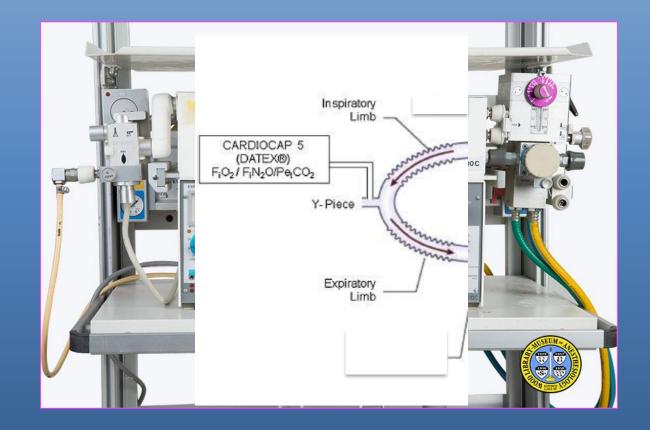
Safe and Effective Use of CO2 Absorbents

Jeffrey M. Feldman, MD, MSE Chair, APSF Committee on Technology Children's Hospital of Philadelphia Professor of Clinical Anesthesiology Perelman School of Medicine University of Pennsylvania Philadelphia, PA



Disclosures

- Consulting
 - ClearLine MD
 - Draeger Medical

Safe & Effective Use

Are CO2 Absorbents Safe?

- Exothermic Reaction Can Cause Fire
 - Sevoflurane
 - Requires dessicated Baralyme
 - Strong base KOH Baralyme no longer available
- Compound A Production
 - Sevoflurane
 - Strong Base
 - Clinical relevance?
 - Clinical practices influenced by min flow recommendations
- Carbon Monoxide Production
 - Desflurane > Isoflurane > Sevoflurane
 - Dessicated absorbent is required
 - Strong Base: NaOH, KOH
 - Clinical practices to prevent dessication continue

Volume 9, No. 2 • <u>Summer 1994</u>

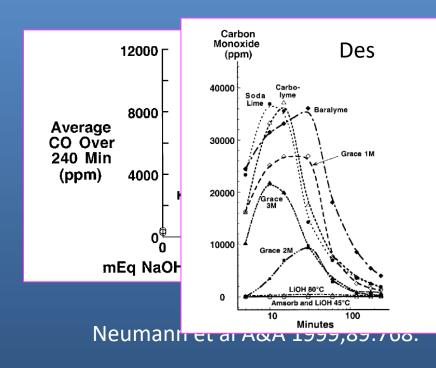
Articles

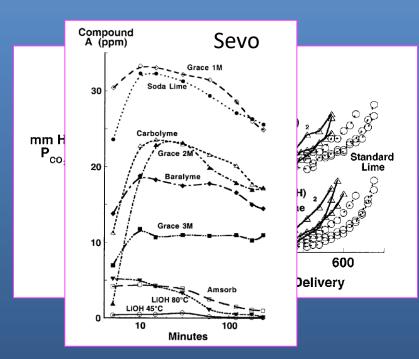
CO Poisoning During Anesthesia Poses Puzzles: New Agent Used in Florida Case Cause Of CO Poisoning, Relation To Halogenated Agents Still Not Clear

What did we know then?

- Absorbent dessication produced CO

 Turn off fresh gas flows between cases
 - Change absorbent regularly eg. Mon Morning
 - Change when color indicates "exhaustion"
- Presence of Strong Base increased both CO and Compound A
 - KOH is the worst
 - NaOH a contributor

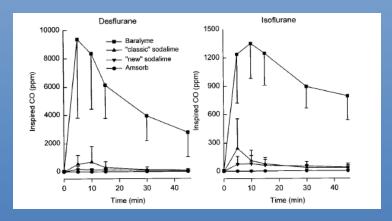

"create an "Expert Task Force" to define further the characteristics of carbon dioxide absorbents that do not significantly degrade volatile anesthetics"

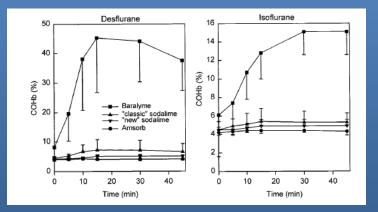

What have we learned?

- Absorbent Formulations have Evolved
 - Goals
 - Minimize or eliminate anesthetic degradation to CO and Compound A
 - Maximize absorptive capacity
 - Reduce or eliminate strong base catalysts KOH, NaOH
 - Develop alternate chemistry LiOH, LiCl, CaCl₂, CaSO₄
- Technology Changes
 - Absorbent Canister designs

Is there an optimal formula?

- No KOH, Reduced or no NaOH
- Efficiency decreases
- Price may increase





Stabernak et al. A&A. 2000:90;1428

In-Vivo Data CO - Des/Iso

Absorbent	% KOH/NaOH
Baralyme	4.6/0
Soda Lime	2.6/1.3
New Soda Lime	0/2.6
СаОН	0/0

Kharasch et. al. Anesthesiology 2002;96:173.

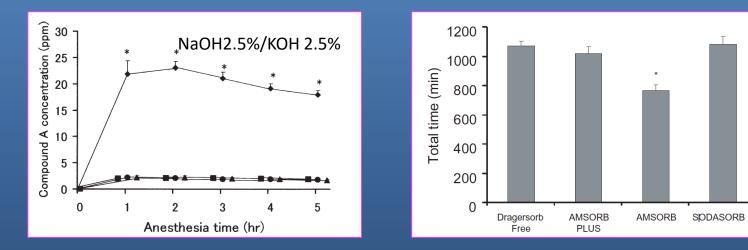
Sevoflurane Data

NaOH

Table 2

Areas under the curve (A'JCs, p.p.m. min) of compound A (CA) and carbon monoxide (CO) based on the mean concentrations from the duplicate experiments creach desiccated and normally hydrated carbon dioxide absorbent used in combination with sevoflurane 0.8%.

CO ₂ absorbent	AUC-CA-d	AUC-CA-f	AUC-CO-d	AUC-CO-f
Drägersorb 800 plus [®]	351	1695	4516	0
Medisorb [®]	327	1228	1452	0
Spherasorb [®]	294	301	1866	0
Loflosorb®	0	0	0	0
Superia®	0	0	0	0
Amsorb [®]	2937	0	0	0
Lithium hydroxide	396	0	0	0


d, desiccated absorbent; f, normally ny trated absorbent.

No NaOH

Keijzer C, et. al. Acta Anaesth Scand 2007;51:31.

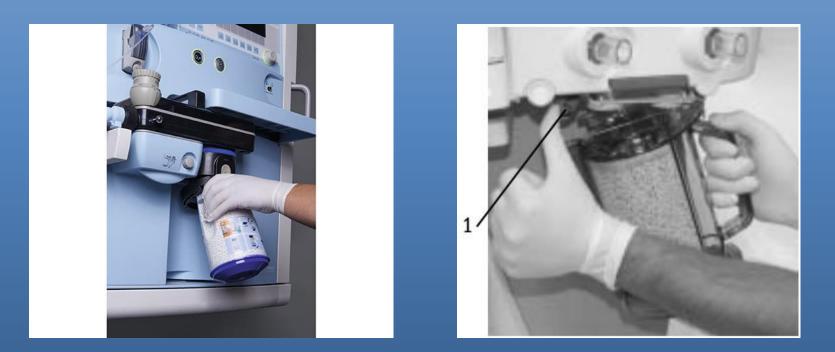
Is NaOH OK?

- Draegersorb Free (NaOH<2%) v Amsorb Plus (NaOH=0%)
- Struys 2004 In vitro, FGF 500
 - Compound A < 1 ppm</p>
 - No CO when dessicated with Des
- Kobayashi 2004 In vitro FGF 1000

NaOH and Absorption Capacity

Product	NaOH	Mins/100g to 0.5% FiCO2
Amsorb Plus	0	56
Litholyme	0	59
Sodasorb LF	<1%	66
Draegersorb Free	<2%	69
Sodasorb	<4%	78
Draegersorb 800+	2 %	91
Spirolith CA	<1%	95

Hendrickx, J. Submitted for Publication 2018 – In Review. Personal Communication.

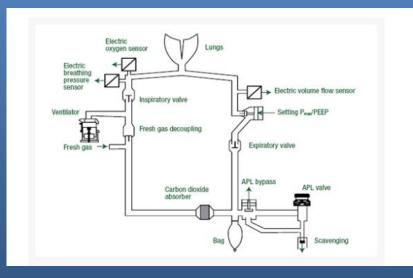

Safe Absorbent Use

- No Dessication, No CO
- No Sevoflurane, No Compound A
- Selection of Absorbent can eliminate these concerns
 - Minimize or eliminate strong base
 - Options readily available so not a limitation in modern practice
 - Absorbent capacity depends upon presence of strong base
- Modern absorbents support more effective practice

Effective Absorbent Use

- Clinical Comparison is Difficult
 - Cost Differences loose fill, canister design, product
 - How do you change absorbent?
 - What fresh gas flows do you use?
 - What is the patient population?
- Efficiency: How much CO2 is absorbed per canister
- Efficiency is driven by when you change the absorbent.
 - Schedule irrespective of indicator
 - Indicator change
 - Inspired CO2

Change on Inspired CO2



Circulation 107,515 · Volume 27, No. 3 · Winter 2013 PDF

Articles

Exchanging A CLIC Absorber In The Middle Of The Surgery Yuki Kuruma, MD; Yuya Kita, CE: Shigehisa Fujii, CE

Change on CO2

- Capnography
- Use of FGF to determine cause of problem
- What level of CO2 to trigger change? 5-10 mmHg?

Is Change on CO2 Safe?

- Special populations eg neurosurgery or pulmonary hypertension
 - PaCO2 is most important
 - Change on indicator or Monitor CO2
- Circuit Leaks
 - Bypasses the leak test
 - Vigilant to detect leaks exclude canister, set FGF > MV
 - Need a process for testing canisters independently for leaks before replacement

2018 Recommendations

- Choice of Absorbent
 - No KOH
 - NaOH < 2% or NaOH = 0 ?</p>
 - CO possible with dessication and Desflurane
 - Compound A possible clinical relevance?
 - Absorbent capacity is the key difference but change on indicator alone erodes efficiency advantage
 - Select packaging that supports change on CO₂
- Fresh Gas Flow
 - Turn off between cases
 - Low flow techniques prevent dessication
- Use the Anesthesia Machine!
 - Reduce FGF to conserve Agent and Maximize CO2 absorption
 - No limitation on minimum flow
 - Change Absorbent on Inspired CO₂ maximally uses absorbent
 - Concentration: 5 mmHg
 - Know how to manage leaks
 - Need a process for leak testing