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Great progress has been made over the recent decades in the application of computational thermody-
namics (Calphad) and theoretical methodologies (CVM) including so-called first principles approaches to
modeling thermodynamic properties and the calculation of phase diagrams of materials. The aim of this
paper is to call attention to considerations of the THIRD LAW OF THERMODYNAMICS when evaluating
these results when applied to low temperature phase equilibria. In this effort we call attention to the
essential content of the modern version of this third principle of thermodynamics using an historical and
pedagogical approach. An appreciation of the constraints of the THIRD LAW is shown to be valuable in
projecting possible low temperature phase fields and boundaries and predicting thermodynamically
consistent phase diagram configurations as T/0 K. The ideas of Simon regarding aspects or subsystems
are shown to be of paramount importance in assessing the thermodynamic properties of materials at low
temperatures.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In view of the great progress made over the past two decades or
so in computational thermodynamics and the calculation of phase
diagrams [1,2] it is rather remarkable that the results very seldom
have been scrutinized in terms of the demands of the THIRD LAW
OF THERMODYNAMICS. The cluster variation method (CVM) [3e6]
has emerged as the most powerful method for modeling the
configurational energetics of alloys and predicting binary and
ternary phase equilibria and associated phase diagram configura-
tions. However, even in this methodology considerations of the
Third Law are generally ignoredwhen compiling and evaluating the
soundness of the results. Furthermore, it should be pointed out that
Third Law considerations can be very valuable in assessing possible
alternative phase diagram topologies and phase boundaries based
on projections to low temperatures [7,8]. However, there is a
glaring paucity of discussion regarding the implications and re-
strictions of the Third Law related to phase equilibria at low tem-
peratures and this situation often appears to derive from a lack of a
full understanding of the modern rigorous statement of the Third
.
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Law of Thermodynamics and its scope as it applies to heteroge-
neous phase equilibria. It is the purpose of this paper to elucidate
the content of a comprehensive version of the Third Law and to
illustrate its importance in various selected contexts of particular
interest to phase transformation behavior in materials science. We
begin the discussion with a brief history of the evolution of the
Third Law arriving at the Nernst-Planck-Simon statement of this
fundamental principle.
2. Historical perspective

The Third Law of Thermodynamics was born in chemistry, in
particular, in the nascent field of physical chemistry just after 1900
some 25 years or so after the treatise of Gibbs [9]. It emerged as the
Nernst Heat Theorem in 1906 [10,11] during a period of intense
discussion of chemical equilibrium constants and the possibility of
calculating equilibrium constants for a reaction as a function of
temperature solely from thermal data. The problemwas essentially
embodied in solving the so-called Gibbs-Helmholtz equation:

DG ¼ DH þ T
vDG
vT

(1a)

or
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Fig. 1. Disordered (A2) and ordered (B2) phases showing a and b sublattices of the B2
superstructure.
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DGðTÞ ¼ DHðT1Þ þ
ZT
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DCPdT�T
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4ZT

0

DCP
T

dT þ DS0

3
5 (1b)

which could not be determined by thermometric methods because
the integration constant DS0, is the change in entropy for the re-
action at 0 K which was inaccessible. T. Richards [12] at Harvard
around 1900 had compiled a plethora of DH and DG versus tem-
perature data determined calorimetrically and galvanically whilst
his Ph.D. student G. Lewis analyzed Equation (1a) and (1b) in his
Ph.D. thesis work. (Ironically, Lewis was never made privy to this
array of data [12]). Walter Hermann Nernst in Germany upon
examining the data noted the asymptotical behavior of the DH and
DG curves as T/0 K. In particular, he asserted that
dDH
dT /0 and dDG

dT /0 as T/0 and thus DS0 ¼ 0.
Now, in principle, thermometric measurements alone could be

used to calculate chemical equilibria over temperature ranges
where accurate thermal data could be accessed. This is the seminal
form of the Nernst Heat Theorem which would be the basis for a
Third Law of Thermodynamics. The Heat Theorem was highly
controversial from the onset of its appearance with doubts
expressed as to its generality and significance with commentary
coming from luminaries such as Einstein and others. However,
Planck [13] in the third edition of his Treatise on Thermodynamics
published in 1910 cited the Nernst Heat Theorem as of fundamental
importance in the development of thermal physics and chemistry
and subsequently promulgated and extended the principle. Based
on a quantum and a statistical mechanics perspective Planck
asserted that the absolute entropy of chemically homogeneous
substances at T ¼ 0 K is identically equal to zero (S0 ¼ 0) inde-
pendent of the pressure, state of aggregation or special chemical
modification in a state of thermodynamic equilibrium. From a
statistical mechanics viewpoint this indicates that since the abso-
lute entropy of a substance is given by S ¼ kB ln U where U is the
thermodynamic probability or number of distinguishable quantum
states or microstates compatible with the macroscopic thermody-
namic state, at T ¼ 0 K the ground state entropy is given by S0 ¼ kB
lng0 where g0 is the degeneracy of the ground state indicating that
g0 ¼ 1 (the ground state is non degenerate) and S0 ¼ 0. It should be
noted that this is true of ideal Fermion and Boson gases as shown in
quantum statistical mechanics (Fermi-Dirac and Bose-Einstein
statistics). Furthermore, it must be pointed out that the original
Heat Theoremwhen applied to a simple chemical reaction Aþ B¼>
AB indicating DS0 ¼ S0AB - S0A - S0B ¼ 0 at T ¼ 0 K, only indicates that
the absolute entropies of the reactants and products reach a con-
stant value (per atom) at 0 K. Importantly the vanishing of the
entropies, S0AB, S0A and S0B at absolute zero (that is, S0AB ¼ S0A ¼ S0B ¼ 0)
is consistent with the Nernst Heat Theorem.

Sir Francis Simon (1893e1956) a former student of Nernst
promoted the importance of the Heat Theorem as a Third Law of
Thermodynamics over many years in an expanded form asserting
that S0 ¼ 0 for all thermodynamic systems or subsystems in in-
ternal equilibrium [11,14,15]. Simon referred to the subsystems as
aspects of a composite thermodynamic system comprised of the
vibrational modes of the crystal lattice, the free electron gas of a
metallic solid, spin systems (electronic and nuclear), configura-
tional and structural variants as well as isotopemixtures. According
to Simon the Third Law is applicable individually to each aspect or
subsystem of the total composite thermodynamic system provided
the subsystem is in thermodynamic equilibrium. This strong
statement of the Third Law is the Nernst-Planck-Simon version
which is stated formally as follows:

The THIRD LAW OF THERMODYNAMICS establishes a
fundamental lower limit for the temperature of matter called
Absolute Zero (0 K) and the natural origin from which to mea-
sure/calculate the absolute entropy of a substance. THE EN-
TROPY OF ALL SUBSTANCES IN INTERNAL THERMODYNAMIC
EQUILIBRIUM AT T¼ 0 K IS ZERO, THAT IS, S0 ¼ 0 INDEPENDENT
OF PRESSURE, EXTERNAL FIELDS OR STATE OF AGGREGATION.
The THIRD LAW can be applied individually to various aspects or
subsystems of the material e.g. spin systems, vibrational and
rotational states, etc. provided they are in thermodynamic
equilibrium.

It follows from this statement of the THIRD LAW that DCP and CP
/0 as T/0 K and that the coefficient of thermal expansion of a
substance a/0 as T/0 K. Furthermore, it is readily demonstrated
that this version of the THIRD LAW is consistent with the notion of
the unattainability of 0 K in a finite number of cyclic steps [15].

2.1. Phase separation and ordering: A2/B2

Let us begin our discourse by looking at thewell-known A2/B2
ordering transition in binary alloys within the context of Third Law
considerations employing the so-called generalized Bragg-
Williams approximation wherein we include first and second-
nearest neighbor pairwise interactions in formulating the solu-
tion energetics. Our approach essentially follows that of Ino [16] in
his treatment of decomposition and ordering in bcc binary alloys.
Before proceeding the reader is reminded of a few salient points
regarding this mean field approach to central issues regarding its
application. In referring to a Bragg-Williams model [17] applied to
ordering in alloys, it should be pointed out that the original Bragg-
Williams approach did not describe the energetics of an A-B binary
alloy generally in terms of short-range forces associated with
pairwise interactions or A-A, B-B and A-B bonds typically employed
in quasichemical models. The energetics of the solution was
formulated in terms of an “interchange energy”, W, associated with
moving A and B atoms from “right” positions to “wrong” positions
in the superstructure and the energy W is proportional to the de-
gree of long range order (h) defined in terms of the occupancies of
relevant sublattices a, b, g, etc. defining the evolving superlattice.
For the B2 or ordered phase described by a and b sublattices (See
Fig. 1). The long range order (LRO) parameter is written generally
as:

h ¼ ðra � XAÞ
Yb

¼
�
rb � XB

�
Ya

(2)

� Where: ra is the fraction of specified a-sites occupied by A atoms
(“right” atoms)



Fig. 2. Phase diagram showing disorder / order line of critical points and associated
free energy e composition curves. The cross-hatched loci indicate the second order/
higher order nature of the phase transition. Note: this diagram is not consistent with
the Third aw as discussed in the text.
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� rb is the fraction of specified b-sites occupied by B atoms (“right”
sites)

� Ya and Yb are the fraction of a-sites and b-sites in the ordered
superstructure with XA and XB the atomic fractions of species A
and B

(Note: For the ordered B2 structure the order parameter h can
be written as h ¼ R�W

RþW where R is the total number of atoms in the
“right” positions and W is the total number atoms in “wrong” po-
sitions giving h ¼ 1 for the perfectly ordered structure). Impor-
tantly, the classic Bragg-Williams approach wherein it is assumed
that the interchange parameter is given byW ¼ hW0 (where W0 is
the value of W in the perfectly ordered state) makes no explicit use
of a detailed incorporation of short-range forces as mentioned
above and implicitly assumes that the mixing on the sublattices is
random (regular solution).

Random mixing on the sublattices renders this a mean field
theory essentially equivalent to the Weiss molecular field theory in
the underlying physics and thus neglects local correlations. More
rigorous treatments such as the Bethe pair approximation [18,19]
and the cluster variation method (CVM) [3e6] provide a mark-
edly improved calculation of the entropy and local correlations
using atomic clusters such as pairs or tetrahedra rather than indi-
vidual atoms immersed in a mean field. The quasichemical
approach of Bethe was the precursor of the CVM methodologies
[20]. These local correlations are of paramount importance at high
temperatures relative to the critical temperature TC of the ordering
reaction but become less important at lower temperatures where
the so-called “point cluster” mean field approximation of a gener-
alized Bragg-Williamsmodel (which is homologouswith the zeroth
approximation of the quasichemical schemes invoking A-A, B-B and
A-B pairwise bond energies) is a good approximation.

Thus, we examine the A2/B2 transition using Ist and 2nd
nearest e neighbor interactions as mentioned above and write the
free energy of mixing Fm (c,h) of the binary A-B alloy as a function of
concentration c and LRO order parameter h as follows:

Fmðc; hÞ ¼ Ncð1� cÞð8V þ 6UÞ þ Nh2

4
ð8V � 6UÞ

þ entropic terms (3)

where Ca ¼ c� h
2 and Cb ¼ cþ h

2 are the fraction of a and b sub-
lattice sites occupied by B atoms, respectively; h is the order
parameter defined above and N is the total number of atoms of the
solution. The interchange parameters V and U characterizing the
atomic interactions for the 1st and 2nd nearest-neighbor shells are
defined as:

Ist nn: V ¼ 1
2
½Eð1ÞAA þ Eð1ÞBB � 2Eð1ÞAB � (4a)

2nd nn: U ¼ 1
2
½Eð2ÞAA þ Eð2ÞBB � 2Eð2ÞAB � (4b)

with EAA(i) , EBB(i) and EAB(i) taken as the effective strengths of the 1st nn
(i¼ 1) and 2nd nn (i¼ 2) AA, BB and AB atomic bonds or interaction
energies. In this convention, V < 0 is the case for the B2 super-
structure. (It should be noted that the interchange energy in the
original Bragg eWilliams treatment W0 ¼ -2z1V with z1 ¼ 8, the
coordination of the 1st nn shell, leading toTC¼ - 4 V/kB). The heat of
mixing of the random solid solution relative to the pure compo-
nents A and B in our generalized Bragg-Williams model is
DHm ¼ Nc(1-c)(8V þ 6U) incorporating the higher interactions in
the 2nd nn shell (z2 ¼ 6).

The entropic terms deriving from the assumption of random
mixing on the a and b sublattices are given by:

�TSm¼NkBT
2

0
B@
�
1�cþh

2

�
ln
�
1�cþh

2

�
þ
�
c�h

2

�
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�
c�h

2

�

þ
�
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�
ln
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þ
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cþh

2

�
ln
�
cþh

2

�
1
CA

(5)

in this approximation. As mentioned above, this description of the
configurational entropy (we are ignoring other possible entropic
contributions such as vibrational modes) is not accurate at tem-
peratures high relative to the critical temperature but becomes a
reasonable approximation at lower temperatures.

Setting vFm
vh ¼ Fh ¼ 0 and Fhh ¼ 0 allows one to calculate a locus

of critical points (h ¼ 0) as a function of concentration and tem-
perature given by:

TCðcÞ
TCðc ¼ 0:5Þ ¼ 4cð1� cÞ (6)

where TCðc ¼ 0:5Þ ¼ ð3U�4VÞ
kB

is the critical temperature for ordering
at the equiatomic composition c ¼ 0.5. When U ¼ 0 the associated
free energy vs. composition curve is concave upwards (Fcc > 0) for
all temperatures T > 0 K (See Fig. 2b) becoming linear at T ¼ 0 K as
shown below. The ordering at the transition temperature marks the
onset of a second order phase transformation according to Ehren-
fest [21] in this approximation at all compositions exhibiting the
well-known textbook behavior shown in Fig. 3aeb. The singularity



Fig. 3. a) Variation of the excess heat capacity versus temperature for a second order transition such as A2/B2 predicted by the Bragg-Williams approximation. b) Variation of the
long range order (LRO) parameter h versus temperature for a second order transition according to the Bragg-Williams model. c) Typical experimental results showing the variation
of the heat capacity with temperature for a higher order or so-called l transition. (Note the curve looks like the Greek letter lambda.)
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in the heat capacity according to this Bragg-Williams model is a
finite discontinuity compared to the experimental result such as in
b-brass as depicted in Fig. 3c indicative of a so-called higher order
l-transition. Most importantly in this discourse, if one cools any
alloy composition c < 0.5 from the disordered region of the phase
diagram to T ¼ 0 K under equilibrium conditions the resulting
imperfectly ordered state h ¼ 2c will have a residual configura-
tional entropy in violation of the Third Law of Thermodynamics.
However, if the solution energetics include the 2nd nn interactions,
that is, U > 0 and the optimized order parameter (Fh ¼ 0) at any
value of composition and temperature given by the transcendental
relation:
T
TC

¼ 4h

ln
�ð1�cþh

2Þðcþh
2Þ

ð1�c�h
2Þðc�h

2Þ
� (7)

is inserted into Equation (3) giving F(c,h)min, free energy vs.
composition curves can be constructed which produce markedly
different results. These free energy curves exhibit inflection points
(Fcc ¼ 0) and local minima indicative of phase separation in
conjunction with the ordering reaction. See Fig. 4aeb. Most
importantly, the equilibrium state at T¼ 0 K for 0 < c < 0.5 is a two-
phase mixture consisting of pure A and perfectly ordered B2
(c ¼ 0.5) the relative proportions given by the familiar lever rule.



Fig. 4. Phase diagrams associated with the A2/B2 transition predicted by a generalized Bragg-Williams model taking into account 1st and 2nd nearest-neighbor interactions
wherein concomitant ordering (V < 0) and clustering (U > 0) tendencies are embodied in the solution energetics. The hatched locus delineates the locus of critical points for the
A2/B2 transition and the solid lines are solvi showing two-phase fields B20 þ B200 and A2 þ B2. The dashed locus delineates a chemical spinodal line in the ordered B2 phase— a so-
called conditional thermodynamic instability contingent on prior ordering. a) Defining the parameter R ¼ 3U=4jV j this configuration occurs for R ~1/4 or U~ 1=3jV j. b) This tricritical
point occurs for R ~1e4. Clearly the phase diagrams essentially show the intersection of the higher order disorder/ order transition with a miscibility gap leading to a synergistics
of ordering and phase separation. See Ref. [16] for more details.

Fig. 5. Free energy versus composition at T ¼ 0 K for A2/B2 ordering. The linear plot
is for 1st nn interactions only whereas the parabolic curve is when 2nd nearest-
neighbor interactions are included in the solution energetics. When Us0 all solu-
tions are thermodynamically unstable with respect to phase separation into pure A
and B2 with zero entropy.
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This is clearly in accord with the Third Law wherein the configu-
rational entropy of this aspect of the systemvanishes at T¼ 0 K. It is
interesting to note that at T¼ 0 K, if U¼ 0 the free energy functional
wherein h ¼ hopt ¼ 2c (hopt being the optimum order parameter
discussed above) becomes F ¼ 8NcV for an imperfectly ordered
solid solution and equal to 4NV at the stoichiometric composition
c ¼ 0.5. These off-stoichiometric imperfectly ordered single phase
solutions have residual entropy as cited above but it should be
noted that this linear free energy functional is degenerate; the free
energy with U ¼ 0 is the same as that of a two-phase mixture of
A2 þ B2 governed by the lever rule. Furthermore, the second de-
rivative Fcc is obviously zero across the entire composition range.
However, if U > 0, the free energy at 0 K becomes F ¼
Nc(8V þ 6U) �12NUc2 and Fcc ¼ �24NU. The degeneracy is
removed rendering all solutions in the range 0 < c < 0.5 thermo-
dynamically unstable with respect to phase separation into the zero
entropy state of the A2 þ B2 phase mixture. See Fig. 5. It should be
pointed out that Kubo and Wayman [22] using the static concen-
tration wave (SCW) methodology of Khachaturyan [23] with 1st
and 2nd nearesteneighbor pairwise interactions which in-
corporates Fourier transform techniques within the Bragg-Williams
model to express the free energy arrived essentially at the same
results as Ino [16] as cited and extended above as well as calling
attention to accordance with the Third Law of Thermodynamics.

Another important issue related to A2/B2 ordering behavior
and the THIRD Law is the variation of the order parameter h with
temperature vh

vT as T/0. At any composition we can write
dE ¼ TdS þ H0dh and dF ¼ -SdT-hdH0, where H0 is a quasi-
thermodynamic conjugate field related to a difference in chemical
potential between sublattices. Using a standard Maxwell relation
applied to these relations leads to vh

vT /0 as T/0 since
vS
vH0 /0 as T/0 according to the THIRD LAW. We arrive at this
conclusion solely based on classical thermodynamics without
invoking quantum theory.

It is interesting to compare this result to that deriving from the
Landau theory of the second order transitions [24]. Using the usual
truncated Landau expansion for the excess free energy
GðhÞ � Gð0Þ ¼ Ah2 þ Bh4:::with A ¼ a(T-TC) and a > 0, yields for the
variation of the degree of order with temperature at the stoichio-

metric composition B2 h ¼
�
TC�T
TC

�1
2

leading to vh
vT ¼ � 1

2TC
at T ¼ 0K

which clearly is not in accord with the THIRD LAW. Presumably,
higher order terms could bring the Landau theory in line with the
thermodynamics discussed above.

The Bragg-Williams model readily allows the determination of
vh
vT as a function temperature and composition showing h going to
2c as T/0 K and vh

vT /0 as T/0 K. In both the Bragg-Williams and
Landau descriptions the excess heat capacity of the ordering aspect
of the system DCp/0 as T/0 K [15]. See Fig. 3a.
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2.2. Phase separation and ordering: A1/ L12

Let us now apply the generalized Bragg-Williams approach to
the A1(fcc)/L12 (A3B) first-order transition as shown in Fig. 6aec
wherein four sublattices (three of which are crystallographically
equivalent) are used to describe the L12 superstructure [25]. The
free energy of mixing Fm ¼ F(c,h) for this case can be written as:
Fig. 6. a) L12 superstructure showing four conventional sublattices. b) Section of A-B binary
A1/ L12 disorder eorder transition is first order. c) Variation of the (LRO) order paramet
Williams approximation.
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4

0
BB@

3
�
c� h

4

�
ln
�
c� h

4

�
þ 3

�
1� cþ h

4

�
ln
�
1� cþ h

4

�

þ
�
cþ 3h

4

�
ln
�
cþ 3h

4

�
þ
�
1� c� 3h

4

�
ln
�
1� c� 3

4

Fðc; hÞ ¼ Ncð1� cÞ½12V þ 6U� � 3Nh2 ½�4Vþ 6U �
16

þ Entropic Terms (8)

where the entropic terms expanded as -TSm are given by:
diagram showing A3B (L12) ordered phase bounded by two-phase regions because the
er h, with temperature for the first order A1/ L12 phase change according to Bragg-

h
�
1
CCA (9)
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Taking vF
vh ¼ 0 gives the variation of the order parameter h at

equilibrium as a function of temperature and composition
expressed in the transcendental equation:

ln

�
cþ 3h

4

��
1� cþ h

4

�
�
c� h

4

��
1� c� 3h

4

� ¼ 4ð2V � 3UÞh
kBT

(10)

which can be solved graphically or numerically. The typical varia-
tion of h with temperature for the first order transition is depicted
in Fig. 6c. Substituting the optimum or equilibrium value of h into
Equation (8) allows one to calculate free energy vs. composition
curves as a function of temperature as shown in Fig. 7. When only
the 1st nearest-neighbor interactions are included (V< 0, U¼ 0) the
F vs. c curves for the ordered and disordered phases generally
exhibit a positive curvature whereas if U > 0 inflection points and
regions of negative curvature emerge indicating instability with
respect to phase separation in non-stoichiometric imperfectly or-
dered solid solutions. See Refs. [25e28] for detailed analyses of the
interplay of ordering and spinodal decomposition in the formation
of ordered precipitate phases in fcc alloys. Importantly, in this
generalized Bragg-Williams approach to A1/L12, ordering at all
the compositions produces a similar h vs. T behavior as shown
above with hopt/4c as T/0 Kwith dh/dT/0 as demanded by the
THIRD Law. This is again in contrast to the result of the Landau
theory wherein dh/dT s 0 in the limit T/0 K.

Let us now examine the generalized Bragg -Williams thermo-
dynamic behavior of the A1/L12 ordering as T/0 K. The free
energy functional of solid solutions at 0 K is given by:

Fðc;hÞ ¼ Nc½12V þ 6U� � Nc2½12V þ 6U� þ 3Nh2½4V� 6U �
16

(11)

and taking h ¼ hopt ¼ 4c, this becomes:

Fðc;hÞ ¼ Nc½12V þ 6U� � 24UNc2 (12)

The free energy vs. composition curve for the range 0 < c < 0.25
exhibits a negative curvature Fcc ¼ �48NU indicating that all ho-
mogeneous solid solutions at T ¼ 0 K are unstable with respect to
phase separation into a two-phase mixture of pure A and A3B the
Fig. 7. Schematic free energy versus composition curves for the disordered (A1) and
ordered L12 phases according to the generalized Bragg-Williams approach taking into
account 1st and 2nd nearest-neighbor interactions. Note the appearance of a region of
negative curvature for imperfectly ordered solid solutions.
relative proportions given by the lever rule and consistent with the
Third Law.

However, if only 1st n-n interactions are taken into account
(U ¼ 0) the free energy vs. composition curve of the solid solutions
(with positive entropy) is linear (zero curvature) and the same as
that of a mixture of pure A and the fully ordered A3Bwhich has zero
entropy. This degeneracy is lifted when 2nd n-n interactions (U >
0) are included in the free energy expression in accordancewith the
Third Law as shown above. See Fig. 8.
2.3. Phase separation and ordering: A1/L10

Let us close this portion of the discussion of solution energetics
and stability related to order / disorder transitions and the Third
Law of Thermodynamics by looking at the A1 / L10 trans-
formation. This ordering involves a cubic / tetragonal change of
phase in contrast to the cubic / cubic A2/B2 and A1/L12 sys-
tems discussed above. Nix and Shockley [29] in the late 1930s
analyzed the A1 / L10 transition and characterized the ordering
reaction as second order according to the conventional Ehrenfest
classification based on a rigid lattice model incorporating only 1st
n-n pairwise interactions (V < 0, U¼ 0). However, Guggenheim [30]
in 1952 using a quasichemical tetrahedron approximation was able
to capture the first order character (1st n-n interactions only)
within this precursor of later cluster variation methods (CVM).
More recently, Mohri and coworkers [31e34] have studied the
transition including lattice vibrations. The modern theories defin-
itively characterize the A1/ L10 transition as first order and have
identified a so-called L10 (P4/mmm) phase at low temperatures
[35,36]. It should be noted that Larikov, Geischenko and Falchenko
[37] asserted that this cubic / tetragonal transformation is first
order if changes in lattice dimensions and associated elastic strain
are incorporated in the thermodynamics without correlations or
many-body interactions within a modified Bragg-Williams
approximation. In the following discussion leading to some inter-
esting results related to Third Law considerations we formulate the
thermodynamics of the A1/ L10 transition employing the
approach of Cheong and Laughlin [38] as elaborated in the
computational study by Soffa, Laughlin and Singh [39] which in-
cludes 1st n-n and 2nd n-n interactions as well as lattice distortion
and elastic relaxation in the free energy functional.

The free energy of mixing for the L10 ordering A-B alloy is first
written as:
Fig. 8. Free energy versus composition diagram at T ¼ 0 K for the L12 ordering system.
Note that the linear curve is for U ¼ 0 and the parabolic curve is for Us0. The parabolic
curve indicates that all solutions are unstable with respect to phase separation into
pure A and L12 with zero residual entropy.



Fig. 9. A1/L10 ordering showing atomic rearrangement and elastic relaxation giving
rise to cubic / tetragonal change in symmetry.

Fig. 10. Tricritical point and miscibility gap in the 4He-3He binary system showing
apparent residual solubility at T ¼ 0 K. However, these dilute solutions of 3He in 4He
behave as a degenerate Fermi gas at low temperature and at 0 K have zero entropy. See
Ref. [42] for a more detailed discussion. After [42].
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Fmðc; h; eÞ ¼ Ncð1� cÞð12V þ 6UÞ þ Nh2

4
ð4V � 6UÞ

þ entropic terms (13)

where the A and B atoms occupy the sites of the fcc parent lattice
with the layered superstructure described in terms of two sub-
lattices with the first coordination shell along the twelve <110>
directions and the second along six <100> directions. See Fig. 9a.
The entropic terms assuming randommixing on the sublattices can
be written as:
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This free energy functional will lead to a second/higher order
transition similar to the results of Nix and Shockley [29] in their
classic analysis cited above. However, if one expands the free en-
ergy to include an elastic relaxation term related to the change in
crystal structure shown in Fig. 9b we can write the modified solu-
tion energetics as:

Fmðc;h; eÞ ¼ Ncð1� cÞð12V þ 6UÞ þ Nh2

4
ð4V � 6UÞ � 4Nec2h2

þ entropic terms

(15)

where e is a positive constant which is a function of the elastic
constants and transformation strain. Adding this elastic coupling
energy leads to a very different behavior, namely, the A1/ L10
transition is rendered first order beyond a threshold value of a
parameter a ¼ e

j�4Vþ6Uj. At low temperatures and low concentra-
tions the transition changes to higher order for low values of the a
parameter.

Now let us look at the free energy of homogeneously ordered
solutions in the range 0 < c < 0.5 as T / 0 K and h / 2c. In the
absence of the elastic term the curvature of the free ener-
gyecomposition curve for imperfectly ordered states (h ¼ 2c) is
given by:

Fccðc; h; eÞ ¼ �8Nð2V þ 3UÞ (16)

which is negative for [ 2V þ 3U] > 0, which cannot be positive if
only 1st n-n interactions are taken into account, that is when U¼ 0.
However, if 2nd n-n interactions are included (U > 0) the curvature
is negative provided U > -2/3 V. If this condition doesn't hold the
elastic term can contribute to the thermodynamic instability of the
homogeneously ordered single phase states consistent with the
THIRD LAW. Also, third and fourth n-n interactions can contribute
to the instability of these ordered states [40,41]. Finally, again dh/dT
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is zero as T/ 0 K in the Bragg- Williams approximation but not in
the symmetrical (G(h) ¼ G(-h)) first order Landau case.

2.4. Phase separation and ordering: 4He-3He solutions

An interesting case regarding phase separation (and ordering)
occurs with dilute 3He in 4He solutions wherein a tricritical point
appears in the system at low temperatures (T < 1.0 K). See Fig. 10. In
general, the two-phase region involves the formation of a 4He- rich
phase and a 3He erich phase but in the limit of T/0 K the phase
separation line extrapolates to a residual solubility in apparent
contradiction to the dictates of the Third Law. However, a very
subtle quantum statistics effect comes into play here. At very low
temperatures the dominant 4He becomes virtually thermally inert
compared to the 3He solute in dilute solution and acts like a
“thermal vacuum” in which a weakly interacting Fermi gas moves.
The 4He causes the Fermions to have an enhanced effective mass.
Most importantly, the region of apparent solubility at T ¼ 0 K is
composed of a degenerate Fermi gas of zero entropy in accordance
with the Third Law of Thermodynamics and Fermi-Dirac statistics
[42].

3. Phase diagram configurations

In the foregoing discussion we primarily emphasized re-
strictions on the extrapolations of critical points and solvi as T/
0 K in association with order / disorder behavior and the impor-
tance of 2nd nearest-neighbor interactions in the interplay of
ordering and phase separation tendencies in bringing the solution
energetics in line with the Third Law. Before going into a more
general discussion of phase diagrams and phase equilibria at low
temperatures we call attention to some results of CVM calculations
shown in Fig. 11aeb dealing with L12 and L10 ordering and pre-
dicted phase diagrams [5]. When only 1st nearest-neighbor in-
teractions are taken into account, the results are not in accord with
the Third Law but if 2nd nearest-neighbor interactions are included
the calculated phase diagrams are clearly consistent with the Third
Law. Interestingly, the same is true for the diagrams predicted by
the Monte Carlo simulations.

Let us now look at two well-known binary systems often
appearing in textbook discussions of phase diagrams. First we look
at the prototypical binary isomorphous system exemplified by the
Cu-Ni diagram shown in Fig. 12a [43]. The construction above 400 C
shown here could not persist to T ¼ 0 K because the complete solid
solubility projected to 0 K would violate the Third Law since solid
solutions across the diagram would have excess configurational
entropy. However, the supplementary miscibility gap indicating
phase separation at low temperature would allow the formation of
a two-phase mixture of pure Cu and pure Ni (ferromagnetic) at 0 K
and is supported by modern experimental investigations [8].

We now turn our attention to another familiar but more com-
plex system, namely, the Cu-Zn binary phase diagramwhich shows
a series of intermediate phases existing over a range of composi-
tions. See Fig. 12b. The b/b0, g and ε phases are essentially so-called
Hume-Rothery phases [44] which are associated with certain
valence electron/atom ratios. Of concern in this analysis is also the
extraordinary primary solid solubility of Zn in the terminal a(fcc)
phase on the Cu-rich side of the diagram. Unless the a- b/b0 solvus
exhibits an extraordinary topology as T/ 0 K we expect that the a
phase will exhibit ordering and/or phase separation at low T under
equilibrium conditions perhaps giving rise to a monotectoid
resulting in equilibrium between pure Cu and b0 at 0 K, for example.
Also, there is experimental evidence that in the vicinity of 25
atomic percent Zn atomic rearrangements are occurring at low
temperatures (� 100C ) in association with the thermodynamic
constraints of the Third Law.
Turning our attention now to the g-brass and ε-hcp Zn-rich

phases we might expect these Hume-Rothery phase fields to
constrict to ordered stoichiometric compositions at 0 K or termi-
nate at low temperature eutectoid points. The g-brass phase is a
complex ordered cubic phase (I43m) with 52 atoms in a supercell of
lattice parameter a0 equal to approximately 0.86 nm. The ε-phase is
hcp similar tometallic Zn and possibly ordered at low temperatures
[7,8].

4. Glasses

Glass formation has been part of the discussion of the Third Law
of Thermodynamics and its application to condensed matter for
over 100 years. In fact, Einstein [11,14] called attention to the idea of
“frozen-in” statistical disorder or residual entropy persisting to
T ¼ 0 K in the early twentieth century and mentioned glassy ma-
terials as systems of interest even though the structural nature of
the vitreous state was not well-understood at the time. Simon
[11,14] has emphasized over the years that glasses should not obey
the THIRD LAW because they are non-equilibrium systems
(although certain aspects or sub-systems may be in thermody-
namic equilibrium and behave in accord with the Third Law of
Thermodynamics). Today extensive thermodynamic and statistical
mechanical studies have continued to be pursued to elucidate the
nature of the glass transition particularly to reveal whether a true
thermodynamic phase transition is central to glass formation.
However, an important feature of this change of state is that it
depends on the thermal history of the system; importantly, the
onset of the glassy state at the so-called glass transition tempera-
ture (Tg) depends on the cooling rate, Tg, and is higher the faster the
rate of cooling as well as the residual entropy S0 > 0 carried to
T ¼ 0 K. (The reader is reminded that rate and time are not equi-
librium thermodynamic variables). Here we view the glass transi-
tion as a kinetic arrest of various structural or configurational
degrees of freedom of the material characterized by a spectrum of
relaxation times which are “frozen” as the temperature of the
metastable liquid is lowered at a finite rate. This freezing inhibits
these subsystems from achieving thermodynamic equilibrium;
however, some subsystems e.g the vibrational modes may be able
to remain in equilibrium as T /0 K in accord with the Third Law.
The vibrational subsystem might be described as an Einstein
(Debye) solid allowing CV /0 as T/ 0 K. Regarding the well-
known Kauzmann paradox [45], it is suggested that as the en-
tropy of the metastable liquid approaches intersection with that of
the crystalline state the material essentially becomes a metastable
Einstein (Debye) solid with a thermally inert structural or config-
urational subsystem.

Let us close our discussion of the vitreous state as a non-
equilibrium state by recalling the so-called Szilard principle
asserted by Leo Szilard in 1925 [46] regarding the Third Law of
Thermodynamics and the “frozen-in” entropy produced by the
process of glass formation. Szilard categorically states that any
description of a physical or chemical system formulated in terms of
thermodynamic or statistical mechanical models must be in
accordance with the three laws of thermodynamics and as T/ 0 K
must obey a generalization (or contraction) of the Third Law as
modified to include non-equilibrium aspects manifest in a glass. He
focused attention on the phonon and electronic contributions to
the partition function of any system (liquids, crystalline solids and
glasses) emphasizing in all cases as T/ 0 K, S(T)/ 0 and CP / 0 as
dictated by quantum statistics and in agreement with classical
thermodynamic predictions based on the inaccessibility of 0 K and
the Third Law. This is in agreement with experimental results on
the thermal and electrical properties of glasses in a myriad of



Fig. 11. a) Comparison of CVM and Monte Carlo results when only 1st nn interactions are taken into account. After [5]. b) 1st and 2nd nearest-neighbor interactions are included in
the solution energetics. Clearly the results in 11a are not in accord with the THIRD LAW whereas those in 11b are. After [5].
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Fig. 12. a) The Cu-Ni phase diagram showing complete solid solubility above about 400C but indicating a miscibility gap at lower temperatures. After [43]. b) The Cu-Zn phase
diagram showing extensive primary solid solubility in the Cu-rich region of the diagram. After [43].
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specific systems. Szilard's principle received early support in von
Neumann's book [47] in 1932 (emphasizing quantum mechanical
considerations) and later in K.A. Putilov's [48] classical thermody-
namic formulations in 1971. According to Szilard this generalized
Third Law covers “frozen-in” configurational entropies and
nonequilibrium systems similar to Simon's application of Third Law
considerations to aspects or subsystems which are in equilibrium
as discussed above. For a thorough discussion of glasses and the
Third Law see Ref. [49].

5. Conclusions

The intent of this paper has been to elucidate the content of the
Third Law of Thermodynamics and its role in the application of
thermodynamics to phase equilibria in materials science. As noted
in many discussions the Third Law differs from the FIRST and
SECOND LAWS in that it introduces no new essential thermody-
namic variables such as energy or entropy but importantly cir-
cumscribes the behavior of these state functions relevant to
materials in such contexts as possible and required phase diagram
configurations at low temperatures and consistent theoretical de-
scriptions of alloy phase stability, ordering and phase separation. A
very important contribution to the formulation of the Third Law
was that due to Simon who emphasized over the years that a
thermodynamic system is generally a composite of various thermal
aspects or subsystems (lattice, electron gas, spins, etc.) each of
which can be treated individually in terms of thermodynamic
equilibrium. Some subsystems of a material may readily establish
equilibrium during cooling down to 0 K within a given thermal
schedule while others may not be able to achieve equilibrium at
low temperatures because of their relative thermal relaxation
times. The entropy of the equilibrated subsystems vanishes at
T ¼ 0 K in accord with the Third Law while the constrained sub-
systems carry residual entropy to 0 K emphasizing that the Third
Law only applies to systems or subsystems in thermodynamic
equilibrium. For materials in thermodynamic equilibrium at T¼ 0 K
the system should be comprised of a pure phase, a mixture of pure
phases and/or ordered phases with zero entropy. In early discus-
sions of the Third Law Einstein suggested that a rigorous formu-
lation of a Third Law required contact with the quantum theory of
matter. Planck's statistical interpretation of the entropy using
Boltzmann's result S ¼ kB ln W provided a connection, asserting
that for individual phases at equilibrium at T ¼ 0 K if the ground
state is non-degenerate, S0 ¼ 0. (There is no rigorous theoretical
formulation for this assumption). If S0 ¼ 0 (or a constant), this leads
to the inaccessibility of 0 K in a finite number of cyclic processes.
Finally, what is the message that the Third Law gives us regarding
thermodynamic systems as they approach T ¼ 0 K? One might
conclude that the Third Law indicates that for any assembly of
particles (or quasiparticles) within a material system or subsystem
which interact e even very weakly e the particles will order at
T ¼ 0 K giving rise to a lowest energy ground state with S0 ¼ 0.

For further in depth discussion of various aspects of the Third
Law we suggest that the reader consult the classic text by Callen
[50] and the recently published text by Swendsen [51].
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