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Abstract 
An innovative technique for estimating Secchi Disk 
Transparency and Chlorophyll a concentration is examined 
using in situ samples and coincidental satellite imagery for 
West Point Lake, Georgia. The technique is divided into two 
main components: (1) unsupervised classification to organize 
and reduce spectral variance, and (2) linear logarithmic 
modeling to transfer class structure onto primary water quality 
measurements. In componenf 1, clusters are derived using a 
non-parametric approach that is computationally unique from 
the traditional ISODATA algorithm. The method includes 
focused stratified sampling, non-parametric estimation, and 
blending of class structure using first-order principal 
components. In component 2, the class structure is tied to 
water quality estimation using primary band ratios for visible, 
near infrared, and middle infrared as independent variables. 
The results indicate a strong association between the Landsat 
TM middle infrared band and observed measurements for 
Secchi Disk nansparency and Chlorophyll a concentration. 
Logarithmic ratios for the visible green to the visible red are 
shown to be the second most significant covariates. The 
resultant models are shown to explain 98 percent of the 
variance in Secchi Disk Transparency, and 93 percent of the 
variance in Chlorophyll a concentration using pooled data 
from 59 sampling stations acquired during two distinct 
periods: 08 June and 28 September 1991. 

Introduction 
Sampling strategies for water quality management require 
intensive data collection as a means to describe ambient condi- 
tions across a range of spatial scales. Focused data collection 
strategies are employed for individual waterbodies, especially if 
they exhibit water quality heterogeneities. For example, reser- 
voirs that are large and morphologically complex frequently 
exhibit marked gradients or spatial patterns in water quality 
conditions, thus requiring data collection at numerous posi- 
tions (Johnson and Gage, 1997). However, such strategies are 
logistically difficult, costly, and frequently do not provide data 
with spatial detail to adequately address management issues 
(EPA, 1998). 

Remote sensing provides an alternative method for 
assessing patterns in water quality across a range of spatial 
scales (Zilioli and Brivio, 1997). Observations in the visible and 
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thermal infrared portions of the electromagnetic spectrum 
have been commonly applied for this purpose (Schalles et al., 
1998), for example, for the detection of turbidity in surface 
waters due to the presence of suspended particles. Cox et al. 
(1998) applied non-linear regression of spectral radiance data, 
with in situ water quality measurements, to assess water quality 
of reservoirs on the Catawba River in North and South Caro- 
lina. Kennedy et al. (1994) described patterns in the distribu- 
tion of water temperature, turbidity, and algal pigment at West 
Point Lake using empirical models derived from radiance mea- 
surements for Landsat TM bands 1-4 and 6. A similar approach 
was used for Lake Kinneret as a means to differentiate periodic 
blooms of the dinoflagellate Peridinium (Schalles et a],, 1998). 
However, these approaches rely on the coincidental collection 
of ground truth data as a means to interpret image data. 
Because no universal algorithms are available for estimating 
optically sensible water quality parameters (Cox et al., 1998), 
coincidental sampling remains a potentially costly require- 
ment that can limit the use of remotely sensed images, particu- 
larly when attempting to assess historical trends. Described 
here are results of efforts to develop and evaluate an unsuper- 
vised methodology for conducting water quality assessments. 
The approach is shown to be highly predictive for estimating 
certain water quality parameters within two distinct periods. 

Water Quality Data 
Water quality surveys were conducted at West Point Lake coin- 
cident with Landsat TM overflights on 08 June and 28 Septem- 
ber 1991.' West Point Lake is a large (104.8 krn2) U.S. Army 
Corps of Engineer hydroelectric reservoir located on the Chat- 
tahoochee River 120 km downstream from Atlanta, Georgia. 
The waterbody has a complex morphology, and receives rela- 
tively high nutrient and sediment loads (Emmert and Bayne, 
1996). High nutrient concentrations result in excessive algal 
growth, as evidenced by high chlorophyll concentrations in 
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lImage Specifications: 

Local 
Standard Sun Sun 

Acquisition Image Identification Time Angle Azimuth 
Date (1991) Number (hr:min:sec) (degrees) (degrees) 

08 Jun LT5019037009115910 10:35:33.75 62.04 103.91 
28 Sep LT5019037009127110 10:36:42.72 46.82 137.82 
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Figure 1. Water quality sample positions within West Point 
Lake, Georgia. 

surface waters. However, turbid inflows can reduce light and 
inhibit algal growth downstream from the river confluence. As 
a result, marked gradients in water quality are apparent along 
the length of the reservoir and in major embayments. In general, 
upper reaches of the reservoir are low in chlorophyll concen- 
tration but high in turbidity due to river-borne suspended sedi- 
ment concentrations. By contrast, downstream reaches are less 
influenced by suspended sediments and exhibit elevated chlo- 
rophyll concentrations. However, highest chlorophyll concen- 
trations are frequently observed at mid-reservoir where 
nutrient concentrations are moderately high (due to the influ- 
ences of in-flowing river water), and suspended sediment con- 
centrations are relatively low. 

Sample stations were distributed throughout the main 
body and associated tributaries in a nearly uniform manner 
(Figure 1). An onboard Global Positioning System (GPS) 
receiver was used to reference each water quality measure- 
ment. Differential correction was employed to improve posi- 
tional accuracy using shoreline monuments and navigational 
(buoy) reference (Kennedy et al., 1998). Field observations 
were geographically referenced to the Universal Transverse 
Mercator (UTM) projection to allow comparison with projected 
TM data. In situ measurements and samples of surface water 
(depth = 0.1 m), were collected within 2 to 3 hours of each sat- 
ellite overflight. Water transparency (Sd) was determined using 
a Secchi D i ~ k . ~  Water samples for determination of algal pig- 
ment were stored on ice in the dark prior to analysis. Chloro- 
phyll a (C,) concentration was determined colorimetrically 

Measure Variable Units Rationale 

Secchi Disk Transparency 
(The depth above 
which a standard 20-cm 
disk is visible at the 
surface) 

Chlorophyll a (Primary 
algal pigment; mea- 
sure of algal biomass in 
surface waters) 

Sd m General technique for 
measuring water 
transparency and 
assessing water quality. 

C, mg/m3 Chlorophyll a is the pri- 
mary photosynthetic 
plant pigment present 
in all algae. Algae 
reduces water clarity 
and diminishes aes- 
thetic value. 

following extraction from material retained on 0.45-,u glass fil- 
ters (APHA 1992). The principal water quality parameters, 
units, and liminological rationale are provided within Table 1. 

Methodology 
In water quality estimation, sharp variations in pattern and tex- 
ture are apparent in multispectral data (Han et al., 1994). The 
spatial heterogeneity and spatial dependence of these features 
is often pronounced due to variations in limnological features 
related to turbidity and chlorophyll. Standard discriminant 
theory (supervised classification) and cluster or factor analyti- 
cal methods (unsupervised classification) neglect the spatial 
heterogeneity and dependence. In particular, these algorithms 
uniformly sample across the image, and they assume linearity, 
stationarity, and Independently and Identically Distributed 
(ID) variates (Dutilleuil and Legendre, 1993). Hence, an alterna- 
tive non-parametric analysis is examined that employs focused 
sampling for pattern identification without Im restrictions. 

The focused sampling is used to select spectral values 
(spectral vector 3,) fi'om the within-lake region of the TM 
image. The goal is to extract the maximum information con- 
cerning the distribution of the lake features and class structure. 
Not all pixels in the image fulfill this purpose because noise 
and subtle patterns are significantly under-represented using a 
uniform  ample.^ The sampling procedure is adaptivelybiased 
to select pixels that contain one type of attribute ("homoge- 
neous" information), with a low degree of noise. The TM image 
is partitioned into an N-square grid (variable size). Within each 
grid cell, a small patch of size 1 is randomly selected. Within 
that patch, a single pixel is selected with the largest value of 
the local/global density ratio: i.e., 

The procedure is repeated for each pixel until no new pixels are 
located within the patch. The itergtiye process is used to define 
the q;lodc~l local density function f (O(s,). The modal global_flen- 
sity f @(s,) is computed from within the neighborhood of s,. 
The sampling methodology is designed to minimize the influ- 
ence of dominant classes, and to provide adequate representa- 
tion for small, relatively scarce spectral data (e.g., oil in water, 
localized sedimentation patterns, tidal patterns, and limnolog- 
ical variations). 

Hierarchical cluster analvsis is used to locate soectral 
classes. The approach is an adaptive multivariate deAsity esti- 
mation algorithm referred to as the k-NN density estimator 

'Tkansparency determined as the depth above which a standard 20- 
cm disk is visible at the surface. Because light cannot penetrate 
through a water column with low transparency, remote sensing of the 3The traditional random sample would select far too many pixels from 
body is generally limited to 20 to 50 percent of the secchi disk trans- dominant environmental strata (e.g., open water), and would likely 
parency (Han et a]., 1994). miss the small near-shore features of water quality and bathymetry. 

1060 September ZOO1 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 



(Kemenade et al., 1999). The algorithm estimates the density of 
the ICh nearest neighborhood that encloses each pixel. To illus- 
trate this procedure using an m-dimensional sphere: (1) the 
pixel is the center of the sphere, and (2) the (Euclidean) dis- 
tance to its 1Eh nearest neighbor is the radius. Pixels are assign- 
ed to a class if they are located within the m-dimensional 
sphere. If the spectral signature is not sufficient (i.e., the pixel 
is located outside the sphere), no class assignment is made. The 
k-NN density estimator for a sample pixel xis 

where df' is the ICh-NN distance of x, and V,,, is the volume of 
the unit m-dimensional ball. 

Class structure is computed using hierarchical cluster 
analysis. Pixels are linked to spectral classes based upon prox- 
imity measures. A pixel is merged with a class when the union 
of its k-NN neighborhood with that of the nearest pixel (in that 
class) is sufficiently dense. A criterion for the separation of two 
clusters is 

where pi denotes the maximum density in cluster ci and Vis the 
density for the cylindrical envelope for the k-NN neighbor- 
hood. 

The separation parameter Sp may be used as a threshold to 
control the number of classes and the level of detail in the clas- 
sified image.4 

Classification Results 
Blended classification results are provided in Plates l a  and l b  
using the parameters shown in Table 2. For this analysis, a 
cluster separation (S, = 0.8) was selected to produce 16 unique 
classes within each of the two TM scenes. A value (S,  = 10) was 
selected based upon (1) excellent separation for near shore fea- 
tures and (2) significant discrimination for circulation and 
bathymetric effects within the main channel. 

Within Plates l a  and lb, the spectral blend is computed 
using the end points a and b from the first Principal Compo- 
nent (PC). Pixels, with projections y (between a and b) portrayed 
as a linear mixture y = a + kb, where a is the initial point of the 
first PC segment, and b is the direction vector parallel to the first 
eigenvector. Therefore, each image shows the class structure 
(PC) weighted by the most significant spectral combination of 
bands. 

The blended classification results (from Plates l a  and lb) 
are combined with the independent (radiometric) measures 
(described in Table 3) to estimate Secchi Disk Transparency (Sd) 
and Chlorophyll a (C,). The four respective logarithmic mea- 
sures are calculated for each GPS sampling position where a cor- 
responding water quality parameter was measured. 

To compensate for possible drift during data acquisition 
(e.g., boat movement and related GPS error), a 3 by 3 kernel is 
employed. In Table 3, an x,y subscript is added to each measure 
to indicate the kernel po~it ion.~ Because the kernel includes a 
30-m pixel on either side of the GPS location, a spatial deviation 
of 3-30 m is considered within this analysis. The minimum 
footprint in any direction is 90 m. An abbreviated syntax is 

used to simplify the presentation of the linear logarithmic 

model. In this notation, GR,, = In 

IR,, = ln(;),.; and C,, = ln(C),,,. Hence, it is understood that 

the independent measure IR,, is the logarithm (base e) of the 
ratio middle infrared to visible red at kernel position x,y If no 
subscript is shown, then an average measure is used. Hence, - 

l 3  IR = 2 in(;)*." is the kernel average value for the 3 by 3 
x=1 y=l 

footprint using the middle infrared ratio as a case example. 
The dependent water quality measures are summarized 

within Table 4 for the two field acquisition periods: 08 June 
(summer) and 28 September 1991 (fall). During the summer 
period, 57 in situ samples were acquired for Secchi and Chlo- 
rophyll a concentration. During the fall period, 52 samples 
were acquired for Sd. The remaining Chlorophyll a measure 
shows 50 cases (with two cases omitted due to measurement 
error). Mean, minimum, and maximum levels are indicated for 
each variable. Confidence bounds are shown to indicate the rel- 
ative distribution of the data with resultant standard error. An 
initial contrast indicates a decline in Secchi Disk Transparency 
from 08 June to 28 September. The water clarity declines with 
the increase in average Chlorophyll a concentration from 
12.64 f .57mgm-3 to 17.03 -f 1.10mgm-3. 

Water Quality Estlmatlon 
General linear models were constructed to estimate Secchi Disk 
Transparency (Sd) and Chlorophyll a (C,) concentration. Sum- 
maries are provided in Tables 5a and 5b for both dependent 
water qualfty parameters. The tables are organized dy signifi- 
cance level. The inclusion order shows the most significant 
model parameter. For example, in Tables 5a and 5b the kernel 
average infrared measure (m) is the most significant parameter 
for estimating both Sd and C,. The measure GR2,, is shown to be 
the second most significant parameter for estimating Sd, and the 
measure GRl, is the second most significant parameter for esti- 
mating C,. Conversely, the parameters NR3,, and IR3, show the 
least significance within each respective model (adjusted for 
all priormeasures). Hence, IR shows the largest partial correla- 
tion with Sd and C, whereas NR,,, and IR3,, exhibit the least 
(model dependent) partial correlation in each respective 
model.= As described in Table 3, the measures are logarithmic 
to ensure a purely additive model for ease of interpretation. 

Within Table 5a, the blended class structure is shown in 
position 4 and position 5. The form is a reciproci? of the loga- 
rithm represented as C-l. All model coefficients pare shown to 
be significant at the 0.06 level and below, with strongly signifi- 
cant weights (below 0.001) in position 1,2,3, and 7. Tolerance 
measures for each included variable are displayed within the 
final column. Small tolerance levels close to zero indicate redun- 
dancy. As anticipated, the blended class parameters C<: and 
Chi exhibit fine tolerance levels because they are optimal cluster 
representations of the other band compositions including the 
visible red, near infrared, and middle infrared. The spectral 
model is shown to explain 98 percent of the variance for the in 
situ Secchi Disk aansparency (Sd) data acquired 08 June and 28 
September (pooled observations). The standard error for this 
model is 0.147 meters of Secchi Disk lkansparency. 

*An analogous procedure is used in traditional unsupervised classifica- =Within each table, the following statistical measures are shown: B, 
tion, where the number of resultant classes is declared a priori. the weight (regression estimate) for the independent TM measure; 

5The x,y subscript: 1,l indicates the upper left corner pixel; 3,3 indi- se(B], the standard error for the estimate B; the magnitude of the 
cates the lower right pixel; the precise GPS position is in the centroid t-statistic for the estimate 3; the p-value for the t-statistic; and the 
of the kernel at position 2 2 .  related tolerance for the estimate B. 
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Plate 1. (a) Blended spectral classification for West Point Lake 08 June 1991. Brightness (-33 percent) and contrast 
(+78 percent) enhancement applied to highlight class structure. (b) Blended spectral classification for West Point Lake 
28 September 1991. Brightness (-47 percent) and contrast (+85 percent) enhancement applied to highlight class 
structure. 

Parameter Level Purpose Rationale 

Cluster Separation S, 0.8 Merging Threshold (controls the number of classes 
displayed in the final classification). 

Spectral Neighbors S, 10 Determines the size of the square pixel window 
for the k-NN density estimation. 

Yields 16 unique classes with excellent 
orthogonal separation. See Discussion 
in Equation 3. 

Excellent stochastic separation. See 
Discussion in Equation 2. 

TABLE 3. INDEPENDENT MEASUREMENTS AT KERNEL POSITION x,y 

Measure Abbr. Description Rationale 

GR,, Logarithmic ratio of the visible green (band 2 @ 0.52-0.60 pml Positive discrimination of Secchi Disk Transparency 

ln(%)x,y to the visible red (band 3 @ 0.63-0.69 pm). (Sd) in the visible green as an inverse relationship 
to the visible red. 

NR,, Logarithmic ratio of the near infrared (band 4 @ 0.76-0.90 pm], Positive reflectivity of Chlorophyll (C,] in the near 1n6)x,y to the visible red. infrared relative to the visible red (Schalles et al., 
1998). 

IR,, Logarithmic ratio of the middle infrared (band 5 Q 1.55-1.75 Secondary covariate for estimating turbidity and trans- 

ln(3.  . pm) to the visible red. parency (Allee and Johnson, 1999). 
ln (c ]~~;  CX,Y Blended Spectral Class Member Non-parametric class structure for seven TM bands. 
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TABLE 4. SUMMARY STATISTICS FOR SECCHI DISK TRANSPARENCY AND CHLOROPHYLL A CONCENTRATION 

Measure Date (1991) Sample Size Mean Min Max 95% CI Std. Error 

Sd (m) 08 June 5 7 1.400 .400 2.200 (1.26, 1.53) ,065 

a @) 08 June 57 12.644 3 21.700 (11.49, 13.79) ,573 

Sd (m) 28 September 5 2 1.013 .300 1.600 (.go, 1.12) .053 

.a (2) 28 September 50 17.031 2.270 30.180 (14.76, 19.29) 1.127 

TABLE 5a. MODEL SPECIFICATIONS: SECCHI DISK TRANSPARENCY (Sd) by position and by acquisition period. In Figure 2a, a plot of 
POOLED DATA observed Secchi Disk Transparency (Sd) is shown for 08 June 

Inclusion TM 1991. The model described in Table 5a is used as a transfer func- 
Order Measure ,h se(,h) t ~~l~~~~~~ tion to map the eight spectral measures onto T, using the log- 

linear additive equation: Sd = 0.364(IR) + 3.510(GRz,l) + 
1 IR 0.364 0.03 9.96 " 1.012(GR3,2) - 1.134(C,a) + 0.946(C,:) - 0.208(NR1,,) + 
2 GR2,1 3.510 0.26 13.09 * 

1.012 0.30 3.36 " 0.267(IR1,,) - 0.533(NR3,,). The predicted level for Sd is shown 
3 GR3,2 

4 C , ;  -1.134 0.49 -2.27 0.02 : along the y-axis. The x-axis displays the in situ field observa- 

5 c r : 0.946 0.49 o.06 0,004 tions for the 08 June 1991 period. The diagonal line indicates 
6 NR,,, -0.208 0.09 -2.14 0.03 0.07 direct correspondence between the observed and the model 
7 IR,,3 0.267 0.06 4.13 * 0.03 predicted levels. The plot also includes a 95 percent Confi- 
8 NR,,, -0.533 0.16 -3.20 0.002 0.02 dence Interval (CI) for the transfer function (linear-logarithmic 

model shown in Table 5a). This envelope is calculated from the General Linear Model and Summary Statistics: 
Sd = 0.364(IR) + 3.510(GR2,,) + 1.012(GR3,2) - 1.134(C;:) se(p) levels shown within the table. As in standard regression 

+ 0.946(C;:) - 0.2o8(NR1,,) + 0.267(IR1,,) - 0.533(NR3,,) theory, the CI is elliptical-gradually increasing at the tails of 
RZ = 0.98; ~ d j  R2 = 0.98; F ~ , ~ ~  = 781.3~; < 0.0001; 3 = 0,147; N the plot (near 0.2 m and above 2.6 m). Model estimates gener- 

= 72; * 5 0.001. ally fit within the CI boundary, and significant residuals are 
shown at positions away from the envelope. For the 08 June 
period, the observed and predicted values are closely aligned 

TABLE 5b. MODEL SPEC~FICATIONS: CHLOROPHYLL a (C,) POOLED DATA the plot with the 
September period, larger residuals are shown at positions 38, 

Inclusion TM 40, 46-47 (within the western tributaries), and at location 3 
Order Measure se(,h) t p (western edge near the dam). 

1 IR 5.153 0.88 5.84 * 0.05 An analysis of Chlorophyll a (C,), is shown in Figures 3a 
2 GR1,, 33.211 7.52 4.41 * 0.10 and 3b. For this plot, the model described in Table 5b is used as 
3 C3,l 3.450 1.08 3.17 0.002 0.01 a transfer function to map the eight spectral measures onto C, 
4 CI,Z -2.805 1.07 -2.60 0.011 0.01 using the log-linear additive equation: C, = 5.153(IR) + 
5 NR3,, 19.311 4.38 4.40 * 0.02 33.211(GR1,3) + 3.450(C3,,) - 2.805(Cl,z) + 19.311(NR3,,) - 
6 NR3.3 -6.414 3.98 0.112 0.02 6.414(NR3,,) - 17.284(GRz,,) - 4.867(IR3,,). Once again, the 
7 
8 

G R 2 ~ l  -17.284 6.40 -2.69 predicted level for C, is shown along the y-axis, with observed 
IR3.1 -4'867 -2'51 0'02 Chlorophyll a shown along the x-axis. During the June acquisi- 

General Linear Model and Summary Statistics: tion, model predicted levels are scattered between the 6- and 
C, = 5.153(IR) + 33.211(GRI,,) + 3.450(C3,,) - 2.805(Cl,2) 18-mg m-3 levels. The model performs well in southern loca- 

+ 19.311(NR3,,) - 6.414(NR3,,) - 17.284(GR2,1) - 4.867(IR3,,) tions near the main dam (positions 1-5) and within the extreme 
R2 = 0.94; Adj R~ = 0.93; = 137.71; p < .OOOI; 3 = 3.484; N northern reaches (positions 30-32). The model is shown to 

= 72; * 5 0.001. systematically underestimate the observed Chlorophyll a 
within the upper tributaries at positions 25-29, and within the 
middle lake region at positions 13-15 and 19. Conversely, the 

With respect to Chlorophyll a (C,), the model formulation model systematically overestimates the observed Chlorophyll 
also includes the average kernel measure for the infrared OR), a within the western tributary (at position 43 and 45), and 
and the logarithmic ratio of the visible green to the visible red GR within select eastern locations near the main dam (positions 
as highly significant parameters. The blended class structure is 33-35). The contribution of the blended class structure (east- 
shown in position 3 and position 4 (non-reciprocal form). The west and north-south) is visibly apparent within Plate l a ,  
contribution of the near infrared is shown in position 5 and where the upper reaches are shown in a light intensity and the 
position 6. The spectral model is shown to explain 94 percent of eastern edges are highlighted in a darker tones. Within the fall 
the variance in the observed Chlorophyll a (C,) concentration period (Figure 3b), the model captures the vast majority of the 
with a respective standard error of 3.484 mg m-3. observed C, within the 95 percent CI. However, the model over- 

estimates the observed Chlorophyll a within station 36,38, and 
Accuracy Assessment 41 along the western edge of the main body near the western 
The models in Tables 5a and 5b are derived using pooled obser- tributary, and within stations 3 and 6 along the western edge of 
vations from two independent field acquisitions: 08 June and the main body near the dam. Smaller residual error is shown at 
28 September. The applicability of these models for predicting position 4 and 11 within the main body, and at position 48 
water quality characteristics on either date is described in Fig- within the mid-western tributary. 
ures 2a and 2b and Figures 3a and 3b. In this discussion, the 
pooledmodel is used to predict observed water quality param- C O ~ C ~ U S ~ O ~ S  
eters on each date. Hence, although the model is based upon An innovative algorithm is presented for unsupervised classifi- 
pooled data, the predictive efficiency of the result is assessed cation using focused sampling and spectral blending. The 
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Figure 2. (a) Observed versus predicted Sd for 08 June 
1991. (b) Observed versus predicted S, for 28 Septem- 
ber 1991. 

method uses non-parametric estimation as a technique to form 
unique hierarchical clusters. The clusters are used as covari- 
ates to develop linear predictive models for Secchi Disk Trans- 
parency (Sd) and Chlorophyll a (C,) using Landsat TM data from 
08 June and 28 September 1991. 

For the estimation of Sd and C,, the average kernel measure 
for the infrared 

is shown to be the most significant independent measure. The 
logarithmic ratio ofthe visible green (band 2 at 0.52 to 0.60 pm) 
to the visible red (band 3 at 0.63 to 0.69 pm) is shown as the 
second most significant indicator. Class structure contributes 
to each model as a significant covariate. For the estimation of 
Sd, the logarithmic classification is shown as the fourth and 
fifth most significant factor (i.e., fourth and fifth largest partial 
correlation for estimating the pooled behavior). The class 
structure is also shown to be highly significant for the estima- 
tion of Ca (position 3 and 4 within the hierarchy). Model 
results are presented using subscripts to compensate for poten- 
tial GPS error and boat drift during field acquisition. The resid- 
ual error is shown for each period by geographic position 
within the lake ecosystem. This serves two main functions: 

CHL(a) 8 June 1991 

22 

20. 
16 

18 . 0 
48 

16 . 
14 . 

4 .  
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0 
0 2 4 6 8 10 12 14 16 18 M 22 

OBSERVED 

(a) 

CHL(a) 28 September 1991 

0 4 8 12 16 M 24 28 

OBSERVED 

(b) 

Figure 3. (a) Observed versus predicted C, for 08 June 
1991. (b) Observed versus predicted C, for 28 Septem- 
ber 1991. 

The statistical strength for each model is shown by period (June 
and September). Outliers are clearly visible, by sample posi- 
tion, within each residual plot. 
The statistical strength for each model is shown by position 
and general proximity to the dam (main channel, and in upper 
tributary embayments). 

The model results are consistent with prior research. The 
primary influence of the middle infrared and the specific 
inclusion of the visible red band as a main indicator is well 
known (Rundquist et al., 1996; Harding et al., 1995). The linear 
association with suspended sediment in the visible green and 
visible red was identified by Roberts et al. (1995) and the phys- 
ics of particle back-scatter (within the visible green and the visi- 
ble red) was described by Topliss et al. (1990). Conversely, 
chlorophyll and dissolved organic matter act primarily as a dif- 
ferential absorber, causing a decline in the spectral response 
within the visible blue (Zilioli and Brivio, 1997). An increase of 
radiance (or reflectance) at the long wave-length intervals of 
the visible spectrum infers a decreased transparency in the 
water column. This relationship is closely linked to eutrophic 
conditions (Tassan, 1993). For this study, the inclusion of 
parameters in the visible green, near infrared, and middle 
infrared (contrasted against the visible red) provide excellent 
separation of the spectral response for estimating both Secchi 
Disk Transparency and Chlorophyll a. 
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