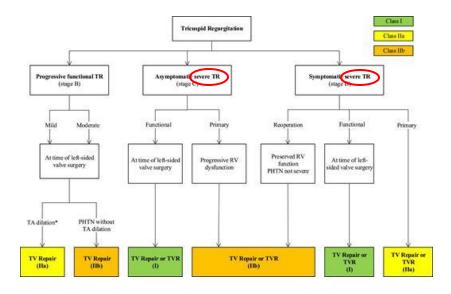
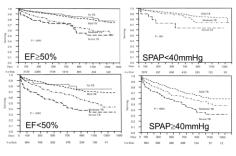
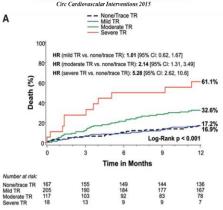

Tricuspid and Pulmonary Valve Disease- Still Forgotten in Time (15 minutes)

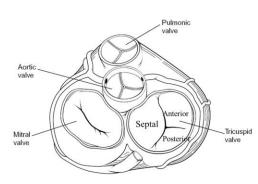

Lawrence Rudski MD FRCPC FACC FASE Professor of Medicine Director, Division of Cardiology and Azrieli Heart Center Jewish General Hospital, McGill University President, Canadian Society of Echocardiography

Disclosure: Small holding of GE Stock outside managed portfolio




TR predicts survival (n=5,223)

Nath et al (VA, Palo Alto), JACC 2004

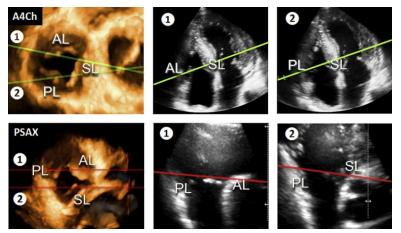

Effect of Tricuspid Regurgitation and the Right Heart on Survival After Transcatheter Aortic Valve Replacement Insights From the Placement of Aortic Transcatheter Valves II Inoperable Cohort

Brian R. Lindman, MD, MSCI; Hersh S. Maniar, MD: Wael A. Jaber, MD. Stamatios Lerakis, MD: Michael J. Mack, MD: Rakesh M. Suri, MD, DPhil; Vinol H. Thouruni, MD: Vasilis Babalianos, MD, Den J. Kereiakes, MD, Brian Whisenant, MD; D. Craig Miller, MD: E. Murat Turzeu, MD: Lars G. Svensson, MD, PhD; Ke Xu, PhD: Darham Doshi, MD; Martin B. Leon, MD: Alan Zajarias, MD

"Complex" Anatomy (literally)

- Leaflet(s) One continuous leaflet with indentations into Anterior, Septal, Posterior
- Annulus D-shaped, with flatter portion along the central fibrous body - contractile
- Chordae
- Papillary muscles usually 3
- Underlying Right Ventricular Myocardium

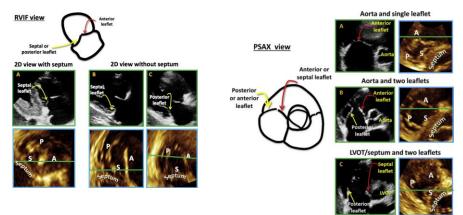
MUST EVALUATE:

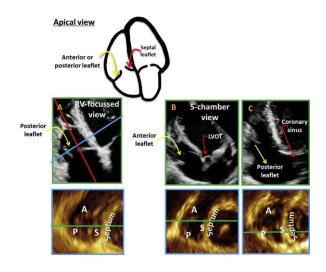

- Leaflets

Thickening, doming, restriction Coaptation Flail

- Annulus diameter
- Mean gradient
- TR severity
- RA + RV dilatation, septal flattening
- RV systolic function
- PA pressure

Incremental Value of the En Face View of the Tricuspid Valve by Two-Dimensional and Three-Dimensional Echocardiography for Accurate Identification of Tricuspid Valve Leaflets


Ivan Stankovic, MD, Ana Maria Daraban, MD, Ruta Jasaityte, MD, Aleksandar N. Neskovic, MD, PhD, Piet Claus, PhD, and Jens-Uwe Voigt, MD, PhD, Leuven, Belgium; Belgrade, Serbia



Journal of the American Society of Echocardiography Volume 27 Number 4

Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography

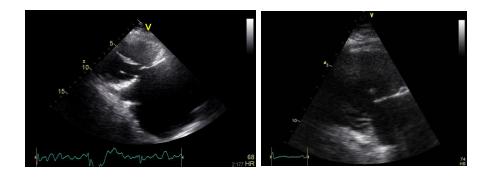
Karima Addetia, MD, Megan Yamat, RDCS, Anuj Mediratta, MD, Diego Medvedofsky, MD, Mita Patel, MD, Preston Ferrara, RDCS, Victor Mor-Avi, PhD, and Roberto M. Lang, MD, *Chicago, Illinois*

What Can Go Wrong?

- Leaky
 - Stretched
 - Infected, with long-term sequelae
 - Perforated
 - Skewered
 - Ripped
- Narrowed
 - Rheumatic
 - Evil Humors

Etiologies of TR

- Functional TR
 - PAH
 - Vol. Overload e.g. ASD
 - Cor Pulmonale
 - Left heart Disease
 - RV myocardial Disease
 - RV dysplasia
 - RV ischemia
 - Post-transplant

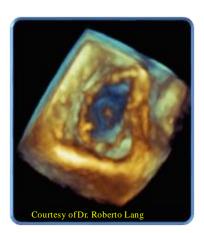

- Primary TR
 - Rheumatic
 - Myxomatous
 - Ebstein's Anomaly
 - Endocarditis
 - Carcinoid/Infiltrative
 - Traumatic anterior structure-MVA
 - latrogenic
 - Pacer/ICD wires
 - RV biopsy

No reason why Carpentier's Classification can't apply

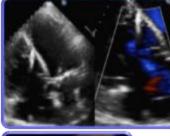
Primary or Secondary? PA Pressure - As a *general rule*...

 In setting of severe TR, PAPs > 55 mmHg is often associated with anatomically normal tricuspid valves, while PAPs < 55 mmHg usually associated with an abnormality of the tricuspid valve apparatus.

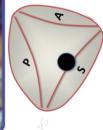
Leaflets



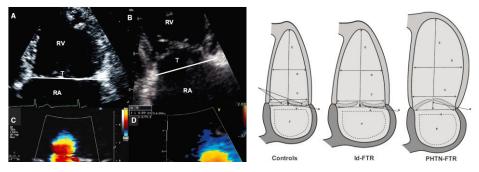
Rheumatic


Carcinoid

Myxomatous

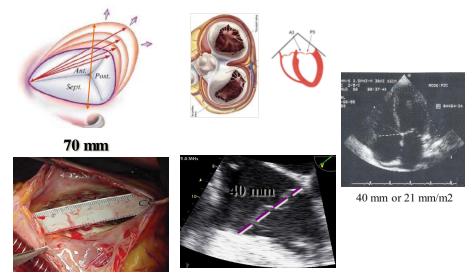


Pacemaker Lead Interference



(D) (E) R. Al-Bawardy et al: TR in patients with pacemakers and ICDs Clin. Cardiol. 36, 5, 249–254 (2013)

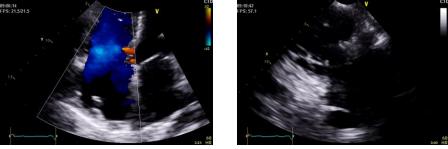
- (a) Valve obstruction caused by lead placed in between leaflets.
- (b) Lead adherence due to fibrosis and scar formation to valve causing incomplete closure.
- (c) Lead entrapment in the tricuspid valve apparatus
- (d) Valve perforation or laceration.
- (e) Annular dilatation.

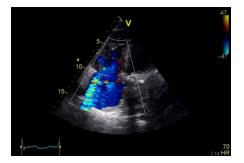

FTR ≠ FTR Clinical Context and Mechanism of Functional Tricuspid Regurgitation in Patients With and Without Pulmonary Hypertension

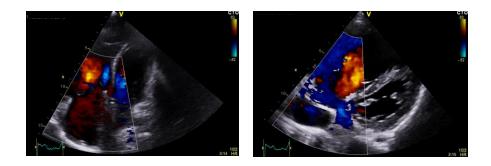
Yan Topilsky, MD; Amber Khanna; MD; Thierry Le Tourneau; MD; Soon Park; MD; Hector Michelena; MD; Rakesh Suri; MD, DPhil; Douglas W. Mahoney; MS; Maurice Enriquez-Sarano, MD

(Circ Cardiovasc Imaging. 2012;5:314-323.)

Annular Dimension

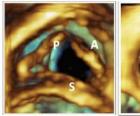

Dreylus G and al. Ann Thorae Surg 2005;79:127-32


Functional TR –Putting it all Together


	Stage 1	Stage 2	Stage 3
TR severity	None or mild	Mild or moderate	Severe
Annular diameter, mm	<40	>40	>40
Leaflet coaptation mode	Normal*	Edge-to-edge*	Absent†
Treatment	Medical treatment	Tricuspid annuloplasty	Tricuspid annuloplasty + leaflet augmentation‡

Dreyfus, G.D. et al. J Am Coll Cardiol. 2015; 65(21):2331-6.

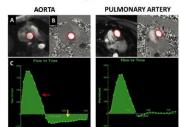
Quantitation?

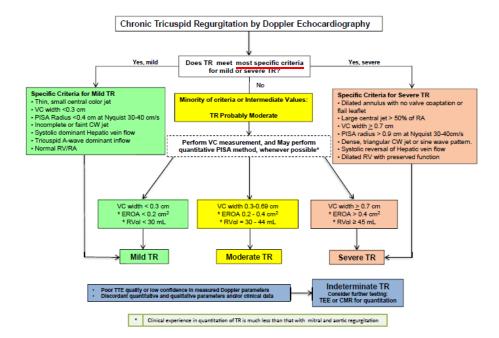

2017 Valvular Regurgitation Recommendations (Zoghbi et al JASE 2017) Principles

- Comprehensive imaging
- Integrative interpretation
- Individualization
- Precise language
- · Goal of imaging should be
- To define etiology, mechanism, severity, and impact on cardiac remodeling

Use of 3D Approaches

Ventricular perspective


Atrial perspective


The use of cardiac MRI techniques

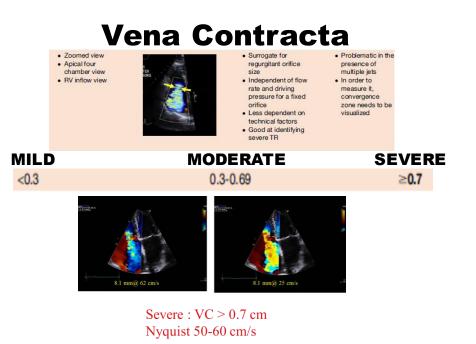
· Direct and Indirect Techniques

When is cardiac MRI indicated

- · Echo images suboptimal
- Discrepancy between clinical TTE/TEE
 - Discrepancy between quantitative techniques
- To understand mechanism / associations
- · Assessment of consequences of regurgitation
 - LV/RV volumes function
 - AO/PA size

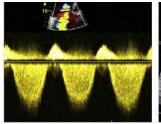
Color Doppler

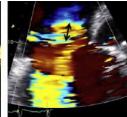
 Four chamber, RV inflow or subcostal views



Qualitative

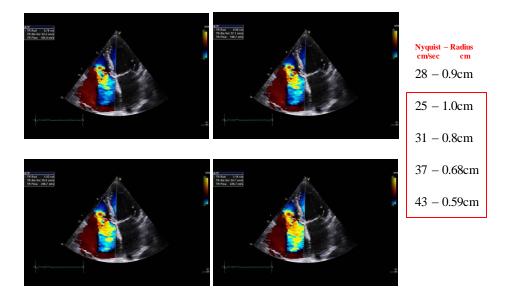
 Dependent on the driving pressure and jet direction
 Direction and shape of jet may overestimate (central entrainment) or underestimate (eccentric, wallimpinging) jet area


Phase of Respiration


SEVERE : > 10 cm²

If you are brave... 3D Vena Contracta

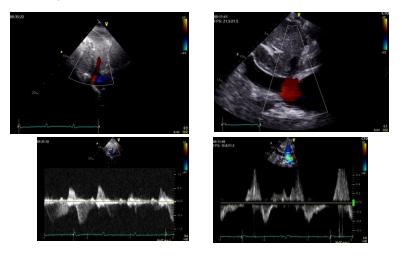
TR Severity by PISA


TR Peak Velocity = 386 cm/s VTI of jet= 109 cm

Alias Velocity = 32 cm/s Radius = 0.9 cm

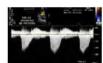
EROA = 6.28 * 0.9² * 32 / 386 = 0.4 cm² RVol = 0.4 * 109 = 44 mL

	Mild	Moderate	Severe
Quantitative			
EROA (cm ²)	<0.20	0.20-0.39	≥0.40
RVol (2D PISA) (mL)	<30	30-44 ^{II}	≥45
PISA radius (cm) [‡]	≤0.5	0.6-0.9	>0.9


$EOA = 2 \prod R^2 X V_{alias} / V_{max}$

Pulsed Doppler Hepatic Vein Reversal

Optimization	Example	Advantages	Pitfalls
Align insonation beam with the flow in the hepatic vein		 Simple supportive sign of severe TR Can be obtained with both TTE and TEE 	 Depends on compliance of the right atrium May not be reliable in patients with atrial fibrillation, paced rhythm with retrograde atrial conduction


Hepatic Vein Reversal

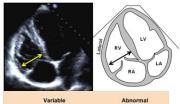
TR signal – density and shape

 Align insonation beam with the flow

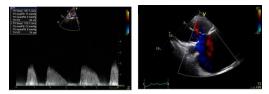
- Simple
- Density is proportional to the number of red blood cells reflecting the signal
- Faint or incomplete jet is compatible with mild TR
- Qualitative
 Perfectly central jets may appear denser than eccentric jets of higher severity
 Overlap between
- moderate and severe TR

 Align insonation beam with the flow

- Simple
 Specific sign of pressure equalization in low velocity, early peaking dense TR jet
- Qualitative
 Affected by
 changes that
 modify RV and RA
 pressures


Effect on RV (and vice versa)


Chamber Quantification


A. RV Basal (RVD1)	> 4.2 cm
RV Mid (RVD2)	> 3.5 cm
RV Longitudinal (RVD3)	> 8.6 cm
B. RVOT PLAX proximal	> 3.3 cm
C. RVOT PSAX distal	> 2.7 cm

Key Points

- Physiologic mild TR is common in normal individuals.
- In patients with more than mild TR, identifying the mechanism of TR is important. TR is classified as primary or secondary (functional), and the precise mechanism of TR should be specified and reported (Table 12).
- No single Doppler and echocardiographic measurement or parameter is precise enough to quantify TR severity. Integration of multiple parameters is required (Tables 13 and 14). When multiple parameters are concordant, TR grade can be determined with high probability (especially for mild or severe TR).
- There is less experience with quantitation of TR severity with PISA or volumetric flow compared with MR and AR.
- · Severe, wide-open TR may have low velocity, without aliasing or turbulence, and thus may be difficult to see as a distinct jet by color Doppler.
- . The size of the right atrium and RV should be considered. Chronic severe TR almost always leads to dilated RV and right atrium. Conversely, normal chamber volumes are unusual with chronic severe TR.
- CMR assessment of TR is less established compared with other regurgitant valvular lesions. Few indirect quantitative techniques can be used.
- · Additional testing with TEE or CMR is indicated when the TTE examination does not provide a mechanism for significant TR, the echo/Doppler parameters are discordant or inconclusive regarding the severity of TR, or there is discrepancy of echocardiographic findings with the clinical setting.

Tricuspid Stenosis

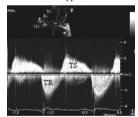
Etiology

Rheumatic

Infiltration – Carcinoid

TVA cm² = 190/PHT

Compression – Rare – external (clot/tumor)/aorta


$$A_2 = \frac{A_1 \cdot v_1}{v_2}$$

A1 = LVOT CSA or RVOT CSA

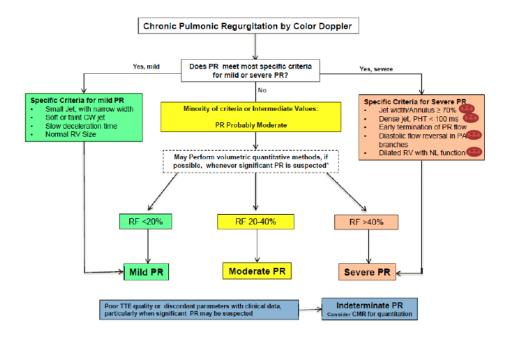
VTI 63-74 cm

- V1 = LVOT V1 or RVOT V1 (PW)
- V2 = Vmax of Tricuspid Inflow by CW Doppler

CW Doppler

TVI=60 cm; mean grad = 9 mmHg P1/2t=173 ms

Table 10 Findings indicative of haemodynamically significant tricuspid stenosis


Specific findings Mean pressure gradient Inflow time-velocity integral $T_{1/2}$ Valve area by continuity equation ^a Supportive findings Enlarged right atrium \geq moderate Dilated inferior vena cava	≥5 mmHg >60 cm ≥190 ms ≤1 cm ^{2a}
---	---

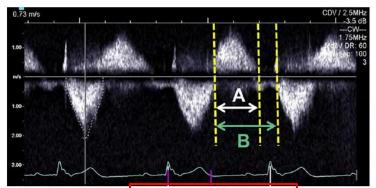
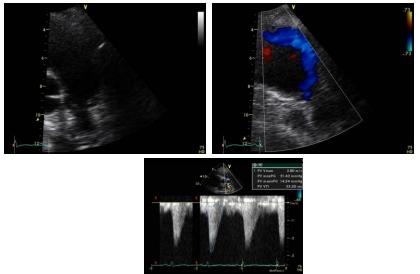
^aStroke volume derived from left or right ventricular outflow. In the presence of more than mild TR, the derived valve area will be underestimated. Nevertheless, a value ≤1 cm² implies a significant haemodynamic burden imposed by the combined lesion.

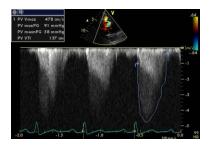
Pulmonic Valve << Tricuspid Valve

- Stenosis Valvar, Sub-, Supra
 - Congenital
 - Infiltrative
 - latrogenic post Ross e.g.
- Regurgitation
 - PH
 - Congenital Surgery Repaired Tetralogy
 - Endocarditis
 - Infiltrative

Pulmonic Regurgitation

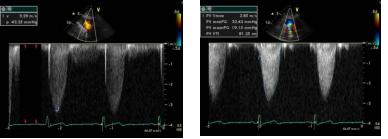
Pulmonic Regurgitation Index


Figure 33 CWD of pulmonic flow. Calculation of pulmonic regurgitation index (PR index = A/B) is shown, an index of PR severity, quantitating early termination of diastolic regurgitant flow.

<figure>

Pulmonic Valve Disease-Carcinoid



	Mild	Moderate	Severe
Peak velocity (m/s)	<3	3-4	>4
Peak gradient (mmHg)	<36	36-64	>64

Impact

- Same as for TR
 - Assess RV size, RA size, RV function

- PAP Calculation Caveat Subtract the PS Gradient**
- SPAP = (TR gradient + RAP) PV PG

= (43 + 15) - 32 = 26 mmHg

Summary

More than eyeball of color jet

- Tricuspid
 - Morphology, Degree of dysfunction, Impact on cardiac size and function
- Pulmonic
 - Same as above
- Implications for Clinical therapy
 - When to intervene in primary and secondary TR, PR
 - When to intervene for TS and PS

Images can be deceptive! – Integrate detail with the BIG PICTURE

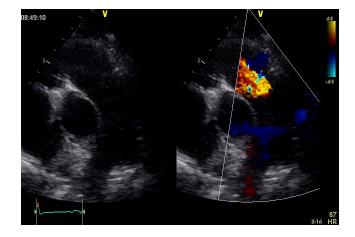


Table 14 Grading the severity of chronic TR by echocardiography				
Parameters	Mild	Moderate	Severe	
Structural				
TV morphology	Normal or mildly abnormal leaflets	Moderately abnormal leaflets	Severe valve lesions (e.g., flail leaflet, severe retraction, large perforation)	
RV and RA size	Usually normal	Normal or mild dilatation	Usually dilated*	
Inferior vena cava diameter	Normal < 2 cm	Normal or mildly dilated 2.1-2.5 cm	Dilated > 2.5 cm	
Qualitative Doppler				
Color flow jet area [†]	Small, narrow, central	Moderate central	Large central jet or eccentric wall- impinging jet of variable size	
Flow convergence zone	Not visible, transient or small	Intermediate in size and duration	Large throughout systole	
CWD jet	Faint/partial/parabolic	Dense, parabolic or triangular	Dense, often triangular	
Semiquantitative		_		
Color flow jet area (cm ²) [†]	Not defined	Not defined	>10	
VCW (cm) [†]	<0.3	0.3-0.69	≥0.7	
PISA radius (cm) [‡]	≤0.5	0.6-0.9	>0.9	
Hepatic vein flow [§]	Systolic dominance	Systolic blunting	Systolic flow reversal	
Tricuspid inflow [§]	A-wave dominant	Variable	E-wave >1.0 m/sec	
Quantitative				
EROA (cm ²)	<0.20	0.20-0.39	≥0.40	
RVol (2D PISA) (mL)	<30	30-44 ^{II}	>45	

RA, Right atrium.
Bolded signs are considered specific for their TR grade.
"RV and RA size can be within the "normal" range in patients with acute severe TR.
"With Nyquist limit >50-70 cm/sec.
"With baseline Nyquist limit shift of 28 cm/sec.
"Grant ane accessorific and are influenced by many other factors (RV diastolic function)"

[§]Signs are nonspecific and are influenced by many other factors (RV diastolic function, atrial fibrillation, RA pressure). ^{II}There are little data to support further separation of these values.

Normal PV

Doppler Evaluation of PR

	Modality	Optimization	Example	Advantages	Pitfalls
Color	r flow Doppler 2D				
vc		 Parasternal short- axis or subcostal views Zoorned view Should visualze proximal flow convergence, distal jet, and the "narrow" neck in a single view Measured in disatole immediately below PV 		Surrogate for effective regurgitant critice etc. Independent of filow rate and driving pressure for a fixed critice Dass dependent on technical factors	Not usable with multipleits The direction of the jet (in relation to the insonation beam) will influence the appearance of the jet Cutoffs for various grades of PR not validated. Not easy to perform
	W/PV annular diameter ratio	 Parasternal short- axis view Zoomed view Optimize visualization of proximal PA 		Simple sensitive screen for PR Rapid qualitative assessment	Underestimates PR in eccentric jets Overestimates PR in control jets PR jet may expand unpredictably below the orifice
	Pulsed wave Doppler: flow reversal in the <u>branch PA</u>	Align insonation beam with the flow in the RPA and LPA Obtain pulsed wave Doppler from both branch PAs	A AA	sign of severe PR	Depends on compliance of the PA Brief velocity revensal is normal
	CWD				
	Density of regurgitant	beam with the flow • PSAX view or subcostal views	Severe PR with dense jet	Density is proportional to the number of red blood cells reflecting the signal Faint or incomplete jet is compabile with	Qualitative write:sty Clientral jets may appear denser than accomtric jets of hypher severity Overhyp between moderate and severe PR
celeratio ssure hal	f-time) beam • PSAX	insonation with the flow view or stal views		 Simple Specific sign o pressure equal Values < 100 n consistent with severe PR 	lization result in eccentric nsec providing low PHI