Carnegie Mellon University in Qatar

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations.
e Accepting Configuration
e Rejecting Configuration
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 2/30

NONDETERMINISTIC TURING MACHINES

e We defined the state transition of the ordinary TM as
§:QxT—=QxTIx{L R}

e A nondeterministic TM would proceed computation with
multiple next cnfigurations. ¢ for a nondeterministic TM
would be

d:QxT=>P@xT x{L R})
(P(S) is the power set of S.)
e This definition is analogous to NFAs and PDAs.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011

3/30

NONDETERMINISTIC TURING MACHINES

e A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

Deterministic
Computation

Non-Deterministic
Computation

:
:
:
:
:
1

accept or reject

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 4/30

NONDETERMINISTIC TURING MACHINES

e If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.

e What is the power of Nondeterministic TMs?

e Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 5730

NONDETERMINISTIC TURING MACHINES

THEOREM

Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA

e Timeshare a deterministic TM to different branches of the
nondeterministic computation!

e Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.

e Otherwise the TM goes on forever.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 6/30

NONDETERMINISTIC TURING MACHINES

@ Deterministic TM D simulates the Nondeterministic TM N.

e Some of branches of the N’'s computations may be infinite,
hence its computation tree has some infinite branches.

e If D starts its simulation by following an infinite branch, D
may loop forever even though N’s computation may have a
different branch on which it accepts.

e This is a very similar problem to processor scheduling in
operating systems.

e If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

e In order to avoid this unwanted situation, we want D to
execute all of N’s computations concurrently.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 7130

QoW Wann W, ‘___——-' Initial Configuration

Configurations of the
nondeterministic B

computation

Nondeterministic choices

/ available from C4

Configurations of the N W W w e— Initial Configuration
nondeterministic b ?
computation
Nondeterministic choices
available from C4

A rejecting branch —»%

Y

Configurations of the 4 s
et T i

nondeterministic

computation

X

An accepting branch \

e ——————

w, 4 Initial Configuration

Nondeterministic choices
available from C4

w, 4 Initial Configuration

Nondeterministic choices
available from C4

Configurations of the
nondeterministic
computation

A nonterminating branch)
'O

]
!
1]
I
1
]
1
[}
[}
1
1
v

_____ w, ‘.’-—' Initial Configuration

Order of simulation

=D

SIMULATING NONDETERMINISTIC

COMPUTATION

ERR— < Initial Configuration
Wy

Order of simulation

X O 109
v
@ During simulation, D processes the
configurations of N in a breadth-first
fashion.

@ Thus D needs to maintain a queue
of N’s configurations (Remember
queues?)

(LECTURE 14) SLIDES FOR 15-453

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

SPRING 2011 13730

e N is simulated with 2-tape DTM, D
e Note that this is different from the construction in the book!

D
Finite Control
Queue of Configurations
[]
Tape 1 * c1 & c2 * c3 N c4
y
Tape 2

Scratch Tape

D
Finite Control
/\ Queue of Configurations
.
wer (] of |- @ [T] o [-] & |.]
wer [JTTLTTTTPTTETTT
Scratch Tape

e Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
.
wer || aof [« @ [} o |- @ |.]
wer [T TTTPTTETT Tl
Scratch Tape

© D examines the state and the input symbol of the current
configuration (right after the dotted separator)

@ If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 16 /30

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
.
wer || aof [« @ [} o |- @ |.]
wer [T TTTPTTETT Tl
Scratch Tape

@ D copies k copies of the current configuration to the scratch
tape.

@ D then applies one nondeterministic move of N to each
copy.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 17730

How D SIMULATES N

D

Finite Control
/\ Queue of Configurations

wer | af [-[@ [{] @ [-]«[-]

e LTI IITl

Scratch Tape

@ D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
gueue), and then clears the scratch tape.

@ D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

@ D returns to step 1), if there is a next configuration.
Otherwise rejects.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 18730

How D SIMULATES N

e Let m be the maximum number of choices N has for any of
its states.

e Then, after n steps, N can reach at most
14+ m+ m? 4+ ...+ m" configurations (which is at most nm")

e Thus D has to process at most this many configurations to
simulate n steps of N.

e Thus the simulation can take exponentially more time than
the nondeterministic TM.

e Itis not known whether or not this exponential slowdown is
necessary.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 19730

A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

A language is decidable if and only of some nondeterministic
TM decides it.

ENUMERATORS

e Remember we noted that some books used the term
recursively enumerable for Turing-recognizable.

e This term arises from a variant of a TM called an
enumerator.

Finite Control E—

e TM generates strings one by one.
e Everytime the TM wants to add a string to the list, it sends it
to the printer.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 21/30

ENUMERATORS

e The enumerator E starts with a blank input tape.
e If it does not halt, it may print an infinite list of strings.

e The strings can be enumerated in any order; repetitions are
possible.

e The language of the enumerator is the collection of strings it
eventually prints out.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 22/30

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The If-part: If an enumerator E enumerates the language A then
a TM M recognizes A.
M = “On input w
@ Run E. Everytime E outputs a string, compare it with w.
@ If w ever appears in the output of E, accept.”

Clearly M accepts only those strings that appear on E’s list.
L]

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 23/30

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.

The Only-If-part: If a TM M recognizes a language A, we can
construct the following enumerator for A. Assume s;, S, Ss, ... IS
a list of possible strings in X*.

E = “Ignore the input

© Repeat the following for i =1,2,3,...
©@ Run M for j steps on each input s1, S5, S3, . . . S;.
@ If any computations accept, print out corresponding s;.”

If M accepts a particular string, it will appear on the list
generated by E (in fact infinitely many times)

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 24/30

THE DEFINITION OF ALGORITHM - HISTORY

e in 1900, Hilbert posed the following problem:

“Given a polynomial of several variables with
integer coefficients, does it have an integer root —
an assignment of integers to variables, that make
the polynomial evaluate to 0”

e For example, 6x3yz2 + 3xy? — x® — 10 has a root at
x=95y=382z=0.

e Hilbert explicitly asked that an algorithm/procedure to be
“devised”. He assumed it existed; somebody needed to find
it!

e 70 years later it was shown that no algorithm exists.

e The intuitive notion of an algorithm may be adequate for
giving algorithms for certain tasks, but was useless for
showing no algorithm exists for a particular task.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 25/30

THE DEFINITION OF ALGORITHM - HISTORY

e In early 20" century, there was no formal definition of an
algorithm.

e In 1936, Alonzo Church and Alan Turing came up with
formalisms to define algorithms. These were shown to be
equivalent, leading to the

CHURCH-TURING THESIS
Intutitive notion of algorithms = Turing Machine Algorithms

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 26/30

THE DEFINITION OF AN ALGORITHM

e Let D = {p| pis a polynomial with integral roots}
e Hilbert’s 10" problem in TM terminology is “Is D
decidable?” (No!)
However D is Turing-recognizable!
Consider a simpler version
Dy = {p | pis a polynomial over x with integral roots}
e M; = “The input is polynomial p over x.
@ Evaluate p with x successively setto 0, 1,-1,2,-2,3,-3,
© If at any point, p evaluates to 0, accept”
D; is actually decidable since only a finite number of x
values need to be tested (math!)

e D is also recognizable: just try systematically all integer
combinations for all variables.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 271730

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e For the rest of the course we will have a rather standard
way of describing TMs and their inputs.

e The input to TMs have to be strings.

e Every object O that enters a computation will be
represented with an string (O), encoding the object.

e For example if G is a 4 node undirected graph with 4 edges
(O)=(1,2,3,4)((1,2),(2,3),(3,1),(1,4))
e Then we can define problems over graphs,e.g., as:

A = {(G) | Gis a connected undirected graph}

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 28/30

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e A TM for this problem can be given as:
e M ="On input (G), the encoding of a graph G:
@ Select the first node of G and mark it.
© Repeat 3) until no new nodes are marked
© Foreach node in G, mark it, if there is edge attaching it to
an already marked node.
@ Scan all the nodes in G. If all are marked, the accept, else
reject’

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 29/30

OTHER OBJECT ENCODINGS

e DFAs: Represent as a graph with 4 components, qo, F, 6 as
a list of labeled edges.

e TMs: Represent as a string encoding ¢ with blocks of 5
components, e.g., g;, &, g, b, L. Assume that q is always
the start state and g, is the final state.

e Individual symbols can even be encoded using only two
symbols e.g. just {0, 1}.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 30/30

