

Development of an Oral Treatment for Galactosemia EDUCATIONAL EVENT

Thursday, October 17, 2019 12:45pm – 2:00pm

Welcome

Lunch boxes are available in the Foyer

Introduction

Riccardo Perfetti, MD, PhD Chief Medical Officer | Applied Therapeutics Inc.

Today's program

12:30pm	Lunch	
12:45pm	Introduction	Riccardo Perfetti
12:50pm	Clinical presentation of Classic Galactosemia	Jerry Vockley
1:10pm	Biology and biochemistry of Classic Galactosemia	Gerard Berry
1:25pm	Preclinical evidence and clinical development of a novel oral compound to prevent complications of Classic Galactosemia	Riccardo Perfetti
1:40pm	Questions & Answers	All
1:50pm	Conclusions	Riccardo Perfetti

Our faculty

Riccardo Perfetti, MD, PhD Applied Therapeutics Inc.

Jerry Vockley, MD, PhD UMPC Children's Hospital, University of Pittsburgh

Gerard T. Berry, MD Boston Children's Hospital and Harvard Medical School

Galactosemia

Jerry Vockley, M.D., Ph.D. Director, Center for Rare Disease Therapy Chief Division of Medical Genetics

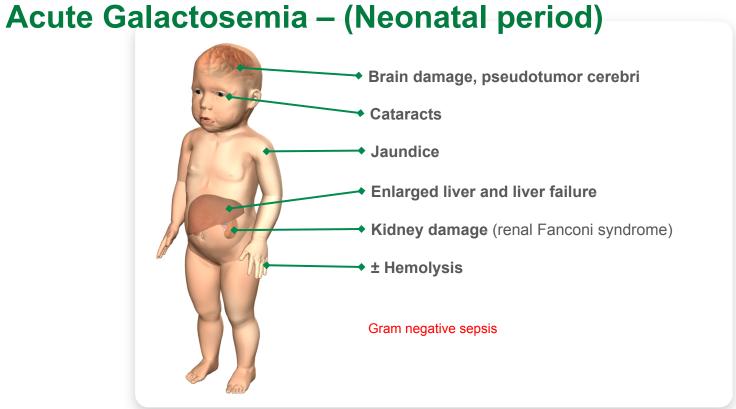
University of Pittsburgh Medical Center – Children's Hospital Pittsburgh

Clinical Presentation of

Galactosemia

- Rare autosomal recessive disorder which impacts normal metabolism of the sugar galactose, a component of lactose (normally further metabolized to glucose)
- Cause: Mutation/deletion in one of three enzymes that are involved in the normal metabolism of galactose to glucose (GALK, GALT, GALE)
- Incidence: ~1 in 60,0000. Estimated 2,800 individuals in US
- Consequence: Supra-physiologic levels of galactose, galactitol and Gal-1-Phosphate (Gal-1P)

Clinical Presentation


- •Acute Neonatal Galactosemia (newborns and infants)
- Potentially life threatening if not identified and managed immediately
 Chronic (childhood through adulthood)

•Result of long-term exposure to galactose and metabolites despite restriction of dietary lactose

•Endogenous production of galactose maintained

•Long term neurologic, cognitive deficits and other pathologies

Neonatal (Acute) Galactosemia

- Symptoms triggered by lactose/galactose in diet
- Severe forms may present prior to newborn screening
- Stop milk feeding immediately in an ill infant in whom you are considering Galactosemia
- Replace milk with a galactose-free diet

Acute Galactosemia - Cataracts

Clinical Case Study: Neonatal Galactosemia

- Birth: Full-term white female, birth weight = 2,400g
- Day #1–4
 - Alert and active
 - Feeding well
 - Breastfeeding + Enfamil
- Day #4
 - Jaundice = 12.0 mg% Bilirubin (205.2 μmol/L) & direct = 1.0 mg% (17.1 μmol/L)
- Day #5
 - Sepsis work-up:
 - ↓ feeds,
 - emesis post feeds
- Day #6
 - Formula changed to Similac. Jaundice persists, feeds poorly, IV fluids continued

Clinical Case Study: Neonatal Galactosemia

- Day #8
 - Listless, appears dehydrated despite IV fluids only off 6 hours
 - Liver edge down 3 cm
 - Palpable spleen tip
- What test can be done at the bedside?
 - Urinalysis
 - Urine reducing substances

STOP galactose and check for spot test

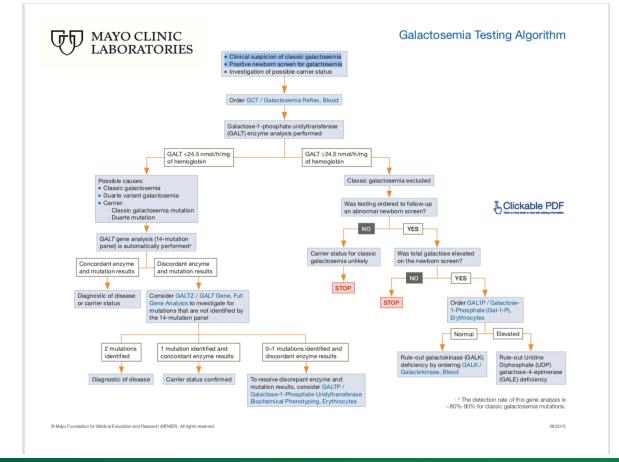
Subsequent Course

- Sepsis evaluation repeated WBC 20,000 (20 x 109/L)
- Total bilirubin 18 mg%, direct 10 mg% (total 308 µmol/L, direct 171)
- SGOT 375 U/L (6.3 µkat/L)
- Urine reducing substances positive
- Blood culture from 3 days ago now positive E. coli
- Slit lamp exam positive lenticular opacities

Diagnosis

- Galactosemia
 - RBC Gal-1P elevated
 - Gal-1P uridyltransferase activity low
- Newborn screen reported positive at 10 days for increased RBC Gal/ Gal-1P and equivocal GALT
- Repeat testing requested
- NBS Follow up
 - GALT activity
 - Metabolite analysis (galactitol and Gal-1-P
 - Gene sequencing

Galactosemia Gene Analysis


Useful For

- Second-tier test for confirming a diagnosis of Galactosemia (indicated by enzymatic testing or newborn screening)
- Carrier testing family members of an affected individual of known genotype (has mutations included in the panel)
- Resolution of Duarte variant and Los Angeles (LA) variant genotypes

Testing Algorithm

- Tests for the presence of the following 14 mutations in the GALT gene:
- -119_-116delGTCA, D98N, S135L, T138M, M142K, F171S, Q188R, L195P, Y209C, K285N, N314D, Q344K, c.253-2A>G, and 5 kb deletion.
- Gene sequencing

https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/55071 (accessed 9/26/19)

Galactosemia (GALT Enzyme Assay) Newborn Screening¹

Limitations of Newborn Screening:

- False positives and negatives¹
- Delay in reporting vs onset of neonatal symptoms
- Treatment may confound
- Newborn screening incidence in USA: ~1/60,000

¹Pyhtilia, BM, Shaw, KA, Neumann, SA, Fridovich-Keil, JL, *JIMD Reports* 2015;15:79-93. doi: 10.1007/8904_2014_302. Epub 2014 Apr 1

Acute Galactosemia: Clinical Outcomes

- Neonatal liver disease
- Increased risk of neonatal sepsis
- Cataracts
- Renal proximal tubule dysfunction
- Neurologic outcomes (highly variable)
- Decreased bone density is common
- Pseudotumor cerebri

Chronic Galactosemia – Long Term Complications in Children and Adults

Early and Chronic Speech motor pathologies

Identifiable by ~ 1 year (recommend screening 7-12 months)

Long term neurologic / CNS related abnormalities¹

- •Below average IQ (72%)
- •Tremor (46%)
- •Ataxia (15%)

• Difficulties in spatial orientation and visual perception

•Still unclear whether CNS and other long-term complications are progressive or static over lifetime of patients – many patients may require caregiver support throughout life and may face intellectual limitations that will impact QOL

Leukodystrophy

Cataracts¹ (>21%) Ovarian Insufficiency (almost all females)

¹Waisbren, S.E., Potter, N.L., Gordon, C.M., RC Green, et al. J Inherit Metab Dis (2011) 35: 279.

Neurologic Outcomes – Chronic Galactosemia

- Speech difficulties are common
- Difficulties in spatial orientation and visual perception
- Motor difficulties
- Cognitive outcome
- Leukodystrophy in adults
- Tremor
- Seizures

Ovarian Failure – Chronic Galactosemia

- Hypergonadotropic hypogonadism^{1,2}
- No apparent effect of diet
- Timing of signs and symptoms very variable
- A few pregnancies reported

¹Rubio-Gozalbo ME, Haskovic M, Bosch A, Burnyte B, et al. *Orphanet J Rare Dis.* 2019; 14: 8 ²Forges T, Monnier-Barbarino PB, Leheup B, .Jouvet P *Human Reproduction Update*, 2006: Vol.12, No.5 pp. 573–584

Standard of Care / Current Management

Neonatal

- Lactose dietary restrictions (soy based or elemental formula)
- Medical management of acute symptoms

Chronic

- Dietary management restriction of dairy intake
 - Diet will not address endogenous galactose production
- Appropriate cognitive, neurological and speech assessment evaluation and treatment
- No enzyme replacement options currently approved to treat galactosemia
- No currently approved drug therapies for acute or long-term treatment

Chronic Galactosemia Patient Management¹

- Diet¹
 - Avoid Lactose milk disaccharide: Glu+Gal
 - Soy formula (sucrose-based) during infancy
 - Always work with a dietitian!!!
- Ca⁺⁺ and vitamin D supplement
- Monitoring for compliance
- Clinical follow-up of speech and fertility issues

¹Welling L, Bernstein, L, Berrry, G, Burlina, A, et. al *J Inherit Metab Dis* (2017) 40:171–176

Galactose Reduction in Diet

- Endogenous galactose synthesis occurs
- Complete restriction no longer recommended
- Galactose is required for proper glycosylation
- Liberalization of the small amounts of galactose contained in fruits, vegetables and medications is recommended
- There is no evidence correlating cognitive outcomes with higher degrees of dietary restriction

Summary

- Galactosemia, while a rare disease, remains a health challenge and has significant and devastating acute and long-term consequences
- Awareness, screening and appropriate dietary and medical management are critical in the acute (neonatal) disease phase
- Long term sequelae include speech pathologies, cognitive challenges, tremors, ovarian insufficiency (females). The severity of these disease outcomes can vary between patients
- While dietary restriction of lactose remains the standard of care for the management of Galactosemia, the long-term impact of dietary restriction in terms of disease modification has yet to be fully established

The Biology of Galactosemia A Molecular and Genetic Perspective

Gerard T. Berry, M.D.

Division of Genetics and Genomics The Manton Center for Orphan Disease Research Boston Children's Hospital Harvard Medical School, Boston, MA, USA

Estimated US Disease Prevalence for Type I and Type II Galactosemia

- Genetic screening of newborns for Galactosemia
 - 1960's initiation of screening
 - 2004 Mandatory in all states
- Prior to screening, majority of patients with severe enzyme deficient Galactosemia did not survive the newborn period
- Based on genetic frequency for classic Galactosemia and birth rates since screening, the estimated number of newborn- adult individuals with CG is estimated to be approximately 1200 + patients older than 15 years US (yearly birth rate of 80 patients/year) US individuals.

Enzyme Deficiencies Identified in Galactosemia

• GALT (Type I) (Galactose Transferase Deficiency)

- Severe (Classic Galactosemia -CG) < 1% activity (dietary galactose restriction required)
- Moderate (Clinically Variant –CV) 1-10% enzyme activity (dietary galactose restriction required)
- Mild (Duarte) ~15-35% enzyme activity (no dietary intervention required)
- Incidence of classic disease 1: 40,000 1: 60,000 (Ireland: 1:16,000)

• GALK (Type II) (Galactose Kinase Deficiency)

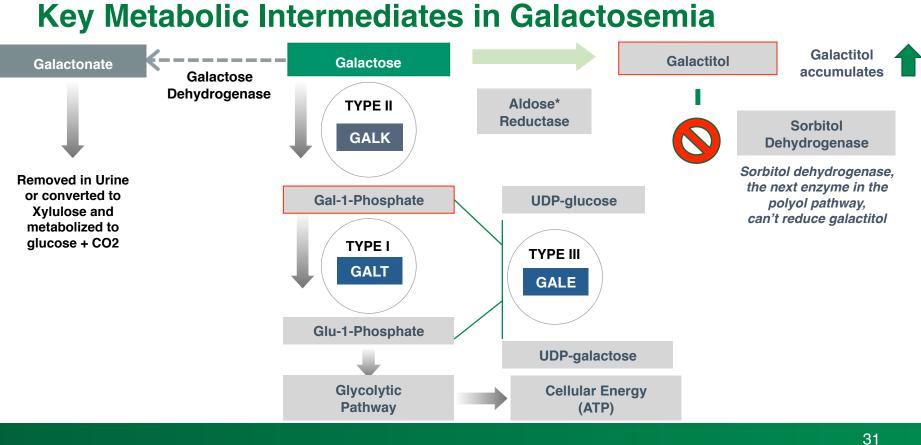
- Severe disease
- · Incidence highly variable by region
 - Eastern European (Romani)
 - UK / Ireland (Irish Traveler)
 - 1:100,000 (US), 1: 40,000 (Germany)

GALE *(Type III) (Galactose Epimerase Deficiency)

- Systemic disease form extremely rare
- Hypomorphic disease rare
- Asymptomatic form African Americans

GALT and GALK Enzyme Deficiencies

GALT Deficient (Type I Galactosemia)


Characterized by:

- Elevated levels of galactose-1- phosphate (Gal-1P)
- Elevated levels of erythrocyte Galactitol (8x normal),
- Elevated levels of Galactitol are also observed in brain tissue via MRI
- (Galactitol levels are increased in individuals with GALT deficiency due to increased flux through the aldose reductase pathway)

• GALK Deficient (Type II Galactosemia)

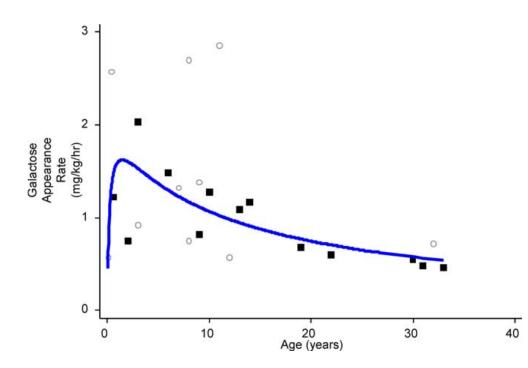
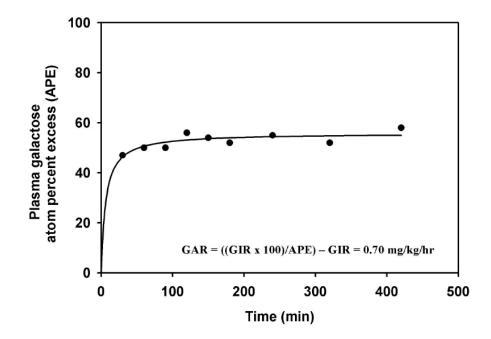
Characterized by:

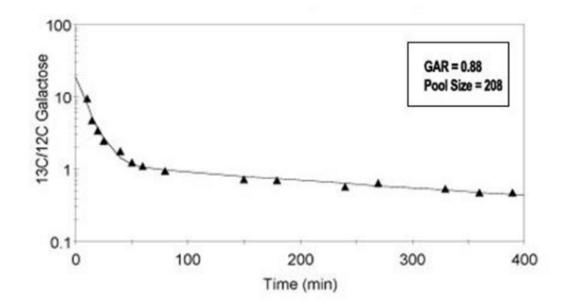
- Normal levels of galactose-1- phosphate (Gal-1P)
- Elevated levels of erythrocyte Galactitol

Variability in Measured Galactose Levels: Children versus Adults

- Galactose Appearance Rate (GAR) in patients with GALT deficiency
 - Infants and children, 1 month 14 years old: 1.34 +/- 0.53 mg / kg / h (n=17) (7.4 umol/kg/h)
 - Adults, 19 33 years old: 0.56 +/- 0.01 mg / kg / h (n=5) (3.1 umol/kg/h)

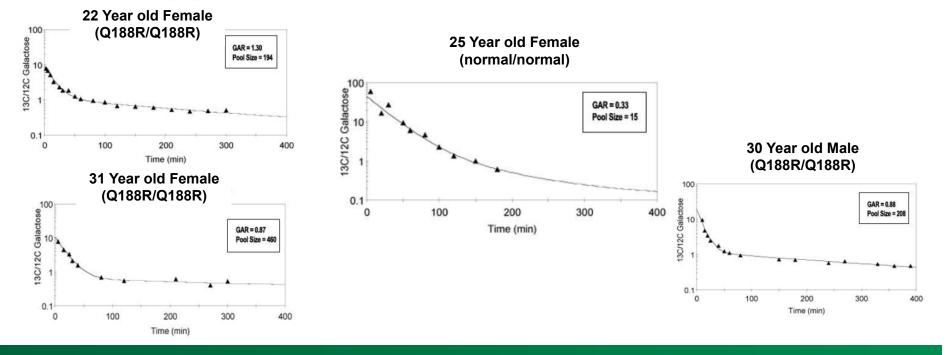
Age Dependency of Endogenous Galactose Production

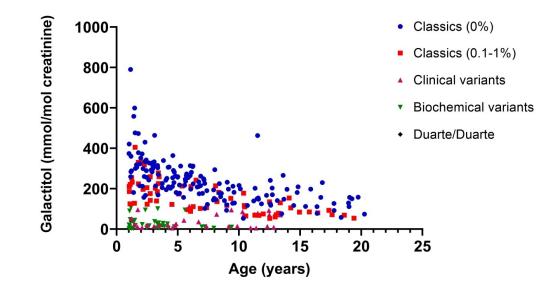

Fig. 1. The GAR in patients with galactosemia of different ages determined by the continuous intravenous infusion method. The patients with a Q188R/Q188R genotype are shown as the \blacksquare symbols while patients with other genotypes are shown as \bigcirc symbols.

Berry GT et al. Mol Genet Metab. 2004 Jan;81(1):22-30

[1-13C] Galactose Continuous Infusion in a 33 Year Old Male with Q188R/Q188R Genotype



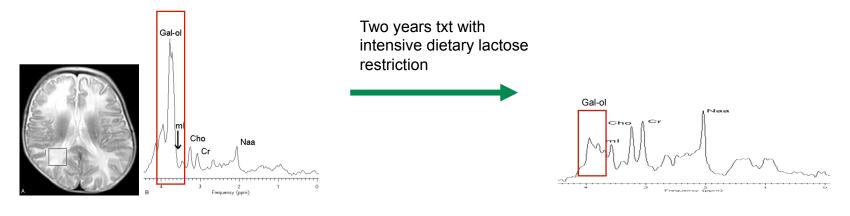
Single Bolus Method with [1-13C] Galactose in a 30 Year Old Male with Q188R/Q188R Genotype



Galactose Disposition as Measured by Stable Isotope Studies

Single Bolus Studies with [1-¹³C] Galactose

Urine Galactitol Levels Never Normalize - Even When on a Lactose Restricted Diet

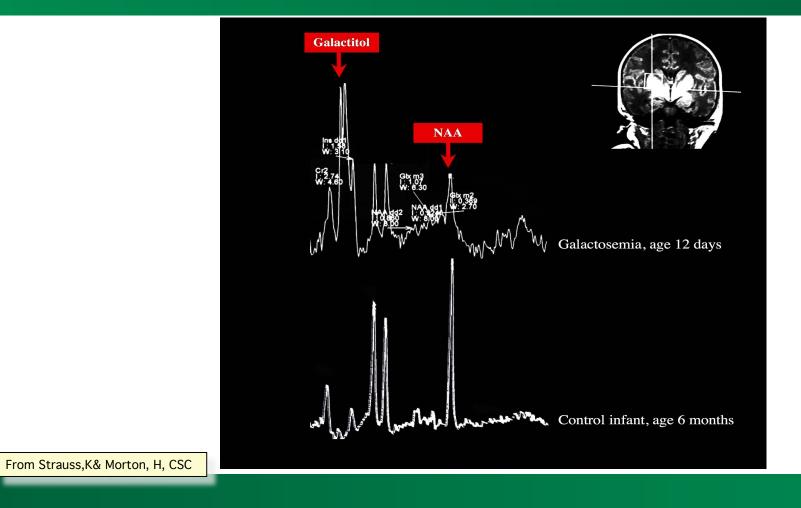


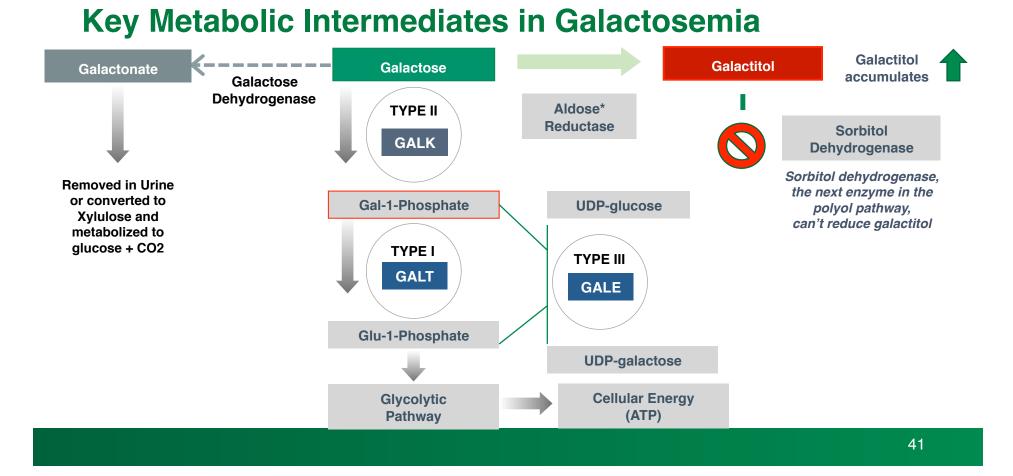
Galactose, Galactitol and GAL1P Metabolite Levels in Healthy vs. Classic (Type I) Galactosemia Patients

Galactose and Its Metabolites	Healthy Subjects; Unrestricted Diet	Subjects with CG; Galactose-restricted Diet
Plasma (µmol/L)		
Galactose	$0.1 - 6.3^{1 \text{ GC/MS}}$	0.6 - 4.0 ^{1 GC/MS Q188R/Q188R}
Galactitol	Undetectable ^{2 GC}	8.4 - 15.1 ^{2 Q188R/Q188R (n=8) GC}
		9.2-15.98 ^{1 Q188R/Q188R} (n=15) GC/MS
Erythrocytes (µmol/L)		
Galactitol	0.3-1.3 ^{3 n=19, GC/MS}	4.0 - 7.9 ^{3 n=17, Q188R/Q188R, GC/MS}
Gal-1p	Undetectable – 15.3 ^{3 n=19 GC/MS}	Q188R/Q188R
		$77.8 - 214.3^{3, n=17,} (2.02-5.57^3 (mg/dL))^{GC/MS}$
		72-425 ¹ (n=12) enzymatic
Urine (mmol/mol Cr)		
Galactitol	<1 year old <2-78 (46) ^{2 GC}	Q188R/Q188R, GC
	1-6 year old <2-36 (28) ^{2 GC}	<1 year old 183-909(38) ²
	>6y <2-19 (21) ² GC	1-6 year old 194-620 (38) ²
	- · · · · /	>6y 98-282 (32) ²

¹Ning C, *et al. Metabolism.* 2000 Nov;49(11):1460-6. ²Palmieri M, *et al. Metabolism.* 1999 Oct;48(10):1294-302. ³Yager CT, *et al. Mol Genet Metab.* 2003 Nov;80(3):283-9.

Elevated Galactitol Levels in Human Brain Tissue Observed via Magnetic Resonance Spectroscopy




Axial localizer T2-weighted image showing the MR spectroscopy voxel location (A). STEAM (TE/TR, 30/1500 milliseconds) (B) in vivo 1H-MR spectroscopy spectrum of the patient before treatment.

STEAM (TE/TR, 30/1500 milliseconds) in vivo 1H-MR spectroscopy spectrum of the patient after treatment

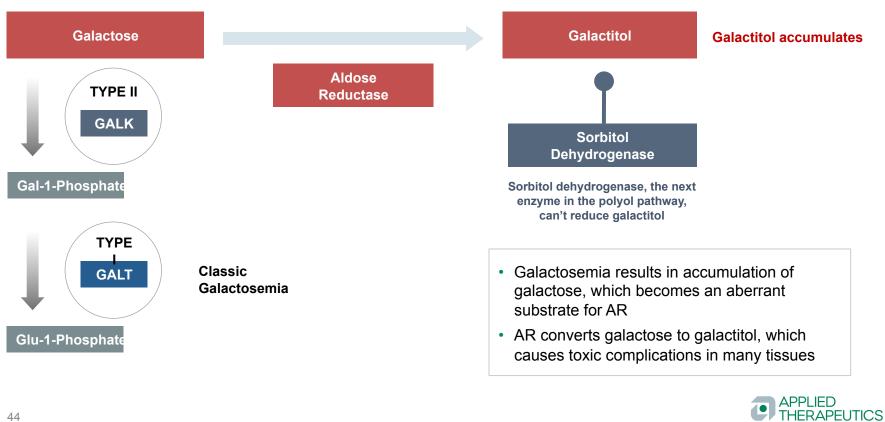
Proton MR Spectroscopy and Imaging of a Galactosemic Patient before and after Dietary Treatment

Otaduy MCG, et al. AJNR Am J Neuroradiol. 2006 Jan;27(1):204-7.

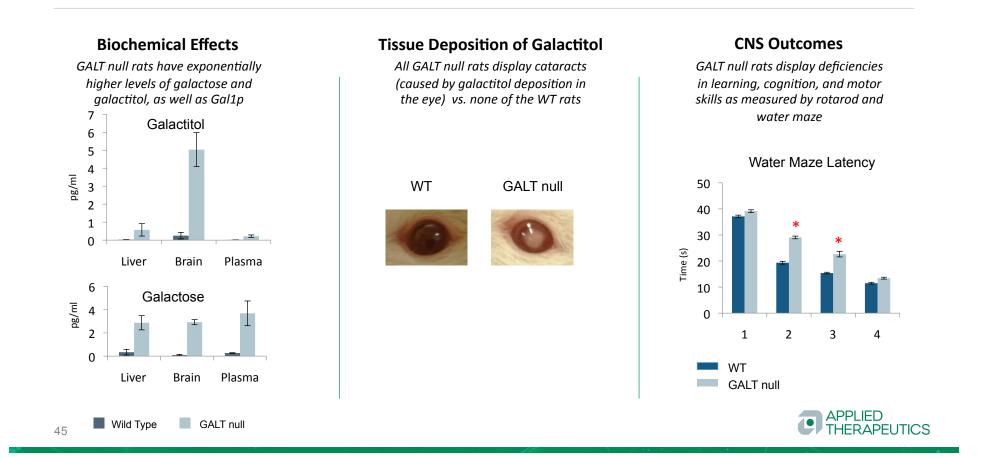
Preclinical evidence and clinical plan for a novel oral compound to prevent complications of Galactosemia **Riccardo Perfetti, MD, PhD Chief Medical Officer, Applied Therapeutics**

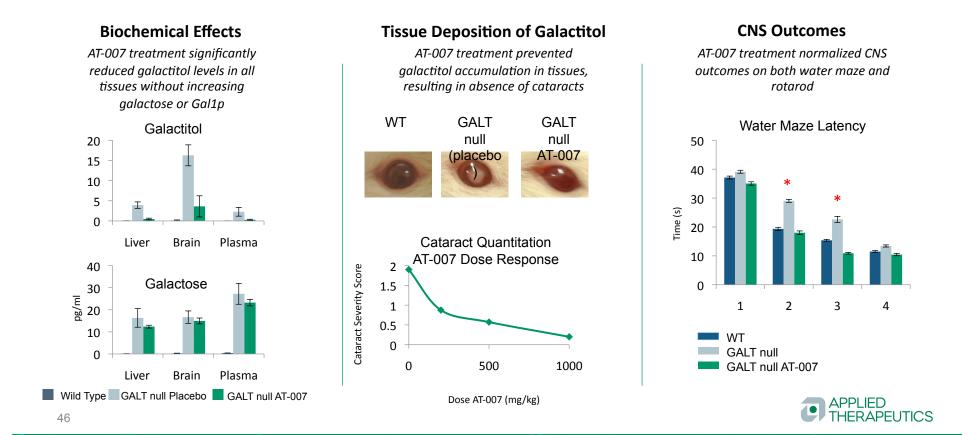
AT-007 for Galactosemia

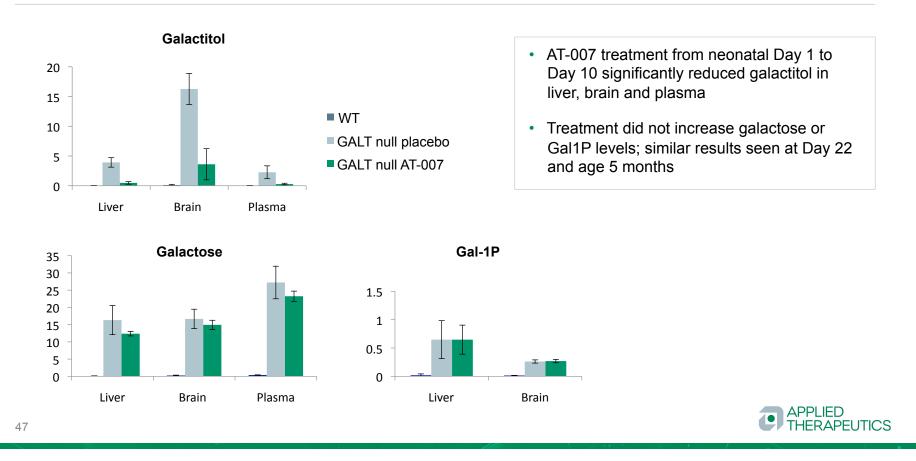
Burden of Disease

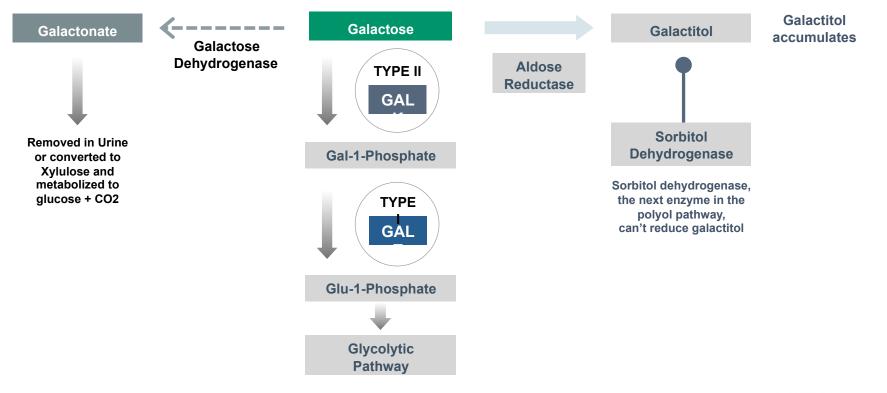

- Rare genetic metabolic disease caused by inability to break down galactose
 - Metabolite of lactose
 - Produced de novo by cells
- Even with strict dietary restriction of external lactose, endogenous galactose is produced within the body, leading to toxic build-up of galactitol
- Long-term consequences of disease include: Frequent pre-senile cataracts, significant motor, speech, cognitive, and psychiatric impairments, seizures, and ovarian insufficiency

Standard of Care

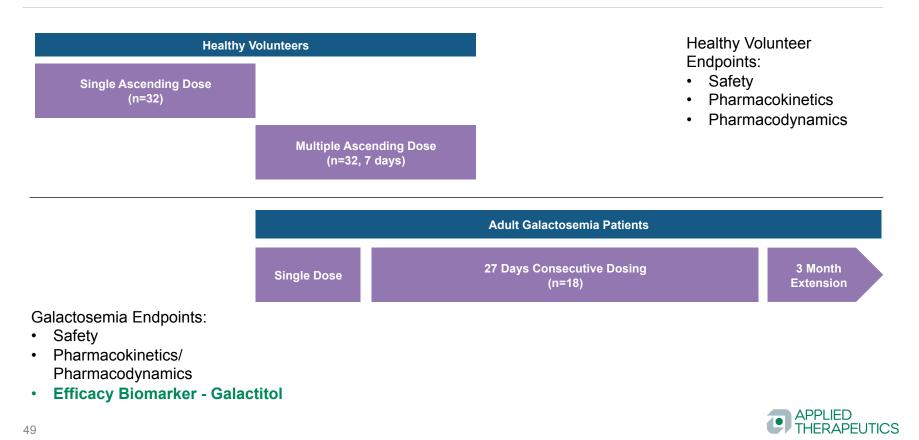

- Mandatory newborn screening in the US/EU; potentially fatal if undetected in first weeks of life and infant is exposed to lactose in breast milk or formula
- No approved therapies
- Standard of care is strict dietary restriction of lactose and galactose, which prevents fatalities, but does not prevent long term consequences of disease
- Greatly impacts children's development potential and quality of life (causes severe and permanent cognitive, intellectual and speech deficiencies)
- In adults, frequent cataracts due to galactitol build up in the eye; many develop persistent tremors

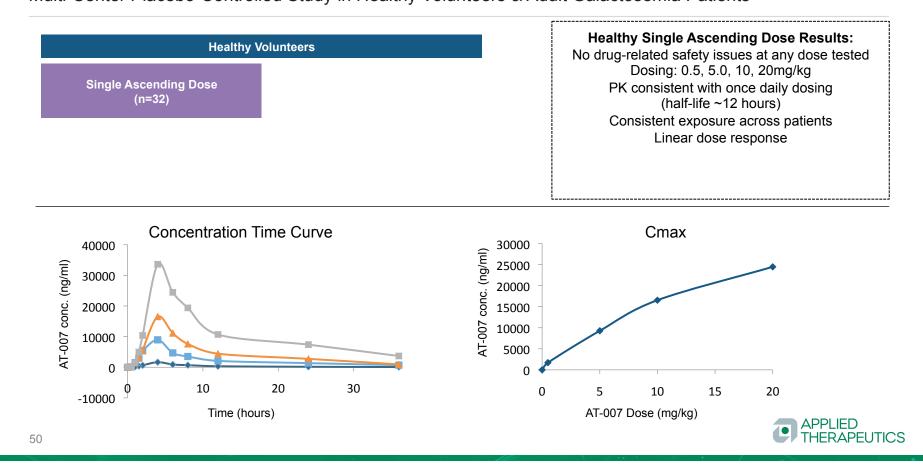

Aldose Reductase Activity Causes Toxic Accumulation of Galactitol in Galactosemia


GALT Deficient Rat Model Closely Mirrors Human Disease

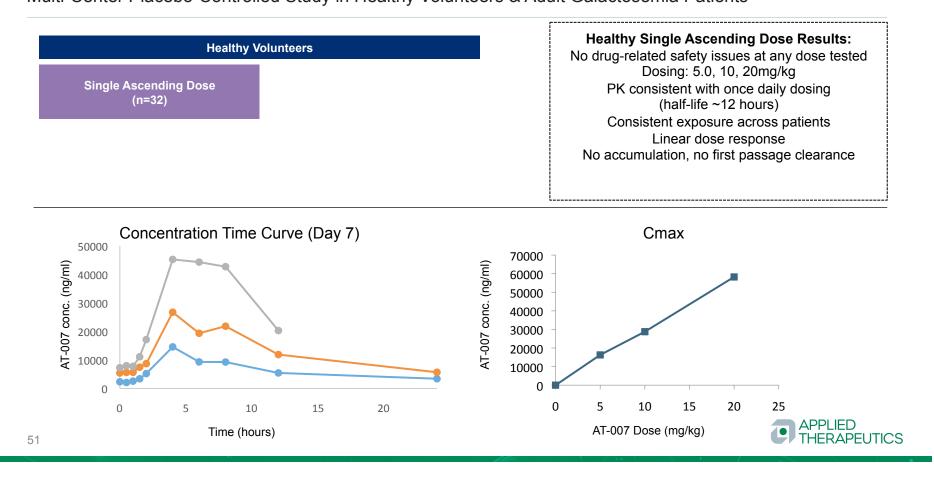

AT-007 Treatment Corrects All 3 Aspects of Disease in the Galactosemia Rat Model

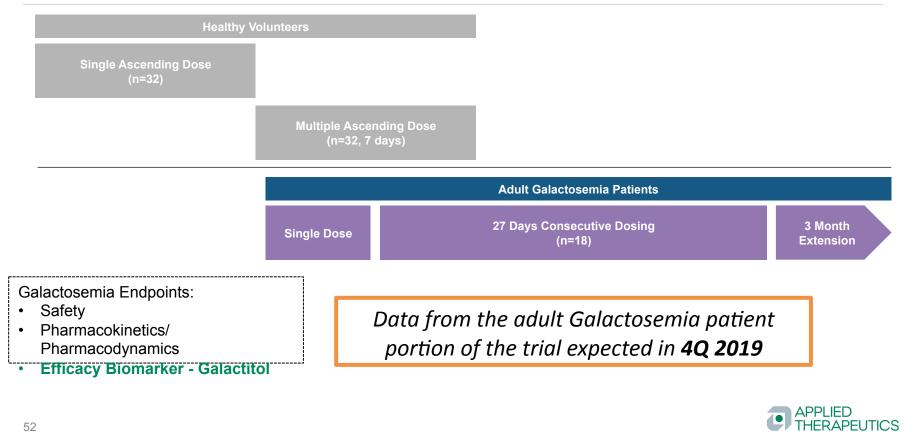
A Closer Look: AT-007 Significantly Reduces Galactitol Levels in all Target Tissues Without Increasing Galactose or Gal-1P


If Blocking AR Doesn't Increase Galactose or Gal-1P..... Where Does the Extra Substrate Go?



Galactosemia Phase 1/2 Registrational Study (ACTION-Galactosemia)


Multi-Center Placebo-Controlled Study in Healthy Volunteers & Adult Galactosemia Patients


Galactosemia Phase 1/2 Registrational Study (ACTION-Galactosemia) Multi-Center Placebo-Controlled Study in Healthy Volunteers & Adult Galactosemia Patients

Galactosemia Phase 1/2 Registrational Study (ACTION-Galactosemia) Multi-Center Placebo-Controlled Study in Healthy Volunteers & Adult Galactosemia Patients

Galactosemia Phase 1/2 Registrational Study (ACTION-Galactosemia) Multi-Center Placebo-Controlled Study in Healthy Volunteers & Adult Galactosemia Patients

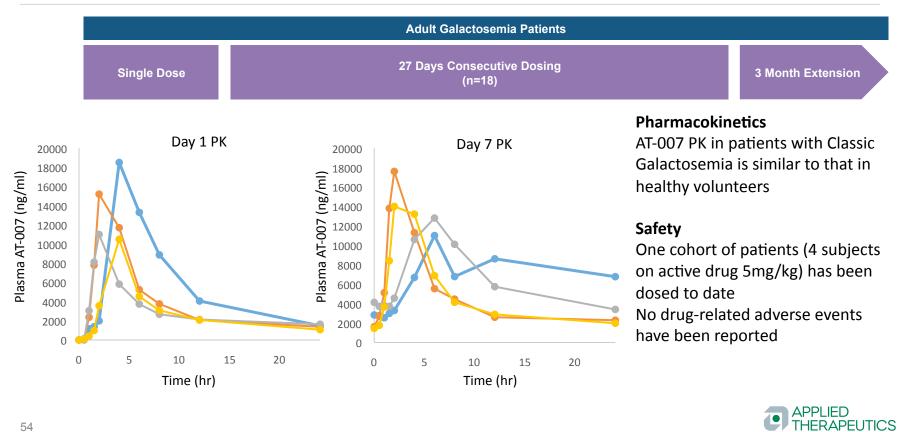
Study Endpoints

Primary

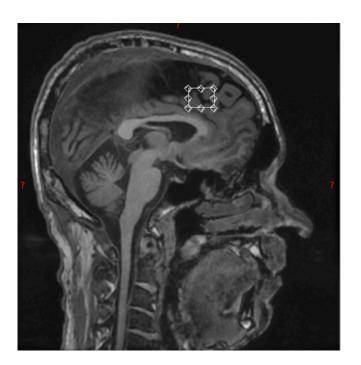
- Overall safety and adverse events (AEs)
- Safety will be assessed by the following:
 - AEs
 - Clinical safety laboratory tests (hematology, chemistry, urinalysis)
 - Physical examinations
 - Vital signs
 - Electrocardiograms (ECGs)

Secondary

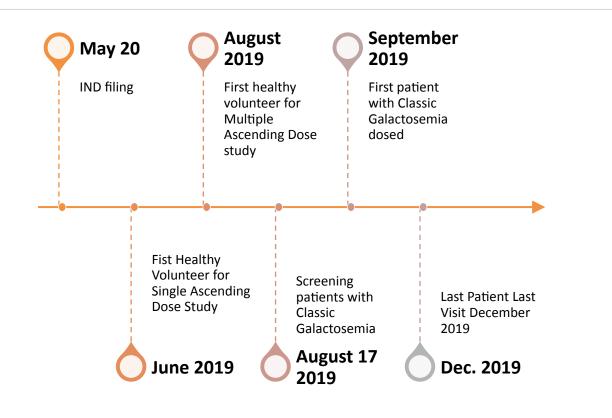
- PK parameters in healthy subjects and subjects with CG
- Biomarker assessment in Galactosemia patients:
 - Galactitol in urine & blood
 - Galactose and other metabolites (galactonate, Gal1P) in urine & blood


Exploratory

- Major metabolites of AT-007 (if any) in the urine of healthy subjects and subjects with CG
- AT-007 levels in the CSF of healthy subjects
- MR Spectroscopy of the brain in a subset of subjects with CG (for galactitol quantitation in the brain)


Galactosemia Phase 1/2 Registrational Study (ACTION-Galactosemia)

Multi-Center Placebo-Controlled Study in Healthy Volunteers & Adult Galactosemia Patients


Baseline Characteristics of Pts with Classic Galactosemia enrolled to date

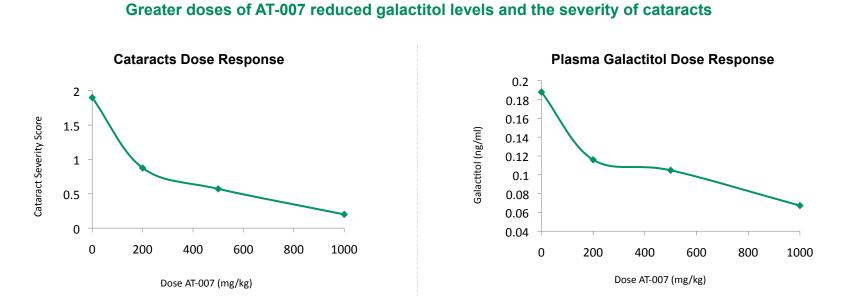
- Elevated urine galactitol, all patients
- Brain accumulation of galactitol, all patients
- EKG conduction abnormalities, most patients
- Anxiety and depression, most patients
- Relevant cognitive deficits, most patients
- History of seizures, most patients

Timelines

Summary & Conclusions

- Treatment with AT-007 in a classic Galactosemia disease model of GALT null rats corrects the following sequelae:
 - Biochemical characteristics of Classic Galactosemia
 - Phenotypical characteristics of Classic Galactosemia
 - Behavioral characteristics of Classic Galactosemia
- A Clinical study in Healthy Volunteers and in adult patients with Classic Galactosemia is currently underway
 - AT007 is well tolerated with no drug-related adverse events to date
 - Baseline characteristics of patients with Classic Galactosemia further confirm the severity of the disease in this population

Questions and Answers



Thank you

Thank you

AT-007 Dose Response

No cataracts in WT or AT-007 treated GALT null rats, but visible cataracts in all GALT null placebo rats at Neonatal Day 22

