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1 Introduction

The extrinsic properties of materials are related to their microstructure. In turn, for a given material, the expected microstructure is
related to the material’s constitution which, under conditions of achieved equilibrium, is defined as the expected number of phases
to be present, their proportion, and their composition. The information that allows us to predict the constitution from a graphical
plot of the phases that may be present in any given system is known as a phase diagram. Attempts to determine phase diagrams are
being made both experimentally and theoretically.

Typically, in a solid, microstructure consists of grains of the phases present. These grains may consist of only one phase
(a single-phase microstructure), or they may be grains of many different phases (a poly-phase microstructure).

An assessment of some of the expected properties resulting from a given microstructure may proceed by considering first
the constitution, then combine this with the knowledge of the specific properties of the phases involved (i.e., crystal structures,
physical properties, degree of order, etc.) and, finally and very importantly, incorporating the knowledge of the distribution
of the phases in the microstructure, (i.e., the shapes and sizes of the grains, how they touch and fit together, how they interact, etc.).

In a microstructure consisting of numerous ‘grains’ of the same phase, the grains abut against one another and the surface
between them is called a grain boundary, or an interface. If the interface is between grains of different phases it is referred to as an
interphase interface. Understanding the nature of interfaces and their role in determining properties constitutes a wide area of
materials science research.

The independent state variables that control the phases depicted in a given phase diagram are the number of components (i.e.,
elements) involved, the chemical composition (i.e., the proportion of the components in the material), the temperature, the
external pressure, magnetic field, electrostatic field, etc. Phase diagrams of simple systems generally involve only two state
variables, for example, the temperature and composition. If one is plotted vertically and the other horizontally, a graphical

*Change History: July 2015. T.B. Massalski and D.E. Laughlin made updates to the text and the references section.

Reference Module in Materials Science and Materials Engineering doi:10.1016/B978-0-12-803581-8.03242-2 1


dx.doi.org/10.1016/B978-0-12-803581-8.03242-2

2 Phase Diagrams

representation is obtained, showing the distribution of the various possible phase fields allowed by the two variables, as will be
discussed below.

2 Phases

Materials exist in gaseous, liquid, or solid form, usually referred to as a phase, which, depend on the conditions of state (i.e., the
magnitude of state variables involved).

A phase “
surface, called an interphase interface, and distinguished by its state of aggregation (solid, liquid, or gas), crystal structure,
composition and/or degree of order. Each phase in a material system generally exhibits a characteristic set of physical,
mechanical and chemical properties and is, in principle, mechanically separable from the whole” (Soffa and Laughlin,
2014).

Typically, on a phase diagram, each single-phase field is indicated by a single label. Engineers often find it convenient to use
this label as referring to all compositions having a constitution related to this field, regardless of how much the physical properties
of the alloys may be continuously changing from one part of the phase field to another. This means that in engineering practice the
distinction between the terms ‘phase’ and ‘phase field’ is often neglected, and all materials labeled by the same symbol are referred
to as the same phase.

In the thermodynamic description of phase stability, a phase is considered to be controlled by the independent state variables as
mentioned above, and the laws of thermodynamics can be used to examine the competition for stability between the different
possible phases in a given system, as the independent state variables are changed. In this approach, the various possible forms of
the resulting phase diagram can be calculated without the need for experimental work. The role of interfaces in determining the
ultimate properties is often not considered (see, e.g., Porter and Easterling, 1992).

. is a physically distinct homogeneous portion of a thermodynamic system delineated in space by a bounding

3 Equilibrium

There are three states of equilibrium: stable, metastable, and unstable. This means that whether or not the constitution that is
predicted by the phase diagram is actually achieved will depend on the kinetics, and hence on diffusion. These three conditions
can be illustrated schematically as in Figure 1. Stable equilibrium exists when the system is in its lowest energy condition;
metastable equilibrium exists when additional energy (AG) must be introduced before the system can reach true stability; unstable
equilibrium exists when no additional energy is needed before the system moves to its meatastable or stable configuration.
Although true stable equilibrium conditions seldom exist in real materials, the study of equilibrium systems is extremely valuable,
because it constitutes a limiting condition from which actual conditions can be estimated.

4 Thermodynamic Considerations

The state variables that are selected to control a given system determine the free energy values of all the possible phases that can
exist in that system for all possible combinations of the variables (all the state points in a state diagram plot). The phases that are
actually recorded in a phase diagram represent those with the lowest value of the free energy at each state point.
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Figure 1 Free energy schematic of various arrangements or configurations of atoms in phases. A, stable configuration. B,
metastable configuration. C, unstable configuration.
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5 The Gibbs Free Energy

The Gibbs free energy of a system may be defined as:

G=H-TS (1]

where H is the enthalpy, T is the absolute temperature, and S is the entropy. Enthalpy is sometimes called the ‘heat content,” and is
defined as:

H=U+PV 2]

where U is the internal energy of the system, P is the pressure, and V the volume. A system in equilibrium shows no tendency to
change, or

dG=0 3]

The states for which dG#0 are not stable and are only realized for limited periods of time, unless the temperature is very low
and atoms cannot move. If, as the result of thermal fluctuations, the atoms become arranged in an intermediate state, they will
rearrange again into a free energy minimum. If by a change of temperature or pressure, for example, a system is moved from a
stable to a metastable state, it will, given time, transform to the new equilibrium state.

Graphite and diamond at room temperature and pressure are examples of stable and metastable equilibrium states. Given
enough time therefore, diamond under these conditions will transform into graphite. Similarly, the cementite constituent in steels
(Fe5C) is metastable and should transform to graphite and iron. Any transformation that results in a decrease in Gibbs free energy
is possible if the kinetics are favorable. Therefore a necessary criterion for any phase transformation is

AG:G2*G1<O [4]

where G; and G, are the free energies of the initial and final states respectively. The transformation need not go directly to the
stable equilibrium state, but can pass through a series of intermediate metastable states. With extremely rapid freezing of liquids,
even structures that are not thermodynamically stable (such as amorphous metallic ‘glasses') can be produced.

6 Systems

A physical system consists of a set of components that is isolated from its surroundings, a concept used to facilitate study of the effects
of conditions of state. ‘Isolated’ means that there is no interchange of mass or energy between the substance and its surroundings. The
components in alloy systems, for example, may be two metals, such as copper and zinc; a metal and a nonmetal, such as iron and
carbon; a metal and an intermetallic compound, such as iron and cementite; or several metals, such as aluminum, titanium, and
vanadium. These components comprise the system and should not be confused with the various phases found within the system.

7 Phase Diagrams

Phase diagrams are graphical plots that are devised to show the relationships between the various phases that appear within the
system under equilibrium conditions. As such, the diagrams are variously called constitutional diagrams, equilibrium diagrams, or
phase diagrams. A single-component phase diagram can be simply a one- or two-dimensional plot, showing the phase changes in
the given component (e.g., in iron) as temperature and/or pressure changes. Most diagrams, however, are two-dimensional plots
describing the phase relationships in systems made up of two of more components. These usually contain fields (areas) consisting
of multiple phase fields, as well as single-phase fields. Some typical examples are shown below.

8 The Gibbs Equilibrium Phase Rule

The equilibrium phase rule, which was first announced by J. Willard Gibbs, relates the number of components of a system in
equilibrium (¢), the number of phases in the system at equilibrium (p), and the number of thermodynamic variables that can be
changed without changing the phases that are in equilibrium. The latter is known as the variance or degree of freedom of the system,
f. When the state of a phase in the system is determined by its pressure, temperature, and composition, the relationship is written as:

f=c—p+2 5]



4 Phase Diagrams

The Gibbs equilibrium phase rule applies to all states of matter (solid, liquid, and gaseous) and can be modified if additional
external fields, such as magnetic or electric, are present and determine the states of the phases present.
When the pressure is held constant, the rule reduces to:

f=c—p+1 (6]
9 Unary Systems and Phase Diagrams

In single-component systems, c=1 and the phase rule denoted in eqn [5] reduces to:
f=3-p 7]

Since the degree of freedom must be a positive integer, the number of phases present in such a system may only be 1, 2, or 3.

9.1 Three-Phase Eqilibrium: Invariant Equilibrium

According to the phase rule for one-component systems (see eqn [7]), three phases can exist in a stable equilibrium only at a single
point of a pressure/temperature (PT) diagram. This limitation is illustrated as point 0 (designated as the triple point) in the
hypothetical one-component PT diagram shown in Figure 2. At this single pressure and temperature all three states of matter
coexist in equilibrium. If the pressure is increased slightly, the equilibrium is disrupted and the system becomes a single-phase
solid. If the temperature is slightly increased, the system becomes a single-phase vapor. The triple point is also called an invariant
point, since f=0.

9.2 Two-Phase Equilibrium: Univariant Equilibrium

The phase rule for a single-component system shows that stable equilibrium between two phases allows for one thermodynamic
degree of freedom.

This condition, called univariant equilibrium, or monovariant equilibrium, is indicated by the curves 1, 2, and 3 separating the
single-phase fields in Figure 2. If the pressure and temperature of the system are such that they fall on one of those curves, the two
phases whose fields abut the lines coexist in thermodynamic equilibrium. The pressure or temperature may be freely selected along
the line, but not both. Once a pressure is selected, there is only one temperature that will satisfy equilibrium conditions. Curve 1
represents the equilibrium between the solid and the gas phases, and is called the sublimation curve. Curve 2 represents the
equilibrium between the solid and the liquid phases and is the melting curve. Curve 3 represents the equilibrium between
the liquid and the gas phases and is the vaporization curve. The vaporization curve ends at point 4, called a critical point, where
the physical distinction between the liquid and gas phases disappears.

9.3 Single-Phase Equilibrium: Bivariant Equilibrium

All states within the single-phase fields allow for the phase to remain the equilibrium phase with (small) changes in both the
temperature and pressure. This situation corresponds to having two thermodynamic degrees of freedom. This situation is called
bivariant equilibrium.

Pressure

¥

Temperature

Figure 2 Schematic pressure-temperature phase diagram (after Baker, 1992).
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9.4 The Geometry of the PT Curves

It is interesting to see what other information can be determined from the PT diagram. The slope of the curves (g—?) can be shown to

be equal to:

g = & = A_H [8]
dT AV TAV

where AS, AV, and AH are the changes in the molar entropy, volume, and enthalpy when the phase changes from one state to the
other, and T is the absolute temperature. This equation is known as the Claperyon Equation. For most solid material systems the
phase with the larger molar volume has the larger entropy, so the slopes are all positive. This is because the lattice (vibrational)
entropy term usually dominates.

9.5 The PT Diagram for Iron

A schematic of the PT boundaries for iron is shown in Figure 3. Note that the slope of the a/y equilibrium curve is negative.
This is unusual for a solid to solid transformation because it implies that the phase with the lower molar volume (FCC, y) has
the higher molar entropy. To understand this we must look more carefully at the contributions to the entropy of the « and y
phases.

At intermediate temperatures and pressures there are two main contributions to the entropy of a solid that has magnetic spins
associated with its atoms, namely: (1) the lattice or vibrational entropy and (2) the spin entropy, which arises from the random
orientation of spins in the paramagnetic phases. Since y has the higher molar entropy we write:

N
v Y o o
Slauice + Sspin > Slam‘ce + Sspin

Szpin > (Sfam‘ce =S ) + S?pin

lattice

The lattice entropy for BCC y is larger than that for FCC y so it can be further concluded since both terms on the right hand side
are positive that:

7 o

Sspin > Sspin [9]

FCC y-iron thus has a larger spin entropy than BCC o-iron does. The origin of this high spin entropy in 7 iron is from the low
temperature Neel transition of y from its low temperature antiferromagnetic state to its paramagnetic state.

10 Magnetic Phase Transitions and the Phase Diagram

Phase diagrams should include information on the magnetic or ferroelectric transformations which may occur between equilibrium
phases. For example, when the low temperature ferromagnetic phase of iron (known as « iron) transforms into a paramagnetic form
of iron, a phase transformation has occurred. This transformation temperature is denoted as the Curie temperature of iron. Below the

Pressure =

Liquid

Temperature =

Figure 3 Schematic of the pressure-temperature phase diagram for iron.
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Figure 4 Phase diagram of the Fe-Ni System, illustrating the inclusion of Curie temperature information. Note how Ni decreases the Curie
temperature when first added to Fe and Fe increases the Curie temperature when first added to Ni. Also note that in two-phase fields the Curie
temperature is constant (Massalski, T. B. Binary Alloy Phase Diagrams, second edition, ASM).

Curie temperature, o, iron is ferromagnetic and the crystals in each of its magnetic domains have tetragonal symmetry. When « iron
transforms into the paramagnetic phase at the Curie temperature, its symmetry and magnetic properties change to cubic and
paramagnetic: therefore a new phase forms. This phase has been called the § phase of iron and it used to be so designated on Fe
based phase diagrams. It is not usually so indicated today but we urge that it be returned to its rightful place!

When iron is alloyed with various solutes, the Curie temperature changes and is usually a linear function of composition. This
information should be recorded on a phase diagram. See, for example, Figure 4.

11 Phase Stability

The extent of solid solubility of phases, the stability of phases, the temperature dependence of stability, and the choice of structures
that are actually observed in phase diagrams are the result of competition among numerous possible structures that could be stable in
a given system. This competition is based on the respective values of the Gibbs free energy of each competing phase and the variation
of this energy with temperature, pressure, composition, and other intensive parameters, such as magnetic field or electric field.

In its simplest form, the free energy can be written as in eqn [1]. As is well known, numerous factors contribute to the
thermodynamic functions enthalpy (H) and entropy (S). A major contribution to the entropy is from statistical mixing of atoms
(ASnmix), but there can be additional contributions from lattice vibrational effects ((ASjauice), distribution of magnetic moments,
and other possible various long-range configurational effects. The main contributions to the enthalpy result from atomic mixing
(AHpix), which are in turn related to the interaction energies (electronic) between neighboring and further distant atoms in a given
structure and other terms that are based upon elasticc, magnetic, and vibrational effects. Much progress has been made in
measuring, calculating, and predicting many such effects, and hence progress continues to be made in the evaluation of the related
thermodynamic quantities and ultimately the phase diagrams.

In a binary system, the free energy, G, of a given phase typically has a parabolic like form with positive curvature between the
values for the two components (say A and B) as its composition changes. This is illustrated schematically in Figure 5(a). The change
in the free energy when the pure components A and B are mixed at this temperature is given as AGy;,. This is negative because of
the large negative TAS ,;, term. If the structures are different, two free energy curves may have to be considered at every temperature
to determine the lowest free energy configuration, as in Figure 5(h). Such curves will become displaced as temperature changes (for
increasing temperatures, the curves move downward by an amount proportional to the entropy of the phase) and at each
temperature the lowest free energy configuration across the diagram will determine the form of the phase diagram at each
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—— G% GP
(b) A X B

Figure 5 (a) Schematic molar free energy curve for an o phase at a fixed temperature, 7. (b) Schematic molar free energy curves for « and 8
phases at a fixed temperature, 7, showing a region of two-phase equilibrium between G* and G* (after Porter and Easterling, 1992).

composition. The well-known ‘common tangent construction’ is used for that purpose to determine the free energies when
mixtures of phases result in lowest G. At the temperature T, Figure 5(h) shows that there are single-phase regions and a two-phase
region.

12 Phase Field Rule

The areas (fields) in phase diagrams, and the positions and shapes of the points, curves, surfaces, and intersections in them,
are controlled by thermodynamic principles and the thermodynamic properties of all of the phases that constitute the system.
The phase field rule specifies that at constant temperature and pressure, the number of phases in adjacent fields in a multi-
component diagram must differ by one. That is, a two phase region of the phase diagram will have a one phase region on either
side of it.

13 Binary Diagrams

The study of systems of more than one component involves the study of solutions. The simplest type of a multicomponent system
is a binary, and the least complex structure in such a system is a single solution. Some of the aspects of single-phase binary systems
will now be considered.

13.1 Solid Solutions

We shall consider here only two state variables: temperature and composition, holding pressure constant. The replacement of
nickel atoms by copper atoms on the lattice of nickel is an example of a substitutional solid solution. At high enough tem-
peratures, nickel can dissolve copper at all proportions, providing an example of complete solid solubility. This is possible only if
the sizes of the atoms differ by no more than about 15%. There are many examples of restricted mutual solid solubilities, even
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Figure 6 Schematic binary phase diagram showing miscibility in both the liquid and the solid states.
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Figure 7 Derivation of a phase diagram with complete liquid and solid miscibility from free energy curves (after Prince, 1966).
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between elements with similar crystal structures and atom sizes. When a continuous solid solution occurs in a binary system, the
phase diagram in the immediate region of the melting points of the elements has the general appearance of that shown in Figure 6.
The diagram consists of two single-phase fields (the « field and the and liquid, L, field) separated by a two-phase field, consisting of
both o and L phases. The boundary between the liquid field and the two-phase field is called the liguidus; that between the two-
phase field and the solid field is called the solidus.

In general, the liquidus is the locus of points in a phase diagram representing the temperatures at which alloys of the various
compositions of the system begin to freeze on cooling from the liquid state, or finish melting on heating; a solidus is the locus
of points representing the temperatures at which the various alloys finish freezing on cooling, or begin melting on heating.
The phases in equilibrium across the two phase-field in Figure 6 (the liquid and the solid solutions) are called conjugate phases.

13.2 Free Energies and Binary Phase Diagrams

We can now illustrate a few examples of how binary phase diagrams such as that shown in Figure 6 can be derived from fee
energy curves. This system is completely, if not ideally, miscible in both the liquid and solid states. The free energies G(;) and Gs)
are both parabola like with positive curvature. The relative positions of the Gy and G free energy curves change with
temperature are shown in Figure 7. If the melting points of the pure metals are different, the solid curve («) becomes somewhat
tilted. Intersections and tangent constructions then become possible, yielding the well-known phase diagram with a liquid and
solid showing complete miscibility, as in Figure 6. The Ti-Zr phase diagram (Figure 9(a)) displays this type of behavior, though it
is slightly more complicated in that it also displays two solid phases, o, the low temperature HCP phase and f, the higher
temperature BCC phase. This system is an example of the stabilization of the solid phase with the higher lattice entropy (f), at
high temperatures.

13.3 Constitution and Lever Rule

Figure 7 also provides the basis for understanding how the constitution (which is the identity and composition of the phases and
the amount of the phases) can be derived for any given alloy at equilibrium.

Gibbs energy ==
Gibbs snergy —

A Composition B

(a) M) «©

Gibbs energy —u—

Gibbs energy ==
. Temperature —3

L) () L]

Figure 8 Derivation of a eutectic phase diagram involving free energies of o, 8, and liquid phases (after Gordon, 1968).
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Figure 7(c) illustrates that at temperature T, the lowest free energy path between A and B will be along the G curve for the « phase
(from A to C,), then along the tangent between C; and C,, and finally, along the G curve for the liquid between C, and B. The tangent
between 1 and 2 represent the situation when the alloy is two-phase (o of composition C, and L of composition C,), and this is the
basis of the phase diagram shown in Figure 7(f), at temperature T3. The knowledge of constitution stipulates that we also determine
proportions of the two phases present in equilibrium for any alloy within the two-phase field, and this is done by employing the lever
rule. Thus, for an alloy of composition X at Ts, the proportion is given by the ratio of the two segments m and n as follows:

fraction of solid = —
m+n
fraction of liquid = e [10]

and hence the proportion of solid to liquid is f

Other forms of phase diagrams may be derived in the same way. For example, a eutectic form of the phase diagram is obtained if
two free energy curves are involved for the solid phases, or if a solid phase free energy curve displays a double minimum with a region
of negative curvature in the middle.

A eutectic deriving from two separate solid phases is illustrated schematically in Figure 8, which the Cu-Ag phase diagram
(Figure 9(b)) is an actual example. The constitution of any alloy in this system, for any state point, could be derived by the same
procedure as mentioned above for alloy X in Figure 7(f). It can be seen for a eutectic phase diagram to occur the liquid free energy
curve must lie between the two solid free energy curves. It can also be seen that at the eutectic temperature, T,, three phases are in
equilibrium, namely the o, L, and f§ phases. This invariant temperature follows from the Gibbs equilibrium phase rule which for a
binary system with three phases in equilibrium displays no degrees of freedom.
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Figure 9 Assessed phase diagrams: (a) Ti=Zr, (b) Cu-Ag, (c) Cu-Zn (after Massalski, 1990, ASM/NIST Phase Evaluation Program).
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13.4 More Complex Diagrams

More complex phase diagrams may involve the presence of one or more ‘intermediate phases,” which have the lowest free energies in
the system at some temperatures and compositions. A good example is the Cu-Zn binary phase diagram, shown in Figure 9(c), which
involves two terminal phases, Cu (o) and Zn (), and five intermediate phases: f5, f, 7, 6, and ¢. With a little practice, a set of
hypothetical free energy curves could be constructed for all the phases, as well as their respective displacements with temperature,
such that the overall free energy trends would yield the observed diagram. Many selected sets of free energy curves can be postulated
that would reproduce an actual phase diagram. Only experimental measurements of some of the thermodynamic quantities
representing the actual phases can confirm which free energy curves are really valid and represent the actual free energy situations.

14 Ternary (and Higher)-Component Phase Diagrams

When a third component is added to a binary system, the graphic representation of the equilibrium conditions in two dimensions
becomes complex, as there are three independent variables, so a series of graphs is necessary. One option is to add a third
composition dimension, by using a triangular base. Free energy curves now become free energy surfaces (with positive curvature).
This is illustrated in Figure 10. A corresponding phase diagram may be as that illustrated schematically in Figure 11. Even more
complex graphics have been proposed for higher systems, but generally only selected portions of the actual diagrams can be
represented. Further details will be found in the cited literature.

15 Phase Diagram Errors

Because phase diagrams are an expression of thermodynamic conditions, it is necessary to ensure that the constructed graphics are
thermodynamically correct and compatible. Unfortunately, this is frequently not the case, and hence many efforts have been made
in the past, and continue to be made, to evaluate critically the existing literature on phase diagrams.
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Figure 10 Schematic free energies of a liquid and three solid phases of a ternary system (after Haasen, 1996).
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Figure 11 Ternary phase diagram (after Rhines, 1956).

An example of a hypothetical complex phase diagram involving 23 errors is shown in Figure 12(a), and an error-free version of
the same diagram is shown in Figure 12(b). Some errors are quite obvious, but the reader will need to consult the cited literature
(Okamoto and Massalski, 1991) for a detailed discussion of all the depicted errors and their correction.

There are at least three possible kinds of errors in phase diagram construction. The first is one in which the construction violates
the Gibbs phase rule or corollary rules derived from it. For example, a pure component must have an invariant melting tem-
perature at a fixed pressure (error 1, Figure 12(a). Another is that three-phase equilibrium in a binary alloy with pressure held
constant must be an invariant from the phase rule. See Figure 12(a), error 16.

Another kind of error also may exist which have been termed by Okamoto and Massalski as improbable constructions. These
are construction of the phase diagram which would entail highly improbable variations in the free energy curves with respect to
temperature or composition to produce the phase diagram as depicted.

A third kind of error also exists and can be called Third Law violations. The Third Law of thermodynamics posits that the
various aspects of entropy of a system in equilibrium approach zero as the temperature approaches zero. This entails that at the
zero in temperature, phases should be either of pure composition (no solid solutions that have configurational entropy) or
the phases should be stoichiometric compounds. (see Abriata and Laughlin, 2004; Fedorov, 2010). This rather rigid rule is often
not followed in published diagrams, since it is not easy to keep a real system in thermodynamic equilibrium at very low
temperatures. Nevertheless it should be kept in mind when presenting a phase diagram and perhaps could also be incorporated in
extrapolations of solution models to low temperature. Figure 13 shows a schematic phase diagram that conforms to the Third Law
restrictions.

16 Determination of Phase Diagrams

A very large literature exists on the various methods for determining phase diagrams. Historically, many of the well-known
diagrams were determined experimentally, long before the obvious connection between solution thermodynamics and phase
diagrams was fully realized. Experimental techniques involve metallography, cooling and heating, thermal arrest studies (DSC
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Figure 12 (a) Hypothetical binary phase diagram showing many typical errors of construction. (b) Error-free version of the phase diagram shown

in (a) (after Okamoto and Massalski, 1991).
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Figure 13 Schematic of a phase diagram showing the phases in equilibrium at 0 K to be either elements or compounds (after Fedorov, 2010).

techniques), X-ray measurements, magnetic measurements, dilatometry, electron probes, etc., to mention only a few. Parallel with
this activity, an extensive literature has grown on the measurements of the thermodynamic properties of elements, compounds,
and phases, which can then be used to derive the respective free energies and their changes with different state variables. Once free
energies are known, phase diagrams can be derived via computer calculation and modeling.

It is also possible to perform no experimental work at all (either metallurgical or thermodynamic), and to use computer
programs that will simulate and optimize free energies from assumed models of different structures, and their bonding energies,
and then to derive phase diagrams entirely by calculation. It is obvious that many opportunities and pitfalls exist in all of these
approaches. Care should always be made to incorporate into the calculations the most reliable of the thermodynamic solution
models and not to rely on merely phenomenological power law expansions.
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