-Order Theories							

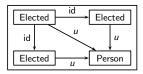
- Sketches are related to first-order logical theories by theorems of the form: Given any sketch S of class X, there is a logical theory T of class Y for which S and T have equivalent classes of models.
- D2.2 of Johnstone's *Sketches of an Elephant: A Topos Theory Compendium* gives explicit constructions of \mathbb{T} from \mathbb{S} and conversely.

Class of Sketches	Fragment of Predicate Calculus	Logical Connectives
JRELCHES	T Teulcate Calculus	Logical Connectives
finite limit	cartesian	=, ⊤, ∧, ∃*
regular	regular	=, ⊤, ∧, ∃
coherent	coherent	$=$, $ op$, \wedge , \exists , \perp , \vee
geometric	geometric	=, \top , \land , \exists , \bot , \bigvee
		∞
$\sigma ext{-coherent}$	$\sigma ext{-coherent}$	=, \top , \land , \exists , \bot , \bigvee
finitary	$\sigma ext{-coherent}$	i=1

* In cartesian logic, only certain existentially quantified formulae are allowed.

Example: Transforming the Civics Sketches to Theories

- General construction (D2.2 of Sketches of an Elephant by P.T. Johnstone)
 - Vertices become sorts
 - Edges become function symbols
 - No relation symbols
 - Diagrams become axioms
 - Cones and cocones induce axiom schema
- \mathbb{S}_1 induces \mathbb{T}_1 and \mathbb{S}_2 induces \mathbb{T}_2
- Add a finite limit constraint to \mathbb{S}_1



All induced sequents are derivable in \mathbb{T}_1

$$\top \vdash_{x} (u(x) = u(x)) \\ ((x = y) \land (u(x) = u(y)) \land (x = y)) \vdash_{x,y} (x = y) \\ ((u(x) = y) \land (u(x') = y)) \vdash_{x,x',y} \exists x_{0} ((x_{0} = x) \land (u(x_{0}) = y) \land (x_{0} = x'))$$

ralphw@bakermountain.org

Sketch Translations: Questions							
Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning 000 000 00000 000000 000000	; Translations ○○●						

- The proof in 2.2.1 of Johnstone's *Sketches of an Elephant* of the existence of a Morita equivalent sketch for a logical theory (both of suitable classes) is not a direct construction.
- Is there an explicit (finite) construction?
- What classes of sketches correspond to OWL dialects?
- How could such mappings be used to solve the ontology alignment problem?
 - transform ontologies to sketches + instance data
 - align the sketches
 - transform back to ontologies (if necessary)