

Customizing Pattern-Based Tessellation for
NURBS Surface Reconstruction with Irregular Boundary Conditions

DISSERTATION

Submitted for consideration in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computational Design

by

Tsung-Hsien Wang

School of Architecture

Carnegie Mellon University

THESIS COMMITTEE

Professor Ramesh Krishnamurti
School of Architecture

Carnegie Mellon University

Professor Kenji Shimada
Department of Mechanical Engineering

Carnegie Mellon University

Professor John Folan
School of Architecture

Carnegie Mellon University

Professor Robert Woodbury
School of Interactive Arts and Technology

Simon Fraser University
	

	

April, 2012

I hereby declare that I am the author of this dissertation

I authorize Carnegie Mellon University to lend this dissertation to other institutions or individuals for

the purpose of scholarly research.

I further authorize Carnegie Mellon University to reproduce this dissertation by photocopy or other

means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

Tsung-Hsien Wang

Copyright © 2012 Tsung-Hsien Wang

All rights reserved

	

	

	

	

	
 	

	

Carnegie Mellon University

College of Fine Arts
School of Architecture

Dissertation
	

Submitted in Partial Fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Title: Customizing Pattern-Based Tessellation for
NURBS Surface Reconstruction with Irregular Boundary Conditions

Presented By: Tsung-Hsien Wang

Accepted By:

Dan J. Martin

Dean Date

Stephen R. Lee

Head Date

Ramesh Krishnamurti

Advisor Date

Kenji Shimada Co-Advisor Date

Carnegie Mellon University

College of Fine Arts
School of Architecture

Dissertation
	

Submitted in Partial Fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Title: Customizing Pattern-Based Tessellation for
NURBS Surface Reconstruction with Irregular Boundary Conditions

Presented By: Tsung-Hsien Wang

Accepted By:

Ramesh Krishnamurti

Advisor Date

Kenji Shimada

Advisor Date

John Folan

Advisor Date

Robert Woodbury Advisor Date

 x

ABSTRACT

A growing trend in contemporary architectural practice, pioneered by such avant-garde architects as

Frank Gehry, Zaha Hadid and others, exploits NURBS (Non-Uniform Rational Basis Spline) surfaces

to design and model intricate geometries for projects which otherwise would be impossible to realize.

In doing so, they have liberally borrowed digital fabrication techniques developed in the automobile

and aerospace industries (Kolevaric 2005a, 2008; Pottmann 2008). A NURBS surface is a

mathematical model for freeform shapes. To manifest a NURBS surface, a discrete model, namely,

mesh, is utilized. Transforming a NURBS surface into a mesh appropriate for application is

computationally intensive, and generally, it is not an easy task for architects or designers who have no

formal geometry training.

In order to design, model, and, subsequently, fabricate intriguing, sometimes intricate, freeform

shapes, this research looks at the surface tessellation problem, which is an extension of the problem of

meshing a NURBS surface, with an added consideration of incorporating constructible building

components. There are close relationships and analogies between the elements of a mesh and the

components of a freeform design, e.g., face to panel, edge to structural frame, etc.

Initially, features of a NURBS surface and contemporary tessellation methods are examined.

Mathematically, a NURBS surface is regulated by a set of control points and edges. The control

points are used mainly to interpolate a continuous shape using a higher order equation, in most cases,

usually cubic. The edges delineate the appearance of the freeform shape. For a surface, edges (also

called boundaries) indicate where the surface analysis starts and where it ends, and thus, plays a

significant role in the meshing process.

Two kinds of boundaries are examined in this research. The first are global boundaries, which

form the overall appearance, e.g. exterior edges, or interior trimming edges. The second kind is a

 ii

local boundary, which specifies how a discrete element is formed—namely, the pattern of a face, e.g.

triangle or quadrilateral. By looking at given surface boundary conditions and tessellation patterns,

this research presents an algorithmic approach to pattern-based surface tessellation and develops

strategies to resolve issues that stem from the juxtaposition of computational geometry and freeform

architectural design.

The contributions includes the technical implementation of boundary-driven mesh generation,

which demonstrates the potential of utilizing featured boundaries for customizable polygon-based

tessellation in comparison to conventional iso-parametric subdivision. This is described through

examples by extending the optimized mesh network for various pattern generations. In addition,

pedagogical implications are exemplified by solving the geometric constraints for surface tessellation

within the parametric modeling paradigm. These contributions are expected to support future

sustainable development in the field of freeform architectural design.

Keywords: Pattern-based surface tessellations, irregular boundary conditions, meshing

ACKNOWLEDGEMENTS

I would like to thank all my committee members for their immeasurable support, mentoring and

patience over these years at Carnegie Mellon University. Professor Krishnamurti, my thesis advisor,

for his unconditional support throughout the work on this thesis and my study at Carnegie Mellon

University. Professor Shimada, my thesis co-advisor, for his encouragement and supervision

especially on meshing. Professor Folan and Professor Woodbury, for their insightful comments and

discussions. I am truly grateful to all of your support and help that made this work possible.

In addition, I want to thank all my friends; special thanks to Brubaker family, Brian, Yahtyng,

Kieth and Ellen, for giving me a helping hand while staying in Pittsburgh. I would also like to thank

my colleagues, Tony for his encouragement; Tajin and her family for her enormous help. Thank you

all for enriching my stay with joyful memories at Carnegie Mellon University.

Most of all, I would like to thank all my family for their love, encouragement and support. My

hearty gratitude goes to my grand-mom, parent, brother, Eddie, and sister, Winnie, who have been

there for me throughout this journey.

 iv

TABLE OF CONTENTS

	

ABSTRACT .. I

ACKNOWLEDGEMENTS .……………………………………………………………..……………….. III

LIST OF FIGURES .…….………………………………………………………………..……………….. IX

	
 INTRODUCTION ... 1	
 CHAPTER 1

1.1	
 MOTIVATION .. 2	

1.1.1	
 MESHING SURFACES .. 3	

1.1.2	
 NURBS REPRESENTATION ... 4	

1.1.3	
 NON-REGULAR BOUNDARY CONDITIONS ... 7	

1.1.4	
 PATTERN-BASED TESSELLATION ... 8	

1.2	
 PROBLEM STATEMENT .. 8	

1.2.1	
 PARAMETRIC TESSELLATION SCHEMES FOR SURFACE PANELIZATION ... 9	

1.2.2	
 BOUNDARY-DRIVEN OPTIMIZATION .. 11	

1.3	
 RESEARCH OBJECTIVES ... 13	

1.3.1	
 A PARAMETRIC FRAMEWORK FOR TESSELLATING SURFACES WITH POLYGONAL PATTERNS .. 13	

1.3.2	
 AUTOMATED MESH GENERATION WITH IRREGULAR BOUNDARY CONDITIONS ... 14	

1.3.3	
 AN INTEGRATED CONSTRUCTIVE PROCESS FOR DESIGN EXPLORATION- USER-CONTROLLABLE MANIPULATION 14	

1.4	
 STRUCTURE OF THE DISSERTATION ... 15	

	
 RESEARCH BACKGROUND: PARAMETRIC DESIGN PROCESS, MESHING, CHAPTER 2
AND DIGITAL FABRICATION ... 17	

2.1	
 PARAMETRIC DESIGN PROCESS .. 18	

2.1.1	
 PARAMETERIZING CONSTRAINTS FOR DESIGN COMPUTATION ... 19	

2.1.2	
 P-GRAPHS – AN ACYCLIC DIRECTED GRAPH STRUCTURE .. 21	

2.1.3	
 COMPUTER-AIDED DESIGN TOOLS FOR PARAMETRIC MODELING .. 23	

2.1.4	
 PARAMETRIC MODULES .. 24	

 vi

2.2	
 MESH-SURFACE RECONSTRUCTION ... 30	

2.2.1	
 TRIANGULATION WITH PLANAR FACES .. 30	

2.2.2	
 QUADRANGULATIONS .. 33	

2.2.3	
 SUBDIVISION ... 36	

2.2.4	
 PLANAR QUADRILATERAL MESH .. 37	

2.2.5	
 DEVELOPABLE SURFACES .. 40	

2.2.6	
 BUBBLE MESH .. 40	

2.3	
 FABRICATING ARCHITECTURAL GEOMETRY .. 43	

2.3.1	
 FLAT POLYGONAL PANELS ... 45	

2.3.2	
 SINGLE-CURVED PANELS ... 47	

2.3.3	
 DOUBLE-CURVED PANELS ... 49	

2.4	
 SUMMARY ... 53	

	
 PARAMETRIC PATTERN GENERATION ... 55	
 CHAPTER 3

3.1	
 ARCHIMEDEAN PATTERNS .. 58	

3.1.1	
 DATA STRUCTURE .. 61	

3.1.2	
 TRUNCATION OPERATOR .. 64	

3.1.3	
 INSERTION OPERATOR ... 67	

3.1.4	
 ALTERNATION OPERATOR ... 70	

3.2	
 INTERWOVEN PATTERN .. 74	

3.2.1	
 TRIMMING-BASED PATTERNS .. 74	

3.2.2	
 SELF-INTERLOCKING PATTERNS ... 78	

	
 BOUNDARY-DRIVEN TESSELLATION .. 83	
 CHAPTER 4

4.1	
 INTERPOLATING BOUNDARY-DRIVEN TENSOR ... 85	

4.2	
 TENSOR FIELD INITIATION .. 87	

4.3	
 BOUNDARY-DRIVEN CURVE GENERATION ... 90	

4.4	
 MESHING WITH THE BOUNDARY-DRIVEN CURVE NETWORK .. 96	

4.4.1	
 MESH TOPOLOGY SOLVER .. 96	

4.4.2	
 MESH REFINEMENT ... 98	

REMOVING SKEWED TRIANGLES .. 98	

MESH QUADRANGULATION ... 99	

MESH SMOOTHING ... 100	

4.5	
 MESH ANALYSIS ... 104	

	
 APPLICATION: PATTERN-BASED TESSELLATION ... 109	
 CHAPTER 5

5.1	
 APPLICATION PLATFORM ... 110	

5.2	
 THE TARGET SURFACE: WEST FAÇADE OF ZAHA HADID’S NEXT GENE MUSEUM 113	

5.3	
 FROM SINGLE TO MULTIPLE BOUNDARY CONSIDERATION .. 116	

5.4	
 PATTERN GENERATION BY USING TOPOLOGICAL OPERATORS .. 120	

5.4.1	
 TRUNCATION OPERATOR ... 121	

5.4.2	
 INSERTION OPERATOR ... 124	

5.4.3	
 ALTERNATION OPERATOR .. 126	

5.4.4	
 AN APPLICATION FROM THE ARCHIMEDEAN PATTERN .. 127	

vii

5.5	
 INTERWOVEN PATTERN GENERATION .. 131	

	
 CONCLUSION AND FUTURE WORK .. 139	
 CHAPTER 6

6.1	
 SUMMERY: BD-DRIVEN TESSELLATION .. 140	

6.2	
 TECHNICAL CONTRIBUTIONS: MESH AUTOMATION .. 141	

6.3	
 PEDAGOGICAL CONTRIBUTIONS: PARAMETRIC DESIGN PROCESS ... 142	

6.4	
 CURRENT LIMITATIONS ... 144	

6.5	
 FUTURE DIRECTIONS .. 146	

BIBLIOGRAPHY .. 147

	
 	

 viii

	

	

LIST OF FIGURES

FIGURE	
 1-­‐1	
 THE	
 ENTIRE	
 PROCESS	
 WHEN	
 MANIFESTING	
 FREEFORM	
 SURFACES	
 ...	
 2	

FIGURE	
 1-­‐2	
 (LEFT)	
 FACADE	
 PANELS	
 (MIDDLE)	
 SURFACE	
 STRUCTURAL	
 FRAMES	
 (RIGHT)	
 STRUCTURAL	
 JOINTS	
 	
 IMAGES	

AFTER	
 POTTMANN	
 ET.	
 AL.	
 (2007B)	
 ..	
 3	

FIGURE	
 1-­‐3	
 NURBS	
 SURFACE	
 CONSTRUCTION	
 WITH	
 CONTROL	
 POINTS	
 ...	
 6	

FIGURE	
 1-­‐4	
 MAPPING	
 FROM	
 THE	
 TWO-­‐DIMENSIONAL	
 UV	
 COORDINATE	
 SYSTEM	
 ONTO	
 A	
 NURBS	
 SURFACE	
 	
 SUB-­‐SURFACE	

PATCHES	
 IN	
 THE	
 INTERVALS	
 [U4,	
 V6)	
 AND	
 [V2,	
 V4)	
 ARE	
 SHOWN	
 COLORED	
 RED	
 ...	
 6	

FIGURE	
 1-­‐5	
 NEW	
 TRIMMED	
 BOUNDARIES	
 E0,	
 E1,	
 E2,	
 E3	
 ..	
 7	

FIGURE	
 1-­‐6	
 THREE	
 POSSIBLE	
 TYPES	
 OF	
 UV-­‐BASED	
 SEGMENTATION	
 	
 DIVISION	
 BY	
 (LEFT)	
 UNIFORM	
 ISOPARAMETRIC	

INTERVALS;	
 (MIDDLE)	
 OPTIMIZING	
 FACE	
 SIZE	
 VIA	
 EQUI-­‐DIMENSIONAL	
 INTERVALS;	
 AND	
 (RIGHT)	
 CUSTOMIZED	
 ISO-­‐
PARAMETRIC	
 INTERVALS	
 ...	
 10	

FIGURE	
 1-­‐7	
 PROCEDURAL	
 MODELING	
 FOR	
 SURFACE	
 RECONSTRUCTION	
 (WANG,	
 2009)	
 ...	
 11	

FIGURE	
 1-­‐8	
 WEST	
 ELEVATION	
 FOR	
 TRIMMED	
 BOUNDARIES	
 ...	
 13	

IMAGE	
 ADAPTED	
 AND	
 MODIFIED	
 BY	
 THE	
 AUTHOR	
 FROM	
 AN	
 IMAGE	
 OF	
 THE	
 NEXT-­‐GENE	
 MUSEUM	
 BY	
 ZAHA	
 HADID	
 (2008)	
 	

	
 ...	
 13	

	

FIGURE	
 2-­‐1	
 SKETCHPAD:	
 A	
 MAN-­‐MACHINE	
 GRAPHICAL	
 COMMUNICATION	
 SYSTEM	
 (SUTHERLAND,	
 1963)	
 IMAGE	

SOURCE:	
 HTTP://WWW.CADAZZ.COM/CAD-­‐SOFTWARE-­‐SKETCHPAD.HTM	
 ..	
 19	

FIGURE	
 2-­‐2	
 (LEFT)	
 ORIGINAL	
 COMPOSITION	
 (RIGHT)	
 RESTRUCTURED	
 CONFIGURATION	
 BY	
 RELATIONAL	
 CONSTRAINT	
 	

IMAGE	
 AFTER	
 KOLAREVIC	
 (1997)	
 ..	
 21	

FIGURE	
 2-­‐3	
 (A)	
 VALID	
 AND	
 (B)	
 INVALID	
 P-­‐GRAPHS	
 ..	
 22	

FIGURE	
 2-­‐4	
 A	
 PARAMETRIC	
 MODULE	
 FOR	
 CONSTRUCTING	
 AN	
 INSCRIBED	
 POLYGON	
 (LEFT)	
 TRANSFORMATION	
 RULE	
 	

(RIGHT)	
 BREAKDOWN	
 OF	
 REQUIRED	
 OPERATIONS:	
 ROTATION	
 AND	
 INSERTION	
 ..	
 25	

FIGURE	
 2-­‐5	
 IMPLEMENTED	
 GH	
 COMPONENTS	
 FOR	
 FIGURE	
 2-­‐4	
 ...	
 26	

FIGURE	
 2-­‐6	
 REPRESENTATIVE	
 P-­‐GRAPH	
 OF	
 THE	
 PARAMETRIC	
 MODULE	
 IN	
 FIGURE	
 2-­‐4	
 ...	
 26	

FIGURE	
 2-­‐7	
 (TOP-­‐LEFT)	
 INVALID	
 P-­‐GRAPH	
 	
 (TOP-­‐RIGHT)	
 VALID	
 P-­‐GRAPH	
 (BOTTOM)	
 GH	
 COMPONENTS	
 FOR	
 THE	

RECURSION	
 MODULE	
 ...	
 27	

FIGURE	
 2-­‐8	
 THE	
 PROGRAMMING	
 EDITOR	
 IN	
 GH	
 ..	
 28	

FIGURE	
 2-­‐9	
 PROPAGATING	
 RESULTS	
 FROM	
 THE	
 RECURSION	
 MODULE	
 ..	
 29	

FIGURE	
 2-­‐10	
 CRITERION	
 FOR	
 DELAUNAY	
 TRIANGULATION	
 (DELAUNAY,	
 1943)	
 (LEFT)	
 INVALID	
 DELAUNAY	

TRIANGULATION	
 EDGE	
 (COLORED	
 SHADED	
 RED	
 SOLID	
 LINE)	
 (RIGHT)	
 VALID	
 DELAUNAY	
 TRIANGULATION	
 	
 31	

FIGURE	
 2-­‐11	
 A	
 CONSTRAINED	
 DELAUNAY	
 TRIANGULATION	
 WITH	
 A	
 NON-­‐DELAUNAY	
 EDGE,	
 E	
 IMAGE	
 AFTER	

FLEISCHMANN	
 (1999:	
 HTTP://WWW.IUE.TUWIEN.AC.AT/PHD/FLEISCHMANN/NODE52.HTML)	
 	
 32	

FIGURE	
 2-­‐12	
 (LEFT)	
 DT-­‐DELAUNAY	
 TRIANGULATION	
 	
 (RIGHT)	
 VORONOI	
 DIAGRAM	
 ...	
 32	

FIGURE	
 2-­‐13	
 CONSTRUCTING	
 VORONOI	
 DIAGRAM	
 BY	
 INTERSECTING	
 BISECTOR	
 LINES	
 OF	
 DELAUNAY	
 EDGES	
 	
 33	

FIGURE	
 2-­‐14	
 (LEFT)	
 TARGET	
 SURFACE;	
 AND	
 (RIGHT)	
 SURFACE	
 QUADRANGULATION	
 ...	
 33	

FIGURE	
 2-­‐15	
 WARPING—DISTORTION	
 OF	
 THE	
 QUAD	
 FACE	
 ...	
 34	

FIGURE	
 2-­‐16	
 MESH	
 ANALYSIS	
 BY	
 GAUSSIAN	
 CURVATURE	
 AND	
 MEAN	
 CURVATURE	
 ..	
 35	

 x

FIGURE	
 2-­‐17	
 MESH	
 ANALYSIS	
 BY	
 MAX	
 PRINCIPAL	
 CURVATURE	
 AND	
 FACE	
 WARPING	
 ..	
 35	

FIGURE	
 2-­‐18	
 MESH	
 FLATNESS	
 ANALYSIS	
 BY	
 INCREASING	
 THE	
 THRESHOLD	
 OF	
 FACE	
 WARPING,	
 VARIOUS	
 NUMBERS	
 OF	

“FLAT”	
 FACES	
 ARE	
 FILTERED	
 ..	
 36	

FIGURE	
 2-­‐19	
 MESH	
 REFINEMENT	
 LOOP	
 SUBDIVISION	
 (LOOP,	
 1987)	
 AND	
 CATMULL-­‐CLARK	
 SUBDIVISION	
 (CATMULL	

AND	
 CLARK,	
 1978)	
 ...	
 37	

FIGURE	
 2-­‐20	
 (LEFT)	
 PRINCIPAL	
 CURVATURE	
 LINES	
 OF	
 A	
 SADDLE	
 SURFACE	
 	
 (RIGHT)	
 COMPARISON	
 OF	
 PRINCIPAL	

CURVATURE	
 LINES	
 AND	
 UV	
 CURVES	
 ..	
 38	

FIGURE	
 2-­‐21	
 THE	
 GENERATIVE	
 PROCESS	
 OF	
 PQ	
 MESHES	
 	
 BY	
 ITERATIVE	
 APPLICATIONS	
 OF	
 CATMULL-­‐CLARK	
 SUBDIVISION	

AND	
 PQ	
 PERTURBATION.	
 	
 IMAGE	
 AFTER	
 LIU	
 (2006)	
 ..	
 39	

FIGURE	
 2-­‐22	
 LARGE	
 VARIATIONS	
 OF	
 CELL	
 SIZES	
 AND	
 DIRECTIONS	
 FROM	
 THE	
 NETWORK	
 OF	
 PRINCIPAL	
 CURVATURE	
 LINES	

ARE	
 NOT	
 SUITABLE	
 AS	
 THE	
 BASIS	
 FOR	
 THE	
 LAYOUT	
 OF	
 A	
 PQ	
 MESH.	
 IMAGE	
 FROM	
 ARCHITECTURE	
 GEOMETRY	

(POTTMANN,	
 ET.	
 AL,	
 2007A)	
 ..	
 39	

FIGURE	
 2-­‐23	
 BASIC	
 KINDS	
 OF	
 RULED	
 SURFACE	
 ..	
 40	

FIGURE	
 2-­‐24	
 SURFACE	
 TRIANGULATION	
 VIA	
 BUBBLE	
 PACKING.	
 	
 IMAGE	
 FROM	
 SHIMADA	
 AND	
 GROSS	
 (1998)	
 	
 41	

FIGURE	
 2-­‐25	
 MESHING	
 CONTROL	
 OF	
 SIZE,	
 ANISOTROPY	
 AND	
 DIRECTIONALITY	
 BY	
 2X2	
 TENSOR	
 FIELD	
 FOR	
 A	
 TWO-­‐

DIMENSIONAL	
 MESHING	
 PROBLEM.	
 	
 IMAGE	
 AFTER	
 VISWANATH	
 ET	
 AL.	
 (2000)	
 ..	
 42	

FIGURE	
 2-­‐26	
 ORGANIC	
 TEXTURE	
 GENERATION	
 FOR	
 EACH	
 EXAMPLE:	
 (TOP-­‐LEFT)	
 INPUT	
 BOUNDARIES;	
 (BOTTOM-­‐LEFT)	
 	

PSUEDO-­‐VORONOI	
 POLYGONS;	
 	
 AND	
 (RIGHT)	
 GENERATED	
 TEXTURE.	
 IMAGE	
 FROM	
 ITOH	
 ET	
 AL.	
 (2003)	
 	
 43	

FIGURE	
 2-­‐27	
 A.	
 ELEPHANT	
 HOUSE	
 CANOPY	
 ;	
 	
 B.	
 LONDON	
 CITY	
 HALL	
 BY	
 NORMAL	
 FOSTER	
 AND	
 PARTNERS	
 	
 44	

FIGURE	
 2-­‐28	
 CNC	
 CUTTING	
 MACHINE	
 WITH	
 THREE	
 TYPES	
 OF	
 CUTTING	
 TECHNIQUES	
 	
 (TOP-­‐LEFT)	
 OXY-­‐FUEL	
 CUTTING	

(TOP-­‐MIDDLE)	
 PLASMA	
 CUTTING	
 (BOTTOM-­‐RIGHT)	
 LASER	
 CUTTING	
 	
 IMAGE	
 FROM	
 SCHODEK	
 ET	
 AL.	
 (2004:	
 PP.	
 264-­‐
5)	
 	
 ...	
 46	

FIGURE	
 2-­‐29	
 BMW	
 BELT—A	
 DOUBLE	
 CONE	
 SURFACE,	
 MUNICH,	
 GERMANY	
 ..	
 47	

FIGURE	
 2-­‐30	
 PROFILE	
 CUTTING	
 ON	
 A	
 SHEET	
 STEEL	
 FOR	
 STRUCTURE	
 FRAME	
 CONSTRUCTION	
 	
 IMAGE	
 FROM	
 SCHODEK	
 ET	

AL.	
 (2004:	
 PP.	
 75)	
 ..	
 47	

FIGURE	
 2-­‐31	
 DIAGRAM	
 OF	
 A	
 THREE-­‐ROLL	
 MACHINE	
 BENDING	
 SHEET	
 METAL	
 OR	
 PLATE	
 	
 IMAGE	
 FROM	
 SCHODEK	
 ET	
 AL.	

(2004:	
 PP.	
 244)	
 ..	
 48	

FIGURE	
 2-­‐32	
 SINGLE-­‐CURVED	
 STRIPS	
 WITH	
 STRAIGHT	
 STRUCTURE	
 FRAMES	
 IMAGE	
 AFTER	
 POTTMANN	
 (2010)	
 	
 48	

FIGURE	
 2-­‐33	
 (LEFT)	
 DISNEY	
 CONCERT	
 HALL	
 BY	
 FRANK	
 GEHRY	
 (RIGHT)	
 CLOSE	
 VIEW	
 OF	
 THE	
 STEEL	
 PANELS	
 IMAGE	

SOURCE:	
 HTTP://EN.WIKIPEDIA.ORG/WIKI/WALT_DISNEY_CONCERT_HALL	
 ...	
 49	

FIGURE	
 2-­‐34	
 A	
 FIVE-­‐AXIS	
 CNC	
 ROUTER	
 ILLUSTRATED	
 WITH	
 MAJOR	
 AXES	
 OF	
 MOVEMENT	
 	
 IMAGE	
 AFTER	
 SCHODEK	
 ET	
 AL.	

(2004:	
 PP.	
 242)	
 ..	
 50	

FIGURE	
 2-­‐35	
 COMPLEX	
 SHAPED	
 PANEL	
 CONSTRUCTION	
 BY	
 CNC	
 MILLING	
 (LEFT	
 &	
 MIDDLE)	
 MILLED	
 SURFACE	
 PANELS;	

AND	
 (RIGHT)	
 FAÇADE	
 MOCK-­‐UP	
 WITH	
 SUPPORTING	
 STEEL	
 RIBS	
 	
 IMAGE	
 AFTER	
 SCHODEK	
 ET	
 AL.	
 (2004:	
 PP.	
 62)	
 	
 50	

FIGURE	
 2-­‐36	
 DIAGRAM	
 OF	
 CONSTRUCTING	
 THIN-­‐SHELL	
 SURFACE	
 BY	
 USING	
 LAID-­‐UP	
 MATERIALS	
 (LEFT)	
 POSITIVE	
 CNC-­‐

CUT	
 FORM;	
 AND	
 (RIGHT)	
 CLAMPED	
 POSITIVE	
 AND	
 NEGATIVE	
 FORMS	
 IMAGE	
 AFTER	
 SCHODEK	
 ET	
 AL.	
 (2004:	
 PP.307)	
 .	

	
 	
 ...	
 51	

FIGURE	
 2-­‐37	
 (LEFT)	
 MOLD	
 MILLING	
 	
 	
 (RIGHT)	
 THERMOFORMING	
 ACRYLIC	
 SHEETS	
 IMAGE	
 AFTER	
 SCHODEK	
 ET	
 AL.	

(2004:	
 PP.	
 72)	
 ..	
 52	

FIGURE	
 2-­‐38	
 (LEFT)	
 CNC-­‐MILLED	
 FOAM	
 MOLD	
 	
 (RIGHT)	
 CONCRETE	
 CASTING	
 IMAGE	
 AFTER	
 SCHODEK	
 ET	
 AL.	
 (2004:	

PP.	
 334)	
 	
 ...	
 52	

FIGURE	
 2-­‐39	
 (LEFT)	
 INNSBRUCK	
 RAILWAY	
 STATION	
 BY	
 ZAHAD	
 HADID	
 	
 (RIGHT)	
 KUNSTHAUS	
 GRAZ	
 BY	
 PETER	
 COOK	

AND	
 COLIN	
 FOURNIER	
 ...	
 53	

	

FIGURE	
 3-­‐1	
 UV-­‐BASED	
 SEGMENTATION	
 AND	
 QUAD-­‐TRIANGLE	
 CONVERSION	
 	
 (LEFT)	
 UNIFORM	
 UV	
 SEGMENTATION	
 	

(MIDDLE)	
 CONVERSION	
 FROM	
 QUADS	
 TO	
 TRIANGLES-­‐TYPE	
 01	
 RIGHT)	
 CONVERSION	
 FROM	
 QUADS	
 TO	
 TRIANGLES-­‐
TYPE	
 02	
 	
 ..	
 56	

FIGURE	
 3-­‐2	
 DIAGRID	
 PATTERN	
 WITH	
 QUAD-­‐TRIANGLE	
 CONVERSION	
 	
 (LEFT)	
 QUADRILATERAL	
 SEGMENTATION	
 OF	
 THE	

DIAGRID	
 PATTERN	
 (MIDDLE)	
 TYPE_01	
 BY	
 A	
 HORIZONTAL	
 SPLIT	
 	
 (RIGHT)	
 TYPE_02	
 BY	
 A	
 VERTICAL	
 SPLIT	
 	
 56	

FIGURE	
 3-­‐3	
 ITERATIVE	
 SUBDIVISION	
 OF	
 A	
 SURFACE	
 (LEFT)	
 SURFACE	
 PRODUCED	
 FROM	
 CUSTOMIZED	
 INTERVALS	
 	

(MIDDLE)	
 CONVERSION	
 FROM	
 QUADRILATERALS	
 TO	
 TRIANGLES	
 	
 (RIGHT)	
 CONVERSION	
 FROM	
 TRIANGLES	
 TO	

SMALLER	
 QUADRILATERALS	
 ..	
 57	

FIGURE	
 3-­‐4	
 THE	
 THREE	
 REGULAR	
 ARCHIMEDEAN	
 TILINGS	
 IN	
 THE	
 PLANE	
 ..	
 58	

xi

FIGURE	
 3-­‐5	
 THE	
 EIGHT	
 SEMI-­‐REGULAR	
 ARCHIMEDEAN	
 PLANAR	
 TILINGS	
 IN	
 WHICH	
 	
 THE	
 SNUB	
 HEXGAONAL	
 TILING	
 IS	

SHOWN	
 AS	
 A	
 PAIR	
 OF	
 ENANTIOMORPHS	
 ..	
 59	

FIGURE	
 3-­‐6	
 INPUT	
 SURFACE	
 FOR	
 ARCHIMEDEAN	
 TESSELLATION	
 ..	
 61	

FIGURE	
 3-­‐7	
 THE	
 REGULAR	
 ARCHIMEDEAN	
 PATTERNS	
 (LEFT)	
 TRIANGULAR	
 PATTERN	
 	
 (MIDDLE)	
 QUADRILATERAL	

PATTERN	
 	
 (RIGHT)	
 HEXAGONAL	
 PATTERN	
 ..	
 61	

FIGURE	
 3-­‐8	
 CONNECTIVITY	
 BETWEEN	
 VERTICES,	
 EDGES,	
 AND	
 FACES	
 ...	
 62	

FIGURE	
 3-­‐9	
 SORTED	
 EDGES	
 AND	
 FACES	
 ABOUT	
 THE	
 VERTEX	
 NORMAL	
 	
 V0,	
 V2,	
 V4,	
 V6,	
 V8,	
 …,	
 VN	
 ARE	
 SORTED	
 IN	
 COUNTER-­‐

CLOCKWISE	
 ORDER	
 AROUND	
 VT	
 ABOUT	
 THE	
 VERTEX	
 NORMAL,	
 SHOWN	
 COLORED	
 SHADED	
 RED.	
 LIKEWISE,	
 E0,	
 E1,	
 E2,	

E3,	
 E4,	
 E5	
 AT	
 VT	
 ARE	
 SORTED	
 IN	
 THE	
 SAME	
 ORDER	
 ..	
 63	

FIGURE	
 3-­‐10	
 TRUNCATION	
 OPERATION	
 ON	
 A	
 HEXAGONAL	
 PATTERN	
 	
 (LEFT)	
 ORIGINAL	
 63	
 PATTERN	
 (MIDDLE)	
 VERTEX	

TRUNCATION	
 BY	
 INSERTING	
 TRUNCATION	
 POINTS	
 ON	
 CONNECTED	
 EDGES	
 	
 (RIGHT)	
 FACE	
 REPLACEMENT	
 BY	

CONNECTING	
 TRUNCATION	
 POINTS	
 ON	
 BOUNDARY	
 EDGES	
 ...	
 64	

FIGURE	
 3-­‐11	
 TRUNCATION	
 OPERATION	
 ON	
 A	
 SQUARE	
 TILING	
 PATTERN	
 	
 (LEFT)	
 ORIGINAL	
 44	
 PATTERN	
 	
 (MIDDLE)	

VERTEX	
 TRUNCATION	
 BY	
 INSERTING	
 TRUNCATION	
 POINTS	
 ON	
 CONNECTED	
 EDGES	
 	
 (RIGHT)	
 FACE	
 REPLACEMENT	
 BY	

CONNECTING	
 TRUNCATION	
 POINTS	
 ON	
 BOUNDARY	
 EDGES	
 ...	
 65	

FIGURE	
 3-­‐12	
 SEMI-­‐REGULAR	
 PATTERNS	
 DERIVED	
 BY	
 THE	
 TRUNCATION	
 OPERATION	
 FROM	
 63	
 AND	
 44	
 PATTERNS	
 (LEFT)	

TRUNCATED	
 HEXAGONAL	
 PATTERN	
 (3.122)	
 BY	
 SETTING	
 T	
 =	
 1/3	
 FROM	
 A	
 63	
 PATTERN	
 	
 (MIDDLE)	
 TRIHEXAGONAL	

PATTERN	
 (3.6.3.6)	
 BY	
 SETTING	
 T	
 =	
 1/2	
 FROM	
 A	
 63	
 PATTERN	
 (RIGHT)	
 TRUNCATED	
 SQUARE	
 PATTERN	
 (4.82)	
 BY	

SETTING	
 T	
 =	
 1/3	
 FROM	
 A	
 44	
 PATTERN	
 ..	
 65	

FIGURE	
 3-­‐13	
 INSERTION	
 STEP	
 1:	
 EDGE	
 INSERTION	
 ..	
 68	

FIGURE	
 3-­‐14	
 FACE	
 AND	
 VERTEX	
 REPLACEMENT	
 	
 (LEFT)	
 STEP	
 2:	
 SUB-­‐FACE	
 CREATION	
 	
 (RIGHT)	
 STEP	
 3:	
 VERTEX	
 FACE	

REPLACEMENT	
 ...	
 68	

FIGURE	
 3-­‐15	
 SEMI-­‐REGULAR	
 PATTERN	
 BY	
 THE	
 SCALED-­‐INSERTION	
 OPERATOR	
 (LEFT)	
 TRUNCATED	
 TRIHEXAGONAL	

PATTERN	
 (4.6.12)	
 (RIGHT)	
 RHOMBI-­‐TRIHEXAGONAL	
 PATTERN	
 (3.4.6.4)	
 ..	
 69	

FIGURE	
 3-­‐16	
 ALTERNATION	
 OPERATION:	
 TRUNCATION	
 ..	
 71	

FIGURE	
 3-­‐17	
 THE	
 CONSTRUCTIVE	
 PROCESS	
 OF	
 THE	
 SNUB	
 OPERATION	
 FROM	
 A	
 TRUNCATED	
 SQUARE	
 PATTERN	
 (4.82)	
 ..	
 71	

FIGURE	
 3-­‐18	
 (LEFT)	
 SNUB	
 SQUARE	
 TILING	
 	
 (RIGHT)	
 SNUB	
 HEXAGONAL	
 TILING	
 ...	
 72	

FIGURE	
 3-­‐19	
 CONSTRUCTION	
 OF	
 THE	
 INTERWOVEN	
 PATTERN	
 ED_03	
 BY	
 TRIMMING	
 A	
 QUADRILATERAL	
 BOUNDARY	
 	
 74	

FIGURE	
 3-­‐20	
 CONSTRUCTION	
 OF	
 THE	
 INTERWOVEN	
 PATTERN	
 ED_03	
 BY	
 TRANSFORMATION,	
 ROTATION	
 AND	
 MIRROR	
 75	

FIGURE	
 3-­‐21	
 INTERWOVEN	
 PATTERN	
 ED_03	
 (QUADRILATERAL-­‐BASED	
 PATTERN)	
 INSPIRED	
 BY	
 ERWIN	
 HAUER	

(1952)’S	
 CONTINUOUS	
 SCREEN,	
 DESIGN	
 03,	
 CHURCH	
 AT	
 LEISING,	
 VIENNA,	
 AUSTRIA	
 ..	
 75	

FIGURE	
 3-­‐22	
 INTERWOVEN	
 PATTERN	
 ED_04	
 (QUADRILATERAL-­‐BASED	
 PATTERN)	
 INSPIRED	
 BY	
 ERWIN	
 HAUER	

(1950)’S	
 CONTINUOUS	
 SURFACE,	
 DESIGN	
 1	
 ..	
 76	

FIGURE	
 3-­‐23	
 INTERWOVEN	
 PATTERN	
 ED_05	
 (QUADRILATERAL-­‐BASED	
 PATTERN)	
 ..	
 77	

FIGURE	
 3-­‐24	
 (LEFT)	
 HEXAGONAL	
 TILING	
 BY	
 INTERWEAVING	
 TWO	
 PERPENDICULAR	
 HEXAGONAL	
 GRIDS;	
 (RIGHT)	

CURVILINEAR	
 WEAVE	
 BASED	
 ON	
 A	
 HEXAGONAL	
 GRID	
 ...	
 77	

FIGURE	
 3-­‐25	
 CONSTRUCTIVE	
 PROCESS	
 OF	
 A	
 SELF-­‐INTERLOCKING	
 PATTERN	
 ..	
 78	

FIGURE	
 3-­‐26	
 INTERWOVEN	
 PATTERN	
 ED_06	
 (SELF-­‐INTERLOCKING)	
 ...	
 79	

FIGURE	
 3-­‐27	
 INTERWOVEN	
 PATTERN	
 HEX_01	
 ...	
 79	

FIGURE	
 3-­‐28	
 INTERWOVEN	
 PATTERN	
 HEX_02	
 (SELF-­‐INTERLOCKING)	
 ...	
 80	

	

FIGURE	
 4-­‐1	
 THE	
 PROPOSED	
 WORKFLOW	
 FOR	
 BOUNDARY-­‐DRIVEN	
 MESH	
 OPTIMIZATION	
 ...	
 84	

FIGURE	
 4-­‐2	
 A	
 TENSOR	
 OBJECT,	
 P,	
 AT	
 SURFACE	
 BOUNDARY	
 ..	
 85	

FIGURE	
 4-­‐3	
 CONJUGATE	
 CURVES	
 	
 DERIVED	
 FROM	
 BOUNDARY-­‐DRIVEN	
 COMPUTATIONS	
 AND	
 THE	
 UNDERLYING	
 ISO-­‐

PARAMETRIC	
 GRID	
 ..	
 87	

FIGURE	
 4-­‐4	
 BDTENSOR	
 FIELD	
 GENERATION	
 (TOP)	
 TENSOR	
 FIELD	
 GENERATED	
 FROM	
 BOUNDARY-­‐DRIVEN	
 ANALYSIS	

(BOTTOM-­‐LEFT)	
 TENSOR	
 FIELD	
 GENERATED	
 FROM	
 ONLY	
 SURFACE	
 CURVATURE	
 ANALYSIS	
 (BOTTOM-­‐RIGHT)	
 TENSOR	

FIELD	
 GENERATED	
 BY	
 INTEGRATING	
 INFLUENCES	
 FROM	
 BOTH	
 BOUNDARY-­‐DRIVEN	
 	
 AND	
 SURFACE	
 CURVATURE	

ANALYSES	
 ...	
 88	

FIGURE	
 4-­‐5	
 CUSTOMIZED	
 TENSOR	
 FIELD	
 GENERATION	
 BY	
 ADDITIONAL	
 INPUT	
 CURVE	
 ON	
 THE	
 TARGET	
 SURFACE	
 	
 (LEFT)	

CUSTOMIZED	
 INPUT	
 CURVE	
 FOR	
 BDTENSOR	
 INTERPOLATION	
 (RIGHT)	
 TENSOR	
 FIELD	
 INTERPOLATION	
 RESULT	
 	
 89	

FIGURE	
 4-­‐6	
 BDTENSOR	
 INTERPOLATION	
 BY	
 SELECTED	
 BOUNDARIES	
 	
 (LEFT)	
 BOUNDARIES	
 SELECTION	
 BY	
 EVALUATING	

POINT-­‐OF-­‐INTEREST	
 VISIBILITY	
 (RIGHT)	
 INITIAL	
 TENSOR	
 GRID	
 VISUALIZATION	
 ...	
 89	

FIGURE	
 4-­‐7	
 BDCURVE	
 INTERPOLATION	
 PROCESS	
 ..	
 91	

 xii

FIGURE	
 4-­‐8	
 (LEFT)	
 UV-­‐BASED	
 CURVE	
 NETWORK;	
 (RIGHT)	
 BDCURVE	
 NETWORK	
 ..	
 92	

FIGURE	
 4-­‐9	
 BDCURVE	
 NETWORK	
 GENERATED	
 BY	
 INTERPOLATION	
 INFLUENCES	
 	
 OF	
 (1)	
 THE	
 FEATURED	
 BOUNDARIES	

AND	
 (2)	
 UNDERLYING	
 SURFACE	
 CURVATURE	
 ...	
 93	

FIGURE	
 4-­‐10	
 BDCURVE	
 NETWORKS	
 DERIVED	
 FROM	
 	
 (LEFT)	
 THE	
 ORIGINAL	
 SURFACE	
 BOUNDARIES	
 	
 (RIGHT)	
 A	

CUSTOMIZED	
 BOUNDARY	
 SOURCE	
 ..	
 94	

FIGURE	
 4-­‐11	
 A	
 MESH	
 NODE	
 AS	
 THE	
 DATA	
 TYPE	
 TO	
 MAINTAIN	
 PARAMETRIC	
 ORDER	
 ON	
 THE	
 CURVE	
 TO	
 WHICH	
 IT	
 BELONGS	

	
 	
 ...	
 95	

FIGURE	
 4-­‐12	
 CURVE-­‐CURVE	
 INTERSECTION	
 TO	
 CONSTRUCT	
 BOUNDARY-­‐DRIVEN	
 MESH	
 NODES	
 ..	
 95	

FIGURE	
 4-­‐13	
 FITTING	
 MESH	
 FACES	
 BY	
 SHORTEST	
 PATH	
 SEARCH	
 ..	
 97	

FIGURE	
 4-­‐14	
 SKEWED	
 TRIANGLE	
 REMOVAL	
 ...	
 99	

FIGURE	
 4-­‐15	
 QUAD	
 MESHING	
 BY	
 FACE	
 CENTER	
 AND	
 EDGE	
 MIDPOINT	
 INSERTION	
 (LEFT)	
 QUADRANGULATE	
 A	
 TRIANGLE	

FACE;	
 (RIGHT)	
 QUADRANGULATE	
 A	
 5-­‐SIDED	
 POLYGON	
 FACE	
 ...	
 99	

FIGURE	
 4-­‐16	
 MESH	
 VERTEX	
 REPLACEMENT	
 	
 (LEFT)	
 INTERIOR	
 VERTEX:	
 REPLACED	
 BY	
 THE	
 CENTROID	
 OF	
 A	
 CONVEX	

POLYHEDRON	
 	
 (RIGHT)	
 BOUNDARY	
 VERTEX:	
 MOVED	
 FROM	
 THE	
 ORIGINAL	
 BOUNDARY	
 AND	
 THEN	
 ADJUSTED	
 BY	

VERTEX	
 PERTURBATION	
 ..	
 101	

FIGURE	
 4-­‐17	
 BDMESH	
 SMOOTHING	
 	
 (TOP)	
 BDMESH	
 WITHOUT	
 MESH	
 SMOOTHING	
 (MIDDLE)	
 BDMESH	
 WITH	
 MESH	

SMOOTHING	
 	
 (BOTTOM)	
 BDMESH	
 WITH	
 MESH	
 SMOOTHING	
 AND	
 FURTHER	
 QUADRANGULATION	
 	
 102	

FIGURE	
 4-­‐18	
 NEW	
 BOUNDARY	
 CONDITION	
 INTRODUCED	
 BY	
 THE	
 TRIMMING	
 OPERATION	
 ..	
 103	

FIGURE	
 4-­‐19	
 BDMESH	
 A	
 TRIMMED	
 SURFACE	
 WITH	
 SMOOTHING	
 (TOP)	
 BDMESH	
 WITHOUT	
 MESH	
 SMOOTHING	

(MIDDLE)	
 BDMESH	
 WITH	
 MESH	
 SMOOTHING	
 	
 (BOTTOM)	
 BDMESH	
 WITH	
 MESH	
 SMOOTHING	
 AND	
 FURTHER	

QUADRANGULATION	
 ...	
 103	

FIGURE	
 4-­‐20	
 MESH	
 WARPING	
 ANALYSIS	
 ..	
 106	

FIGURE	
 4-­‐21	
 MESHING	
 TRIMMED	
 SURFACES	
 WITH	
 FACE	
 WARPING	
 ANALYSIS.	
 (LEFT)	
 TRIMMED	
 SURFACE	
 TYPE	
 1	

(RIGHT)	
 TRIMMED	
 SURFACE	
 TYPE	
 2	
 	
 (TOP)	
 UV-­‐BASED	
 SUBDIVISION	
 	
 (BOTTOM)	
 BD-­‐DRIVEN	
 OPTIMIZATION	
 	
 107	

FIGURE	
 5-­‐1	
 BDTENSOR	
 ENCAPSULATED	
 AS	
 A	
 GRASSHOPPER	
 COMPONENT	
 ..	
 110	

FIGURE	
 5-­‐2	
 BOUNDARY-­‐DRIVEN	
 COMPONENTS	
 IN	
 GRASSHOPPER	
 GUI	
 ..	
 111	

FIGURE	
 5-­‐3	
 ELEMENTS	
 OF	
 THE	
 BOUNDARY-­‐DRIVEN	
 OPTIMIZATION	
 ..	
 112	

FIGURE	
 5-­‐4	
 CONCEPTUAL	
 MASSING	
 OF	
 ZAHA	
 HADID’S	
 NEXT	
 GENE	
 MUSEUM	
 IN	
 TAIPEI,	
 TAIWAN	
 IMAGE	
 IS	
 MODIFIED	
 BY	

AUTHOR	
 FROM	
 ZAHA	
 HADID	
 (2008)	
 WITH	
 ILLUSTRATED	
 ANNOTATIONS	
 ...	
 114	

FIGURE	
 5-­‐5	
 CONE	
 SURFACE	
 RECONSTRUCTION	
 	
 IMAGE	
 ADAPTED	
 AND	
 MODIFIED	
 BY	
 AUTHOR	
 	
 FROM	
 AN	
 IMAGE	
 OF	
 THE	

NEXT-­‐GENE	
 MUSEUM	
 BY	
 ZAHA	
 HADID	
 (2008)	
 ...	
 115	

FIGURE	
 5-­‐6	
 TRIMMING	
 OPERATIONS	
 	
 FOR	
 REMODELING	
 THE	
 WEST	
 FAÇADE	
 OF	
 THE	
 NEXT	
 GENE	
 MUSEUM	
 BY	
 ZAHA	

HADID	
 (2008)	
 (TOP)	
 ORDER	
 OF	
 THE	
 TRIMMING	
 OPERATIONS	
 	
 (BOTTOM)	
 RESULTANT	
 TRIMMED	
 SURFACE	
 	
 116	

FIGURE	
 5-­‐7	
 SURFACE	
 BOUNDARIES	
 IDENTIFICATION	
 AND	
 CORNER	
 VERTICES	
 EXTRACTION	
 ...	
 117	

FIGURE	
 5-­‐8	
 INITIAL	
 BDCURVE	
 NETWORK	
 ..	
 117	

FIGURE	
 5-­‐9	
 BOUNDARY-­‐DRIVEN	
 OPTIMIZATION	
 	
 	
 (TOP)	
 PRELIMINARY	
 BDMESH	
 	
 (BOTTOM)	
 SMOOTHED	
 BDMESH	

RESULT	
 	
 ..	
 118	

FIGURE	
 5-­‐10	
 BDMESH	
 RESULTS	
 FROM	
 INCREASING	
 COMPLEX	
 BOUNDARY	
 CONDITIONS	
 	
 ORDERED	
 FROM	
 THE	
 TOP-­‐LEFT	

TO	
 THE	
 TOP-­‐RIGHT	
 CORNER	
 ..	
 119	

FIGURE	
 5-­‐11	
 QUAD-­‐DOMINATE	
 MESHING	
 RESULT	
 ..	
 120	

FIGURE	
 5-­‐12	
 ARCHIMEDEAN	
 PATTERN	
 (4.82)	
 GENERATED	
 BY	
 THE	
 TRUNCATION	
 OPERATOR	
 WITH	
 T	
 =	
 1/3	
 	
 121	

FIGURE	
 5-­‐13	
 DIAGRID	
 PATTERN	
 GENERATED	
 BY	
 THE	
 TRUNCATION	
 OPERATOR	
 WITH	
 T	
 =	
 1/2	
 ..	
 122	

FIGURE	
 5-­‐14	
 SMOOTHED	
 DIAGRID	
 PATTERN	
 GENERATED	
 BY	
 THE	
 TRUNCATION	
 OPERATOR	
 WITH	
 T	
 =	
 1/2	
 	
 122	

FIGURE	
 5-­‐15	
 ARCHIMEDEAN	
 PATTERN	
 (4.82)	
 GENERATED	
 BY	
 THE	
 TRUNCATION	
 OPERATOR	
 WITH	
 T	
 =	
 2/3	
 	
 123	

FIGURE	
 5-­‐16	
 THE	
 DUAL	
 PATTERN	
 OF	
 THE	
 ARCHIMEDEAN	
 PATTERN	
 (44)	
 GENERATED	
 BY	
 TRUNCATION	
 WITH	
 T	
 =	
 1.0	

(TOP)	
 WITHOUT	
 SMOOTHING	
 	
 (BOTTOM)	
 SMOOTHED	
 MESH	
 PATTERN	
 ..	
 123	

FIGURE	
 5-­‐17	
 ARCHIMEDEAN	
 PATTERN	
 GENERATED	
 BY	
 THE	
 INSERTION	
 OPERATOR	
 WITH	
 T	
 =	
 1/5	
 	
 124	

FIGURE	
 5-­‐18	
 ARCHIMEDEAN	
 PATTERN	
 GENERATED	
 BY	
 THE	
 INSERTION	
 OPERATOR	
 WITH	
 T	
 =	
 1/2	
 	
 125	

FIGURE	
 5-­‐19	
 ARCHIMEDEAN	
 PATTERN	
 GENERATED	
 BY	
 THE	
 INSERTION	
 OPERATOR	
 WITH	
 T	
 =	
 4/5	
 	
 125	

FIGURE	
 5-­‐20	
 ARCHIMEDEAN	
 PATTERN	
 GENERATED	
 BY	
 THE	
 INSERTION	
 OPERATOR	
 WITH	
 T	
 =	
 1	
 	
 126	

FIGURE	
 5-­‐21	
 ARCHIMEDEAN	
 PATTERN	
 GENERATED	
 BY	
 THE	
 ALTERNATION	
 OPERATOR	
 ON	
 THE	
 TRUNCATED	
 PATTERN	

WITH	
 T	
 =	
 1/3	
 ...	
 127	

FIGURE	
 5-­‐22	
 A	
 VARIANT	
 OF	
 ARCHIMEDEAN	
 PATTERN	
 SHOWN	
 IN	
 FIGURE	
 5-­‐21	
 ...	
 127	

xiii

FIGURE	
 5-­‐23	
 PROCEDURE	
 OF	
 SORTING	
 MESH	
 VERTICES	
 BY	
 THEIR	
 ORIGINS	
 (LEFT)	
 QUAD	
 MESH	
 	
 (MIDDLE)	
 DIAGRID	

PATTERN	
 BY	
 INSERTION	
 OPERATOR	
 WITH	
 T	
 =	
 1.0	
 (RIGHT)	
 SORTED	
 MESH	
 VERTICES	
 ...	
 128	

FIGURE	
 5-­‐24	
 SORTED	
 MESH	
 VERTICES	
 OVERLAID	
 WITH	
 THE	
 UNDERLYING	
 MESH	
 TOPOLOGY	
 ...	
 129	

FIGURE	
 5-­‐25	
 (LEFT)	
 MESH	
 VERTEX	
 MODULATION	
 	
 (RIGHT)	
 STRUCTURE	
 FRAME	
 CONSTRUCTION	
 	
 129	

FIGURE	
 5-­‐26	
 SURFACE	
 RENDERING	
 WITH	
 STRUCTURE	
 FRAMES	
 AND	
 PANELS	
 BY	
 THE	
 UNDERLYING	
 ARCHIMEDEAN	

PATTERN	
 	
 ...	
 130	

FIGURE	
 5-­‐27	
 A	
 MESH	
 MODULE	
 FOR	
 THE	
 INTERWOVEN	
 PATTERN	
 GENERATION	
 ..	
 131	

FIGURE	
 5-­‐28	
 A	
 PAIR	
 OF	
 CONTINUOUS	
 MODULES	
 FOR	
 THE	
 INTERWOVEN	
 PATTERN	
 ..	
 132	

FIGURE	
 5-­‐29	
 MODULE	
 PROPAGATION	
 BY	
 ALTERNATE	
 VERTEX	
 GROUP	
 AND	
 REFERENCED	
 CONJUGATE	
 DIRECTION	
 	
 133	

FIGURE	
 5-­‐30	
 A	
 MESH	
 MODULE	
 FOR	
 THE	
 INTERWOVEN	
 PATTERN	
 GENERATION	
 ..	
 134	

FIGURE	
 5-­‐31	
 MESH	
 MODULE	
 REFINEMENT	
 BY	
 CATMULL-­‐CLARK	
 SUBDIVISION	
 ..	
 135	

FIGURE	
 5-­‐32	
 MESH	
 MODULE	
 REFINEMENT	
 BY	
 CATMULL-­‐CLARK	
 SUBDIVISION	
 ..	
 136	

FIGURE	
 5-­‐33	
 MODULE	
 CONSTRUCTION	
 AT	
 THE	
 IRREGULAR	
 REGION	
 ...	
 136	

FIGURE	
 5-­‐34	
 MODULE	
 COMPONENT	
 IN	
 PERSPECTIVE	
 ..	
 137	

FIGURE	
 5-­‐35	
 A	
 MESH	
 MODULE	
 FOR	
 THE	
 INTERWOVEN	
 PATTERN	
 GENERATION	
 ..	
 137	

	

FIGURE	
 6-­‐1	
 A	
 BOUNDARY-­‐DRIVEN	
 OPTIMIZATION	
 PROCESS	
 USING	
 ADDITIONAL	
 BOUNDARY	
 CURVE(S)	
 THE	
 PROCESS	

INITIATES	
 FROM	
 THE	
 TOP-­‐LEFT	
 CORNER	
 TO	
 THE	
 TOP-­‐RIGHT	
 CORNER	
 ...	
 143	

FIGURE	
 6-­‐2	
 MESHING	
 TRIMMED	
 SURFACES	
 WITH	
 SURFACE	
 CURVATURE	
 CONSIDERATION.	
 	
 THE	
 CURVATURE	
 INFLUENCE	

UTILIZED	
 IN	
 THE	
 INTERPOLATION	
 IS	
 GRADUALLY	
 INCREASED	
 FROM	
 LEFT	
 TO	
 THE	
 RIGHT.	
 ..	
 145	

	

 Chapter 1

Introduction

Geometry is at the very core of modern architectural design, particularly with the growing interest in

being able to compute and construct non-simple, intricate, geometric forms (Pottmann et al., 2007b;

2008b; Pottmann, 2010). For architectural application, approaches to designing and modeling

freeform geometry require a heavy dose of computation, which is reflected, mainly, in the way

parametric control is exercised over the whole generative process. In trying to realize such geometries,

the prevalent approach is to approximate curvilinear freeform surfaces by discrete fabrication-friendly

building components—in essence, a surface tessellation process. This is computation-intensive and

poses serious challenges to architects and designers who wish to explore fluid freeform designs,

especially for those who have had little formal geometry training.

In particular, NURBS (Non-Uniform Rational Basis Spline) surfaces are considered in this

research. NURBS based freeform surfaces, featuring easy-manipulation and high accuracy of shape,

have gained increasing popularity in large-scale, sometimes geometrically intricate, architectural

projects in recent years (Duesing, 2007). Moreover, NURBS are useful for a number of reasons.

They: i) are invariant under common transformations e.g., affine, perspective and other

transformations; ii) offer a common mathematical form for both standard analytical shapes and

freeform shapes; iii) provide flexibility for designing a large variety of shapes; iv) reduce memory

consumption when storing shapes; and v) can be evaluated reasonably quickly by accurate

numerically stable algorithms. Hereinafter, the term surface refers to a NURBS surface.

 2

1.1 Motivation

When considering manifesting freeform surfaces, how geometrical elements are configured indicates

the development of underlying geometry, supporting structure and corresponding fabrication

machinery and material. In general, the entire process can be treated as the combination of three sub-

processes: (1) geometry construction; (2) structure development; (3) fabrication (Figure 1-1). For

instance, when developing structural systems, the geometry configuration shows how forces affect

structural members (Veltkamp, 2007). Additionally, designated geometric elements indicate potential

fabrication techniques and applicable materials. For example, planar elements are constructible by

utilizing two-dimensional fabricating techniques with planar sheet material. Moreover, structural

performance is subject to the chosen production method and material properties (Kim et al., 2008).

These three sub-processes, in a sense, are closely related to each other, and play significant roles in

the process of realizing complex surfaces.

Figure 1-1 The entire process when manifesting freeform surfaces

In this dissertation, the major research scope focuses on a general process of tessellating a

surface into its discrete counterparts, which are expected to be utilized for corresponding structural

and fabrication development. The subject surface is double-curved NURBS surface with potential

irregular boundary conditions. The following section discusses number of distinct areas in

computational geometry that this dissertation draws upon.

CH 1 - INTRODUCTION

3

1.1.1 Meshing Surfaces

Meshing is the process of transforming a continuous model, such as a surface, into collection of

discrete parts—namely, its mesh elements. From a computational geometry perspective, the mesh—

which can be treated as a discrete model of a surface—is a structured network consisting of vertices,

edges and faces. The finer the mesh the more closely it resembles the original surface. The art of

good meshing is to find the right level of granularity for the mesh to adequately model the surface.

In principle, meshing a surface is the process underlying the creation of a surface tessellation.

Such tessellations are useful in architectural applications; for instance, any face of a triangulated

surface can be considered as the geometry for a panel component of a freeform façade; edges of a

mesh can represent structural frames underneath a freeform skin; vertices of a mesh can designated as

the joints where these frame components meet (Figure 1-2). Architects and other designers often

employ mesh-like representations to explore aggregations of constructible structures. In using the

term, meshing, this research includes the added consideration of potentially incorporating

constructible components as the part of the process.

Figure 1-2 (Left) Facade Panels (Middle) Surface Structural Frames (Right) Structural Joints

Images after Pottmann et. al. (2007b)

Meshing a surface is a discretization process. It involves computation with respect to (i) the base

shape(s) of the mesh; and (ii) the organization of these base shapes to form the given surface. The

base shapes are user (designer)-specified. The organization represents a mesh layout. The goal of

meshing is to approximate a continuous freeform shape by discrete elements, which can be further

embodied to form constructible components for application, e.g., from face to panel, from edge to

 4

structural frame, and so on. For architectural applications, these constructible components correspond

to building components.

1.1.2 NURBS Representation

NURBS curves and surfaces behave similarly except that curves are simpler to explain. The following

material is standard (Peigl, 1991; Peigl & Tiller, 1996; Rogers, 2001).
A NURBS curve is, normally, defined by order, a set of weighted control points, and a knot

vector. NURBS curves are generalizations of B-splines or Bezier curves. Curves evolve along a

single parametric direction, commonly referred to as u. The control points are used to interpolate a

continuous shape by a higher order equation.

(1-1)

Here wi are weights associated with Pi, the control points. Ni,k are B-spline basis functions of

degree k. Order (= k+1), specifies the number of control points that influences any point on the curve.

Typically, the NURBS curves used in architecture are cubic, that is, k = 3, and there should be at least

four (k+1) control points for the curve interpolation. The B-spline basis functions are recursively

defined:

,	

(1-2)

The ti’s are knots forming a non-decreasing sequence U = (t0, …, tm =n+k+1) where ti ≤ ti+1. U is

the knot vector. Each successive pair of knots represents an interval [ti, ti+1) for the parameter values

to calculate a segment of a shape. Since knot spacing could be non-uniform, the B-splines are not the

same for each interval [ti, ti+1). The number of knots for each segment interpolation can also vary in

CH 1 - INTRODUCTION

5

relation to the degree of B-spline basis functions. Over the whole range of parameter values

represented by the knot vector, the different B-splines build up continuous (overlapping) blending

functions Ni,k(u) as defined above.

Equation (1-1) can be rewritten using rational basis functions:

and

(1-3)

A NURBS surface S is similarly defined except that surfaces evolve over two parametric

directions commonly referred to as u and v.

and

(1-4)

The rational basis functions R have the same properties as the blending functions. The advantage

of equations (1-1), (1-3) and (1-4) are that knots are absorbed into the expressions and need not be the

concern of the user, which is usually an advantage in practice. As before, Pi.j and wi.j respectively

denote the control points and weights. Ni,k and Nj,l are the B-spline basis functions of degree k and l in

the u and v parametric directions respectively. u and v are also known as the isoparameters of the

surface. Figure 1-3 illustrates a NURBS surface and its control points, which as a whole specify the

control polygons of the surface. Edges in a surface where an analysis starts and ends are referred to as

surface boundaries.

 6

Figure 1-3 NURBS surface construction with control points

The isoparameters u and v represent a mapping from a uniform two-dimensional grid to a three-

dimensional manifold. See Figure 1-4. A surface is specified by a pair of ranges of parameter values.

Each point on the surface satisfies equation (1-4). Intervals [u0 u1) and [v0 v1) define a sub-surface

quadrilateral, where u0 and u1 are the starting and ending parameter values of the interval along the U

direction, and likewise, v0 and v1, along the V direction. This approach is flexible and offers precision

for surface analysis. Contemporary approaches to modeling and analyzing NURBS surfaces rely

heavily on the two regional isoparameters (Pottmann, Asperl, et al., 2007a).

Figure 1-4 Mapping from the two-dimensional UV coordinate system onto a NURBS surface

 Sub-surface patches in the intervals [u4, v6) and [v2, v4) are shown colored red

CH 1 - INTRODUCTION

7

1.1.3 Non-Regular Boundary Conditions

In practice, in a design context, not every “originally designed” surface remains intact—that is, as a

surface without having been trimmed, cut or otherwise modified. In other words, in the course of

designing, a surface is typically altered, that is, has parts removed and new boundaries introduced.

The new entities usually have a close relationship to the original untrimmed, uncut or unmodified

surface so that they can be properly placed on the original surface. Figure 1-5 shows a trimmed

surface (shown shaded red) overlaid with the original untrimmed surface. The new boundary edges

are composed of two trimming edges, E1 and E3, and two partial original boundary edges, E0 and E2.

As E3 is on the surface, every point p(u, v) on E3 satisfies the same definition, namely, equation (3).

Figure 1-5 New trimmed boundaries E0, E1, E2, E3

A surface with non-regular boundary conditions – trimmed edges or cut holes – can cause

potential problems when the surface is meshed, especially for customized elements. For instance, in a

quadrilateral mesh—a mesh consisting of only quadrilateral faces, irregular faces such as triangles

could be generated around trim edges. These irregular faces could be aesthetically unsightly;

moreover, when faces are brought into fabrication, additional costs might be incurred, e.g., standard

quadrilateral panels may have to be specially customized to fit trimmed edges and holes. In other

words, new boundaries generated by additional surface operations, such as trim, might engender

renewed attention, or require new strategies when segmenting the surface.

 8

1.1.4 Pattern-Based Tessellation

A surface tessellation is a pattern of figures that fills the surface without overlaps and gaps. The most

popular pattern seen in surface tessellation is the triangle. The major reason for this is that a triangular

panel makes for easy fabrication. Moreover, it is always feasible to pack any arbitrary surface with

triangles without being limited by the boundaries. However, triangles are not always the appropriate

solution for a design or architectural application. Other polygonal patterns offer alternative creative

design solutions with various aesthetic, or, sometimes, constructional considerations. In fact,

architects and designers often actively seek potential alternatives to customize patterns, for instance,

using quadrilaterals or hexagons, in order to control and to further design the tessellation pattern.

However, as is often the case, as boundary conditions grow more complex, the resulting irregular

boundaries no longer provide an easy handle for regular polygonal segmentation. Special treatment is

required to fit a desired pattern on a given surface with the intended considerations given to direction,

dimensions and featured boundary conditions. Moreover, these constraints may conflict with each

other, thus over-constraining the tessellation problem. Inspired by the need to explore and provide

alternative ways of tessellating a surface with given configurable patterns, in this research a pattern-

based scheme is explored for the surface tessellation problem with added consideration given to the

underlying surface boundary conditions.

1.2 Problem Statement

The following problem arises from meshing a surface for post-modeling fabrication-oriented

application:

How can a surface be decomposed into smaller ‘easy-to-construct’ modules for a given

pattern-based parametric tessellation scheme with irregular boundary conditions?

This dissertation addresses the problem by describing a general algorithmic approach to generating

and optimizing a polygon-based surface tessellation with minimal irregularity.

Leaving to one side the notion of ‘easy-to-construct,’ there are two key issues to consider in

regard to this research question. The first relates to the development of parametric tessellation

schemes for surface panelization; the second relates to boundary-driven optimization of the surface

discretization by selected polygonal patterns.

CH 1 - INTRODUCTION

9

1.2.1 Parametric Tessellation Schemes for Surface Panelization

Panelization is the process of realizing a freeform surface by a collection of constructible components,

in particular, face-based panels and supporting structures. For architectural applications, this

tessellating process describes how panels (building components) are utilized to construct the

designated freeform shapes. From a parametric modeling perspective, each panel can be procedurally

built on a given base shape, namely, the pattern of the local boundary representation. For instance,

underlying a quadrilateral panel are four vertices that define the local boundary, a quadrilateral face.

Contemporary approaches to modeling these panels are primarily based on the surface isoparameters,

u and v. While the approaches are simple and efficient, they are, at the same time, limited. For

instance, isoparameters do not distinguish between the curvatures of adjacent surface patches, which

might affect both aesthetic appearance and final manifestation. Nor do the parameters control the size

of sub-surface generation(s). Commonly, a uniform parametric interval is employed; this usually

results in non-uniform sub-surface generation. The size of each panel is in fact closely related to the

initial control polygons. The control polygons govern the control points, which are used to interpolate

the ultimate surface presentation. If the vertices of the control polygons are uniformly distributed, an

equi-dimensional patch is more likely to be generated. However, given the freedom with which

control points can be modified in the modeling environment, they rarely remain uniformly distributed

once designers start manipulating, often arbitrarily.

 Unlike curve decomposition wherein a curve is divided into equidistant segments by a

prescribed circle, there is no general way of dividing a surface into uniform sub-surfaces. Figure 1-6

illustrates three possible segmentation schemes that generate vastly different sub-surface patches with

variations in size. The figure shows three distinct surface segmentations with the same number of

sub-surface patches. The left-most figure illustrates initial surface subdivision by uniform

isoparameters, with equal intervals along both the U and V domains. The middle figure illustrates an

attempt to equalize the size of the sub-surface patch. The right-most figure illustrates a customized

surface segmentation, where patch size is inversely proportional to the rate of change of surface

curvature, the higher the rate of change the smaller the patch. Using a different tessellation scheme,

another different exclusive mesh will be created.

 10

Figure 1-6 Three possible types of UV-based segmentation

Division by (left) uniform isoparametric intervals; (middle) optimizing face size via equi-dimensional

intervals; and (right) customized iso-parametric intervals

Current meshing applications for architectural design rely mainly on uniform isoparametric

control. That is, patches are generated according to rules similar to those that produce the leftmost

illustration in Figure 1-6. For visualization purposes, a surface is rendered by a subdivision scheme

that is optimized for surface curvature. Yet, for architectural applications, if one takes into

consideration the machining of parts, equi-dimensional surface patches are then more practical. This

is quite challenging to achieve.

If one has a well-defined constructive or generative procedure, intricate as well as performative

surface tessellations are realizable. Figure 1-7 illustrates an example based on a procedural modeling

approach (Wang, 2009). In the example shown, each panel is procedurally generated for the given

local boundary, namely, a pattern of quadrilaterals. The aperture of each panel is parametrically

constructed and controlled by examining light gains over a period of time using the Solar Position

Algorithm1 (Reda and Andreas, 2008). The reconstructive procedure includes the following four steps:

(1) retrieving surface boundaries for reconstruction; (2) developing generative principles for surface

panels; (3) post-design variations via performative simulations (lighting simulation is employed in

this case); and (4) surface component analysis for manufacture. The underlying pattern still dominates

any manifest appearance—that is, the pattern, ultimately, determines the shape of the form that the

tessellated surface takes.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 Solar Position Algorithm for Solar Radiation Applications from National Renewable Energy Laboratory,

 http://rredc.nrel.gov/solar/codesandalgorithms/spa/. Last accessed on Apr 8th, 2010.

CH 1 - INTRODUCTION

11

Figure 1-7 Procedural modeling for surface reconstruction (Wang, 2009)

The first research task can be summarized thus: to examine parametric strategies and processes

involved in pattern generation, for example, exploring quadrilateral, hexagonal and other potential

polygonal shapes that are treated as local boundaries in a surface tessellation process. The objective

is to mesh the surface with customized boundaries—that is, a pattern—with respect to a global

boundary condition, which correspond to the primary edges that define the overall appearance of the

freeform surface. Furthermore, how such a parametric framework can be used procedurally to

construct building components within the governing boundaries will be considered. From a

constructive geometric perspective, the relationship between polygon-based patterns and pattern

propagation will be examined and discussed.

1.2.2 Boundary-Driven Optimization

When tessellating NURBS-based surfaces, the form and formation of target shapes and types of

discrete elements (panels) are preferably identified prior to the tessellation process. These

considerations require a computational scheme for resolving issues that stem from local boundary

 12

conditions—mesh patterns—and from global boundary conditions—exterior boundary edges and

interior trimming holes.

It helps when a surface has been defined mathematically, because the surface can then be

precisely determined and analyzed. Initial boundaries are calculated directly from the control

polygons; these, in turn, consist of primary control points, which are used to formulate the exterior

boundary edges. However, during design, the surface is not always guaranteed to remain intact—that

is, without being trimmed or having holes cut out. Whenever part of a surface is altered from its

original, new boundaries, trim edges or cuts, may be created. The newly formed surface is referred to

as a trimmed surface. Any new boundaries introduced by the trimming process are usually untreated,

resulting in a number of irregular mesh faces; in other words, irregularly shaped panels around the

trimmed edges. This irregularity should be addressed and reduced so that any potential additional cost,

say, for fabrication or aesthetic appearance, can be minimized. From a geometric perspective, the new

boundaries share identical isoparameters because points on the curve should also be on the surface on

which the curves are located. Thus, the same parameters u and v can be used to describe the new

boundaries. Assuming that we possess the techniques to describe new curves on a surface, how these

boundaries can be examined is briefly discussed next.

From a design perspective, trims are introduced to meet specific design intentions, for example,

openings for lighting, viewing or circulation, etc. Figure 1-8 illustrates the west elevation of a surface,

which has been trimmed for skylight, natural view and entrance. Problems immediately occur when

these new boundaries are introduced to the original untrimmed surface. The trimmed edges, for

example, cut through the uniform shapes of certain surface panels. For this particular design, the

panels are quad-dominant. Irregular panels surrounding the trim edges are generated and these, in turn,

affect the overall aesthetic appearance of the surface manifestation as well as the final fabrication. To

address the issues stemming from trimmed edges, a second research task is considered. This second

task explores how global boundary conditions, which primarily determine the final freeform surface,

can be used to affect or tune the tessellation process, particularly, to optimize the layout of the mesh

elements towards a more balanced solution. For example, directions of panelizing could be modified

(or better instructed) to avoid, or reduce, the irregular panels as the boundary conditions evolve.

Since boundaries define the ultimate appearance and given that panelization can take all boundaries

into considerations parametrically and algorithmically, the hypothesis is that a coherent surface

tessellation can be achieved.

CH 1 - INTRODUCTION

13

Figure 1-8 West elevation for trimmed boundaries

Image adapted and modified by the author from an image of the Next-Gene Museum by Zaha Hadid (2008)

The west elevation shown in Figure 1-8 is utilized in Chapter 5 as the example to demonstrate

how boundary conditions are used to regulate the surface tessellation layout for pattern-based

exploration.

1.3 Research Objectives

There are limitations to current surface tessellation algorithms, especially, when boundary conditions

become complex. In this dissertation the surface tessellation problem is looked at from the

perspective of the boundary conditions. First, the important ingredients and processes involved in

reconstructing surfaces with pattern-based elements are identified. Second, a meshing algorithm is

presented, which will ease the mesh generation process by solving the constraints inherited from the

featured surface properties and boundary conditions. Then, an integrated process of pattern-based

construction and exploration are given as an example to demonstrate the usage of the proposed work

within the context of freeform surface design.

1.3.1 A parametric framework for tessellating surfaces with polygonal patterns

A parametric framework for polygon-based surface tessellation is investigated to identify the essential

ingredients for tessellating surfaces. Two categories of patterns are examined. The first category is

the Archimedean tiling pattern, and the second is the interwoven pattern.

 14

The Archimedean tiling is a two-dimensional vertex transitive edge-to-edge pattern (Grünbaum

and Shepherd, 1987), which provides a distinct aspect on how to combine various regular polygons in

tiling the plane. How these polygons are configured for plane tilings are discussed with details in

Chapter 3. Overall, owing to the planarity of 2 dimensional Euclidean operations, the sum of the

angles at any vertex equals 360° and only a limited number of variations are possible. In total, there

are three regular patterns and eight semi-regular patterns. In the first pattern investigations, three

major operators are presented to derive all the possible variations for the Archimedean tiling and

other parametric mutations based on the same operative principles.

The interwoven pattern is an extended version of the polygonal patterns, and is inspired by

Erwin Hauer’s works on screen wall design. In addition to the symmetry or transitivity properties of

configurations of polygonal shapes, each shape is treated as a constructive reference to develop an

interweaving module. Examples of interwoven patterns are provided, some are recreations from

Erwin Hauer’s own designs and others are variations.

By taking into account both categories of patterns, in which one category can be derived from

the other, the studies involved in generating pattern-based tessellation are discussed and analyzed to

articulate the parametric process for surface tessellation.

1.3.2 Automated mesh generation with irregular boundary conditions

The second objective is to automate the mesh generation by examining the surface boundary

conditions. Three major mesh components are introduced in the meshing process; these are the

Boundary-Driven Tensor, Boundary-Driven Curve and Boundary-Driven Mesh.

1.3.3 An integrated constructive process for design exploration- User-Controllable

manipulation

After setting up the computing environment for surface tessellation, various key parameters are

extracted for explorative purposes. By formalizing the parametric control, it can improve the ease and

possibilities for exploring various design alternatives. In addition, the integrated process will

demonstrate the complex geometric constraint solving from a parametric modeling perspective.

In summary, this dissertation explores the surface tessellation problem, slanted towards

contemporary freeform architectural design where pattern-based panelization is essential for physical

construction and fabrication. This research focuses on the boundary conditions of the input surface

CH 1 - INTRODUCTION

15

and takes into consideration other design inputs such as, panel patterns, panel size, or panelization

direction. In particular, how surface boundaries affect panel layout, and the propagation of

customized pattern-based components is looked at. The main objective is to render designers an

algorithmic approach, with constructive strategies, to achieve a more aesthetic, attractive, yet

fabrication-friendly structure, when developing their freeform architectural designs.

Surface tessellation is identical to a discretization process of meshing the surface from a given

underlying geometry perspective, yet, requiring further detailed constructive principles on how the

tessellated component should be procedurally constructed. The transformation of a freeform surface

into a mesh is regarded as essential for the final tessellation. This research aims to go beyond current

limitations embedded in isoparametric analyses, by developing a parametric scheme in which

constructive procedures for segmenting a freeform surface with discrete constructible components can

be encapsulated. The proposed approach affords designers a flexible manner of exploring surface

tessellations.

1.4 Structure of the dissertation

Chapter 1 starts with the introduction to the major problem statement, customizing pattern-based

tessellation with irregular boundary condition. The major steps and objectives are presented in

relation to the components of the thesis.

Chapter 2 provides the background review in relation to pattern-based surface tessellation. First,

the background review of the parametric modeling process is discussed and following by the current

active meshing techniques from both computational geometry and engineering perspectives. Then,

contemporary fabrication techniques are discussed in relation to freeform surface construction.

Chapter 3 illustrates the preliminary studies on the pattern generation. Two categories of patterns

are examined: one is the Archimedean pattern and the other is the interwoven pattern inspired by

Erwin Hauer (2007). The constructive procedures among various polygonal and interwoven patterns

are investigated and formalized as generative rules, which would be later applied for surface

tessellation applications.

Chapter 4 describes the implementation of the boundary-driven (BD) meshing algorithm. The

underlying characteristics of the given surface and surface boundaries are first analyzed and extracted.

Then, three major meshing components, including BDTensor, BDCurve and BDMesh are illustrated

 16

by drawing the relationships from the featured boundary conditions. Specifically, the quadrilateral

mesh is presented to address the formation of pattern-based freeform discretization with irregular

boundary conditions.

Chapter 5 illustrates examples of tessellations by examining the influences as the boundary

conditions grow. For practical purposes, the west façade of Zaha Hadid’s Next Gene Museum is

remodeled and utilized as the example. By procedurally constructing the target surface, a series of

meshing results are illustrated along the changes from the evolving boundaries. Lastly, given the

well-structured mesh, pattern-based applications are explored in this chapter as examples to

demonstrate the generative process from surface decomposition to pattern-based tessellation.

Chapter 6 discusses the results and findings from the investigations and addresses the main

contributions and limitations. This section will project potential future applications of the algorithmic

and parametric approach described in this dissertation.

	
 	

 Chapter 2

Research Background:

Parametric Design Process,

Meshing, and Digital Fabrication

An important aspect of parametric modeling in contemporary design practice is the emphasis placed

on the use of parameters, in particular, customized procedures, by which designers can process

associated information directly albeit points, lines, surfaces or building-related data, such as

orientation, site, weather, etc. (Woodbury et al., 2007; Woodbury, 2010; Meredith et al., 2008;

Schumacher, 2009). Avant-garde architects like Frank Gehry (Linsey, 2001) and Zaha Hadid (Jodidio

and Hadid, 2009) utilize similar techniques while experimenting with intricate geometries for designs,

which they manage to transform into real buildings based on underlying constructive principles. An

essential feature of this approach is that the procedures allow changes parametrically over a

controlled design space—this in turn makes the design solution more manageable from conceptual

exploration to final manifestation. From a computational geometry point of view, most of such

geometrically complex projects have curvilinear surfaces. To realize such a surface depends on two

 18

main aspects: (1) a discretized model of the target surface; and (2) applicable fabrication processes. In

both cases, a parametric modeling approach is integral to resolving design issues.

Discretization is, essentially, meshing. Recall that meshing is the process of transforming a

continuous model, such as a surface, into collection of discrete parts—namely, its mesh elements. A

mesh is a structured network consisting of vertices, edges and faces. The finer the mesh the more

closely it resembles the original surface. The art of good meshing is to find the right level of

granularity for the mesh to adequately model the surface. The quality of a discretized model—mesh—

can be established by the geometric closeness to the target surface and the layout of designated mesh

elements in relation to surface properties such as curvature and boundary (Eigensatz, Kilian, et al.,

2010). Certain features of mesh elements such as shape, planarity, dimension, and direction of mesh

elements, are commonly sought out for subsequent physical manifestation.

For physical construction, factors such as material, fabrication techniques, costs and so forth are

usually considered. Manufacturing a surface—that is discretized as thousands of distinct parts—by a

digital fabrication process relies heavily on contemporary computer numerical control (CNC)

machinery for mass customization (Kieran and Timberlake, 2004; Schodek et al., 2005; Corser, 2010).

Owing to the potential for intricate geometrical configurations, mass customization becomes

indispensable. However, given that cost is a design constraint for constructions, a discrete model can

be optimized toward less expensive configurations; for instance, minimizing the differences between

parts. Details and examples of this are discussed in Section 2.3. In a sense, the parametric modeling

approach has made possible the incorporation of heterogeneous information from computational

geometry and fabrication; this, in turn, allows designers to explore designs computationally in a

coherent manner.

To summarize, the techniques employed by contemporary complex-geometry projects are rooted

in three main disciplines or subject areas, which this dissertation builds upon and relates to. These are

the parametric design process, surface fitting (meshing), and digital fabrication.

2.1 Parametric Design Process

Parametric modeling is the process wherein designers utilize relational constraints to construct and

manipulate geometrical entities (Madjdoub, 1999; Maleki and Woodbury, 2008; Woodbury, 2010).

There is considerable computational design research that investigates the use of constraints for design

exploration (Sutherlan 1963; Gleicher 1991; Medjdoub 1999) and also a number of commercial

CH 2 - RESEARCH BACKGROUND

19

constraint-based modeling tools that are available to designers (Autodesk, 2010; McNeel, 2010;

Bentley, 2010; Graphisoft, 2010).

2.1.1 Parameterizing constraints for design computation

A parametric design process involves abstracting design concepts as collections of computable

procedures, in which sequences of constrained operations are used to generate geometric objects.

These relational constraints, imposed on the geometric objects, can assist design exploration in the

different phases of design. Parameters are representative controllers for propagating design

alternatives. The objective of parametric design is to enable design generation and to assist design

exploration through computable handles in an efficient, generative, and, occasionally, algorithmic

fashion.

The very first parametric modeling system was Sketchpad developed by Sutherland (1963). In

Sketchpad, drawings were captured directly by user input from a light pen. Among some of its most

influential features are automated design repetition, duplication, and change propagation though a

Graphical User Interface (GUI). See Figure 2-1.

Figure 2-1 Sketchpad: A man-machine graphical communication system (Sutherland, 1963)

Image source: http://www.cadazz.com/cad-software-Sketchpad.htm

 20

With the advent of Sketchpad came a concerted focus on computer-aided design and

accompanying research into computer systems that could assist designers and into design automation

resulting (now) in several generations of commercial CAD software. Parameters in these

conventional CAD systems are often used statically, that is, only one-to-one relations could be

specified with a default prescriptive constraint. The parameters served more like property

placeholders storing, mainly, numerical values and sometimes, material properties of the constrained

object. Utilizing parameters was also static, thus, making it difficult for designers to accommodate the

dynamically changing nature of a design. Most designers had no choice but to use conventional CAD

tools as a post-design process, in which the design was nearly complete. In other words, conventional

CAD tools were used for drafting, merely replacing manual work.

To fulfill the need for efficiently making design changes and generating alternatives, sometimes

algorithmically, the focus of contemporary CAD development has been geared toward a dynamically

controllable environment, in which parameters can be defined by users and used as drivers for future

alternative explorations. Information and operations between parameters are dynamically regulated

and changes propagated in real time. In this approach, parameters are constructed and utilized

differently. For instance, parameters that encapsulate design constraints between geometric objects

vary in a number of ways such as: one-to-one, one-to-many, many-to-one, etc. Moreover, a

parameter can be associated with a single numerical value or with compound information, which may

include both data and operations. In a sense, the parameter becomes an additional design instrument

in the generative design process.

The application of computing with design constraints 3provides the computational media with an

active role in the design process enabling designers to accommodate potential future changes in real

time. For instance, Kolarevic (1993) presents a computational environment— ReDRAW, in which

geometric relations are employed for design conceptualization and exploration. In his study, a

relations-based framework is proposed as a computational vehicle to restructure the underlying

configuration and thus enable design exploration. Figure 2-2 illustrates an example of alternative

configurations for Mario Botta's Casa Rotunda by manipulating the constructed relation.

CH 2 - RESEARCH BACKGROUND

21

Figure 2-2 (Left) Original composition (Right) Restructured configuration by relational constraint

Image after Kolarevic (1997)

Likewise, Moustapha (2004, 2006) presents a formal approach to represent constructs of spatial

and geometric relations, and describes a computational framework—ICE (Interactive Configuration

Exploration) for architectural explorations. Kilian (2006) explored various heterogeneous constraints

such as quantitative, geometric, topological and functional constraints, and demonstrated the potential

of supporting form finding and manifestation through multi-directional constraint modeling. In short,

all these research endeavors emphasize the importance of constructing computable relational

constraints for design generation, propagation and exploration. Parameters are no longer used as

holders for static information, but more as relational constructs to computationally regulate geometry.

By employing constraints and through support from the computational media, design exploration can

be expanded—the objective here is to support designers in investigating more possibilities.

To describe constraint-based modeling, p-graphs are introduced. A p-graph structure is a

convenient way of representing and manipulating relationships between regulated objects. Such

graphs feature acyclic directed structures, and depict how changes are propagated through the entire

network.

2.1.2 P-graphs – An acyclic directed graph structure

Definitions: A graph is a structure comprising nodes and edges. Edges connect nodes pairwise.

Edges can be directed. For any directed edge, a → b, between nodes a and b, a is a predecessor of b

and b is a successor of a. For any two nodes, a and b, a is an ancestor of b if there is a sequence of

successor nodes from a and its successors to b. b is then referred to as a descendent of a; likewise, a

is an ancestor of b. If b is a descendent of a, we say that there is a path from a to b. The length of a

 22

path is equal to one less than the number of its nodes inclusive of the first and last node. A path has at

least length one. If a node is a descendent of itself then the path is a cycle. A graph without a cycle is

acyclic.

Graphs are used to represent parametric models. Figure 2-3 shows two graphs. The graph on the

left is an acyclic directed graph in which every predecessor node can be ‘processed’ before its

successor nodes in a left-to-right manner (GreyàOrangeàBlue). The graph on the right, on the other

hand, is not acyclic because nodes B, D and F, and likewise, nodes B, C and F form a cycle. Here, we

cannot establish any deterministic order by which these nodes can be processed. A valid graph for

parametric modeling is acyclic, and depicts how geometric objects can be hierarchically and

parametrically constructed. Node order is important when traversing the tree for a solution. The

nodes of a valid graph representation for parametric modeling can always be topologically sorted.

We refer to an acyclic graph for parametric modeling as a p-graph.

(a) (b)

Figure 2-3 (a) Valid and (b) Invalid p-graphs

In a p-graph, information is processed at a predecessor level prior to being passed on to a

consequent successor level in a strict hierarchical order, e.g., top-down as in Bentley Systems

Generative Component (GC), which is compatible with Bentley MicroStation®, or left-to-right as in

Grasshopper® (GH), which is tightly integrated with Rhino-3D (McNeel, 2010). Each connection

between nodes has a direction, which is irreversible, and represents either a flow of data

communication, or a collection of computing operations. In this sense, there is an essential difference

between GC and GH in that GC provides a scripting environment with symbolic representation for

graphs; on the other hand, GH relies on direct manipulation of the visual symbols, both geometrical

and functional. In addition, nodes are also used differently. In GC, the graph merely visualizes the

computed result, in which a node presents the data calculated from expressions in the specified

CH 2 - RESEARCH BACKGROUND

23

procedures. In GH, a node can be manipulated directly to store, execute mathematical calculations,

and also output results. Links between nodes simply indicate types of data that are transmitted. In

comparison, nodes of an acyclic directed graph are used more actively and directly in GH than in GC.

The word parametric here stands for the usage of parameters in both simple and compound

fashions. A simple parameter is associated with single value only, such as a number or a string. A

compound parameter, on the other hand, may be a geometric entity, composed of multiple values, for

example, a point is a compound object consisting of a triple of numbers, namely, the x, y, z

coordinates. A compound parameter may also be a function, which executes commands and outputs

results. For instance, an energy node may consist of functional calls to trigger the simulation and

retrieve the simulation results as the output.

The results of modifications on associated parameters and changes are propagated through

successor levels of the p-graph unless otherwise explicitly paused or blocked. This manner of

modeling gives designers greater flexibility for exploring variations in real time; at the same time, it

makes modeling become somewhat more abstract without creating geometric objects directly.

Typically, difficulties arise when converting vague design concepts into concrete computable

components; this translation is neither straightforward nor easy for designers without formal training

in programming. On the other hand, once a geometric object can be parametrically regulated, the

resulting system can be adapted and extended for other propagations.

2.1.3 Computer-aided design tools for parametric modeling

There is a number of commercially available software to create geometric models by constructing

relationships. These include the previously mentioned Bentley Systems Generative Component (GC),

and Grasshopper® (GH). Other notable modeling software are Gehry Technologies’ Digital Project™

(DP), compatible with CATIA®; Autodesk® Revit® Architecture; and GraphiSoft® ArchiCAD®. Of

these, GC/Bentley, GH/Rhino and DP/CATIA are among the more commonly used for architectural

applications. Amongst the Building Information Modeling (BIM) community, Revit and ArchiCAD

are preferred.

Overall, such tools provide specific approaches for constraint modeling through their graphical

user interface, programming language interface, or a combination of both. GC and GH are good

representative exemplar tools. GC and GH share certain similarity of representation insofar as

parametric design is concerned. Both employ an acyclic directed graph structure; in GC for symbolic

representation, and in GH as a directly manipulable medium. A tree, the definition of which is made

 24

precise in Section 2.1.3, is an acyclic graph structure in which nodes are connected by directed edges.

Nodes represent geometric entities. Direct geometric constraints are constructed as edges representing

relations between tree nodes. Certain functional constraints that may involve complex computations

such as energy simulation, fluid dynamics, or structural analysis, etc., can be introduced as a special

node, and may be potentially built from various functional objects among the disparate computational

platforms. Owing to the potential complexity of constraint construction, various levels of

encapsulation occur at distinct interfaces in the above computational environments.

2.1.4 Parametric modules

Abstraction and encapsulation are two essential concepts for parametric modeling. Abstraction

enables conversion from design concepts to a set of computable parameters together with

corresponding operations. Encapsulation groups sequences of operations and maintains all required

data within a single entity for subsequent use. These two constructs make the parametric process both

applicable and accessible within a computational media. During the course of designing, one often

performs repetitive and other similar operations—it makes more sense to formulate such repetitive

procedures as reusable modules. The key to successful module making is the flexibility to

accommodate as many scenarios as possible. This same concept of making something reusable, as a

modular component for repetition and duplication, is commonly seen in day-to-day architectural

practice. For example, a surface panel is a physical module, which can be used to assemble a building

façade. It can be varied in its dimensions and/or material properties. Within the parametric modeling

approach, this surface panel is a virtual component, defined and constructed by parameters that

govern its dimension as well as any relationship to the underlying surface properties. Ultimate

manifestation of a surface is fashioned by propagating panel components and constraints through the

entire surface domain. For any given well-structured parametric model, the physical performance of

the surface manifestation can be analyzed. The analytical results can then further be utilized to

optimize surface design.

A parametric module may contain one to multiple operations and data entities. In a p-graph, a

module can be treated either as a single node or as a sub-graph consisting of multiple data and

operational nodes. This adoption of module making makes for efficient “divide-and-conquer” design

problem solving, in which a complex design problem is divided into smaller solvable sub-problems.

Furthermore, owing to the continuous changing nature of designs, constructive modules offer

flexibility for adapting to potential changes during the design process. Woodbury (2007, 2010) has

addressed the importance of parametric design patterns using GC, and illustrated underlying

CH 2 - RESEARCH BACKGROUND

25

constructive principles for pedagogical purposes. These same design patterns were implemented in

GH (Wang, 2010).

Figure 2-4 illustrates an example of a parametric module, which procedurally transforms a given

polygon into a smaller inscribed polygon. The figure consists of two columns: left and right.

The left column illustrates the transformation rule and the right shows two corresponding

parametric operations, rotation and insertion. The rotation angle, r, specifies the degree through which

the given polygon is rotated about the centroid. The insertion parameter, tn, is computed by the

rotation angle, r, and the edge count of the input polygon. This is later utilized to interpolate the

inscribed polygon as output. The parameter, n, is specified for the number of edges of the input

polygon.

The bottom row illustrates the procedure in GH consisting of various geometrical components

and numerical controllers. Overall, the entire constructive process can be divided into three groups:

(1) input geometry and control, (2) parameterization and computation, and (3) output geometry.

Figure 2-6 shows the representative p-graph of a resulting module.

Figure 2-4 A parametric module for constructing an inscribed polygon

(Left) Transformation rule

(Right) Breakdown of required operations: rotation and insertion

Figure 2-5 shows an exemplar implementation of the parametric module shown in Figure 2-4

using Grasshopper/Rhino. The implementation consists of three segments in a left-right order:

 26

(1) input geometry; (2) parameterization and computation; (3) output. Figure 2-6 illustrates the

representative p-graph of the implemented module shown in Figure 2-5.

Figure 2-5 Implemented GH components for Figure 2-4

Figure 2-6 Representative p-graph of the parametric module in Figure 2-4

Suppose the objective is to apply the above procedure recursively—that is, the output polygon is

employed as input for a number of iterations. We can consider this as a graph in two ways. See

Figure 2-7. The top-left image illustrates the scenario of recursively applying the transformation

procedure. This results in transforming a valid p-graph into a graph containing cycles. The path from

nodes SL, Pt, PL, forms a cycle; in turn, this makes the graph an invalid p-graph. To address this

CH 2 - RESEARCH BACKGROUND

27

cycle problem, we consider the p-graph shown in the top-right, which demonstrates a solution

obtained by encapsulating the recursion as a tree node, RC. This new now node, RC, maintains the

recursion locally and thus keeps the overall p-graph structure intact. The bottom row shows the

procedure implemented in GH. Note that a new parametric controller, N, has been added so as to

define the number of iterations for the recursion.

Cyclic: Invalid p-Graph Acyclic: Valid p-Graph

Figure 2-7 (Top-Left) Invalid p-graph (Top-Right) Valid p-graph

(Bottom) GH components for the recursion module

In a p-graph, every node basically contains a runtime procedure, which specifies the computation

for the given inputs, including geometric objects, numeric data, etc., and outputs the computed results.

 28

In the above example, recursion occurs at tree node, RC, in which a while-loop is implemented for

iterative operations. Figure 2-8 shows the programming interface provided by GH and the

corresponding program code segments.

Figure 2-8 The programming editor in GH

Figure 2-9 illustrates a collection of propagated results for the following two-dimensional

constraints: (1) the number of polygon edges, E, and (2) the number of iterations, N. The rotation

angle, R, in this exercise is fixed and can be further extended to explore alternative generation in

another dimension.

The main difference in the two p-graphs shown respectively in Figure 2-6 and Figure 2-7 lies at

the level of abstraction and encapsulation. A well-structured module with a high level of abstraction

and encapsulation may enable efficiency and flexibility for parameterization. However, from a

CH 2 - RESEARCH BACKGROUND

29

pedagogical point of view, it may also hinder understanding and learning for users with limited

knowledge in geometry construction and, perhaps, programming.

Figure 2-9 Propagating results from the recursion module

Applying the concept of dividing architectural design into a collection of modular components

facilitates the parametric process becoming more amenable to iterative design. A module performs

like an operation container, which can be procedurally defined and altered as the design progresses.

For instance, consider a panel module, which in the design conceptualization phase can be as simple

as a surface tessellation procedure. In this phase, the panel defines a polygonal face by its corner

vertices in relation to a target surface. The module can be later expanded to include added concerns

 30

relating to constructible building elements by recycling the relational information that can be gathered

from the constructed geometry such as face to panel, edge to structure frame, etc. In order to fulfill

the needs of building a reusable module, an understanding of constructive geometry principles is

necessary; moreover, with the increasing interest in building complex geometries, it is essential that

designers possess the programming skills needed for the parametric modeling process. In this

dissertation, components of the research are presented as parametric design modules towards solving

the surface tessellation problem. In doing so, the steps in relation to the problem definition—namely

tessellating surfaces with irregular boundary conditions, and corresponding problem solving strategies

are described and demonstrated in Chapters 4 and 5.

2.2 Mesh-Surface Reconstruction

When dealing with complex geometries it is common in contemporary architectural practice to

subdivide a surface into components that are easily fabricated. When approximating a target surface,

subdivision typically involves a single kind of polygonal face. Planar faces are always preferable for

physical fabrication and from the perspective of manufacturing techniques, production time,

production cost, constructability, and so on, are more feasible and efficient in comparison to making

non-planar panels. As an example, since triangles always guarantee planarity, it is not surprising that

the more commonly seen built freeform projects employ mainly triangulated parts. Nonetheless,

there are digital fabrication techniques, especially in the automobile and aerospace industries that use

more complex shaped fabrications. To draw the connection from surface discretization to physical

constructability, in Section 2.2 surface subdivision techniques are examined, mainly meshing, in

relation to the types of triangulation and constructible properties inherently associated with an

underlying surface.

2.2.1 Triangulation with planar faces

Although a three-dimensional triangle can be viewed as a flat planar face, easily cut from or

manufactured out of sheet material, there are, however, certain triangular configurations, which are

better than others in terms of constructability. For instance, a configuration with skinny triangles and

widely diverse panel dimensions may not be suitable for fabrication due to the physical constraints

embedded in material and manufacturing machinery. Only properly constrained triangulations lead to

well-structured configurations; these, in turn, ensure successful manifestation.

CH 2 - RESEARCH BACKGROUND

31

Among the more widely adopted tessellating algorithms is the Delaunay triangulation (Delaunay

1934; Lee and Schachter, 1980), which is used to solve a variety of computational geometry problems

(Berg et al., 2008), for instance, automatic mesh generation with optimized angles. We consider a set

of points, P, where every point in P is a vertex in the triangulation. A Delaunay triangulation, DT(P),

is a network in which no point in P is inside the circumcircle of any triangle in DT(P) not containing

the point. Figure 2-10 illustrates a violation of the Delaunay criterion. In the left image, which

highlights the edge, P0-P2, point P3 is inside the circumcircle of the triangular face formed by points

P0, P1, and P2. Likewise, P1 is inside the circumcircle of the triangular face formed by points P0, P3,

and P2. By removing the violating edge, P0-P2, and inserting new edge, P1-P3, we can produce a valid

Delaunay triangulation, shown in the right image of Figure 2-10. A notable property of such

triangulations is that all minimum angles are optimized such that skinny angles are removed. In a

sense, by conforming to the triangulation constraints as stated above, skewed triangles always violate

the constraints and thus are removed. When extended to three-dimensional space, a circumsphere

rather than a circumcircle is employed to verify the Delaunay criterion.

Figure 2-10 Criterion for Delaunay triangulation (Delaunay, 1943)

(Left) Invalid Delaunay triangulation edge (colored shaded red solid line)

(Right) Valid Delaunay triangulation

For mesh automation, a constrained Delaunay triangulation (CDT) is often used (Seidel, 1988;

Fleischmann, 1999). CDT may potentially contain non-Delaunay edges, in particular, at the boundary

edges. In CDT, the boundary constraint dominates the Delaunay criterion to ensure integrity of the

mesh boundary. Figure 2-11 illustrates a non-Delaunay edge, e, with a highlighted half circumcircle.

The edge point, P, which is within the smallest circumcircle, will not affect the edge, e.

 32

Figure 2-11 A constrained Delaunay Triangulation with a non-Delaunay edge, e

Image after Fleischmann (1999: http://www.iue.tuwien.ac.at/phd/fleischmann/node52.html)

The dual of a Delaunay triangulation is a Voronoi diagram. A Voronoi diagram, or Voronoi

tessellation, (Voronoi, 1908; Dirichlet, 1850; Aurenhammer, 1991) divides space into cells called

Voronoi cells or site. For any given set of points, P, each point in P is associated with a Voronoi cell

and all points in the cell are closer to the associated point than all other points in P. The left side

image in Figure 2-12 shows a Delaunay triangulation, DT(P), with twelve points, or, sites; the right

image illustrates the corresponding Voronoi diagram overlaid on top of the underlying DT(P). Figure

2-13 shows the steps in the construction; by intersecting the perpendicular bisectors of connecting

Delaunay edges at common points of interest. The newly created intersection points are Voronoi

vertices; they are also circumcenters of the triangles in the DT.

Figure 2-12 (Left) DT-Delaunay triangulation (Right) Voronoi Diagram

CH 2 - RESEARCH BACKGROUND

33

Figure 2-13 Constructing Voronoi diagram by intersecting bisector lines of Delaunay edges

2.2.2 Quadrangulations

A quadrangulation is a tessellation formed by quadrilateral (quad) faces. Consider the surface shown

on the left in Figure 2-14. The right image illustrates a subdivision of the surface using only quad

faces. In three-dimensional space, a quad face is not necessarily planar. One simple way to verify

flatness of a quad face is by examining its face warping.

Figure 2-14 (Left) Target surface; and (Right) Surface quadrangulation

Warping is a surface property, which indicates the distortion of the face. Figure 2-15 illustrates

warping of a quadrilateral face. We consider a parameter, d, which is the distance between mid point,

 34

MP_BD, on the diagonal line formed by PB and PD, and mid point, MD_AC, on the other diagonal line

formed by PA and PC. When d is zero, the quad face is called flat; otherwise, the face is warped.

Figure 2-15 Warping—distortion of the quad face

In Figure 2-16 and Figure 2-17, the quadrangulated (quad) mesh is analyzed for various surface

properties, namely, Gaussian curvature, mean curvature, maximum principal curvature and face

warping. For any point on a surface, there are two principal curvatures, one is maximum principal

curvature and the other is minimum principal curvature. The maximum principal curvature is the

curvature of the curve that has the maximum curvature value from all the intersecting curves by the

frenet frames at the point of the interest. The other principal curvature is the minimum principal

curvature direction, which has the minimum curvature values. Gaussian curvature is the product of

two principal curvatures. Mean curvature is the average of these two principal curvatures.

In the following images mesh faces are colored by sampling the curvature and warping

information from four corner vertices. For instance in the face warping analysis, minimally warped

faces should exist at surface areas, in which the quadrilateral face distortion is minimal. Figure 2-18

illustrates filtering of mesh faces for varying face flatness or warping thresholds. Here, in the

illustration, a threshold parameter, w, is introduced and determined by calculating the ratio of the

distance between the two mid points of the diagonal lines to the dimensions of the target quad face.

By gradually increasing the parametric threshold, w, flat faces appears from the surface center to the

boundary edges and finally to corner locations, in which quad faces are mostly distorted. Overall, the

central areas have minimal curvature discrepancy and the four corner areas have maximal curvature

discrepancy. In short, the difference in curvatures provides more practical information or constraints

for optimizing planar quadrilateral meshes.

CH 2 - RESEARCH BACKGROUND

35

Figure 2-16 Mesh analysis by Gaussian curvature and mean curvature

Figure 2-17 Mesh analysis by max principal curvature and face warping

 36

Figure 2-18 Mesh flatness analysis

By increasing the threshold of face warping, various numbers of “flat” faces are filtered

2.2.3 Subdivision

Once a surface has been tessellated using triangular or quadrilateral faces, subdivision schemes can be

further employed to convert a coarse mesh into a smoother mesh with smaller face elements. We

consider two schemes: Loop and Catmull-Clark subdivisions.

Loop subdivision (Loop, 1987) uses triangular subdivision in which each triangular face is

replaced by four smaller triangular faces, including three corner faces and one central face. The

subdivision process initiates from existing vertex modulations and new edge midpoint insertions. For

each triangular face, corner vertices are combined with two connected mesh-edge midpoints to form

three corner faces. One central face is constructed by three mesh-edge midpoints. At the end of each

iteration only the mesh-edge midpoints remain on the original mesh surface.

Catmull-Clark is a quadrilateral-based subdivision scheme, which converts any potential

polygonal mesh into a smooth quadrangulated surface (Catmull and Clark, 1978). The resulting

topology is smoothed by a recursive bicubic B-Spline subdivision function. Similarly, new vertices

are created at the middle of original mesh edges and get displaced to new locations by computing

with coefficients derived from the underlying topological connectivity. Figure 2-19 shows three

subdivision results by both subdivision schemes on an octahedron—a polyhedron with eight

CH 2 - RESEARCH BACKGROUND

37

congruent triangular faces. Loop subdivision is shown on top and Catmull-Clark subdivision is shown

at the bottom. The advantage of using these computational schemes is that they offer a ‘smoothing’

effect after optimization. These techniques are applicable to surface tessellation when one considers

refining the mesh topology for a smooth appearance.

Figure 2-19 Mesh refinement

Loop subdivision (Loop, 1987) and Catmull-Clark subdivision (Catmull and Clark, 1978)

2.2.4 Planar quadrilateral mesh

A particular type of planar mesh, called the Planar Quadrilateral (PQ-) Mesh, offers potential for

freeform design and fabrication applications (Pottmann et al., 2006a-b; 2007b). The clearest

advantageous characteristic of a PQ-mesh is its quadrilateral planar faces, which is preferable for

fabrication. It is straightforward to specify ‘planarity’ using a threshold. When this threshold is close

to zero, the face can be considered to be planar. The threshold can be regarded as a measure of

warping. The counterpart in the real world is in the way sheet material is viewed as planar. Most

 38

sheet material has a degree of warping and as long as it is within a controllable threshold, the sheet

can be treated as planar.

To construct a PQ-mesh, principal curvature properties of a surface are first examined. For every

point on a surface, there are two principal curvatures; these correspond to the maximum and

minimum values of the curvature at this point. Thus, at each point there are two principal curvature

directions. For any surface, a principal curvature line is a line that always maintain tangential to the

principal curvature directions on the surface. Therefore, at each point there are two principal

curvature lines intersecting at right angles. The network of these two principal curvature lines can

then be employed to form a mesh with quadrilateral face elements. See Figure 2-20. With further

optimizing the planarity of each quad face element, a planar-quadrilateral mesh (PQ-mesh) can be

derived (Liu et al., 2006). The PQ-mesh is treated as a discrete analogy of this network formed by

principal curvature lines.

Figure 2-20 (Left) Principal curvature lines of a saddle surface

(Right) Comparison of principal curvature lines and UV curves

Meshing a surface with planar quadrilaterals is not easy, and relies, mainly, on a prescriptive

procedure, which operates on the given surface. Figure 2-21 illustrates a sequence of meshing results

after PQ-mesh optimization. The optimization relies heavily on how close the initial coarse mesh can

generalize to—that is, increasingly resemble—the given surface. The generalization begins with the

principal curvature analyses and the network of principal directions, which can then be used to create

a coarse initial mesh. In Figure 2-21, given a coarse mesh in the left-most image, it is possible to

generate an output mesh with planar quadrilateral faces by iterative subdivision and optimization.

CH 2 - RESEARCH BACKGROUND

39

However, it is not always possible to generalize an initial mesh. This still remains an unsolved

research problem. For instance, it is difficult to reverse engineer a coarse representative mesh for the

surface shown in Figure 2-22 (Pottmann et al., 2007a), which has a large variation in curvature.

Currently, the initial coarse mesh is supplied by manual input.

Figure 2-21 The generative process of PQ meshes

by iterative applications of Catmull-Clark subdivision and PQ perturbation. Image after Liu (2006)

Figure 2-22 Large variations of cell sizes and directions from the network of principal curvature lines are

not suitable as the basis for the layout of a PQ mesh.

Image from Architecture Geometry (Pottmann, et. al, 2007a)

 40

2.2.5 Developable surfaces

Another kind of mesh comprising just planar faces is the developable surface, which is amenable to

fabrication. For instance, a developable surface is characterized by the property that it can be mapped

isometrically onto a plane. An isometric mapping preserves distance (as well as Gaussian curvature

and surface area) (Portmann et al., 2007a). The planar image of a developable surface is called its

development.

It is instructive to think of developable surfaces in terms of envelopes of surfaces. The envelope

of a one-parameter family of surfaces is tangential to each surface in the family along the

characteristic curve in that surface. A developable surface is the envelope of a one-parameter family

of planes (Liu et al., 2006; Pottmann et al., 2007b). It turns out that developable surfaces are also

ruled surfaces in which through every point there is always a straight line that lies on the surface.

There are three basic kinds of ruled surfaces: i) rulings are parallel (that is, the surface is developed

from a cylinder); ii) rulings are concurrent (that is, the surface is developed from a cone with its apex

as the point of concurrency); and iii) rulings are tangential to a spatial curve. (Such a surface is also

termed a tangent surface.) Figure 2-23 illustrates the three basic kinds of ruled surfaces.

a. Cylindrical surface b. Conic surface c. Tangent surface of a spatial curve

Figure 2-23 Basic kinds of ruled surface

2.2.6 Bubble mesh

The bubble mesh is an automatic mesh generation algorithm, which presents a distinct way of

triangulating non-manifold geometry using a sphere packing technique (Shimada 1993; Shimada and

Gossard, 1995). This method was devised for spheres (bubbles) packing via physical-based relaxation

optimization; results show its strength in reducing the number of ill-shaped triangles and offering

control over the dimension and directionality of mesh face elements. The resulting mesh face can be

CH 2 - RESEARCH BACKGROUND

41

triangular or quadrilateral. This technique is useful for a number of types of analysis that require

geometric objects to be described in a well-structured discrete fashion, for instance, finite element,

structural and heat transfer analyses (Kenji and Gossard, 1998).

Figure 2-24 illustrates surface triangulation via bubble packing. Briefly, bubble meshing

involves three stages: (1) retrieving topological and geometric conditions; (2) packing the given

domain with bubbles; and (3) generating the mesh.

Figure 2-24 Surface Triangulation via bubble packing. Image from Shimada and Gross (1998)

For the first stage, the input surface is examined and peripheral conditions such as surface

boundary and trim curves are identified.

Second, bubbles are placed in dimensional order to resolve topological and geometric constraints.

In this stage, bubbles are packed on vertices first. Once the vertices have been packed, boundaries

(edges) are examined next. Finally, bubbles are injected into faces and are optimized by physical-

base relaxation (or force-balancing) and population control. This process is briefly described. An

inter-bubble force is introduced to identify the following packing conditions for optimization: (1) two

 42

bubbles overlap creating a repelling force; (2) two bubbles touch each other and remain stable; (3)

two bubbles are too far apart resulting in an attraction force. Through inter-bubble forces, a

physically-based simulation is utilized to search for an equilibrium configuration where all bubbles

are placed in a stable state. Furthermore, in order to choose a sufficient number of bubbles for a given

domain, adaptive population control is employed. Population control examines the ratio of local

overlapping bubble populations. Significantly overlapping bubbles are removed, and bubble clusters

lacking sufficient bubbles are increased.

The last stage in the optimization is to connect the centers of the tightly packed bubbles by a

constrained Delaunay triangulation (Seidel, 1988). This ensures the best topological connections and

conforms align with the surface boundary.

The advantage of utilizing bubble mesh is in the precise control of size, anisotropy and

directionality of the generated mesh elements. During the meshing process, a guiding tensor field is

employed to specify desired anisotropy and directionality for subsequent meshing operations. For

instance as shown in Figure 2-25, a variety of two-dimensional quadrilateral meshings are generated

by varying isotropic and anisotropic characteristics using a 2x2 tensor field (Viswanath et al., 2000;

Shimada, 2011). Similar application can be extended to three-dimensional meshing using a 3x3 tensor

field with various polygonal mesh face elements, such as quadrilaterals or hexagons (Shimada et al.,

2000; Viswanath et al., 2000; Yamakawa and Shimada 2003; Vyas and Shimada, 2009).

Target mesh size
and directionality

Uniform
isotropic mesh

Uniform
anisotropic mesh

Graded
isotropic mesh

Graded
anisotropic mesh

	
 	
 	
 	
 	

Figure 2-25 Meshing control of size, anisotropy and directionality by 2x2 tensor field for a two-

dimensional meshing problem. Image after Viswanath et al. (2000)

CH 2 - RESEARCH BACKGROUND

43

In Figure 2-26, Itoh et al. (2003) presented potential applications by first tessellating regions of

interest into a set of peudo-voronoi polygons and later triangulated using the Loop subdivision

scheme (Loop, 1987) to generate organic textures. In this research, the capability of controlling mesh

anisotropy and directionality facilitates the process of organic texture generation and in terms

provides a computational handler for users to customize realistic textures with ease.

(a) Texture #1 (b) Texture #2

(c) Texture #3 (d) Texture #4

Figure 2-26 Organic texture generation

For each example: (Top-Left) Input boundaries; (Bottom-Left) Psuedo-Voronoi polygons;

and (Right) Generated texture. Image from Itoh et al. (2003)

2.3 Fabricating Architectural Geometry

Digital fabrication techniques, borrowed from aerospace and automobile industries, make possible

realizations of complex geometries (Kolaveric, 2005a-b; 2008). A basic strategy for digital

 44

fabrication in current architectural practice is to approach it as top-down decomposition. Quite simply,

decomposition considers how a target freeform surface is segmented with easy to construct face

components; to this end, simple geometric elements are preferred (e.g., triangular panels). Two-

dimensional cutting techniques can be then easily employed for shop production and on-site final

assembly, within controllable time and precision. In general, to realize freeform structures, two

aspects of fabrication need to be examined: firstly, decomposition strategies; and secondly, applicable

techniques for fabrication. These two aspects are closely related and should be considered in any

design process. It appears that the closer these parameters are integrated, the better the results

achieved in practice.

Figure 2-27 illustrates two designs by Norman Foster and Partners: the Elephant House canopy

and the City Hall in London. Both demonstrate the advantages of integrating physical constraints with

underlying geometry construction in real architectural applications.

a. b.

Figure 2-27 a. Elephant House Canopy2 ; b. London City Hall by Normal Foster and Partners3

In the canopy design, decisions are deferred until late in the process while making structural

member generation feasible via the precision and efficiency derived from the principal geometric

setup. The base geometry for the canopy is the torus, which can be mathematically constructed by the

revolution of a circle around an axis. Mathematically, the revolution gives the surface a nice feature

for discretization—namely, a planar quadrilateral patch can be derived directly from the principal

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2 Image after Foster & Partners from arcSpace.com, last accessed on April 5th, 2010.
3 Image after Foster & Partners from +math.org, last accessed on April 5th, 2010.

CH 2 - RESEARCH BACKGROUND

45

curvature lines. The constructive principle of revolution makes fabrication feasible and manageable,

even for this type of dome-like surface.

The City Hall project, on the other hand, demonstrates how parametric schemes used on a cone

surface development can be realized for flat panel fabrications. The initial idea for the City Hall is a

pebble-like form, which was later approximated by a collection of partial cone strips. A cone strip is a

family of the cylindrical surface, which can be easily decomposed into planar quadrilateral faces.

These two designs clearly highlight the advantages of incorporating constructive principles

throughout the process from design to fabrication. The constructive principle herein captures the

underlying mathematical form of the target surface and in turn makes feasible its ultimate

manifestation.

Essentially, converting a curvilinear surface into a set of constructible components can be treated

as a meshing process, which has been well researched from both engineering and architectural

disciplines (Liu et al., 2006; Pottmann et al, 2006a-b; 2007b). In the following sections, we consider

three types of manifest examples in relation to the manufacturing techniques: (1) flat polygonal

panels, including both triangular and quadrilateral panels; (2) single-curved panels; and (3) double-

curved panels. Many of the images shown in this section are adapted from Schodek et al. (2004) who

provide a comprehensive documentation on how computer-aided manufacturing applications are

implemented within various design/production contexts and fabrication environments.

From a fabrication perspective, fabrication techniques can be categorized into four basic types:

(1) two-dimensional cutting; (2) three-dimensional subtraction; (3) three-dimensional deposition; and

(4) formative generation (Kolaveric, 2005a; 2008). There is a close relationship between these

categories and tessellation types. For instance, the cutting-based approach is suitable for planar

construction. The three-dimensional techniques can be applied to single-, or double-curved panel

fabrication.

2.3.1 Flat polygonal panels

These are panels constructed from planar faces. Since triangular faces are always flat, they are easily

fabricated using two-dimensional cuts; for example, profile cuts using a CNC4 machine. Tessellating

a three-dimensional surface into planar panel components is analogous to approximating a three-

dimensional geometry with two-dimensional counterparts, which are feasible by using digital

fabrication machinery. From a practical point of view, embedding the fabrication constraints, such as

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4 Computer Numerical Control

 46

material size or dimension of CNC cutting bed into the geometry construction and optimization

process can in turn facilitate physical production in time, cost, and so on. Figure 2-28 illustrates the

CNC cutting diagram with three different techniques, namely, Oxy-Fuel, Plasma and Laser cutting.

Figure 2-28 CNC cutting machine with three types of cutting techniques

(Top-Left) Oxy-Fuel cutting (Top-Middle) Plasma cutting (Bottom-Right) laser cutting

Image from Schodek et al. (2004: pp. 264-5)

There are examples of using such panels on large-scale projects, for example, the BMW Belt

project by Coop Himmelblau in 2007 (Iwamoto, 2009). See Figure 2-29. The BMW Belt project

features a double cone surface, formed by placing two cone surfaces apex to apex. The surface

geometry is tessellated with triangular faces. Using a digital fabrication process, each triangulated

mesh is constructed as a flat glass pane, in this way, realizing the double cone geometry.

Figure 2-30 illustrates utilizing a CNC Laser router to pre-fabricate structure frames by two-

dimensional profile cutting.

CH 2 - RESEARCH BACKGROUND

47

Figure 2-29 BMW Belt—a double cone surface, Munich, Germany5

Figure 2-30 Profile cutting on a sheet steel for structure frame construction

Image from Schodek et al. (2004: pp. 75)

2.3.2 Single-curved panels

Panels with plane curves can be fabricated by combining a simple cut with a bend (deformation).

Figure 2-31 illustrates a three-roll machine for bending sheet material such as sheet metal or plate.

Other sheet material, such as wood, can also be applied heat bending to form a single-curved panel.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5 Image after BMW Belt from http://www.bmw-welt.com/, last accessed on Oct 10th, 2011.

 48

Figure 2-31 Diagram of a three-roll machine bending sheet metal or plate

Image from Schodek et al. (2004: pp. 244)

In fact, a single-curved surface belongs to a family of developable surface. For instance, a

cylindrical surface is a single-curved surface (See Figure 2-23a). Many of Frank Gehry’s signature

freeform projects feature this type of surface (Shelden, 2002; Glympha and Shelden, 2004; Burry and

Burry, 2010). At it simplest, any surface that can be formed by bending a flat sheet of material can be

called a single curved surface. In Figure 2-32, single curved panels are illustrated with underlying

plane curves, which are colored shaded red. In this example, the structure frames are also developed

from planar curves, and thus, can be easily fabricated by two-dimensional fabrication techniques.

Figure 2-32 Single-curved strips with straight structure frames

Image after Pottmann (2010)

CH 2 - RESEARCH BACKGROUND

49

Figure 2-33 shows a single-curved application in a real architectural project—the Disney

Concert Hall by Frank Gehry completed in 2003. The freeform facade is finished by sheet steel

panels.

Figure 2-33 (Left) Disney Concert Hall by Frank Gehry (Right) Close view of the steel panels

Image source: http://en.wikipedia.org/wiki/Walt_Disney_Concert_Hall

2.3.3 Double-curved panels

These panels are geometrically more complicated than a flat or single-curved panel and cannot be

fabricated by simple cut-and-bend, and require advanced digital fabrication techniques. In general,

double-curved panels are usually featured with continuous curvilinear surfaces and can be

manufactured by subtraction, deposition, or deformation.

Subtraction removes parts from volumetric material to form the desired shape; this is mainly

achieved by CNC machinery, which have many degrees of freedom (DOF). The more degrees of

freedom a machine has, potentially, the more complex the form that can be produced. Figure 2-34

illustrates a CNC routing machine with 5 DOF corresponding to five axes of movement. In general, a

CNC machine is controlled by coded instructions, which describe the tool-bit paths in sequential

order. Using a CNC machine featuring more degrees of freedom, complex forms such as double

curved panels can be produced. Figure 2-35 shows a panel directly milled out from natural stone

material using CNC milling.

 50

Figure 2-34 A five-axis CNC router illustrated with major axes of movement

Image after Schodek et al. (2004: pp. 242)

Figure 2-35 Complex shaped panel construction by CNC milling

(Left & Middle) Milled surface panels; and (Right) Façade mock-up with supporting steel ribs

Image after Schodek et al. (2004: pp. 62)

CH 2 - RESEARCH BACKGROUND

51

Instead of milling a double curved panel directly, a formative process by casting or deformation

can be applied. Usually, a mold is created first. In more details, fabricating these panels in a

formative process relies highly on the quality of mold making. In contemporary architecture practice,

a formative approach is usually taken for complex surface construction. Similarly, a CNC routing

machine is employed for mold making for both positive and negative compartments. Molds are milled

out from volumetric material, such as foam. Constraints in this approach include the thickness of the

volumetric material, the length of the milling bits, and degrees of freedom of the CNC machine in

relation to the target surface topology. With milled molds, the fabricating process can proceed with

either deformation or deposition.

Deformation is a process of continuously changing the body of a material by force. This process

is usually irreversible. Figure 2-36 provides two illustrations showing how a layer of sheet materials

can be deformed, on the left, by using a positive CNC cut form, and on the right, by a combination of

positive and negative CNC cut forms.

Layer materials can be glass-based and other composites, wood, plastics etc. Figure 2-37 shows

a thermoforming process applied to an acrylic sheet by a CNC cut positive mold.

Figure 2-36 Diagram of constructing thin-shell surface by using laid-up materials

(Left) Positive CNC-cut form; and (Right) Clamped positive and negative forms

Image after Schodek et al. (2004: pp.307)

 52

Figure 2-37 (Left) Mold milling (Right) Thermoforming acrylic sheets

Image after Schodek et al. (2004: pp. 72)

Casting is another type of the formative process, in which liquefied material, such as concrete,

gypsum, metal, etc., is injected into the cavity of the mold for solidification. Figure 2-38 illustrates a

foam mold milled out by a CNC machine (on the left) with concrete used for casting the final product

(shown on the right). In a sense, this kind of mold making with deformation or casting is a relatively

labor-intensive manufacturing technique, but provides a great flexibility to accommodate complex

shaped geometry construction.

Figure 2-38 (Left) CNC-milled foam mold (Right) Concrete casting

Image after Schodek et al. (2004: pp. 334)

For certain intricate freeform designs such as the Innsbruck railway station by Zahad Hadid, and

the Kunsthaus Graz by Peter Cook and Colin Fournier, shown in Figure 2-39, using planar-

CH 2 - RESEARCH BACKGROUND

53

component based fabrication is infeasible. To realize such complex forms, a formative process, such

as casting, is needed and, unsurprisingly, production cost is extremely high. However, in order to

fabricate physical construction, which faithfully represents the original complex design, a project-

based approach is inevitable. Notwithstanding, a design with well-structured constructive principles

can facilitate the digital process, and in turn, optimize the final manifestation. For instance, the cost of

using a formative approach for double curved panel construction highly depends on the cost of mold

making. To reduce cost, there have been developments toward a more sustainable direction through

research in reusable molds, and flexibly adjustable molds, which can be adjusted for various panels

with the same surface topology (Pronk et al., 2009; Eigensatz et al., 2010b; Boers6, 2008). The key to

utilizing reusable and flexible molds lie at the capability of optimizing types of surface tessellation

elements by distinct surface characteristics such as dimension, curvatures, and so forth, which are

derived from the underlying constructive geometry.

Figure 2-39 (Left) Innsbruck railway station by Zahad Hadid7

(Right) Kunsthaus Graz by Peter Cook and Colin Fournier8

2.4 Summary

Digital fabrication techniques have radically changed practice in the way we manifest architecture.

This change has driven the evolution of building design from a mode of mass production into one of

mass customization (Kolevairc, 2005a). Through CNC machinery, fabricating thousands of unique

components is almost equivalent to fabricating thousands of identical components (Pine 1993). This

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6 S. Boers, http://optimalforming.com/, last accessed on Oct 10th, 2011.
7 Iwan Baan, http://www.iwan.com/photo_index.php?category=photography, last accessed on Oct 10th, 2011.
8 Kunsthaus Graz, http://en.wikipedia.org/wiki/Kunsthaus_Graz, last accessed on Oct 10th, 2011.

 54

is achieved by employing machining instructions from digital fabrication data, which is generated

directly from a digital model or by some underlying constructive principles. This does not, however,

mean that designers are free to pursue whatever forms they choose without paying heed to

requirements of fabrication. Instead, well considered evaluations, e.g., exploring sizes of panels

specific to the dimensions of the chosen CNC machine, investigating warping with respect to material

constraints, will accelerate production and minimize fabrication costs.

This type of digital-driven process emphasizes a more integrative and generative workflow,

reuniting the originally separated professions of design and construction, and is becoming more

prominent in architecture in the past few years (Kolarevic, 2009). In this dissertation, a parametric

modeling process is adopted to solve surface tessellation with irregular boundary conditions. The

contention is that with the well-organized underlying structure, further pattern-based propagation can

become more manageable while exploring freeform surface design, which heavily relies on the

discrete elements from the surface tessellation. The methodology presented in this dissertation is

based on the meshing process and intends to be later extended with considerations for physical

construction. To achieve this goal, the relationship between underlying surface tessellation with

pattern-based propagation is investigated and serves as an essential handler for supporting future

physical construction.

 Chapter 3

Parametric Pattern Generation

In this chapter, preliminary studies on parametric pattern generation are described. Two kinds of

patterns are considered: Archimedean patterns (Grünbaum and Shephard, 1987), and interwoven

patterns that are inspired by the work of Erwin Hauer (2007). Both kinds of patterns are constructed

through a sequence of parametric operations on a given base template. The findings from these

investigations serve as the foundation for the parametric pattern-based surface tessellation.

To convert a surface into a pattern of polygonal forms it is common to employ approaches that

are based on the U and V domain parameters. To retrieve a range of parametric values in one domain,

an parametric interval with notation, [t0, t1), is used. t0 represents the starting parameter and t1 the

ending parameter for the interval. It is straightforward to divide an entire surface by iteratively

evaluating parametric intervals, [u0 u1) and [v0 v1), of a target surface for generating subsurface

patches. This approach is efficient and straightforward when the target surface remains untrimmed.

The images shown in Figure 3-1 exemplify different surface segmentations obtained by varying the

UV parameter indices for either quadrilateral or triangular configuration. The image on the left is the

surface segmentation derived from uniform parameter intervals; the middle and right images are

conversions from uniform UV segmentation into triangles with respective operations. In this example

two types of triangulations are derived from splitting the original quad faces by diagonal lines.

 56

Figure 3-1 UV-based segmentation and quad-triangle conversion

(Left) Uniform UV segmentation (Middle) Conversion from quads to triangles-type 01

Right) Conversion from quads to triangles-type 02

	

Figure 3-2 Diagrid pattern with quad-triangle conversion

(Left) Quadrilateral segmentation of the diagrid pattern (Middle) Type_01 by a horizontal split

 (Right) Type_02 by a vertical split

CH 3 - PARAMETRIC PATTERN GENERATION

57

By filtering the triangulated patterns with a checkerboard pattern, another type of segmentation

can be derived; this is called the diagrid pattern shown in the left most image of Figure 3-2. A diagrid

pattern is made out of diagonal lines from the original quadrilateral faces, thus creating distinct flows

along directions other than the original UV domains. The middle and right images in Figure 3-2

correspond to diagrid subdivision by splitting the pattern into half; one uses a horizontal split along

the U direction, and the other uses a vertical split along the V direction.

By manipulating the parameter intervals, other segmentation results can be achieved. Figure 3-3

is similar to the example shown in Chapter 1 (Figure 1-6), in which the parametric intervals along the

U direction are re-parameterized by tracking surface curvature changes; in this example, the higher

the curvature change the smaller the interval. The parametric intervals along V are gradually increased

from the bottom to the top. By iteratively splitting the surface from quads to triangles (see the middle

image in Figure 3-3) and triangles to quads (see the right image in Figure 3-3), various patterns

emerge by simply reconfiguring the mesh elements.

Figure 3-3 Iterative subdivision of a surface

(Left) Surface produced from customized intervals

(Middle) Conversion from quadrilaterals to triangles

(Right) Conversion from triangles to smaller quadrilaterals

 58

In addition to subdivision by triangles and quadrilaterals, Archimedean patterns are also

considered as examples of pattern-based tessellations. Two regular patterns, namely, the square and

triangular tilings can be parametrically constructed by using the UV parameter intervals. From these

two fundamental regular polygonal patterns, other regular and semi-regular patterns can be

constructed by additional parametric operations.

3.1 Archimedean Patterns

An Archimedean tiling (or pattern) is a two-dimensional vertex-transitive edge-to-edge plane-filling

pattern made up of one or more polygonal tiles called prototiles. Vertex-transitive indicates that the

same configuration of regular polygons is repeated at each vertex. This includes identical (1) number

of faces, (2) number of edges of each face, and (3) order of these faces surrounding the vertex. These

patterns fill the plane. There are a total of eleven Archimedean tilings of which three are regular and

the remaining eight are semi-regular (Grünbaum and Shephard, 1987).

In the purest sense, a regular tiling pattern comprises just one kind of regular polygon as the

prototile; for instance, the triangular tiling has six equilateral triangles at each vertex, the square tiling

has four squares and the hexagonal tiling has three regular hexagons. See Figure 3-4.

	

Figure 3-4 The three regular Archimedean tilings in the plane

	

36

Triangular	

	

44

Square	

	

63

Hexagonal	

CH 3 - PARAMETRIC PATTERN GENERATION

59

Figure 3-5 The eight semi-regular Archimedean planar tilings in which

the snub hexgaonal tiling is shown as a pair of enantiomorphs

For the rest semi-regular tiling patterns, multiple polygons serve as prototiles. To distinguish the

types and number of polygons used in a pattern, the following standard notation is employed. For

instance, the triangular tiling is represented by 3.3.3.3.3.3 (or 36) or six triangles about a vertex, the

	

33.42

Elongated Triangular	

	

4.82

Truncated Square	

	

324.3.4

Snub Square	

	

3.6.3.6

Trihexagonal

	

3.122

Truncated Hexagonal	

	

4.6.12

Truncated Trihexagonal	

	

3.4.6.4

Rhombitrihexagonal	

	

34.6

Snub Hexagonal

	

34.6

Snub Hexagonal (reflection)

 60

square tiling by 4.4.4.4 (or 44) or four squares about a vertex, and the hexagonal tiling by 6.6.6 (or 63)

or three hexagons about a vertex. The semi-regular tilings are likewise notated. These are: 4.82, 33.42,

32.4.3.4, 3.6.3.6, 3.122, 4.6.12, 3.4.6.4, and 34.6 (2). The order of illustrating these prototiles follows

the complexity of construction. For example, 4.82 and 32.4.3.4 can be both constructible from a square

tiling by different operations. The 3.6.3.6 and 3.122 are derived from the triangular tiling; the 4.6.12

and 3.4.6.4 tilings from the hexagonal tiling. The 34.6 tiling occurs in distinct right- and left-handed

versions, which are also referred to as enantiomorphs. See Figure 3-5, which shows the eight semi-

regular tilings showing the two forms of the Snub Hexagonal (346) tiling.

In the following, firstly, constructive rules embedded in two-dimensional tiling patterns are

introduced and exemplified with pattern generation on a three-dimensional surface by segmenting the

corresponding two-dimensional parametric space. The objective of this preliminary study is to

investigate the underlying topological construction for alternative surface tessellation.

Next, how ‘Archimedean’ style tilings can be constructed on a three-dimensional surface are

illustrated. For simplicity, any such tiling that maintains the vertex condition is referred to as

Archimedean irrespective of the nature of the surface albeit planar or otherwise, or whether the

polygons of the same kind are identical. In this regard, it is important to note that any UV-based

surface subdivision has a close relationship to an Archimedean tiling, in particular, to the three

regular patterns. A quadrilateral (44) tiling can be directly derived from a UV-based subdivision of

any untrimmed surface. A triangular (36) tiling can be converted from a quadrilateral tiling, or, be

procedurally constructed from the underlying UV domain. A hexagonal (63) tiling is a dual of a

triangular tiling; a dual pattern is constructed by replacing a polygonal face by a vertex at its centroid

and connecting, by an edge, the vertices corresponding to edge-on-edge faces. That is, every vertex of

the polygonal form corresponds to a new polygonal face constructed from the centroid of all

neighboring faces and vice versa.

Given a surface such as the one shown in Figure 3-6, parameterized modules can be created to

generate a regular tessellation pattern using two parameters, which specify dimensional constraints

for the designated subdivision modules along the U and V directions. The three regular Archimedean

pattern shown in Figure 3-7 are constructed this way.

CH 3 - PARAMETRIC PATTERN GENERATION

61

Figure 3-6 Input surface for Archimedean tessellation

Figure 3-7 The regular Archimedean patterns

(Left) Triangular Pattern (Middle) Quadrilateral Pattern (Right) Hexagonal Pattern

The eight semi-regular Archimedean patterns are each closely related to a regular tiling. In the

sequel, how these patterns are constructed parametrically is demonstrated. For this three new

operators are introduced: truncation, insertion and alternation. But first, we need a data structure.

3.1.1 Data Structure

At a minimum, any two-dimensional pattern or 2-manifold polyhedral shape can be represented by a

collection of vertices, edges, and faces, where the elements are organized by their connectivity; a pair

of vertices bound an edge, edges bound faces and a face specified as a list of vertices. See Figure 3-8.

 62

Figure 3-8 Connectivity between vertices, edges, and faces

In order to be able to compute and store information of mesh element connectivity information

we consider possible relationships between the mesh elements, namely, between vertices, edges and

faces. These are described in the three tables below.

Relations

Semantics of relations

	

 Vertex Edge Face

Vertex VV VE VF

Edge EV EE EF

Face FV FE FF

 Vertex Edge Face

Vertex Vertices of incident
edges

Incident edges Incident faces

Edge Bounding vertices Adjacent edges
(of the same face)

Incident faces

Face Bounding vertices Bounding edges Adjacent faces

CH 3 - PARAMETRIC PATTERN GENERATION

63

Syntax of relations

	

	

	

	

	

For implementation, the relationships V<E>, E{F}2, and V<E> shown highlighted in the tables

above are represented in the data structure. By maintaining these three relationships in the data

structure, all connectivity information can be retrieved. For instance, the incident faces of a vertex,

V<F>, can be retrieved by combining the V<E> and E{F}2 relations. Likewise, bounding edges of a

face, F<E>, can be retrieved by combining F<V> and V<E>. Upon completion of the mesh

construction, all edges at a vertex are sorted counter-clockwise about the vertex normal. See Figure

3-9.

Figure 3-9 Sorted edges and faces about the vertex normal

V0, V2, V4, V6, V8, …, Vn are sorted in counter-clockwise order around Vt about the vertex normal,

shown colored shaded red. Likewise, E0, E1, E2, E3, E4, E5 at Vt are sorted in the same order

 Vertex Edge Face

Vertex V<V> V<E> V<F>

Edge E{V}2 E{<E>}2 E{F}2

Face F<V> F<E> F<F>

 64

We are now ready to illustrate the three tiling operators using this data structure.

3.1.2 Truncation Operator

The truncation operator takes a parameter, t, which specifies a point (aka truncating vertex) on the

edges around a given vertex to locate new vertices. By iteratively evaluating these truncating vertices,

a new polygonal face around the current vertex can be constructed. Each face, incident to the current

vertex, is replaced by a new face, which is formed by the truncating vertices on its bounding edges.

Figure 3-10 illustrates truncation on the hexagonal (63) pattern. The middle image in Figure 3-10

shows vertex truncation and the right image shows face replacement. By applying the truncation

operator on the hexagonal pattern (63), two semi-regular Archimedean pattern can be constructed, the

truncated hexagonal pattern (3.122) and trihexagonal pattern (3.6.3.6). See the left and middle images

in Figure 3-12. The truncated hexagonal pattern (3.122) is constructed with the setting t = 1/3 and the

trihexagonal pattern (3.6.3.6) with t = 1/2.

Original 6.6.6 Pattern Vertex Truncation Face Replacement

Figure 3-10 Truncation operation on a hexagonal pattern

(Left) Original 63 pattern (Middle) Vertex truncation by inserting truncation points on connected edges

(Right) Face replacement by connecting truncation points on boundary edges

Likewise, the truncated square tiling (4.82) is constructed from the square tiling (44) by

truncation by setting t = 1/3. In this example, edges of each quadrilateral face in the square tiling are

divided into three segments such that the (1) remaining edge segments and (2) new edges by

connecting truncation points from neighboring edges form octagonal elements for the truncated

CH 3 - PARAMETRIC PATTERN GENERATION

65

square tiling (4.82). See Figure 3-11. The middle image shows the new quadrilateral elements created

by truncating vertices and the right image shows the octagon face replacement.

Original 4.4.4.4 Pattern Vertex Truncation Face Replacement

Figure 3-11 Truncation operation on a square tiling pattern

(Left) Original 44 pattern

(Middle) Vertex truncation by inserting truncation points on connected edges

(Right) Face replacement by connecting truncation points on boundary edges

(3.122) (3.6.3.6) (4.82)

Figure 3-12 Semi-regular patterns derived by the truncation operation from 63 and 44 patterns

(Left) Truncated hexagonal pattern (3.122) by setting t = 1/3 from a 63 pattern

 (Middle) Trihexagonal pattern (3.6.3.6) by setting t = 1/2 from a 63 pattern

(Right) Truncated square pattern (4.82) by setting t = 1/3 from a 44 pattern

 66

Notice that when t is less than 1/2, two truncation points are constructed; otherwise, only one

truncation point is created. The extreme case for the truncation parameter t is when t equals 1. The

resulting pattern is the dual of the original pattern, in which each new polygonal face is derived from

the barycenter of the connected faces at a vertex. For example, using truncation with t = 1 on a

triangular tessellation pattern, where each vertex has exactly 6 connected faces, will generate a

hexagonal pattern. In other words, a hexagonal pattern is the dual of a triangular pattern and vice

versa.

Truncation can be described by the following pseudo-code.

 “For a given initial pattern of prototiles (faces), which are specified, essentially, by lists

of vertices, edges per vertex, and faces, new faces, edges and vertices are created as

follows. Each vertex is replaced by a new face formed from truncating vertices on edges

incident to the original vertex. Edges of every existing prototile (face) are replaced by

new edges created from the inserted truncating vertices on the original edges. Original

faces are updated to include the truncating vertices on the boundary edges of the face.

The truncation process is based on examining the connectivity at existing vertices and

around each face.”

	

[Pseudo-code for Truncation]

 TRUNCATION (M, M’, T)

1 for each Vertex, V, in the mesh vertices, M<V>: // 1. Vertex Replacement //

2 new VtList <- TRUNCATEPTSATVT(V, T)

5 PFnew <- new PolyFace(VtList)

6 update PFnew à M’

7

8 for each Face, F, in the mesh faces, M<F>: // 2. Face Replacement //

10 new VtList <- TRUNCATEPTSONFACE(F, T)

11 PFnew <- new PolyFace(VtList)

12 update PFnew à M’

CH 3 - PARAMETRIC PATTERN GENERATION

67

[Macro for Truncation at Vertex Edges and Faces]

 TRUNCATEPTSATVT (V, T)

1 new VtList // new Vertex List by Truncating Vertex Edge//

2 for each Edge, E, in the Edge list, V<E>:

3 add interpolated Point(s) on Edge, E, by T à VtList

4 return VtList

TRUNCATEPTSONFACE (F, T)

1 new VtList // new Vertex List by Truncating Face//

2 for each Vertex pair, [Vi, Vi+1], in, F<V>:

3 add interpolated Point(s) by Verteices, [Vi, Vi+1] with T BI à VtList

4 return VtList

3.1.3 Insertion operator

The insertion operator begins with the insertion of a new polygonal element at an edge. The next step

is to construct new faces at bounding vertices and incident faces of the current edge. For instance, in

order to create a truncated trihexagonal (4.6.12) tiling pattern we apply an insertion operator on a

triangular tiling (36). The first step starts with new quadrilateral face generation at each edge, from

which new vertices are constructed by offsetting the edge midpoint toward the centroids of incident

faces. A parameter, t, in this operation is utilized to control the offsetting distance, as well as the

dimension of the quadrilateral face element, as shown in Figure 3-13. The second step constructs a

face replacement for each incident face (of current edge) by connecting offset vertices from the

bounding edges (the left image of Figure 3-14). Lastly, each vertex is replaced by new polygonal face,

which is formed by offset vertices from connecting edges at the current vertex, as show in the right

image in Figure 3-14.

 68

00_Initial 36 Pattern 01_Edeg Insertion

Figure 3-13 Insertion Step 1: Edge insertion

02_Sub Face Creation 03_Vertex Face Replacement

Figure 3-14 Face and Vertex Replacement

 (Left) Step 2: Sub-face creation (Right) Step 3: Vertex Face replacement

Likewise, the rhombi-trihexagonal (3.4.6.4) tiling pattern can be constructed by insertion of a

regular 63 pattern. In this case, the control parameter, t, is set equal to 1/2. A quad face is constructed

for each edge. For each connected face, a triangular face is constructed. Each bounding vertex is

replaced by a hexagonal face. Figure 3-15 illustrates the two semi-regular patterns, which are created

by insertion. Notice that the (4.6.12) tiling pattern (shown on the left in Figure 3-15) could also be

derived from a trihexagonal (3.6.3.6) pattern solely by truncation. In a sense, insertion offers an

alternate approach to the pattern generation by rendering different parametric controls over the

procedural construction of corresponding polygon elements.

CH 3 - PARAMETRIC PATTERN GENERATION

69

Figure 3-15 Semi-regular pattern by the scaled-insertion operator

(Left) Truncated trihexagonal pattern (4.6.12) (Right) Rhombi-trihexagonal pattern (3.4.6.4)

This process can be described by the following pseudo-code:

 “For a given initial pattern of prototiles (faces), which are specified, essentially, by lists

of vertices, edges per vertex, and faces, new prototiles are created by edge insertion as

follows. First, quadrilateral faces are inserted on each edge. The parametric relation of

the insertion face to the edge is determined by a parameter, T, which specifies the offset

distance from the edge and the dimension of the insertion face is the double of the offset

distance. Next, vertex and face replacement is, respectively, performed by examining the

edges incident at the vertex, or the edges bounding the face.”

[Pseudo-code for Insertion]

 INSERTION (M, M’, T)

1 for each Edge, E, in the mesh edges, M<E>: // 1. New edge face insertion //

2 VtList <- EDGEFACEINSERTION(E, T)

3 PFnew <- add new PolyFace(VtList)

4 update PFnew à M’

5

6 for each Vertex, V, in the mesh vertices, M<V>: // 2. Vertex Replacement //

7 VtList <- EDGEOFFSETPTSATVERTEX(V, T)

8 PFnew <- add new PolyFace(VtList)

9 update PFnew à M’

10

 70

12 for each Face, F, in the mesh faces, M<F>: // 3. Face Replacement //

13 VtList <- EDGEOFFSETPTSOnFACE(F, T)

14 PFnew <- add new PolyFace(VtList)

15 update PFnew à M’

[Macro for EdgeFaceInsertion and EdgeOffsetPts at Vertex and on Face]

 EDGEFACEINSERTION (E, T)

1 new VtList // new Vertex List for Edge Face Insertion //

2 for each Face, F, in the Edge face list, E<F>:

3 add offset edge points toward connected face, F, by T à VtList

4 return VtList

EDGEOFFSETPTSATVERTEX (V, T)

1 new VtList // 1. new Vertex List by EdgeOffset points at vertex//

2 for each Edge, E, in, V<E>:

3 add offset Point(s) from E by T à VtList

4 return VtList

EDGEOFFSETPTSOnFACE (F, T)

1 new VtList // 1. new Vertex List by EdgeOffset points on face //

2 for each Vertex pair, [Vi, Vi+1], in, F<V>:

3 add offset Point(s) by Verteices, [Vi, Vi+1] with T à VtList

4 return VtList

	

3.1.4 Alternation Operator

The alternation (or snub) operator creates a snub pattern from a truncated pattern, for example, a snub

square pattern (324.3.4) from a truncated square pattern (4.82). First, the alternation operation

removes the alternative vertices for a prototile in the pattern, and in the process tags the other

alternative sequence of vertices for removal. Next, a triangular face is introduced at each vertex

CH 3 - PARAMETRIC PATTERN GENERATION

71

tagged for removal using the alternately selected vertices, in this way, generating a new snub

configuration.

Alternation applies only to polygonal faces with an even number of vertices and the minimum

number of vertices is six. Figure 3-16 and Figure 3-17 illustrate the construction. This includes (1)

truncating the square tiling pattern, as shown in Figure 3-16; (2) removing vertices from the truncated

polygons to form new polygonal faces, as shown in the left image in Figure 3-17; (3) inserting new

triangular faces at vertices tagged for removal, as shown in the middle image in Figure 3-17. The

resulting snub square pattern is shown on the left in Figure 3-18.

00_Inital Square Tiling 01_Truncated Square Tiling (4.82)

Figure 3-16 Alternation operation: Truncation

	
 	
 	

02_Alternating Vertices

for new Quad Faces
03_ Gap Triangular Faces
 at Vertices for Removal

04_Final Result,
Snub Square Tiling (324.3.4)

Figure 3-17 The constructive process of the snub operation from a truncated square pattern (4.82)

 72

Similarly, the snub hexagonal (34.6) pattern can be derived from a truncated trihexagonal

(4.6.12) pattern with an alternation operator. In this case, each dodecagonal face is reduced to a

hexagon and there are a total of four triangles and one hexagon at each new vertex, as shown in the

right image in Figure 3-18.

Figure 3-18 (Left) Snub square tiling (Right) Snub hexagonal tiling

The pseudo-code below describes the alternation operation once the truncated pattern has been

created.

“ Given an initial pattern of prototiles (faces) essentially specified by a list of vertices, a

list of edges per vertex, and a list of faces, new prototiles are created by vertex

alternation as follows. For each target face (which contains even number of vertices), a

sub-face replacement is created by alternatively reducing the vertices into half. The half

of tagged vertices for removal is then harvested for the vertex replacement. The

minimum number of vertices of a target face is six, which in turn induces a triangular

face. In this operation, a Boolean parameter, Alt, is utilized to identify the pattern of the

alternation and thus two mirrored versions are created.”

 [Pseudo-code for Alternation]

	
 ALTERNATION (M, M’, Alt)	

1 for each Face, F, in the mesh faces, M<F>: // 1. Sub Face Creation //

2 VtList <- SUBFACEByVERTEXALTERNATION(F, Alt)

3 PFnew <- add new PolyFace(VtList)

4 update PFnew à M’

5

CH 3 - PARAMETRIC PATTERN GENERATION

73

6 for each Vertex, V, in M<V>: // 2. Tagged Vertex Replacement //

7 if (V.IsTagged2Remove()) then:

8 VtList <- VERTEXFACEREPLACEMENT(V)

9 PFnew <- add new PolyFace(VtList)

10 update PFnew à M’

[Macro for SubFace by Vertex Alternation and Vertex-face Replacement]

 SUBFACEByVERTEXALTERNATION (F, Alt)

1 new VtList // new Vertex List for Face-Vertex Alternation //

3 for each Vertex, V, in the Edge face list, F<V>:

4 if (Alt) then : add V à VtList

5 else : V <- Tagged for removal // tagged vertex for removal //

6 Alt = !Alt; // change the sign of the alternating pattern

7 return VtList

VERTEXFACEREPLACEMENT (V)

1 new VtList // 1. new Vertex List by Truncating Face//

2 for each Vertex, V’, in, V<V>:

3 if (!V.IsTagged2Remove()) then: VtList <- V’

4 return VtList

	

In summary, inspired by the two-dimensional Archimedean tiling patterns, the three parametric

operators presented above can be promoted to create a corresponding tessellation pattern on a given

three-dimensional freeform surface. A surface tessellation problem is essentially a pattern-based

subdivision problem. The constructive procedures presented for topological manipulations simplify

the process of three-dimensional tessellating operations. This preliminary studies serves as the basis

to customized patterns that can be constructed by examining the local topological relationships for

later intricate pattern generation.	

 74

3.2 Interwoven Pattern

Interwoven patterns exhibit weave behavior that create a sense of continuous visual appearance. To

construct an interwoven pattern, for any sequence of faces, the ending geometric component in one

face has to be smoothly transformed into the connecting geometric component of the next face in the

sequence. By following this constructive principle, we can create a continuous intricate pattern based

on a simple underlying layout. A few examples of interwoven patterns are considered, which are

derived from basic geometric patterns such as quadrilaterals and hexagons. The patterns shown below

are inspired by the designs of architectural screen walls by Erwin Hauer (2007). The first three

patterns are based on circular trims in quadrilateral faces, followed by a self-interlocking pattern,

which can be derived from either the quadrilateral or hexagonal boundaries.

3.2.1 Trimming-Based Patterns

The three patterns, named ED_03, ED_04, and ED_05, in Figure 3-21, Figure 3-22, and Figure 3-23

are constructed by a sequence of trimming operations and spatial transformations.

Figure 3-19 Construction of the interwoven pattern ED_03 by trimming a quadrilateral boundary

The top row in Figure 3-19, illustrates in top view the steps for creating a trimmed pattern. The

bottom row shows how the corresponding surface manipulations in three-dimensional space. For the

CH 3 - PARAMETRIC PATTERN GENERATION

75

base trimmed-surface module, Figure 3-20 illustrates additional transformation rules—such as, in this

case, rotation along the central axis and mirror operation via the planar quad boundary —being

applied to generate the second half of this module.

Figure 3-20 Construction of the interwoven pattern ED_03 by transformation, rotation and mirror

Pattern ED_03

The resulting interwoven pattern ED_03 is shown in Figure 3-21. On the left side of the figure is

the interwoven module, which consists of two parts—upper and lower module components colored in

shades of green and blue respectively. The thickness of the component is derived from the offset

operation along the normal direction to the base quadrilateral face.

Figure 3-21 Interwoven pattern ED_03 (Quadrilateral-based pattern)

Inspired by Erwin Hauer (1952)’s continuous screen, Design 03, Church at Leising, Vienna, Austria

 76

Pattern ED_04

This particular interwoven pattern, which is shown in Figure 3-22, is inspired by Erwin Hauer’s

Design 1 and by Rinus Roelofs’ sculptural example, Connecting Holes (Roeflofs, 2010). Similar to

ED_03, ED_04 takes the quadrilateral face as a primary boundary, but applies a different elliptical

trim pattern to the four corner vertices, the midpoints of the four edges, and the centroid of the face.

Figure 3-22 Interwoven pattern ED_04 (Quadrilateral-based pattern)

Inspired by Erwin Hauer (1950)’s continuous surface, Design 1

Pattern ED_05

ED_05 is an interwoven or chain pattern based on the quadrilateral grid. This pattern exploits the

same elliptical trim pattern as ED_04, although employing it at different locations of the quad

boundary. In this case, the elliptical trim pattern is used on the vertical boundary edges and the

vertical centerline of the quad boundary. Pattern ED_05, in Figure 3-23, demonstrates how two

identical chain components interlock with each other. Although the two patterns, ED_04 and ED_05,

employ the same trim patterns—two eclipses intersecting orthogonally, they generate very distinct

results by the variation of the corresponding location to the boundary.

CH 3 - PARAMETRIC PATTERN GENERATION

77

Figure 3-23 Interwoven pattern ED_05 (Quadrilateral-based pattern)

Two two-dimensional patterns are illustrated in Figure 3-24. On the left is shown a pattern based

on the hexagonal grid using a process similar to that described above. The difference in the pattern

generation here is that instead of selecting partial subdivision edges from the base quad faces, two

groups of sub-polylines are produced using the checkerboard pattern controlled by the surface

isoparameters. The other interwoven pattern shown at the right of Figure 3-24 is derived from the

regular honeycomb tiling, where each hexagonal cell generates a set of curves. The aggregations of

these curves create the dynamic interwoven visualization, even though these are simply planar two-

dimensional curves. For this type of interwoven pattern, the self-interlocking feature makes it

different from the rest of examples, as shown above. Self-interlocking is used here to identify the

interwoven pattern, which has a continuous flow from part to part without interruption.

Figure 3-24 (Left) Hexagonal tiling by interweaving two perpendicular hexagonal grids;

(Right) Curvilinear weave based on a hexagonal grid

 78

3.2.2 Self-Interlocking Patterns

For self-interlocking patterns, the major difference from the trimming-based pattern is that each

module is self-continuous. Instead of treating a module of two separate parts, which joining only at

the external connecting edges with adjacent modules, this type of pattern joins parts internally. This

characteristic creates a more intricate continuous movement from local module to entire modular

propagation. Figure 3-25 illustrates the trimming operation applied on a target surface with

customized trim curves at four corners.

Figure 3-25 Constructive process of a self-interlocking pattern

Figure 3-26 demonstrates an example of a self-interlocking pattern. In this example, since each

module is a self-continuous pattern, only one shade is utilized.

CH 3 - PARAMETRIC PATTERN GENERATION

79

Figure 3-26 Interwoven Pattern ED_06 (Self-Interlocking)

To go step further with these two operations, trimming-based interweaving and self-interlocking

interweaving, Figure 3-27 and Figure 3-28 are two interwoven examples derived from an underlying

hexagonal pattern. In light of the underlying topological connectivity, the hexagonal interwoven

pattern can be spited into three groups and thus three different colors are used in Figure 3-27.

Figure 3-27 Interwoven Pattern Hex_01

 80

Figure 3-28 Interwoven Pattern Hex_02 (Self-Interlocking)

To summarize, both interwoven and self-interlocking patterns are constructed based a polygonal

boundary, which corresponds to essential face elements in a surface tessellation. The order of the face

elements serve as the important index for creating continuous weaving visual appearance.

The pseudo-code below describes the interweaving operation.

 “ Given a set of polygonal face elements, interwoven modules are created by

subtracting parts from the original face element with designated patterns such as

circular opening and corresponding transformation. For generating a continuous

interweaving visual appearance, vertices of each face element are essential, namely, the

order of the vertices of a polygonal face is sorted so that the constructive principle can

be employed consistently to propagate through the entire set of faces in a coherent

manner.”

 [Pseudo-code for Interweaving]

INTERWEAVE (F)	

1 for each Face, F: // Face-based modular construction with sorted vertices //

2 if v in F<V> is sorted :

3 IWF1 <- MODULECONSTRUCTION (F<V>, true)

4 IWF2 <- MODULECONSTRUCTION (F<V>, false)

5 IWFnew <- IWF1 + IWF2

CH 3 - PARAMETRIC PATTERN GENERATION

81

 [Macro for Module Construction]

 MODULECONSTRUCTION (F<V>, isModuleOne)

1 new TrimCurveList // 1. New trimming curve List

2 index = (isModuleOne)? 0 : 1

3 for i = 0 to F<V>.Length:

4 C <- new TrimCurve(F<V>[i], F<V>[(i+1)% F<V>.Length])

5 if (i % 2 == index) then : // 2. Add trimming curve alternatively

6 add C à TrimCurveList

9 return new MODULEBYTRIMMING (F<V>, TrimCurveList)

MODULEBYTRIMMING (F<V>, tCrvs)

1 S <- new Module Surface(F<V>) // 1. new Module Surface construction

2 S.Trim(tCrvs) // 2. remove surface area by designated trimming curves

4 return S

In a sense, how designated modular counterparts interweave with each other is treated as a

design operation and can be given by any sequence of instructions, such as trimming à Rotation à

Mirror (Figure 3-19 and Figure 3-25). The above examples, from Figure 3-21 to Figure 3-28,

demonstrate potential of incorporating trimming on different modular boundaries and corresponding

transformation for alternate pattern constructions—such as, interwoven patterns shown in this

Chapter. The hypothesis is that all face elements are properly configured such that the procedural

operations can be built upon the order of the underlying topology. For instance, a well-structured

quadrilateral face can be a face with vertices configured in the counter-clockwise order from a lower-

left corner. Given a set of well-structured faces, a continuous interweaving appearance can be

constructed by the simplified procedure with the underlying vertex topology. Notwithstanding, such a

topological condition can only hold true while tessellating a completely untrimmed surface; thus

regular tessellation pattern. With the increasing complex boundary conditions that often occur when

designers utilize a freeform surface for the architectural design, regular tessellation pattern cannot be

easily constructed, for instance, irregular polygons at trimming edges. The evolving complex

boundary conditions need special treatment to correlate the subsequent pattern generations. In the

Chapter 4, boundary conditions are first analyzed and this dissertation uses quadrilateral as an

 82

example to illustrate the difficulty of customizing the tessellation problem when the boundary

condition complex grows. The objective is to generate a quadrilateral mesh with minimized

irregularities for subsequent pattern-based construction. More details in tessellating surface with

irregular boundary conditions for procedural construction are given and discussed in Chapter 5.

Interwoven patterns that are derived from base patterns show the application of procedure-based

approaches to design exploration. A major motivation for such interwoven pattern generation

experiments is to be able to demonstrate a parametric modeling process that identifies procedures

involved in pattern generation. This will not only serve as essential groundwork for subsequent

surface tessellation, but also provide strategies to help designers in developing their own parametric

modeling toolkits.

 Chapter 4

Boundary-Driven Tessellation

In order to solve the problem of tessellating surfaces with irregular boundary conditions, the meshing

process is treated as the foundation to extend for future architectural applications, such as surface

panel design and physical construction. In this chapter, an automatic meshing generation workflow is

described, which is based on a goal-driven process with the following three stages (see Figure 4-1).

The workflow depends on the formation of three major boundary-driven components: BDTensor,

BDCurve, and BDMesh. Boundary-driven refers to the computation in relation to the interpolation of

featured surface boundary conditions. These terms are defined in the sequel. But first, the workflow

includes following three stages:

Feature Selection

The first stage is to identify featured boundaries from the given surface to be meshed. This step

utilizes both the existing and trimmed boundaries from the surface of interest. By default, all

boundary curves of a given surface are considered for the computation. Notwithstanding, specific

customized curves, such as partial curves(s) from the surface boundary and/or on the surface domain,

can also be specified. Further details on how to incorporate customized curve(s) in the meshing

process are discussed in Section 4.1.

 84

Mesh Construction

The meshing process initiates from a seed, a starting BDTensor node, within the target surface

domain. This can be given by user input, or stochastically chosen from the initial feature boundaries.

Accordingly, a network of BDCurves is constructed and sorted by curve-to-curve intersections. The

last step in the second stage is to fit the mesh faces by iteratively traversing the sorted curve network.

More details are discussed in Sections 4.2 to 4.4.

Goal-Driven Optimization

After an initial mesh has been constructed, the goal-driven optimization is executed to search for

a qualified meshing result with the designated constraints. In this stage, few sub-processes are devised

to fine-tune the meshing results. Due to irregularities in the potential boundaries, certain violated

mesh face elements are further refined at this stage; for instance, triangular faces with skewed angle(s)

are removed (Tri-Face Removal). In some cases, unintended polygonal face elements occur at where

multi-directional boundaries meet and these will need to be further decomposed into smaller

quadrilateral elements (aka quadrangulation9). In addition, a mesh-smoothing algorithm is also

implemented to regulate the dimensions of the mesh elements through the constructed mesh topology.

Figure 4-1 The proposed workflow for boundary-driven mesh optimization

For the demonstration purpose, the quadrilateral as the target pattern of the meshing result is

considered. Tessellating a surface with only quad elements, especially with complex boundary

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9 Quadrangulation is a process of enforcing every mesh face element in a mesh to be a quadrilateral face and
thus four-sided.

CH 4 - BOUNDARY-DRIVEN TESSELLATION

85

conditions provides a challenge that is dissimilar to the triangular mesh, since almost any surface can

be tessellated with triangles. In this dissertation, a quadrilateral-meshing algorithm is proposed, which

is derived from examining the influences of both the inherent and customized boundaries as a way of

providing an alternative for freeform surface manifestation.

4.1 Interpolating Boundary-Driven Tensor

A geometric information object, namely, a multi-directional tensor is introduced to describe the

boundary-driven computation. This tensor is an object that holds both directional information and

corresponding scalars of a location of interest on a given surface. In particular for this study, the

tensor object pertains to three directional vectors and corresponding scalars, which are interpolated by

examining the relative distance relationship from the current location of interest to featured

boundaries. These vectors are resampled values from the (1) tangent direction derived from the

featured boundary curve(s), (2) normal direction at the location of the interest on the surface, and

(3) binormal direction obtained from the cross product of the first two direction vectors. See Figure 4-

2. P is the point on the boundary curve of the surface S. T is the interpolated tangent direction at P

and N is the normal direction at P on S. B, the binormal, is the cross product of T and N.

Figure 4-2 A tensor object, P, at surface boundary

 86

Due to the fact that a tensor in this study is retrieved from a location of interest relative to the

given surface boundaries, the term boundary-driven tensor (BDTensor) is employed. In a sense,

BDtensor contains information for linear interpolation between multiple vectors and scalars of each

individual entity. The output of a tensor node yields directional projections, which supports

navigation through the given surface domain according to the influences from the feature boundaries.

In Figure 4-2, T, N and B are three vectors maintained by a BDTensor object at P. By default, all the

scalars are set to 1.

For any location within the surface boundary, a BDTensor is computed by its current location in

relationship to the featured boundary curves. To compute the influences from featured boundary

conditions, the Inverse Distance Weighting (IDW) method (Shepard, 1968) is employed in which a

given number of interpolated values from the feature boundaries are resampled. The equation for a

BDTensor at a node u is given by equation (4-1):

,	
 	
 ,	
 	
 (4-1)

T(u) is the BDTensor at target node u. N is the number of source nodes utilized for interpolation; it

can be potentially less than the number of boundary edges. Each wi is a weighting function. Each ui

is a local interpolating node on a feature boundary edge, and d represents the distance function from a

boundary node ui to the target node u. ρ is the power parameter to smooth out the influences of the

sampling boundary nodes.

Figure 4-3 illustrates a BDTensor P, which is interpolated by locally influential nodes, pA, pB,

pC, and pD, on the feature boundaries, respectively E_A, E_B, E_C and E_D. Each node has

directional vectors calculated in two conjugate directions with an associated weight. These directional

vectors are remapped onto their local reference coordinate system where the Z-axis is normal to the

node location. With tensor objects on hand, a BDCurve can be constructed by iteratively moving the

node toward its next location along the interpolated direction. Figure 4-3 illustrates the difference

between the underlying curve (derived from the uniform iso-parameters) and the interpolated curve

(computed by the local boundary influences). The isoparametric curves are shown shaded green using

a dashed pattern. BDCurves are shown colored blue or red with arrows. More details regarding how

a BDCurve is constructed are discussed in Section 4.3. But first, tensor field initiation is described.

T (u) = wi (u)*ui
wi (u)i=0

N
!i=0

N
! wi (u) =

1
d(u,ui)

!
0 ! i ! N

CH 4 - BOUNDARY-DRIVEN TESSELLATION

87

Figure 4-3 Conjugate curves

derived from boundary-driven computations and the underlying iso-parametric grid

4.2 Tensor field initiation

For a given surface of interest, the first step in the boundary-driven computation initiates the

BDTensor interpolation. The process starts with a sampling grid system from the underlying surface

UV domain. By evaluating the vectors from both the featured boundaries and inherited surface

curvature properties at the location of interest, a tensor node is created. During the interpolation

process, the weighted vectors are interpolated by parameterizing the influences from both featured

boundaries and the surface curvature properties. Figure 4-4 illustrates three variations of tensor

interpolation results from (1) boundary-driven analysis, (2) curvature-driven analysis, and

(3) integration of both analyses (the images shown here use the same testing surface as Figure 4-3 but

from a top view instead of a perspective view).

The top row image in Figure 4-4 is the result by evaluating tensors from the featured boundaries

only. The bottom row images in Figure 4-4 demonstrate the results from integrating of both boundary

and curvature analyses. The left image on the bottom row shows the tensors interpolated only from

the surface curvature analysis; the right image is the parameterized result by integrating the influences

from both boundary-driven interpolation and surface curvature analyses. All visualized vectors are

remapped to the local reference coordinate system in a conjugate relationship.

 88

Figure 4-4 BDTensor field generation

(Top) Tensor field generated from boundary-driven analysis

(Bottom-left) Tensor field generated from only surface curvature analysis

(Bottom-right) Tensor field generated by integrating influences from both boundary-driven

and surface curvature analyses

In addition to the whole-boundary analysis, boundaries utilized for tensor interpolation can also

be specifically specified. For example, Figure 4-5 shows a customized tensor field interpolation from

a customized source, namely, an additional curve on the target surface. Notice that the result shown

here can also be derived from a trimmed surface with the same input curve. One of the advantages of

taking additional curve(s) as the input parameter is to provide flexibility for exploring/customizing

various alternative tessellations. For instance, tessellations can be derived from single to multiple

boundaries inherent in the given surface; or, it can be derived from a set of designated curves on the

given surface domain for customized pattern generation. Promoting this input source as an individual

parametric handler makes the optimization process amenable to various possible scenarios that may

occur during the iterative design exploration process. The image on the left in Figure 4-5 illustrates an

additional curve for tensor field interpolation; the right side image shows the resulting tensor field

calculated from the customized source.

CH 4 - BOUNDARY-DRIVEN TESSELLATION

89

Figure 4-5 Customized tensor field generation by additional input curve on the target surface

(Left) Customized input curve for BDTensor interpolation

(Right) Tensor field interpolation result

During the interpolation process, not all boundaries are necessarily taken into consideration. In

some cases, only partial boundaries are utilized. For instance in Figure 4-6, the target surface is a

surface with an interior trimmed opening.

Figure 4-6 BDTensor interpolation by selected boundaries

 (Left) Boundaries selection by evaluating point-of-interest visibility

(Right) Initial tensor grid visualization

A tensor, it_Pt, is considered as one of the initial tensor nodes in the meshing process. While

processing all the influences from the featured boundaries, a visibility test is performed to filter out

 90

only useful boundaries for the tensor computation. The shortest distance from the location of interest,

it_Pt, to the featured boundaries are examined initially. cPt01 is the closest point location on Edge E01,

cPt02 for the E02 and so on. Among these closest points, cPt04 is currently invisible due to interference

from the interior-trimming boundary, E05, and thus is excluded from the interpolation process. The

objective of this filtering process is to reduce the calculating errors that may occur by taking all

boundaries into consideration.

In addition, the initial BDTensor interpolation is set to cover the entire untrimmed surface

domain. The main reason for this is to ensure coverage of the sampling tensor field propagation, even

for the area that are trimmed at the boundary edges. The right side image in Figure 4-6 shows that

even for the trimming areas, there are sampling tensors calculated for subsequent BDCurve

interpolation.

4.3 Boundary-Driven Curve Generation

A Boundary-driven curve (BDCurve) is approximated by a collection of BDTensors tangent to the

underlying interpolated tensor field on the target surface.

To initiate a BDCurve creation, an initial interpolation node will be given either from the user

input or randomly picked from the target surface. A viable node for BDCurve initiation is the node

within the valid surface domain. For instance, in Figure 4-7, an initial node P is picked. The traveling

distance d indicates how far along the current tensor direction will the next node proceed. By

iteratively traversing the surface domain by guided direction from the underlying tensor field, two

BDCurves will be constructed in a conjugate relationship, shaded in solid blue and red with shadow

on the right side of Figure 4-7. The smoothness of the constructed curve can be improved by

decreasing the stepping size, namely, the traveling distance d from the current location to the next

destination. The shorter the traveling step is, the smother the BDCurve will be. The curve

interpolation terminates as the traveling node reach the constrained radius on the existing surface

boundaries.

CH 4 - BOUNDARY-DRIVEN TESSELLATION

91

Figure 4-7 BDCurve interpolation process

After the initial pair of BDCurves have been created these two curves are used as the parent

curve to derive subsequent BDCurves. To start, an offset distance, which specifies the distance from

one curve to the consecutive one, is chosen. This distance is potentially larger than the traveling

distance. By emitting the sampling nodes on the constructed BDCurves, the corresponding offset

BDCurves are created. The right side image of Figure 4-7 illustrates the result of BDCurve network

creation from a given start node P, via the parent BDCurve initiation, to the final offspring BDCurves

propagation.

The following pseudo-code describes the BDCurve construction:

[Pseudo-code for BDCurve construction]

 BDCurve (Nstart , Dir, d)

1 new List<N>; // new list for interpolated node along specified direction //

2 N ß Nstart

3 While isWithinSurfaceBoundary(N):

4 add N à List<N> // add current node to the Node list //

5 if isClose2Boundary(N, d):

6 N ß FindClosestPointOnBoundary(N);

7 add N à List<N> // add last node to the Node list //

8 else :

9 dirCurr ß InterplaterDir(N, Dir) // interpolate navigating dir //

10 N ß N + d* dirCurr // Update node to next location //

11 Curvenew ß new BDCurveConstructor(List<N>)

 92

Figure 4-8 shows two different curve networks derived from (1) UV-based parameterization, and

(2) boundary-driven interpolation. At first glance, the UV-based curve network (the left side image of

Figure 4-8) is similar in appearance to the boundary-driven curve network (the right side image of

Figure 4-8). However, they are very different in their formation. The former is interpolated solely

from the underlying iso-parameters, the latter is computed from inherent boundary conditions. In

comparison, the boundary-driven network conforms to the inherent surface boundary conditions more

strictly than the UV-based curve network and thus produces less sheared quadrilateral faces. This

property ensures a well-configured framework for the tessellation pattern, particularly, with

considerations to the boundary edges.

Figure 4-8 (Left) UV-based curve network; (Right) BDCurve network

While interpolating the curves from featured boundary conditions, the underlying surface

curvature analysis can also be examined for further optimization. The images in Figure 4-9

demonstrate various curve generations by remapping the influences from featured surface boundaries

and inherent surface curvature analysis. The examples shown here are based on the same tensor fields

illustrated in Figure 4-4. In brief, the influence from the surface curvature is gradually increased from

the top to the bottom in the figure below. Also, the value of the dimensional constraint for the curve

network generation is decreased from the left to the right such that the generated curve pattern shown

on the right is denser than the one on the left.

CH 4 - BOUNDARY-DRIVEN TESSELLATION

93

Figure 4-9 BDCurve network generated by interpolation influences

of (1) the featured boundaries and (2) underlying surface curvature

As previously mentioned, additional curves can also be treated as additional input for the tensor

field interpolation. Figure 4-10 shows the BDCurve network derived from a customized tensor field

depicted in Figure 4-7. The capability of supplying customized sources for boundary-driven

interpolation provides flexibility in exploring potential pattern designs.

 94

Figure 4-10 BDCurve networks derived from

(Left) the original surface boundaries (Right) a customized boundary source

When BDCurves are created, they are grouped by their origin, namely the directions along which

they were derived. For the constructed BDCurves, curve-to-curve intersections are evaluated. These

intersections are used to formalize the unsorted BDCurves through the formation of an interconnected

network. There are three types of intersections, including (1) intersections between two conjugate

curves, (2) intersections between these conjugate curves with original boundaries, and

(3) intersections of two original edge curves (which are the original corner vertices).

The data scheme for intersecting nodes and the associative BDCurves is now described. As

shown in Figure 4-11, the intersecting node, P1, is a data object, which maintains the information of

the intersection event between two curve entities, Curve_01 and Curve_02. This node keeps tracking the

closest neighboring nodes by the parametric order on the curves to which these intersection events

belong.

The parametric order of each node along the associative curve is determined by its parameter, t,

which is often utilized for interpolating points on the governing curve domain. For practical reasons,

the parametric domain of a given curve is normalized; thus, end points of a normalized curve have t =

0.0 and t = 1.0 respectively. In Figure 4-11, the graph node P1 (t = 0.3) has a predecessor node P0 (t =

0.2) and a successor node P2 (t = 0.4) on Curve_01; likewise, P1 also maintains connectedness

information to its predecessor and successor nodes, P3 and P4, along Curve_02. By default, there are a

total of four neighboring nodes connected to each node, including two predecessor and successor

nodes from two intersecting curves; the exception occurs while these nodes are generated by

(1) intersections between conjugate curves with original boundaries and (2) intersections between two

original edge curves.

CH 4 - BOUNDARY-DRIVEN TESSELLATION

95

Figure 4-11 A mesh node as the data type to maintain parametric order on the curve to which it belongs

In Figure 4-12, there are three kinds of curves: the original edge curves (shown shaded in green)

and two directional curves in a conjugate relationship (shown shaded in blue and red). In the

connected structure, the graph nodes (intersection points) represent mesh vertices. For example, in

Figure 4-12, ItP_X3Y2 is a mesh node created by intersecting BDCrv_X03 with BDCrv_Y02, and

connected to its neighboring nodes, ItP_X2Y2 and ItP_X4Y2, in their parametric order on BDCrv_Y02,

and is also connected to mesh nodes, ItP_X3Y1 and ItP_X3Y3, along BDCrv_X03.

Figure 4-12 Curve-curve intersection to construct boundary-driven mesh nodes

 96

In summary, the generated mesh nodes in the network are not necessarily the same as the

sampled BDTensors created in the first step. Instead, they are remapped nodes on the curve network,

which governs the formation of the boundary-driven mesh (BDMesh). BDMesh governs the

topological information of the discrete model optimized with the feature boundary conditions. More

detail on how these sorted nodes are revisited to build the corresponding mesh edges and faces by the

mesh topology solver is discussed in Section 4.4.

4.4 Meshing with the Boundary-Driven Curve Network

To optimize a target surface with discrete elements, the feature boundary conditions to formalize a

representative curve network is investigated, from which curve-to-curve intersections are performed

to sort the underlying topological relations. In a sense, an intersecting node is essentially the mesh

vertex and provides an easy access to construct the final mesh elements with the interconnected

topological relationships.

4.4.1 Mesh Topology Solver

With the topologically sorted mesh nodes, a mesh topology solver is executed to construct the

corresponding mesh faces and edges from this interconnected curve network. The algorithm initiates

a search by visiting existing mesh nodes in the network and consecutively determines the shortest

path between its current neighboring nodes to form corresponding faces.

For example, Figure 4-13 illustrates the topology solver: V4 is the origin of the search, and is

connected to V1, V3, V7, and V5 in counter-clockwise order. (When mesh nodes are sorted, their

topological relations are also structured in a counterclockwise fashion along the current normal

direction at the current location). The shortest path approach is adopted to fit a best-matched mesh

face.

In Figure 4-13, to construct faces connected to mesh node V4, the process looks at potential paths

connecting pairs of its neighboring nodes, for example, [V7, V5]. The goal is then to find the shortest

path from V4 to V5 via V7. To create the mesh face, F1, the algorithm searches depth first by looking at

the connected neighbors of V7, and finds three potential paths consisting of neighbors, V6, V10 and V8.

By continuously advancing to their consecutive nodes in the network, a shortest path of [V4, V7, V8, V5]

can be found and nodes found at this path are then utilized as the vertices for form a new mesh face.

This searching process terminates immediately once a shortest path has been found, for instance, path

CH 4 - BOUNDARY-DRIVEN TESSELLATION

97

of V4àV7àV8àV5, or, when a face element that shares the same nodes in the initial search set

already exists. By sweeping through all mesh nodes in the network, the initial mesh is constructed.

Figure 4-13 Fitting mesh faces by shortest path search

The pseudo-code below describes the mesh face fitting process and the recursive function for

shortest path search:

 [Pseudo-code for BDMesh Topology construction]

/* Constructing the mesh topology by shortest path search on the sorted curve network */

MeshTopologyConstruction	
 (Nodes):	

1 for each sorted node, N, in the curve network;

2 for each pair of connected nodes, [Nstart, Nend] of current Node(N):

3 if P ß ShortestPathExist(N, Nstart, Nend):

4 then MFnew ß MeshFace(P)

5 UpdateMeshFace(MFnew) in the mesh topology

 98

[Pseudo-code for Shortest Path Search]

/* Recursive function for the shortest path search */

ShortestPath	
 (Nsource, Nstart, Ntarget):	

1 add Nsource to List<N>

2 while (Ntarget is NOT found) && (List<N> is NOT empty):

3 new ListTemp<N>

4 for each node, NCurrent, in List<N>:

5 for each neighboring node, NChild, of NCurrent<N>:

6 if NChild == NCurrent:

7 return currently found path — P

8 else:

9 add NChild à ListTemp<N>

10 update List<N> ß ListTemp<N>

4.4.2 Mesh Refinement

Owing to possible complexity of boundary conditions associated with arbitrary surfaces, the

preliminary boundary-driven mesh (BDMesh) will be potentially composed of triangles,

quadrilaterals, and other polygonal face elements. To ensure a quad-dominant mesh, additional mesh

refinement functions are required to remove skewed triangles, and to construct quad-dominant faces

from arbitrary polygonal faces. Lastly, a mesh-smoothing operator is introduced to relax the

constructed mesh topology. The conditions and procedures for refining the mesh elements to a well-

structured quad-dominant mesh are discussed below.

Removing Skewed Triangles

To control whether a triangle face is skewed for removal is specified by a threshold parameter, which

is calculated by the ratio of the smallest and largest interior angles of a triangle face. The threshold

parameter may also be set by user input. When the ratio is less than the specified value, the triangle is

tagged for removal. Figure 4-14 illustrates skewed triangle removal carried out by vertex replacement.

The vertex with the largest interior angle of the triangle is removed, and is replaced by its nearest

vertex in the triangle. All topological entities associated with this tagged vertex, such as edges and

faces, are updated accordingly. For instance, after replacing the vertex (colored in dark grey) by the

CH 4 - BOUNDARY-DRIVEN TESSELLATION

99

existing vertex (shaded in light grey) in the network, edges e1 and e5 are removed and a new edge,

enew, is updated for mesh face F1.

Figure 4-14 Skewed triangle removal

Mesh Quadrangulation

When tessellating the given surface with the constructed curve network, polygonal face elements may

be produced at points where multiple boundaries meet. These polygonal faces are subdivided to

convert the initial mesh into a quad-dominant mesh containing only quadrilateral faces in the network.

The subdivision process is carried out by edge mid-point and face center vertex insertions. Figure 4-

15 illustrates new quadrilateral faces being formed by recursively connecting the center of an existing

polygonal face to the mid-point of the edges together with the original face vertices. A polygon with

N edges will yield N corresponding quadrilateral faces. This mechanism can be applied to any

arbitrary polygonal shape.

Figure 4-15 Quad meshing by face center and edge midpoint insertion

(Left) Quadrangulate a triangle face; (Right) Quadrangulate a 5-sided polygon face

 100

Mesh Smoothing

The quality of the resulting quad-mesh can be improved by mesh smoothing, also called mesh

relaxation. A Laplacian smoothing algorithm (Herrmann, 1976) is considered with local perturbation

to ensure that the smoothed result conforms to the original input surface. To start, this process

computes the new vertex locations by a finite difference approximation of the Laplace operator,

which moves a mesh vertex toward the centroid of the connected vertices. The equation is written as

follows:

 (4-2)

where is the weighting factor for each connected mesh vertex.

As the initial BDCurve network is generated from the conjugate relationship, the connected

vertices of a BDMesh vertex will likely form a convex polyhedron. (Exceptions occur at vertices on

the surface boundaries). For interior vertices bounded by convex hulls, the new locations derived

from centroids of these polygons remain inside the original boundary. This property ensures

homogeneous mesh generation and maintains the original anisotropic configuration. However, for

peripheral vertices on the original boundaries, special treatment is needed. For example, vertices that

are moved away (inside or outside) the original boundaries will need to be adjusted so that the mesh

stays as close as possible to the original surface. In other words, this constraint enforces the

conformity of the inherited surface boundaries. Two cases of mesh vertex replacements are illustrated

in Figure 4-16. In addition, corner vertices belong to the third scenario where they will not be

modified in order to keep the original boundaries intact.

After smoothing mesh vertices, local modulation of mesh vertex location is through vertex

perturbation. There are two types: (1) vertex-to-edge and (2) vertex-to-face perturbations. Vertex-to-

edge perturbation moves the mesh vertex back to the closest boundary (shown in the right side image

in Figure 4-16). Likewise, vertex-to-face perturbs the vertex onto the input surface (shown in the left

side image in Figure 4-16). By so perturbing the mesh vertices either to the nearest location on the

boundaries or onto the surface, the refined BDMesh can better represent the given surface. It also

conforms to the given boundary conditions.

Pnew =
1
N

! i Pi
i=0

N

!

!i

CH 4 - BOUNDARY-DRIVEN TESSELLATION

101

Figure 4-16 Mesh vertex replacement

(Left) Interior vertex: Replaced by the centroid of a convex polyhedron

(Right) Boundary vertex: Moved from the original boundary and then adjusted by vertex perturbation

In the following figures, two examples are demonstrated with the boundary-driven optimization.

The first example is an untrimmed surface and the second is the same surface with both interior and

exterior trimming. For example, Figure 4-17 illustrates the resulting smoothed surface tessellation

with only the featured boundary conditions from the untrimmed surface domain. The top row images

are the tessellation without mesh smoothing from both the top view (left) and perspective (right); the

middle row shows the resulting mesh with mesh smoothing; the bottom row is a further

quadrangulation of the same tessellated pattern.

To go a step further, another trimmed surface is examined with the proposed meshing process.

Figure 4-18 is the same surface as shown in Figure 4-16 with additional trimming edges (shown

shaded red curves in Figure 4-18) for the optimization. By taking the new boundary conditions, initial

BDCurve patterns are first derived, as shown in the top row images of Figure 4-19; the middle row of

Figure 4-19 shows the smoothed mesh result; the bottom row of Figure 4-19 is the further

quadrangulation of the resulting mesh. The quadrangulation guarantees all the mesh faces to be

quadrilateral. The two examples shown in Figure 4-17 and Figure 4-19 demonstrate the result of

applying the boundary-driven optimization. The resulting mesh not only has more equi-dimensional

mesh faces, but also has relaxed boundary edges.

 102

Figure 4-17 BDMesh smoothing

(Top) BDMesh without mesh smoothing (Middle) BDMesh with mesh smoothing

(Bottom) BDMesh with mesh smoothing and further quadrangulation

CH 4 - BOUNDARY-DRIVEN TESSELLATION

103

Figure 4-18 New boundary condition introduced by the trimming operation

Figure 4-19 BDMesh a trimmed surface with smoothing

(Top) BDMesh without mesh smoothing (Middle) BDMesh with mesh smoothing

 (Bottom) BDMesh with mesh smoothing and further quadrangulation

	

 104

4.5 Mesh Analysis

In this section, the goal-driven optimization processes for solving issues from surface boundary

conditions are highlighted. Results derived from the BD-driven optimization are checked against the

conventional UV-based tessellation for comparison and analysis.

Surfaces shown in Figure 4-3 and Figure 4-17 are first utilized to compare the differences in the

discretized models that are derived from UV-based and BD-driven approaches. For instance, when a

surface remains untrimmed, it is straightforward to apply both approaches to generating quad-

dominant meshes. However, while BDMesh continues to generate quad-dominant mesh even as the

complexity of the boundary conditions increase, UV-based tessellation fails at the boundaries, where

irregular polygonal elements occur, for instance, irregularly trimmed polygonal faces.

To perform the analysis, some properties in relation to the mesh elements are first identified.

These properties serve as the analytic indices for comparison. These include: (1) face warping;

(2) face area; (3) edge length; and (4) surface conformity. In one sense, these indices are employed to

distinguish the geometrical properties exhibited in the discretized models and imply applications for

future physical construction. For instance, face warping refers to the degree of distortion of a

quadrilateral face and this can be utilized as the index for manufacturing with planar, single- or

double-curved panels. Face area indicates the potential fabrication constraints that are embedded in

the machinery or materials such as the minimal/maximal dimension of an applicable glass pane.

Likewise, edge length denotes the minimal/maximal structural frame elements. Lastly, surface

conformity is the deviation from the discretized model to the original surface and is checked to ensure

the closeness from the meshing result to the original input surface.

To start, the untrimmed surface is examined. Table 4-1 shows the fundamental information from

both the UV-based and BD-driven models, including the number of vertices, edges and faces. Notice

that the number of elements is regulated as the foundation for comparison and thus both models have

the same number of vertices, edges and faces. Table 4-2 provides the analytical data by computing

four differential index values of interest—warping, area, edge length and surface conformity. The

differential index, di, is computed by averaging the difference between each sampling value to the

mean value. The calculating function is given by equation (4-3):

CH 4 - BOUNDARY-DRIVEN TESSELLATION

105

, where (4-3)

xi represents single sampling value and is the mean value of the current set of sampling values.

 UV-Mesh BD-Mesh

NF, Number of Face 864 864

NE, Number of Edges 1788 1788

NV, Number of Vertices 3456 3456

Table 4-1 Mesh configuration

 UV-Subdivision BD-Mesh

Diffw, Warping ratio Difference 0.015156 0.014681

DiffFa, Face Area Difference 0.274045 0.242099

DiffEgL, Edge length Difference 0.131189 0.098543

CSurf, Conformity to the input Surface 2.6526e-5 2.2582e-5

Table 4-2 Mesh analysis by checking against

(1) face warping; (2) face area; (3) edge length; and (4) surface conformity

The shaded warping difference results are illustrated in Figure 4-20. In one sense, for an

untrimmed surface like Figure 4-20, it is straightforward to divide using simply the UV parameters.

At first glance, the UV-based tessellation conforms to surface continuity nicely; however, due to the

underlying surface characteristics such as surface curvature and boundaries, most face elements are

double-curved faces with potential vastly varied areas and shear angles. See the top row image in

Figure 4-20. In this figure, the faces colored shaded red represent the faces with the minimal degree

of face distortion and the shaded blue elements are with maximum face distortion. The bottom row

image shows the other model optimized by BDMesh. By comparing the results from both approaches,

the proposed BDMesh result indicates the potential in minimizing the overall difference among

generated mesh elements. In other words, the UV-based subdivision has more diverging elements

with distinct properties across the entire surface domain. In addition, the discrepancies among the

generated BDMesh elements such as edge length (DiffEgl) and face area (DiffFa) are also minimized, as

di =
1
N

xi !µ()
i=1

N

" µ =
1
N

xi
i=1

N

!

µ

 106

shown in Table 4-2. Overall, the differential indices from the BD-driven approach is better that the

conventional UV-based approach. Yet, some properties, such as face warping, are still limited to the

underlying surface curvature.

Figure 4-20 Mesh Warping analysis

Similar comparisons are also made by gradually introducing the trimming operations onto the

same surface. The trimming operations used here are trimming curves illustrated in Figure 4-18. The

analytical results are shown in Figure 4-21. On the left column, the first trimmed surface example is

CH 4 - BOUNDARY-DRIVEN TESSELLATION

107

given, and on the right column, the second trimmed surface with both interior and exterior trimming.

Notice that for both examples, UV-based results have the same shaded colors due to the original

untrimmed face analysis. From a physical construction point of view, the trimmed elements are

simplified as the same type of face construction yet with an additional cut. The bottom row images in

Figure 4-21 demonstrate two different results, in which meshing elements are optimized by the

featured boundary conditions and therefore shaded distinctly. For both trimmed surface examples in

Figure 4-21, the whole boundary conditions are taken into consideration. As shown in the bottom-

right image, the most distorted elements occur at the rounded corner of the interior trimming edge.

This is due to the fact that BDMesh imposes the constraint on keeping both the integrity of the

surface boundary and the dominant pattern—namely a quadrilateral face. When fitting surfaces with

only quad elements, it is indispensable to have some of these irregular regions particularly at the

boundary where direction alters at a sharp angle, such as at corner areas. Overall, BDMesh results

demonstrate the strength in generating mesh elements with a conjugate relationship.

Figure 4-21 Meshing trimmed surfaces with face warping analysis.

(Left) Trimmed Surface Type 1 (Right) Trimmed Surface Type 2

(Top) UV-based subdivision (Bottom) BD-Driven optimization

 108

 Chapter 5

Application:

Pattern-Based Tessellation

In this chapter, an application of the pattern-based tessellation is given. The objective is to

demonstrate the boundary-driven approach to the surface tessellation problem, and extend this mesh

result with customized patterns derived from the Archimedean and interwoven constructions

presented in Chapter 3.

Overall, the implementation of pattern-based surface tessellation can be divided into following

three steps:

(1) Meshing the target surface with the given boundary conditions

An initial discrete version of the target surface is derived from the given boundary conditions,

which may be derived from the inherited surface boundaries or customized by user input.

The output of this step is a quad-dominant mesh, which features a conjugate relation network.

(2) Pattern generation

Patterns generated by such constructive rules as illustrated in Chapter 3 are provided for

potential polygonal pattern generation, which serves as the basis for subsequent surface

panel development.

 110

(3) Construction of surface panel components

In the last step, panel components, such as, panels, structural beams or connecting joints, are

procedurally constructed from the corresponding mesh elements—faces, edges and vertices.

This step demonstrates the conversion from conceptual tessellation pattern generation to real

building component manifestation.

5.1 Application platform

For practical purposes, a series of operational modules are presented and implemented in an object-

orientated programming (OOP) fashion using Microsoft .NET C# with RhinoCommon Software

Development Toolkit (SDK) and Grasshopper. RhinoCommon SDK is an extended .NET version of

the OpenNURBS library, which was founded by Robert McNeel for supporting CAD, CAM, CAE

and three-dimensional graphical software development (McNeel, 2010). In the implementation,

RhinoCommon SDK is used to support the geometry data imported from Rhinoceros® 3D, a 3D

modeling environment for NURBS surface construction. Grasshopper is a plugin developed on

Rhinoceros® 3D and utilized as the platform to construct the relationships among various operational

modules to perform the boundary-driven optimization. The proposed modules are encapsulated as

Grasshopper components using RhinoCommon and Grasshopper SDKs for fast prototyping. Figure 5-

1 illustrates a BDTensor module consisting of five input parameters (on the left-hand side of the

component) and three output parameters (on the right hand side of the component).

Figure 5-1 BDTensor encapsulated as a Grasshopper component

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

111

The current implementation is deployed as a dynamic-link library (dll) and ported to a collection

of customized components in Grasshopper. The implemented library manages the links to

RhinoCommon SDK for geometry data interoperation, and provides customized objects to compute

and store the required information for surface tessellation. By utilizing the OOP format, the

implemented library can be potentially applied in any other .NET Framework based platform with the

least amount of effort. Figure 5-2 shows three major boundary-driven components, which are

connected as a directed graph network captured from the main graphical user interface (GUI) of

Grasshopper. Curves connecting from one end to the other represent the data flow displayed in a left-

to-right order.

In Figure 5-2, Input Surface (AudiSurf) is the target surface for the tessellation; Input Curves are

potential curves for customized tensor field interpolation and they can be part of the surface

boundaries, or additional curves on the given surface; Input Nodes are initial seeds for the BDCurve

interpolation. BDTensor, BDCurve and BDMesh are grasshopper components implemented for

boundary-driven optimization.

Figure 5-2 Boundary-Driven components in Grasshopper GUI

To summarize, the system workflow initiates from the given surface and is procedurally

examined by individual components from the BDTensor, BDCurve to BDMesh (via BDTopology)

with optional input parameters, such as additional curves and initial seed for BDCurve construction.

In Figure 5-3, the constructive relationships among these operational modules during the optimization

process are presented. As shown in the figure, the Surface object is the dominant source, and is the

seed for initiating the entire process.

 112

Figure 5-3 Elements of the boundary-driven optimization

For each modular component, there are auxiliary objects generated to maintain information

related to the respective operation. For example, boundary curves interpolated on the surface can be

treated specifically for tensor field generation; these input curves should be valid segments on the

target surface domain. Two BDTensor subcomponents, weighted vectors and surface curvature, are

first computed from the sampling locations on the target surface and can be potentially adjusted by

the parametric control rendered to users.

After the initial tensor field has been constructed from the featured boundary conditions, the

BDCurve interpolation initiates with the given initial seed, a valid node within the surface domain, or

randomly picked by the system, to form the conjugate curve network.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

113

Once the curve construction is complete, the curve-to-curve intersection operator is triggered to

topologically sort the built curve network. An intermediate object, ItPoint3d, is here utilized as an

information holder to store the local connectivity information among curve-to-curve intersections,

which is subsequently utilized for BDMesh vertex construction.

Following this step, the topology solver is activated to build the mesh topology, which will

reassemble the target surface using the discrete polygonal elements—in this case, quad-dominant

faces. Intermediate products including the BDTopology, BDTopoVertex, BDTopoEdge and

BDTopoFace are all computed and managed by the BDTopology solver. These products respectively

pertain to the essential information that relates to the overall topological connectivitiy as well as to

the vertex-to-vertex, vertex-to-edge, and vertex-to-face relationships. The resulting topological

entities represent the final mesh elements. In order to handle any potential polygonal shapes during

the optimization process, a Polygon object is also provided as the geometry data entity to manage the

geometry information that can host a polygonal shape with more than 4 vertices and can be used later

by the mesh optimization process, for example, quadrangulation, mesh smoothing, etc.

5.2 The target surface: West façade of Zaha Hadid’s Next Gene Museum

For demonstration purposes, a proposed design project by Zaha Hadid is remodeled, namely, the Next

Gene Museum in Taipei, Taiwan. Based on presented design documents provided by Zaha Hadid

Architect (2008), the formation of the conceptual building mass was derived from a series of mass-

cutting operations (as shown in the top-left image in Figure 5-4). The proposed target surface is the

west façade of the building envelope (as shown in the bottom image in Figure 5-4).

 114

Figure 5-4 Conceptual massing of Zaha Hadid’s Next Gene Museum in Taipei, Taiwan

Image is modified by author from Zaha Hadid (2008) with illustrated annotations

While manifesting the building envelope with considerations for physical construction, the

proposed design was approximated by a collection of partial cone strips. As shown in Figure 5-5, the

geometry for the west facade was constructed from the same cone surface with the respective

trimming operations. For experimental purposes, the same procedure is mimicked to develop the

experimental object, namely, a NURBS surface with trimmed boundaries.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

115

Figure 5-5 Cone surface reconstruction

Image adapted and modified by author

from an image of the Next-Gene Museum by Zaha Hadid (2008)

By increasingly adding trimming operations onto the target surface—a partial cone strip, the

objectives are to (1) investigate the continuously changing influences as the increasingly complex

boundary condition grows and (2) to examine the optimized mesh results along the changes from the

given boundary conditions. The steps and results of tessellating the surface with boundary-driven

optimization are presented next.

To start remodeling the west façade of the Next Gene Museum, a series of trimming operations

was taken on an initially untrimmed cone surface. The proposed trimming curves are drawn as red-

dashed line patterns shown in the top row image of Figure 5-6 and numerically labeled by their

respective operation order in the process. In total, there are six trimming curves. The newly formed

boundary conditions contain both new edge segments from the trimming curves and partial edge

 116

segments from the original untrimmed boundaries (as shown in the bottom row of Figure 5-6). The

original boundary segments are illustrated as solid grey lines.

Figure 5-6 Trimming operations

for remodeling the west façade of the Next Gene Museum by Zaha Hadid (2008)

(Top) Order of the trimming operations (Bottom) Resultant trimmed surface

5.3 From single to multiple boundary consideration

Given a trimmed surface as shown in Section 5.2 (Figure 5-6), the first step of the process identifies

the boundaries of the input surface, shown as solid red line segments in Figure 5-7. There are a total

of 8 boundary edges, BE0 to BE8, and 8 corner vertices, VT0 to VT8. Corner vertices are important

identifiers while smoothing the mesh results as they are treated as fixed vertices, which remain at

their current location to keep the shape intact. The remaining vertices will move according to vertex-

to-surface conditions, including the edge-vertex condition or interior vertex condition, which in turn

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

117

determine whether the vertices are attached to the closest boundary edge, or move to the closest

surface location.

Figure 5-7 Surface boundaries identification and corner vertices extraction

After the boundary conditions have been identified, the initial tensor field and corresponding

BDCurve network is constructed. As shown in Figure 5-8, the initial conjugate BDCurve network is

constructed by the given curve offset constraint. The two directional curves are drawn in red and blue

solid line pattern respectively.

Figure 5-8 Initial BDCurve network

 118

After curve-to-curve intersection, the underlying topological network is sorted and then the

preliminary BDMesh object is constructed, as illustrated in the top row image in Figure 5-9. With this

initial mesh result, the further optimization process is performed to relax the current mesh

configuration, as shown in the bottom row image in Figure 5-9. The mesh edges after relaxation

become more balanced and demonstrate optimized dimensional control over the constructed mesh

network. Notice that the preliminary mesh result may potentially consist of other polygonal shapes

besides quadrilaterals. In this example, both triangles and pentagons are generated during this process.

A further quadrangulation can then be performed to guarantee a quad-dominant meshing result.

Figure 5-9 Boundary-driven optimization

 (Top) Preliminary BDMesh (Bottom) Smoothed BDMesh result

Given a tessellation scheme that caters to the inherent boundary conditions, a series of meshing

results with increasingly complex boundary conditions are examined. These are illustrated in Figure

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

119

5-10. A total of six steps are displayed in a counter-clockwise order from the top-left to the top-right

corner. For each step, a new boundary condition is introduced by an additional cut, which is

illustrated as a solid grey line with arrows on both ends. The operational sequence follows the same

trimming order shown in Figure 5-6. In Figure 5-10, the existing boundary edges are drawn in the red

dashed pattern.

For instance, starting from the fourth step of the illustrated workflow (shown at the right-bottom

image in Figure 5-10), irregular regions start to emerge where multiple boundary sources meet and

thus polygonal face elements, such as pentagons, are generated at these regions. The polygonal shapes

are treated as the intermediate meshing elements and are later refined as quad-dominant elements.

The top-right image of the Figure 5-10 is the preliminary result of meshing target surface with all

featured boundaries. The results shown in Figure 5-10 are all optimized with mesh smoothing.

Figure 5-10 BDMesh results from increasing complex boundary conditions

ordered from the top-left to the top-right corner

 120

In brief, only triangular and quadrilateral face elements are valid elements for the conventional

mesh object. As discussed earlier, an additional Polygon object is introduced as an information holder,

employed to accommodate any arbitrary polygonal faces that may occur during the tessellation

process. In a sense, polygonal objects, which potentially consist of more than four bounding vertices,

are regarded as preliminary geometry entities, which pertain to the important topological relationship,

and may serve for further optimizations and potential applications.

Figure 5-11 illustrates a preliminary quad-dominant mesh result, optimized with the featured

boundary conditions. The meshing result demonstrates a balanced local relationship among generated

mesh elements with irregularities minimized at regions where multi-directional edges meet. This

renders a well-configured network for further pattern-based generation and potential freeform

application.

Figure 5-11 Quad-dominate meshing result

5.4 Pattern generation by using topological operators

In this section, Archimedean patterns are utilized to explore pattern-based generation by

reconfiguring mesh elements derived from the proposed boundary-driven optimization. The

consideration of whole boundary optimization is to investigate the coherent configuration that will fit

the tessellated surface with designated patterns without creating arbitrary incomplete/trimmed

elements at the boundaries.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

121

5.4.1 Truncation operator

Given the quad-dominant mesh shown in Figure 5-11, the truncation operator presented in Chapter 3

is considered first. Recall that the truncation operator generates vertex replacement at each vertex, v,

by defining new truncating vertices specified by the parameter t and is applied to on all connected

edges. Then, for each face element in the constructed network, a new face is accordingly generated.

As shown in Figure 5-12 through Figure 5-16, a series of truncated patterns are generated with the

parameter values for t, ranging from 1/3 to 1.

In Figure 5-12, a truncated square pattern (4.82) is constructed with t = 1/3. In the constructed

pattern, each original edge is first divided into three equi-dimensional segments. Then, each mesh

vertices is replaced with a new quadrilateral face and each original quad face is replaced with an

eight-sided polygonal shape—namely an octagon—connecting the newly truncated vertices on the

original bounding edges.

Figure 5-12 Archimedean Pattern (4.82) generated by the truncation operator with t = 1/3

By increasing the value of the parameter t from 1/3 to 1/2, each vertex replacement face touches

neighboring faces at the midpoint of the incident edge. The resulting face replacement element is a

quadrilateral face. As shown in Figure 5-13, the resulting pattern has the same appearance as the

commonly seen diagrid pattern.

 122

Figure 5-13 Diagrid pattern generated by the truncation operator with t = 1/2

To achieve a more balanced mesh object, the smoothing operator can also be applied here to

derive a better-smoothed mesh network. Figure 5-14 shows the smoothed mesh result of the diagrid

pattern. Due to the irregular regions that are inherent from the underlying boundary conditions, the

truncated pattern generates irregular polygons (such as pentagons in this case) at singular vertices,

which, in this case, are those connected to n vertices (where n ≠ 4).

Figure 5-14 Smoothed diagrid pattern generated by the truncation operator with t = 1/2

When the value of the t parameter is increased up to 2/3, a similar truncated square pattern (4.82)

is created. However, in this case, the order of the quad and octagonal prototile construction is

reversed. See Figure 5-15. In other words, a new octagon face will be created at each vertex and a

new quad face at each face. The difference can be identified from the element created on the

boundary edges, where the new configuration has half octagon shapes instead of half quadrilateral

faces (triangular faces) in the original truncated square pattern.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

123

Figure 5-15 Archimedean pattern (4.82) generated by the truncation operator with t = 2/3

Figure 5-16 The dual pattern of the Archimedean pattern (44) generated by truncation with t = 1.0

(Top) Without smoothing (Bottom) Smoothed mesh pattern

Lastly, when the truncation operator with parameter t = 1 is applied, the dual of the original

mesh is generated, as shown in the top row image in Figure 5-16. In this case, for each vertex, the

replacement element is constructed by the neighboring mesh face centroids. Likewise, a mesh

 124

smoothing operation can be applied to adjust the dimension of the smaller quad elements around the

boundary edges, or corners, as shown in the bottom row image in Figure 5-16. At first glance, the

dual mesh is a similar quad-dominant mesh. However, exceptions occur at the irregular regions,

where polygonal shapes other than quadrilaterals are generated.

5.4.2 Insertion operator

A second operator is explored with the same initial quad-dominant mesh object. In light of the

underlying topological connectivity, certain mesh results will look similar to those derived by the

truncation operation, but with different orders in the prototile configuration. The parameter t with its

values ranging from 0 to 1 is again considered in a similar manner this time to explore pattern

variations using the insertion operator.

Figure 5-17 demonstrates the pattern generated with parameter t = 1/5. At first glance, the

configuration of the generated pattern looks similar to the truncated square pattern (4.82). However,

there is a subtle difference between the two. In this pattern generated by the insertion operator, the

quad face element is aligned with the original conjugate curve direction, and in the other it is not. All

octagon elements are created at both mesh vertices and mesh faces. In the truncated square pattern

(4.82), the octagon shape is only created at each mesh face or each mesh vertex when t is set to be

larger than ½.

Figure 5-17 Archimedean pattern generated by the insertion operator with t = 1/5

As the value of parameter t is increased from 1/5 to 1/2, the new face elements on the edges touch

each other at corners, and subsequently create smaller face replacements with the same topological

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

125

configuration. See Figure 5-18. This is similar to a quad mesh subdivision in which each mesh face is

replaced by 9 sub-faces. The new faces created at mesh edges are shared with the neighboring faces.

Figure 5-18 Archimedean pattern generated by the insertion operator with t = 1/2

When the value of the t parameter is increased from 1/2 to 4/5 a similar pattern as the one derived

when the value t equals 1/5. In this case, instead of creating quad face elements at edges and octagon

elements on the vertices and faces, the order of quad and octagon replacements are interchanged—

namely, octagon elements are now created on edges, and quad faces on vertices and faces. See Figure

5-19. The difference can be identified by the elements created at corner vertices.

Figure 5-19 Archimedean pattern generated by the insertion operator with t = 4/5

 126

Lastly, as the value of the parameter t is increased to 1, a diagrid pattern is created. In this case,

each edge element will be replaced with a quadrilateral element (or a diamond shape element), which

is constructed by connecting two neighboring face centroids and bounding vertices of the current

edge.

Figure 5-20 Archimedean pattern generated by the insertion operator with t = 1

	

5.4.3 Alternation operator

The alternation operator generates a new Archimedean pattern by reducing the number of original

vertices into half. Due to the nature of this operation, the number of the vertices of the target polygon

shapes is at least six, or more, for a successful conversion. For example, a hexagon is replaced by a

triangle; an octagon by a quadrilateral, and so forth. Any polygonal shape that has less than 3 vertices

(a triangle) is not valid. As discussed in Chapter 3, the snub square pattern (32.4.3.4) and the snub

hexagonal (34.6) pattern can be respectively derived from a truncated square pattern (4.82) and a

truncated trihexagonal (4.6.12). In this section, the alternation operator is applied to the truncated

pattern with the parameter t = 1/3 (same as the result shown in Figure 5-12). The alternation pattern is

illustrated in Figure 5-21. Since the surface has limits defined by its boundary, it is possible to show

alternate parametric variations of the pattern. Figure 5-22 illustrates a variant of Figure 5-21, which is

subject an additional localized rotation about each vertex in the prototile generation. Similar

variations can be obtained from other parametric patterns.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

127

Figure 5-21 Archimedean pattern generated by the alternation operator on the truncated pattern with t = 1/3

Figure 5-22 A variant of Archimedean pattern shown in Figure 5-21

5.4.4 An application from the Archimedean pattern

Given the tessellated pattern derived from the Archimedean operators, surface components such as

structure frames, panels, etc., can be procedurally constructed. In this section, an application of

procedural construction of surface components is demonstrated.

Given the discrete model of the surface, the first step is to examine the relations among the

underlying topology for the designated constructive operations. In this section, the pattern derived

from the insertion operator (Figure 5-20) is employed as the example to demonstrate the procedures

involved for surface component construction. The process starts from the preliminary BDMesh result,

shown in the left image in Figure 5-23. By applying the insertion operator with t = 1.0, the diagrid

 128

pattern is first created (the middle image of Figure 5-23). The resulting pattern is identical to the

Archimedean pattern demonstrated in Figure 5-20.

The following step is to tag all vertices by their origins, from which they are derived. Recall that,

as t is set 1.0, the insertion operator will replace an interior edge element with a new polygon face

formed by connecting two edge end points with two neighboring face centroids. By cross-examining

the origins of each newly created vertex, new vertices are separated into three groups: (1) alternate

edge end point 01, (2) alternate edge point 02, and (3) face centroid. For each pair of edge end points,

they are alternately divided into two groups so that all neighboring vertices are separated into two

distinct groups. This step is particularly designed for subsequent vertex modulation and can be

potentially varied or provided by the end user with other factors taken into considerations. Figure 5-

24 illustrates the sorted vertices in three different groups.

Figure 5-23 Procedure of sorting mesh vertices by their origins

(Left) Quad Mesh (Middle) Diagrid pattern by Insertion operator with t = 1.0

(Right) Sorted mesh vertices

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

129

Figure 5-24 Sorted mesh vertices overlaid with the underlying mesh topology

With the base diagrid pattern and sorted vertices, vertex modulation is considered as a means of

adjusting the location of each mesh vertex along its normal direction. The left image of Figure 5-25

illustrates vertex modulation along the normal direction. In brief, for each vertex in the group of

alternate edge end point 01 (colored shaded red with arrow), they are moved along the normal

direction; vertices in the group of alternate edge end point 02 (colored shaded blue with arrow) are

moved in the reversed normal directions. For the remaining vertices in the face centroid group, they

remained at their current locations. With the based pattern updated by respective modulation, frame

components are constructed by investigating underlying mesh topology and the result is shown in the

right image of Figure 5-25.

Figure 5-25 (Left) Mesh vertex modulation (Right) Structure frame construction

 130

Figure 5-26 Surface rendering with structure frames and panels by the underlying Archimedean pattern

Figure 5-26 illustrates the final rendering of the surface design with structure frames and glass

panels by vertex modulation shown from Figure 5-23 to Figure 5-25. In brief, the pattern-based

tessellation serves as the essential groundwork for the further freeform surface applications. Even

with the trimmed surface with irregular boundary conditions, the approach demonstrates the potential

for the freeform surface exploration with the optimized mesh structure.

In summary, owing to the complex nature of the irregular boundary conditions, it is almost

impossible to optimize any arbitrary surface by just regular regions. Notwithstanding, the algorithmic

approach presented in this dissertation optimizes the meshing result by minimizing the number of

irregular regions. The presented discrete model not only conforms to the boundaries it inherits, but at

the same time, minimizes the irregular regions that may occur during the optimization process. Given

a well-structured quad-dominant mesh, alternative pattern configurations can be procedurally

explored by restructuring the underlying topological network.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

131

5.5 Interwoven pattern generation

In this section, an interwoven pattern application is given. As discussed in Chapter 3, an interwoven

pattern consists of two continuous counterparts, which are respectively formed by a sequence of faces.

The ending geometric component of a face is smoothly transformed into the connecting geometric

component of the next face in the sequence. The notion of “connecting ending components of the

current face to the connecting components of the next face” suggests the order of construction as the

fist constructive principle.

To construct an interwoven pattern, the following generative procedure combining both sorting

and construction is considered. Given a quad-dominant mesh, a simplified module (a coarse mesh) is

first created from a quadrilateral boundary (as shown in Figure 5-27). To engender a continuous

appearance, the ending components of the current face are connected to the connecting components of

the next face. For instance, in Figure 5-28, mesh faces, F3 and F7, of the module on the left are

connected to mesh faces, F8 and F12, of the continuous module on the right at [V0, V15] and [V12, V11]

respectively.

Figure 5-27 A mesh module for the interwoven pattern generation

 132

Figure 5-28 A pair of continuous modules for the interwoven pattern

With a module as shown in Figure 5-27, the next step is to investigate the underlying

connectivity for procedurally constructing the continuous counterparts. In Figure 5-29, design

modules are constructed by (1) the alternate vertex selection, and (2) conjugate curve directions. To

start, vertices are separated into two alternate groups such that each vertex is separated from all its

connected vertices. As shown in Figure 5-29, Vt4 is the member of the Vt-Group 2 (colored shaded

red) and connected to Vt3, Vt1, Vt5, and Vt7 in the Vt-Group 1 (colored shaded blue). With the sorted

vertices, the construction initiates from the location, Vt4, by following the given direction from the

underlying conjugate network to build up the corresponding modules, for instance, a module bounded

by Vt4, Vt3, Vt0, and Vt1 in a counter-clock-wise order. By continuously investigating the incident

faces at the currently selected direction, a collection of continuous interwoven modules is constructed.

In the generative process, the alternate vertex identification yields the constructive order of the

vertices from the selected face, and the reference conjugate directions indicate the faces for two-

directional counterparts construction.

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

133

Figure 5-29 Module propagation by alternate vertex group and referenced conjugate direction

Figure 5-30 illustrates the recursive procedure utilized for sorting the alternate groups of vertices.

Given a starting vertex, Vt, as shown in the top-left corner in Figure 5-30. The sorting process

proceeds by iteratively traversing all the unseen neighboring vertices, V<V>, in the topological

network. For a mesh with thirty-six vertices, a total of five iterations are required to separate all

vertices into two alternate groups along two conjugate directions.

 134

Figure 5-30 A mesh module for the interwoven pattern generation

Figure 5-31 illustrates the alternate vertex sorting by coloring vertices shaded red and blue

overlaid with the initial quad-dominant mesh (same as the one as shown in Figure 5-11). Two

directional edges in the conjugate network are illustrated in the bottom image of Figure 5-31. Notice

that these conjugate edges are not necessary partial segments from the initial BDCurve network;

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

135

instead, they are new edge elements derived from the quadrangulation. As shown in the bottom

image of Figure 5-31, the third group of edge components (colored shaded black) occurs at the

irregular regions where a vertex is connected by more than four edge components. These areas

require the special treatment when developing the interwoven module.

Figure 5-31 Mesh module refinement by Catmull-Clark subdivision

Figure 5-32 demonstrates the module refinement by applying the Catmull-Clark subdivision on

the initial coarse mesh module. By iteratively subdividing the initial coarse mesh into smaller quad

faces, the refined mesh engenders a smoother appearance for better visual transition.

 136

Figure 5-32 Mesh module refinement by Catmull-Clark subdivision

Figure 5-33 Module construction at the irregular region

CH 5 - APPLICATION: PATTERN-BASED TESSELLATION

137

Figure 5-33 illustrates a special module for the irregular region. In the proposed module, two

continuous counterparts of the interwoven pattern are created along two conjugate directions, as

shown in the middle and right image at the top row in Figure 5-33. The bottom row image of Figure

5-33 shows the resulting interwoven pattern at the irregular vertex, Vt, in the front view.

Additional renderings in perspective are shown in Figure 5-34. Two counterparts are colored in

shaded red and green respectively. In Figure 5-35, the final rendering of the surface with interwoven

panels is given. Briefly, the examples generated by applying the Archimedean pattern and interwoven

pattern both indicate the dominant influence from the underlying tessellation.

Figure 5-34 Module component in perspective

Figure 5-35 A mesh module for the interwoven pattern generation

	
 	

 Chapter 6

Conclusion and Future Work

This thesis is motivated by the desire to assist freeform surface manifestation by tackling the surface

tessellation problem with added boundary conditions. The objective is to afford designers an innovative

way of exploring panel-based freeform surface designs. In this chapter, this dissertation concludes by

examining the outcomes of resolving the surface tessellation problem rooted in three major research areas:

(1) meshing; (2) the parametric modeling process; and (3) architectural applications. Overall, this

dissertation is directed towards promoting a boundary-driven approach as a systematic and computational

means for solving issues when considering customizable pattern-based tessellation, in particular, with an

interest in tackling evolving complex boundary conditions that usually grow as design progresses.

Briefly, in this dissertation in Chapter 2 I have laid out the important ground work in relation to

previous research and discussed current applications. This has been followed in Chapter 3 by preliminary

studies on constructive operators for Archimedean and interwoven pattern generation. In Chapter 4, an

optimization approach is described with detail on how surface boundaries are utilized for tessellation. In

Chapter 5 further applications of using the BD-driven (boundary-driven) approach for customized pattern

generations are given.

In the sequel, the contributions, current research limitations and future directions are discussed.

Contributions are given within the context of the technical implementation and pedagogical implications.

Technical contributions refer to both the algorithmic BD-driven optimizing process and its corresponding

 140

implementations for solving geometrical constraints, which stem from the given surface characteristics

and the featured boundary conditions. Pedagogical contributions refer to the application of the parametric

modeling process, upon which the technical components are procedurally constructed and integrated, to

address complex geometry problem within the context of freeform architectural design. Finally, current

limitations are discussed and future directions of the proposed BD-Driven approach are projected with

respect to supporting sustainable development in the field of freeform architectural design.

6.1 Summery: BD-Driven Tessellation

Customizing and controlling the tessellation scheme for any arbitrary surface is of some interest to both

the computational geometry and architecture communities (Liu et al., 2006; Pottmann, 2008; Pottmann et

al., 2008; Eigensatz et al., 2010). Conventionally, tessellating a NURBS surface is typically limited to its

underlying iso-parameterics, namely, U and V. One immediate limitation of using such iso-parametric

schemes is at the surface boundaries, in which complex conditions often evolve with added design

operations such as trimming (Figures 1-4 and 1-7). Not only is the underlying iso-parametric scheme

insufficient for tessellating a surface with trimmed edges, but furthermore, the generated tessellation

patterns are, to some degree, uncontrollable by the UV parameters (Figure 1-5). The contention is that the

given complex boundary conditions can be taken into consideration for surface tessellation, a well-

structured boundary-driven model can be constructed and thus facilitate further architectural applications.

Moreover, by rendering the control of tessellating surface back to users (or designers), design exploration

can be expanded, or, perhaps, better instructed for seeking potentially better or other alternatives.

In the process of approximating a surface with pattern-based components, the BD-driven approach

initiates from the featured surface boundary investigation. Surface boundaries are treated as the input and

the proposed computation utilizes three major BD-driven components, namely, BDTensor, BDCurve, and

BDMesh to explore the solutions. Among these, the first two components, BDTensor and BDCurve, are

preliminary information operators, which compute and store interpolated data from an underlying surface

topology and featured boundary characteristics. BDMesh then builds up the discretized elements by

iteratively sorting the constructed BDCurve network and optimizes toward a quad-dominant mesh. The

goal is to provide a discretized model that conforms to surface continuity and at the same time maintains

surface integrity in a coherent manner. In addition, irregular elements, such as triangles or polygonal face

elements at boundary edges, or irregular regions in the quad-dominant configuration are also be

minimized.

CH 6 - CONCLUSION AND FUTURE WORK

141

6.2 Technical Contributions: Mesh Automation

BDMesh is an algorithmic approach for automatic mesh generation from a NURBS surface with added

considerations given to the featured boundary conditions. As discussed in this dissertation, meshing is

essential for manifesting a freeform surface and could potentially dominate both aesthetical appearance

and physical construction. In light of the desire to tessellate surfaces with potential irregular boundary

conditions, this dissertation promotes BD-driven optimization as a general approach to this problem.

Major technical contributes are summarized as the following three aspects: (1) automatic quad-dominant

mesh generation; (2) easy-to-manage structure for fast prototyping; and (3) a divide-and-conquer

approach to solving complex freeform designs.

Automatic quad-dominant mesh generation

BDMesh provides an algorithm for converting a surface into a quad-dominant mesh, which consists

of mainly quadrilateral face elements. The approach eases the discretization process for users,

particularly—designers pursuing freeform architecture, and provides a distinct aspect on how mesh

configuration can be optimized and guided by incorporating featured boundary constraints. The resulting

mesh exhibits the potential of not only generating quad mesh but also minimizing irregular regions in the

constructed mesh structure.

In one sense, BDMesh affords users the capability of discretizing a surface in a relatively easy

fashion. BDMesh supplies a well-structured discretized model for users to evaluate further objective and

performance criteria during the explorative and iterative design process. As an example, the mesh can be

regarded as a representation model to simulate the compression and tension of a built structure with the

results then being harvested back to improve structural soundness.

Easy to manage for fast prototyping

A mesh is a structured network of vertices, edges and faces. In the constructed network, a pair of

vertices bound an edge; a list of edges bound a face, and so forth. These connectivity relationships are

essential and also useful information when extended to architectural application. For instance, given a

mesh data structure, designers can easily develop glass panes for surface panels by utilizing the mesh face

elements. In general, mesh elements are employed as references to develop and examine physical building

components. By drawing analogies from mesh elements to corresponding design artifacts such mapping

renders flexibility for designers to systematic and fast prototyping of intended architectural components.

 142

A divide-and-conquer approach for complex freeform design

The meshing process is regarded as the essential step in free from surface manifestation. In one sense,

this process simplifies the surface by a collection of polygonal components, which are later extended with

added considerations that cater for physical fabrication. This simplification step can be integrated as part

of the divide-and-conquer approach, in which a complex surface geometry problem is divided into two

solvable sub-problems and then tackled individually. The first sub-problem relates to the pattern-based

surface tessellation and the second refers to the procedural construction of the designated architectural

components.

6.3 Pedagogical Contributions: Parametric Design Process

In the body of this dissertation, a parametric modeling approach is promoted as the basis for a systematic

and computational design approach in which various modules are investigated. For instance, BDCurve is

a parametric module that visualizes curves in two conjugate directions, which are interpolated from the

feature boundary conditions. BDMesh is the mesh component, which computes the discretized model of

a given surface. In a word, each module exists individually, but also contingent on each other. On one

hand, these modules are individual entities due to the fact that they are domain-specific information

objects, which respectively govern domain-specific information. On the other, they are also dependent on

their predecessors—namely, the input. For instance, BDMesh relies on a BDCurve, and BDCurve relies

on a BDTensor. The directed connectivity among dependent objects delineates the order of the

constructive operations in the parametric modeling process. The implementation of the approach

demonstrates a constraint-solving scheme for design exploration within a parametric modeling context.

Additionally, with the described optimization process, I further investigated customizable pattern-

based generations using Archimedean and interwoven patterns (Chapter 5). These examples are built

upon a discretized model from the target surface and can be treated as the successor of the BDMesh

component. Overall, the presented BD-driven model generalizes the process for pattern-based

exploration by supplying a well-structured network. The underlying topology (namely, a quad-dominant

mesh network with minimal irregularities) affords designers a relatively easy fashion for exploring

alternative pattern-based generations when considering geometrically complex surface designs.

CH 6 - CONCLUSION AND FUTURE WORK

143

Boundary-driven as the vehicle for pattern-based surface tessellation

Figure 6-1 A boundary-driven optimization process using additional boundary curve(s)

The process initiates from the top-left corner to the top-right corner

As discussed in the body of this dissertation, boundaries of a surface are treated as important

ingredients for constructing surface tessellations. Figure 5-10 is a demonstration of evolving surface

tessellations through a gradual increasing of the complexity of the feature boundary conditions. In general,

this generative process can be summarized as the following six steps: (1) Surface selection; (2) Boundary

identification; (3) BDTensor field initiation; (4) BDCurve network construction; and (5) BDMesh

construction; and (6) Post-optimization. As new boundary conditions are introduced, the full cycle of six-

 144

stage operations are re-executed to investigate current available solution(s). This process can be

iteratively explored with any potential boundary condition. As noted earlier, “boundaries” may not

necessarily be limited to the original surface edges. Additional curve(s) on a surface domain can also be

treated as additional curve source(s) to customize surface tessellation pattern. In Figure 6-1, a complete

iteration of using an additional curve on a trimmed surface is illustrated. Notice that this surface

tessellation only takes the single curve on the surface (shown in the middle-left image of Figure 6-1) for

the optimization. In this figure, the six-stage process initiates from the top-left corner to the top-right

corner in a counter-clockwise order.

Parametric pattern derivation using topological operation and mesh subdivision

In Chapter 5, further applications are given to demonstrate the parametric process from the initial

mesh generation to the subsequent pattern explorations. For instance, the west façade of Zaha Hadid’s

Next Gene Museum is utilized as an example to demonstrate extended parametric applications (using both

Archimedean and interwoven patterns). Such pattern-based construction is regarded as an extension of

the above parametric modeling process and thus successive to the BD-driven optimization. This and other

examples stated in Chapter 1 are built upon the assumption that a well-structured tessellation pattern can

lead to further sustainable architecture development. The BD-driven approach presented in this

dissertation supports this view by solving computational geometry constraints, particularly, for freeform

surfaces, within a parametric modeling paradigm.

6.4 Current Limitations

The main investigation in this dissertation concentrated on the formation of an optimized pattern-based

tessellation with irregular boundary conditions. As shown in Chapter 5 Figure 5-4 and Figure 5-5,

boundaries are often modified to pursue both visual and functional purposes (Zahad, 2008). The act of

such manipulation may potentially increase the complexity of the surface boundary conditions and thus

future manifestation. An important assumption is that these boundaries could serve as important design

cures and vehicles during the course of freeform design. Under this freeform design context, the

optimization approach utilizes boundaries as the dominant force for tackling surface tessellating issues

such that the resulting segmentation can afford to fabricate constructible building components. Some

limitations that apply to this research are discussed next.

CH 6 - CONCLUSION AND FUTURE WORK

145

Boundary conditions vs. surface curvature

In some cases, the boundary-driven tessellation may not always yield an optimal solution; for

instance, surface with curvature directions vastly divergent from the trimming boundaries. In this

situation, constraining the mesh generation solely to the given boundaries may potentially increase the

complexity of the generated face elements, particularly, at those constrained boundaries. As shown in

Figure 6-2, the influence from surface curvature is gradually increased in the optimization process from

the left to the right images. More irregular regions emerge at the boundaries where the conjugate

directions are modified by the curvature directions. This result is due to the conflicts between the

dominant force of quadrangulation and the underlying surface curvature.

Figure 6-2 Meshing trimmed surfaces with surface curvature consideration.

The curvature influence utilized in the interpolation is gradually increased from left to the right.

BDCurve network initiation

In the optimization process, preliminary BDCurve construction is initiated from a given node on the

target surface domain (Chapter 4 Figure 4-6). This initial node can be either supplied by user input or

randomly picked by the system. Current limitation occurs when following two conditions exist

simultaneously: (1) a target surface is featured with a relatively symmetrical configuration; and (2) the

initial sampling node does not capture this symmetrical relation from the given surface. For instance, a

sampling node at the center along the symmetrical direction will more likely generate a symmetrical

configuration. In other words, a randomized initial node for BDCurve construction may not always be

sufficient and efficient in capturing, sometimes, important visual characteristics, such as, symmetry, and

this requires additional intervention from the user control. However, to identify a symmetrical relation is

not an easy task and requires further research into computational geometry. Currently, for such a surface,

an initial node is instructed intentionally by user input. In some cases, a bad node choice can potential

 146

cause more irregular regions in the generated structure and this is currently compensated by post-

optimization, such as skewed triangle removal or quadrangulation.

To summarize, this process is limited to some degree by certain types of surface configurations and

is currently refined by user control and post optimization. For robustness in the mesh construction, an

improvement can be made toward reducing the probability of bad node initiations from either user input

or stochastic search. In doing so, the efficiency of generating a well-structured mesh can be improved.

Nevertheless, this is not an easy task for algorithmically identifying an initial node in a geometrically

complex surface. In one sense, visual guidance from users can be utilized to facilitate this optimization

process.

Single surface interpolation

Current implementation is limited to single-patch surface interpolation. A single-patch surface

depends solely on a set of control points and a single interpolating function. A surface that consists of

multiple patches is currently not considered as a valid input surface type. A potential remedy to such

surfaces with multiple patches is to separate the surface into a collection of solvable single-patch surfaces,

which can then be tackled separately. A further optimization to realign seams among different surface

patches can be expected to generate a watertight meshing result.

6.5 Future Directions

This dissertation presents an algorithmic approach to solving surface tessellation problem within the

context of architectural freeform design. The current implementation is focused on theoretical and

technical investigations into the problem. In order to demonstrate the power of utilizing such an approach

for freeform architectural design, more surface tessellation and fabrication examples need to be

considered. In addition, an appropriate interface between users and computational mechanisms is

expected for the successful integration in the real design practice. The overview for the future directions

is given as follow.

Cross- or multiple-platform usages

Current deployment is limited to dynamic-link libraries and utilized as prototype components in

Grasshopper/Rhino for demonstration purposes. To make a real application with lasting contributions to

the field of freeform designs, multiple- or cross-platform manipulations are required, for instance, other

CH 6 - CONCLUSION AND FUTURE WORK

147

platforms, such as Revit or even Processing—the former is an example of a commercial parametric

building information modeling tool, the latter a general purpose graphical programming environment

targeted towards artists and designers. Both platforms provide a certain amount of support towards

parametrically generating constructive geometry and can be considered as potential candidates for

incorporating the approach described in this dissertation. Essentially, the approach articulates how

information flow regarding surface tessellation should be directed, processed and computed. In

considering multi-platform support, proper data interpolation and integration schemes are required for

managing the integrity of distinct data presentations in respective platforms.

User testing, control and interaction

In order to render the flexibility of utilizing this approach, adding controls at the user-interaction

level are considered. For instance, improved control, from single to multiple boundaries, needs to be

further addressed from a user-interaction perspective. Single to multiple boundaries are essential and are

implemented for BDTensor interpolation and BDCurve network construction. The current application of

employing additional curves is limited by an ability to directly program the curves. Given that control can

be, interactively, manipulated by users in real time, this approach will be more amenable to real design

exploration.

In addition, user testing within architectural design contexts is also considered essential for

validating the approach for practical use. Feedbacks from testing experiments can be expected to improve

the workflow and develop potential future functionalities.

Multiple-patch surface

As mentioned in Chapter 4 and in Section 6.4, the current implementation is limited to single-patch

surface tessellation. In order to accommodate various surface configurations that may occur in the design

process, a multiple-patch surface example is suggested. This involves analysis across various surface

domains and the alignment of meshing elements at the boundaries where various surfaces meet.

For some geometrically complex surfaces, it is sometimes beneficial and strategic to first have a

single-patch surface split into smaller surface patches, and then tessellating each patch. In doing so, the

complexity of the surface can be reduced and this process will in turn facilitate the surface tessellation

process.

 148

Further extension using performance-based refinement

Planarity is probably one of the more important indices for fabrication; notwithstanding, planarity is

not always applicable nor is it the only panacea. Instead, a structure to accommodate various

considerations, such as geometrical, structural, performative, material, etc., is much more practical. In

other words, other design or performance constraints may sometimes be considered to be more dominant

and hence induce much more complex design constraints. In the future, further applications are

considered to encompass performance-driven criteria in the optimization process. Essentially, a well-

structured mesh is a discrete model for conducting analysis and results can also be easily harvested for

further refinement.

Fabrication

As discussed in Chapter 2, there are various types of manufacturing techniques catering to distinct

face-based construction. In addition one can also consider using boundary-driven tessellation patterns as

the foundation for future fabrication validation. Intended development of optimizing pattern-based

module for fabrication is considered as the essential steps toward a fabrication-friendly application.

To summarize, the body of this dissertation demonstrates a constraint solving exercise within the

context of freeform designs. By resolving complex boundary conditions, the ultimate goal is to make

technology as affordable as possible so that design creativity can be expanded without limitations. Yet,

this does not imply that the freedom to pursue creativity is unlimited. Instead, it is a constrained freedom.

For instance, by solving both the geometrical and fabrication constraints, an optimized solution for cost-

effective fabrication can be provided for a sustainable design development.

 149

BIBLIOGRAPHY

Abi-Ezzi, S. S. and L. A. Shirman, 1991. "Tessellation of Curved Surfaces under Highly Varying Transformations,"
in Eurographics '91, 385-397.

Abi-Ezzi, S. S. and L. A. Shirman, 1994. "Fast Dynamic Tessellation of Trimmed NURBS Surfaced1," Computer
Graphics Forum 13(3): 107-126.

Aish, R. and R. Woodbury, 2005. "Multi-Level Interaction in Parametric Design," in Proceedings of
International Symposium on Smart Graphics, Frauenwoerth Cloister, Germany, 151-162.

Akleman, E., V. Srinivasan, et al., 2005. "Remeshing schemes for semi-regular tilings," in The International
Conference on Shape Modeling and Applications, 44-50.

AKLEMAN, E., V. SRINIVASAN, et al., 2004. "Topmod: Interactive Topological Mesh Modeler," Technical
Report, Texas A&M University, College Station, Texas.

Aurenhammer, F., 1991. "Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure," ACM
Computing Surveys 23(3): 345-405.

Bell, B. and A. Vrana, 2004. "Digital Tectonics: Structural Patterning of Surface Morphology," in Proceedings
of the 23rd Annual Conference of the Association for Computer Aided Design in Architecture, Cambridge,
Ontario, 186-201.

Berg, M. d., O. Cheong, et al., 2008. Computational Geometry: Algorithms and Applications, Springer-
Verlag, Berlin.

Bertel, S., C. Freksa, et al., 2004. "ASPECTUALIZE AND CONQUER IN ARCHITECTURAL DESIGN," in Visual and
Spatial Reasoning in Design III (J. Gero, B. Tversky and T. Knight), pp. 255-279.

Biloria, N. and V. Sumini, 2009. "Performative Building Skin Systems: A Morphogenomic Approach Towards
Developing Real-Time Adaptive Building Skin Systems," International Journal of Architectural Computing
07(04): 643-676.

Boeykens, S. and H. Neuckermans, 2006. "Improving Design Workflow in Architectural Design Applications,"
International Journal of Architectural Computing 04(04): 1-19.

Burry, J. and M. Burry, 2010. The New Mathematics of Architecture, Thames & Hudson, New York.

Burry, J. R., 2007. "Mindful Spaces: Computational Geometry and the Conceptual Spaces in which
Designers Operate," International Journal of Architectural Computing 05(04): 611-624.

 150

Cardoso, D. and L. Sass, 2008. "Generative Fabrication," in Design Computation Cognition 08, Atlanta, USA,
713-732.

Catmull, E. and J. Clark, 1978. "Recursively generated B-spline surfaces on arbitrary topological meshes,"
Computer-Aided Design 10(6): 350-355.

Corser, R., 2010. Fabricating Architecture: Selected Readings in Digital Design and Manufacturing,
Princeton Architectural Press, Princeton, NJ.

Cutler, B. and E. Whiting, 2007. "Constrained Planar Remeshing for Architecture," in Graphics Interface 2007,
Montreal, Canada, 11-18.

Davis, D., J. Burry, et al., 2011. "Untangling Parametric Schemata : Enhancing Collaboration through
Modular Programming," in Proceedings of the 14th International Conference on Computer Aided
Architectural Design Futures, Liege, Belgium, University of Liege-Belgium, 55-68.

Delaunay, B., 1934. "Sur la sphère vide, Izvestia Akademii Nauk SSSR," Otdelenie Matematicheskikh i
Estestvennykh Nauk 7: 793-800.

Dirichlet, G. L., 1850. "Reine Angew," Journal für die Reine und Angewandte Mathematik, 40: 209−227.

Dritsas, S. and M. Becker, 2007. "Research & Design in Shifting from Analog to Digital," in Proceedings of the
27th Annual Conference of the Association for Computer Aided Design in Architecture, Halifax, Nova
Scotia, 56-65.

Dritsas, S., R. Charitou, et al., 2006. "Computational Methods on Tall Buildings - The Bishopsgate Tower," in
Proceedings of the 24th Annual Conference of Education and research in Computer Aided Architectural
Design in Europe, Volos, Greece, 778-785.

Duesing, B., 2007. "NURBS Add a Curve to CAD Modeling," last accessed on Nov 05, 2011, from
http://www.rhino3d.com/clippings/Sept2007/DesignWorld_Rhino_Sept2007.pdf.

Eastman, C., 2004. "New Methods of Architecture and Building," in Proceedings of the 23rd Annual
Conference of the Association for Computer Aided Design in Architecture, Cambridge, Ontario, 20-27.

Eastman, C. M., 1999. Building Product Models: Computer Environments, Supporting Design and
Construction, CRC Press, Boca Raton, FL.

Eigensatz, M., M. Deuss, et al., 2010a. "Case Studies in Cost-Optimized Paneling of Architectural Freeform
Surfaces," in Advances in Architectural Geometry 2010, 49-72.

Eigensatz, M., M. Kilian, et al., 2010b. "Paneling Architectural Freeform Surfaces," ACM Transactions on
Graphics 29(4): 45.

Emdanat, S., E. G. Vakalo, et al., 1999. "Solving Form-Making Problems Using Shape Algebras and
Constraint Satisfaction," in Architectural Computing: The Intelligent Machine 1: AI, pp. 620-625.

Eves, H., 1972. Survey of Geometry, Allyn and Bacon, Boston, MA.

Fleischmann, P., 1999. "Mesh Generation for Technology CAD in Three Dimensions " Ph.D. dissertation,
Technische Universität Wien, Vienna, Austria.

Flory, S. and H. Pottmann, 2010. "Ruled Surfaces for Rationalization and Design in Architecture," in
Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture,
New York, 103-109.

Glympha, J., D. Sheldena, et al., 2004. "A parametric strategy for free-form glass structures using
quadrilateral planar facets," Automation in Construction 13: 187-202.

BIBLIOGRAPHY

151

Goldberg, S. A., 2006. "Computational Design of Parametric Scripts for Digital Fabrication of Curved
Structures," International Journal of Architectural Computing 4(3): 99-117.

Grunbaum, B. and G. C. Shephard, 1987. Tilings and patterns, W. H. Freeman and Company, New York.

Hadid, Z., 2008. "Schematic Design Report for Next-Gene Architecture Museum," Technical Report,
Graduate Institute of Architecture, National Chiao-Tung University, Hsinchu, Taiwan.

Hauer, E., 2007. Erwin Hauer: Continua-Architectural Screen and Walls, Princeton Architectural Press, New
York City.

Hermann, L. R., 1976. "Laplacian-isoparametric grid generation scheme," Journal of Engineering Mechanics
102(EM5): 749-756.

Herr, C. M. and J. Karakiewicz, 2007. "ALGOGRAM: Automated Diagrams for an Architectural Design
Studio," in Proceedings of the 12th International Conference on Computer Aided Architectural Design
Futures, Sydney, Australia, 167-180.

Hesselgren, L., R. Charitou, et al., 2007. "The BishopsgateTower Case Study," International Journal of
Architectural Computing 5(1): 61-82.

Hudson, R., 2008. "Knowledge Acquisition in Parametric Model Development," International Journal of
Architectural Computing 6(4): 435-451.

Hudson, R., 2009. "Parametric Development of Problem Descriptions," International Journal of Architectural
Computing 7(2): 199-216.

Iordanova, I., 2007. "Teaching Digital Design Exploration:Form Follows…," International Journal of
Architectural Computing 5(4): 685-702.

Iwamoto, L., 2009. Digital Fabrications: Architectural and Material Techniques, Princeton Architectural Press,
New York City.

Jernigan, F., 2007. BIG BIM little bim - The practical approach to Building Information Modeling, 4Site Press,
Salisbury, Maryland.

Jodidio, P., 2009. Zaha Hadid: Complete Works, TASCHEN America Llc, Los Angeles, CA.

Kahlert, E. J., 2009. "TILING SURFACES WITH STRAIGHT STRIPS," Master Thesis, The School of Computing
Science, Simon Fraser University, Vancouver, BC, Canada.

Kieran, S. and J. Timberlake, 2004. Refabricating Architecture: How Manufacturing Methodologies are
Poised to Transform Building Construction, McGraw-Hill Professional, New York.

Kieran, S. and J. Timberlake, 2008. Loblolly House: Elements of a New Architecture, Princeton Architectural
Press, Princeton, NJ.

Kilian, A., 2006. "Design Exploration through Bidirectional Modeling of Constraints," Ph.D. dissertation,
Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA.

Kilian, A., 2006. "Design innovation through constraint modeling," International Journal of Architectural
Computing 4(1): 87-105.

Kolarevic, B., 1993. "Geometric Relations as a Framework for Design Conceptualization," Doctoral
dissertation, Graduate School of Design, Harvard University, Cambridge, MA.

Kolarevic, B., 1997. "Regulating Lines, Geometric Relations, and Shape Delineation in Design," in
Proceedings of the 15th Annual Conference of Education and research in Computer Aided Architectural
Design in Europe, Vienna, Austria, 17-20.

 152

Kolarevic, B., 2005a. Architecture in the Digital Age: Design and Manufacturing, Taylor & Francis, New York
and London.

Kolarevic, B., Ed. 2005b. Performative Architecture: Beyond Instrumentality, Spon Press, New York and
London.

Kolarevic, B., 2009. "Towards Integrative Design " International Journal of Architectural Computing 7(3): 335-
344.

Kolarevic, B. and K. Klinger, Eds., 2008. Manufacturing Material Effects: Rethinking Design and Making in
Architecture, Routledge, New York and London.

Lee, D. T. and B. J. Schachter, 1980. "Two algorithms for constructing a Delaunay triangulation,"
International Journal of Parallel Programming 9(3): 219-242.

Lindsey, B., 2001. Digital Gehry, Birkhäuser, Basel.

Liu, Y., H. Pottmann, et al., 2006. "Geometric Modeling with Conical Meshes and Developable Surfaces,"
ACM Transactions on Graphics 25(3): 681-689.

Loop, C., 1987. "Smooth Subdivision Surfaces Based on Triangles," Master Thesis, University of Utah, Salt Lake
City, UT.

Maeda, J., 2001. Design By Numbers, The MIT Press, Cambridge, MA.

Maeda, J., 2004. Creative Code: Aesthetics + Computation, Thames & Hudson, New York.

Maeda, J., 2006. The Laws of Simplicity, The MIT Press, Cambridge, MA.

Maleki, M. M. and R. F. Woodbury, 2008. "Reinterpreting Rasmi Domes with Geometric Constraints:A Case
of Goal-seeking in Parametric Systems," International Journal of Architectural Computing 06(04): 375-395.

Medjdoub, B., 1999. "Interactive 2D Constraint-Based Geometric Construction System," in the Eighth
International Conference on Computer Aided Architectural Design Futures Atlanta, 197-212.

Meredith, M., Aranda-lasch, et al., Eds., 2008. From Control to Design: Parametric/Algorithmic Architecture,
Actar, Barcelona, Spain.

Moustapha, H., 2004. "A Formal Representation for Generation and Transformation in Design," in
Generative CAD Systems Symposium, Carnegie Mellon University, Pittsburgh, PA

Moustapha, H., 2006. "Architectural Explorations: A Formal Representation for the Generation and
Transformation of Design Geometry," Ph.D. dissertation, School of Architecture, Carnegie Mellon University,
Pittsburgh, PA.

Muller, P., P. Wonka, et al., 2006. "Procedural Modeling of Buildings," in Proceedings of SIGGRAPH 2006, 614-
623.

Nir, E. and G. Capeluto, 2005. "Smart Cloud-of-Points Model: Point-based Digital Media and Tools for
Architectural Design," in Proceedings of the 23th Annual Conference of Education and research in
Computer Aided Architectural Design in Europe, Lisbon, Portugal, 687-694.

Oxman, N., 2007. "Get Real Towards Performance-Driven Computational Geometry," International journal
of architectural computing 05(04): 663-684.

Oxman, R., 2006. "Theory and design in the first digital age," Design Studies 27(3): 229-265.

Oxman, R., 2008. "Performance-based Design: Current Practices and Research Issues," International Journal
of Architectural Computing 06(01): 1-17.

BIBLIOGRAPHY

153

Pak, B., O. O. Ozener, et al., 2006. "Utilizing customizable generative design tools in digital design studio: Xp-
GEN experimental form generator," International Journal of Architectural Computing 04(04): 21-33.

Paoluzzi, A., V. Pascucci, et al., 1995. "Geometric Programming: A Programming Approach to Geometric
Design," ACM Transactions on Grphics 14(3): 266-306.

Piegl, L., 1991. "On NURBS: a Survey," IEEE Computer Graphics and Applications 11(1): 55-71.

Piegl, L. A. and W. Tiller, 1996. The NURBS Book, Springer-Verlag, New York, NY.

Pine, B. J., 1993. Mass Customization - The New Frontier in Business Competition, Harvard Business School
Press, Boston, MA.

Pottmann, H., 2008. "Geometry of Architectural Freeform Structures," in Proceedings of the 2008 ACM
symposium on Solid and physical modeling, ACM New York, 9-9.

Pottmann, H., 2010. "Architectural Geometry as Design Knowledge," Architectural Design 80(4): 72-77.

Pottmann, H., A. Asperl, et al., Eds., 2007a. Architectural Geometry, Bentley Institute Press, Exton, PA.

Pottmann, H., S. Brell-Cokcan, et al., 2006a. "Discrete Surfaces for Architectural Design," in Curves and
Surface Design: Avignon 2006, 213-234.

Pottmann, H., Y. Liu, et al., 2007b. "Geometry of multi-layer freeform structures for architecture," ACM
Transactions on Graphics 26(3): 1-11.

Pottmann, H., A. Schiftner, et al., 2008a. "Freeform surfaces from single curved panels," in International
Conference on Computer Graphics and Interactive Techniques, Los Angeles, California, ACM, New York,
76:70-10.

Pottmann, H., A. Schiftner, et al., 2008b. "Geometry of Architectural Freeform Structures," International
Mathematical News (Internationale Mathema- tische Nachrichten) 209: 15–28.

Pottmann, H. and J. Wallner, 2006b. "The focal geometry of circular and conical meshes," Advances in
Computational Mathematics 29(3): 249-268.

Pronk, I. A., I. V. Rooy, et al., 2009. "Double-curved surfaces using a membrane mould," in International
Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia, Spain

Prusinkiewicz, P. and A. Lindenmayer, 1991. The Algorithmic Beauty of Plants, Springer, New York.

Puusepp, R. and P. Coates, 2007. "Spatial Simulations with Cognitive and Design Agents," International
Journal of Architectural Computing 05(01): 100-114.

Reda, I. and A. Andreas, 2008. "Solar Position Algorithm for Solar Radiation Applications," Technical Report,
National Renewable Energy Laboratory, Golden, Colorado.

Roelofs, R., 2010. "About Weaving and Helical Holes," last accessed on Nov 05, 2011, from
http://www.rinusroelofs.nl/projects/h-holes/pr-h-holes-00.html.

Rogers, D. F., 2000. An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann, San Francisco.

Schodek, D., M. Bechthold, et al., 2004. Digital Design and Manufacturing: CAD/CAM Applications in
Architecture and Design, Wiley, Hoboken, NJ.

Schumacher, P., 2009. "Parametric Patterns," in Architectural Design (M. Garcia), pp. 28–41, Wiley, Hoboken,
NJ.

 154

Seidel, R., 1988. "Constrained Delaunay Triangulations and Voronoi Diagrams with Obstacles," Technical
Report, Inst. for Information Processing, Graz, Austria.

Sequin, C. H., 2005. "CAD tools for aesthetic engineering," Computer-Aided Design 37: 737-750.

Shea, K., R. Aish, et al., 2004. "Towards integrated performance-driven generative design tools,"
Automation in Construction 14(2): 253-264.

Shelden, D. R., 2002. "Digital Surface Representation and the Constructibility of Gehry’s Architecture," Ph.D.
dissertation, Department of Architecture, Massachusetts Institute of Technology, Canbridge, MA.

Shepard, D., 1968. "A two-dimensional interpolation function for irregularly-spaced data," in Proceedings of
the 1968 ACM National Conference, 517–524.

Shimada, K. and D. C. Gossard, 1995. "Bubble Mesh: Automated Triangular Meshing of Non-Manifold
Geometry by Sphere Packing," in ACM Third Symposium on Solid Modeling and Applications, 409-419.

Shimada, K. and D. C. Gossard, 1998. "Automatic Triangular Mesh Generation of Trimmed Parametric
Surfaces for Finite Element Analysis," Computer Aided Geometric Design 15(3): 199-222.

Sutherland, I. E., 1963. "Sketchpad: A man-machine graphical communication system," Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA.

Szalapaj, P., 2005. "The Digital Design Process in Contemporary Architectural Practice," in Proceedings of
the 23th Annual Conference of Education and research in Computer Aided Architectural Design in Europe,
Lisbon, Portugal, 751-759.

Terzidis, K., 1999. "Computers and the Creative Process," in Proceedings of Education and research in
Computer Aided Architectural Design in Europe, Liverpool, UK, 43-50.

Terzidis, K., 2003. "Hybrid Form," Design Issues 19(2): 76-80.

Terzidis, K., 2004. "Algorithmic Design: A Paradigm Shift in Architecture?," in Proceedings of Education and
research in Computer Aided Architectural Design in Europe, Copenhegen, Denmark, 201-207.

Terzidis, K. and J. Jungclaus, 2007. "Predicting the Future: Open Source CAAD?," in Proceedings of
Education and research in Computer Aided Architectural Design in Europe, Frankfurt, German, 815-820.

Voronoi, G. F., 1908. "Nouvelles applications des paramètres continus à la théorie de formes quadratiques,"
Journal für die reine und angewandte Mathematik, 134: 198−287.

Wallner, J. and H. Pottmann, 2011. "Geometric Computing for Freeform Architecture," Journal of
Mathematics in Industry 1(1): 4.

Wallner, J., A. Schiftner, et al., 2010. "Tiling Freeform Shapes With Straight Panels: Algorithmic Methods," in
Advances in Architectural Geometry 2010, Vienna, Australia, 73-86.

Wang, T.-H., 2008. "Rule-based Procedural Reconstruction of NURBS Surfaces for Architectural Exploration,"
in Proceedings of Advances in Architectural Geometry 2008, Vienna, Austria, 131-134.

Wang, T.-H., 2009. "Procedural Reconstruction of NURBS Surfaces," in Proceedings of the 14th International
Conference on Computer Aided Architectural Design Research in Asia, Yunlin, Taiwan, 597-606.

Wang, T.-H., 2010. "Design Patterns for Parametric Modeling in Grasshopper," last accessed on Nov 05, 2011,
from http://www.andrew.cmu.edu/org/tsunghsw-design/.

Wang, W. and Y. Liu, 2009. "A Note on Planar Hexagonal Meshes," in Nonlinear Computational Geometry,
pp. 221-233, Springer-Verlag, New York, NY.

BIBLIOGRAPHY

155

Wang, W., Y. Liu, et al., 2008. "Hexagonal Meshes with Planar Faces," Technical Report, Dept. of Computer
Science, Hong Kong University, Hong Kong, China.

Woodbury, R., 2010. Elements of Parametric Design, Routledge, New York and London.

Woodbury, R., 2010. "Elements of Parametric Design," last accessed on Nov 05, 2011, from
http://www.designpatterns.ca/.

Woodbury, R., R. Aish, et al., 2007. "Some Patterns for Parametric Modeling," in Proceedings of the 27th
Annual Conference of the Association for Computer Aided Design in Architecture, Halifax, Nova Scotia,
222-229.

	

	

