
Abstract
The use of fuzzy sets to assess uncertainty in land-use/cover
maps provides a robust conceptual framework for examining
unique characteristics of map error. By recognizing the
possibility of gradations of error, fuzzy sets can be used to
assess errors due to class similarity, or the sensitivity of the
map legend to class boundaries. Building on the theoretical
work of Gopal and Woodcock (1994), we present a practical
methodology for assessing map errors using fuzzy sets. A key
component of our methodology focuses on improving the
decision-making process map experts assume when conduct-
ing a fuzzy set assessment of map errors. Using an ecological
context to define varying levels of land-cover class similarity,
we demonstrate how a decision framework guides the map
experts’ decisions and provides a more meaningful assessment
of map errors. Our methodology differs from traditional fuzzy
set error assessment methods in that the map expert evaluates
misclassifications within the error matrix (off-diagonal cells)
rather than individual reference sites. Advantages to a matrix-
based approach include a reduction in the time required by
map experts to evaluate map errors, and a relatively simple
means of conveying map error information to the map user.
We conclude that establishing criteria for determining multiple
set memberships in a fuzzy set error assessment is an impor-
tant methodological procedure that is commonly overlooked.
Our methodology, designed to explicitly identify land-cover
class similarities based on ecological criteria, serves as a
practical example of how to address this issue.

Introduction
Assessing land-cover map accuracy is a significant concern
for remote sensing-based mapping projects. The error matrix
and kappa statistic have emerged as the de facto standard
for evaluating map accuracy and presenting this information
to the map user (Foody, 2002). Appeal for the error matrix
lies partly in its simplicity, but also in its utility; it provides
information about errors of commission and omission for
individual map classes, as well as a quantitative measure of
overall map accuracy in a single table (Congalton, 1991;
Congalton and Green, 1999).

Other approaches aimed at delivering additional informa-
tion to map users have been explored, notably information
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gained through error analysis based on fuzzy set theory. Zadeh
(1965 and 1973) introduced the concept of fuzzy sets to deal
with imprecision in complex systems, and the concept was
extended to error assessment in remote sensing-based mapping
by Gopal and Woodcock (1994). The applicability of fuzzy sets
to error assessment in land-cover mapping arises from recogni-
tion that natural variation in land-use/cover types do not fit
unambiguously into discrete classes. Fuzzy set theory in a
mapping environment assumes that varying levels of member-
ship are possible for multiple map categories. In an error
assessment of land-cover maps this means that gradations of
error are possible. Recognizing the possibility of gradations of
error provides a robust conceptual framework for dealing with,
and examining, unique characteristics of map errors, particu-
larly errors attributed to class similarity. Class similarity can
be defined as similarities between land-use/cover classes in
regards to their composition and/or function.

A fundamental component of fuzzy set error assessment is
the construction of a “linguistic measurement scale” to assign
degrees of correctness for classification errors. Gopal and
Woodcock (1994) suggest five levels of linguistic values that
map experts can use when evaluating a map product relative
to reference samples, these are: absolutely wrong, understand-
able but wrong, reasonable or acceptable, good, and absolutely
right. Determining the appropriate error level for any given
reference site is subject to the judgment of the “map expert.”
This subjectivity can be problematic when more than one
expert is involved in the fuzzy set assessment process (Wood-
cock and Gopal, 1992). Determining “good” versus “reasonable
or acceptable” is not only subject to the judgment of each
expert, but the intended application of the map.

The fuzzy set framework has applications beyond
assessing the accuracy of a single map. Fritz and See
(2005) used fuzzy sets to describe uncertainty associated
with differences in the classification legends for the Global
Land Cover 2000 (Fritz et al., 2003) and the MODIS land-
cover products (Friedl et al., 2002). Their methods recon-
ciled differences between land-cover classes from the two
maps by quantifying similarity among classes through
surveys administered to mapping experts. Experts were
asked to express how easy or difficult it was for them to
differentiate land-cover classes from both legends. Using
five linguistic categories ranging from very easy to very
difficult [to differentiate] the authors demonstrated an
effective approach for comparing land-cover maps, taking
into consideration inherent differences in both the number
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of classes, and the class definitions for distinct map
products. Other approaches using fuzzy sets for reconcil-
ing differences between distinct map legends have been
presented by Hagen (2003) and Hagen-Zanker et al. (2005).

Previous use of fuzzy set theory for assessing uncer-
tainty in land-use/cover maps suggests there is a critical
need for more objective methods of defining the gradations
between membership sets. Using a fuzzy set approach to
uncertainty analysis in land-use/cover maps requires a
mapping expert to make inherently subjective decisions
regarding the appropriateness of multiple set memberships,
often implicitly defined by some measure of class similarity.
A primary objective of this paper is to present a method-
ological approach aimed at improving the decision-making
process map experts assume when assessing map errors
using fuzzy set theory. In addition, the paper demonstrates
how this approach can be extended to the examination and
characterization of map errors.

Background
The methods presented in this paper were developed, in
part, through our effort to validate a regional land-cover map
developed for the Southwest Regional Gap Analysis Project
(SWReGAP). SWReGAP was a multi-state collaborative effort
involving five land-cover mapping teams and a team of
vegetation ecologists. The five-state region covers approxi-
mately 1.4 million square kilometers and includes the states
of Arizona, Colorado, Nevada, New Mexico, and Utah. The
region was divided into 25 spectral-physiographic mapping
zones, which facilitated image classification and assisted in
project tracking and management (Lowry et al., 2007). The
land-cover legend was based on the Terrestrial Ecological
System Classification framework developed by NatureServe
(Comer et al., 2003). For the five-state region, approximately
93,000 ground truth samples were available for training and
map validation.

Mapping responsibilities were divided among the five
state teams by mapping zones, each state team having
responsibility for three to six mapping zones. Each map-
ping zone functioned as a separate working unit and was
independently assessed for map errors. Twenty percent of
the available ground-based training samples from each
land-cover class for each mapping zone were randomly
selected and used for the validation exercise. Reference
samples were intersected with the land-cover map and the
output formatted as an error matrix with a corresponding
kappa statistic (KHAT) (Congalton 1991; Congalton and
Green 1999). The number of land-cover classes varied with
the size and complexity of each mapping zone and ranged
from 13 classes in the least complex mapping zone to
53 classes in the largest and most complex mapping zone.

Methods
A common approach to fuzzy set error assessment requires a
“map expert” to assign multiple land-cover labels to each
reference site as acceptable alternatives to the most accept-
able, or “true” call (Green and Congalton, 2004). The map-
ping analyst is unaware of the actual mapped class for that
specific reference site, thus assuring independence between
the alternate labels and the land-cover map. Reference sites
and the mapped land-cover classes are compared, determin-
ing the level of correspondence, or “correctness,” between
the reference data and the land-cover map.

The methodology we present differs from this common
approach. Instead of evaluating individual reference sites,
the mapping analyst evaluates misclassification errors (i.e.,
off-diagonals) within the error matrix using a decision

framework of criteria established a priori that explicitly
recognizes similarities among mapped land-cover classes.
An important objective of developing these a priori criteria
is to minimize the subjectivity inherent in the map
expert’s determination of acceptable alternatives to the
most correct, or “true” label.

Establishing a Decision Framework
We begin by recognizing two requirements for establishing
the decision framework for fuzzy set map error assessment.
First, we identify the context within which we consider
similarities among land-cover classes, and second we
define explicit criteria for error evaluation given those
recognized similarities. We suggest the context for recog-
nized similarities be determined by the land-cover classifi-
cation legend. For example, mapping projects dealing
primarily with land-use may choose to identify similarities
among land uses as the context for establishing evaluation
criteria. Because the land-cover classification legend for
SWReGAP focused on natural and semi-natural land-cover
classes utilizing NatureServe’s Ecological Systems as the
primary mapping unit, we identify an ecological context
for our evaluation criteria.

We recognize four basic types of ecological similarity
among mapped land-cover classes (Table 1). Ecological
similarity types are defined by specific ecological conditions
shared by two distinct land-cover classes. For example, two
land-cover classes may have the same physiognomic structure
(Type A), determined by how the Ecological Systems nest
within the 2001 National Land-cover Dataset (NLCD) classifica-
tion legend (Homer et al., 2003). Some land-cover classes
share dominant or diagnostic species (Type B) as identified
by the Ecological System class descriptions published by
NatureServe. Other classes may be commonly juxtaposed on
the landscape, or may form a mosaic where patch or linear
land-cover classes commonly occur within a matrix of
another land-cover class (Type C). Finally, some land-cover
classes may share similar special substrates (Type D).

Next, we recognize that any two land-cover classes may
share multiple combinations of these basic ecological
similarity types. Constructing a systematic ranking of all
possible ecological similarity types provides a framework for
assigning ecological similarity categories (Table 2). The idea
of ecological similarity categories builds on Gopal and
Woodcock’s (1994) concept of “scaled linguistic values” to
describe levels, or categories, of fuzzy set membership. An
important difference with our approach, is that it explicitly
defines an ecological context for determining membership
using the combination of ecological similarity types to form
criteria, or rules, for set membership (from Table 1). Another
important difference is that our approach is designed to
evaluate pairs of land-cover classes for recognized ecological
similarities. For example, using this framework, an Inter-
Mountain Basins Big Sagebrush Steppe land-cover class is
considered “moderately similar” to an Inter-Mountain Basins
Big Sagebrush Shrubland land-cover class by virtue of two
ecological similarity types: Type B (shared dominant or
diagnostic species) and Type C (common juxtaposition). This
differs from more common fuzzy set assessment methods that
focus on assigning individual reference sites to membership
categories. Figure 1 presents additional examples of shared
ecological similarity types and categories.

Computing Fuzzy Set Matrices: A Case Study
The ecological context and explicit ecological criteria estab-
lished in Tables 1 and 2 form the foundation upon which
we performed fuzzy set error assessments for each of the
25 mapping zones in SWReGAP (see http://earth.gis.usu.edu/
swgap/maperror.html). Using these ecological criteria,
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TABLE 1. DESCRIPTIONS OF FOUR BASIC ECOLOGICAL SIMILARITY TYPES WITH CORRESPONDING ECOLOGICAL SIMILARITY CODES (A, B, C, and D)

Ecological Ecological 
Similarity Similarity

Code Type Ecological Similarity Description

Reference and mapped classes share the same National Land-cover Dataset (NLCD) class group:
NLCD 30 Barren (Includes all Barren Lands)
NLCD 40 Forest (Includes all Deciduous Forest, Evergreen Forest and Mixed Forest types)

A Physiognomic NLCD 50 Shrubland (Includes all Shrub, Dwarf Shrub and Shrub/Scrub types)
Structure NLCD 70 Grassland/Herbaceous (Includes all Grassland, Herbaceous, Savanna and Shrub

Steppe types)
NLCD 90 Wetlands (Includes all Wetland, Riparian, Emergent Wetlands, Wet Meadows, 

and Greasewood Flats)

Reference and mapped classes share dominant/diagnostic species as specified in concept of 
Ecological Systems. For example, if systems share dominant or co-dominant species, then 

B Dominant Species species composition is similar. If systems share species that are only present, then species 
Composition composition is not similar. Would also apply between systems where the dominant/

co-dominant species is common, but has been identified to a different subspecies 
(e.g. Artemisia tridentata spp.).

Reference and mapped classes commonly form a mosaic, such as patch or linear systems 
occurring within matrix systems, or where broad ecotonal boundaries between the classes 

C Juxtaposition occur with regularity. This often relates to minimum mapping unit (scale) issues with 
mosaics of similar land-cover types. Refrain from using this code when the possibility of 
juxtaposition is only a rare occurrence.

Reference and mapped classes share substrates with special properties that ecologically 

D Special define each Ecological System. Apply with the following substrates only:

Substrates - Eolian (sandsheets and dunes)
- Bedrock (exposed weathering parent material); sparse vegetation (Barren) classes
- High Salinity (exposed marine shales, saline overflow/playas)

TABLE 2. EXAMPLES AND EXPLANATIONS OF ECOLOGICAL SIMILARITY CATEGORIES BASED ON ECOLOGICAL SIMILARITY CODES (FROM TABLE 1), 
WITH CORRESPONDING RELATIVE SIMILARITY SCORES (RSS)

Ecological Relative Relative 
Similarity Similarity Similarity 

Code Category Example Explanation Score (RSS)

Inter-Mountain Basins Cliff and No Ecological Similarity Types are
No Similarity ABSOLUTELY Canyon (S009) CONFUSED WITH shared between these two  

(blank) INCORRECT Great Basin Xeric Mixed Ecological Systems.
1

Sagebrush Shrubland (S055)

A Rocky Mountain Aspen Forest and These two Ecological Systems are
SOMEWHAT Woodland (S023) CONFUSED WITH nested within the same NLCD Class

C SIMILAR Great Basin Pinyon-Juniper (Forest—NLCD 40) and therefore share 2
Woodland (S040) physiognomy (Similarity Code A). No 

D other Ecological Similarity Types are 
shared. They are considered SOMEWHAT 
SIMILAR.

B
AB Inter-Mountain Basins Big These two Ecological Systems share
AC MODERATELY Sagebrush Shrubland (S054) dominant/diagnostic species 3
AD SIMILAR CONFUSED WITH Inter-Mountain (Similarity Code B) and are 
BC Basins Montane Sagebrush commonly juxtaposed on the 
BD Steppe (S055) landscape (Similarity Code C). 
CD They are considered 

MODERATELY SIMILAR.

ABC Inter-Mountain Basins Big These two Ecological Systems share
ABD VERY Sagebrush Shrubland (S054) a common physiognomy (Similarity Code A), 
ACD SIMILAR CONFUSED WITH Great Basin share dominant/diagnostic species 
BCD Xeric Mixed Sagebrush (Similarity Code B) and are commonly 

ABCD Shrubland (S055) juxtaposed on the landscape (Similarity 4
Code C). They are considered 
VERY SIMILAR.

Great Basin Pinyon-Juniper The reference and mapped 5

Diagonal Cell
ABSOLUTELY Woodland (S040) MAPPED AS classes are identical.

CORRECT Great Basin Pinyon-Juniper 
Woodland (S040)
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Figure 1. Examples of land-cover classes that are SOMEWHAT, MODERATELY, and
VERY SIMILAR to the Inter-Mountain Basins Montane Sagebrush Steppe (S071) 
land-cover class, based on shared ecological similarity types (A, B, C, or D from 
Table 1). Ordinal relative similarity scores (RSS) corresponding to nominal ecological
similarity categories are in parentheses.

mapping analysts (i.e., experts) constructed a series of 
supporting matrices (described below) used in conjunc-
tion with the error matrix to compute revised fuzzy set
error matrices. Thus, the same ecological criteria from the
decision framework were applied in the fuzzy set error
assessment for all 25 mapping zones. We will use a small
mapping zone in northeastern Nevada as a case study to

demonstrate the ecological decision framework approach
for map error assessment.

The initial supporting matrix is the ecological similarity
code matrix. This matrix has the same structure as the orig-
inal error matrix, with an equal number of columns and rows
for the number of land-cover classes mapped. The analyst
evaluates each paired combination of land-cover classes and
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assigns ecological similarity code(s) to each cell in the matrix
(Table 3). Similarity code assignment is determined by
examining the published description for each Ecological
System from the classification legend and applying the criteria
specified in Table 1. Multiple combinations of ecological
similarity codes representing different types of ecological
similarity are possible. Empty cells indicate no ecological
similarity between paired land-cover classes, and self-similar
land-cover classes (i.e., diagonal cells) are given a code of “X”.
The analyst then uses the criteria from Table 2 to translate the
nominal ecological similarity codes (and combinations thereof)
in Table 3 to identify similarity categories with ordinal
relative similarity scores (RSS) (Table 4).

The final step is a cell-by-cell evaluation of the original
error matrix (Table 5) in relation to the relative similarity
score matrix (Table 4) which results in a computed “fuzzy
set” matrix. During computation, misclassification errors in
the off-diagonal cells from the original error matrix are
added to the diagonal in accordance with their respective
relative similarity score from Table 4. For example, in the
“very similar” fuzzy set computation, cells with misclassifi-
cation errors in the original error matrix corresponding to a
RSS of 4 (very similar) are adjusted by adding the misclassi-
fication value (i.e., number of misclassified sites) to the
diagonal cell in the computed fuzzy set matrix. Errors of
omission and commission for the new matrix are re-calcu-
lated along with the kappa statistic.

Fuzzy set matrices may be computed two ways.
Classification errors can be moved vertically to the diago-
nal “revising” errors of omission, or classification errors
can be moved horizontally to the diagonal “revising” errors
of commission. In this paper, we demonstrate the approach
by moving off-diagonal errors vertically, thus revising
errors of omission.

Results
Revised “fuzzy set” error matrices (with revised KHAT) are
produced for each of three relative similarity categories: very
similar (level 4), moderately similar (level 3), and somewhat
similar (level 2). Fuzzy set error matrices for levels 1 and 5
are not produced because they either provide the same
information as the original error matrix (level 5) or make all
classes 100 percent accurate (level 1) which is not appropri-
ate. Each new matrix is a revision of the original matrix
based on increasingly liberal (i.e., RSS � 4, RSS � 3, and 
RSS � 2) thresholds of ecological similarity. Table 6 pres-
ents, as an example, the computed error matrix for the very
similar (RSS � 4) relative similarity category.

Gopal and Woodcock (1994) demonstrate several
approaches for extracting additional information during
error analysis using fuzzy sets. Specifically, they show
how information about the frequency, magnitude, source,
and nature of errors can be explored and presented. Using
our matrix-based approach, it is possible to explore and
present information on the frequency and magnitude of
error in a similar manner (see Lowry et al., unpublished
white paper at http://earth.gis.usu.edu/swgap/). Since the
results of our methods are similar to Gopal and Wood-
cock’s (1994) for frequency and magnitude of error, we
refer readers to their work. Our matrix-based approach
differs with respect to our evaluation and presentation of
the sources and severity of confusion between classes
within the land-cover map as a function of ecological
similarities.

To assess the frequency of multiple set memberships at
given thresholds of ecological similarity, we return to an
evaluation of the original error matrix (Table 5) in relation to
the RSS matrix (Table 4). The evaluation is facilitated by con-
structing a new matrix (Table 7a) that combines information
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TABLE 3. ECOLOGICAL SIMILARITY CODE MATRIX DERIVED USING TABLE 1

Map
LAND-COVER CLASS Code

Inter-Mountain Basins Cliff and S009 X C C C C C
Canyon

Rocky Mountain Aspen Forest S023 X AC A C C
and Woodland

Rocky Mountain Subalpine Dry-Mesic S028 C AC X AC C
Spruce-Fir Forest and Woodland

Great Basin Pinyon-Juniper Woodland S040 C A AC X C C C C C C C

Inter-Mountain Basins Mountain S050 C C X AC A A C C
Mahogany Woodland and Shrubland

Inter-Mountain Basins Big Sagebrush S054 C AC X ABC AC BC BC C C C
Shrubland

Great Basin Xeric Mixed Sagebrush S055 C A ABC X AC C BC C C
Shrubland

Inter-Mountain Basins Mixed Salt S065 A AC AC X C C BCD
Desert Scrub

Inter-Mountain Basins Montane S071 C C C C C BC C X ABC A C
Sagebrush Steppe

Inter-Mountain Basins Big Sagebrush S078 C C BC BC C ABC X AC C C
Steppe

Inter-Mountain Basins Semi-Desert S090 C C C C C A AC X C
Grassland

Inter-Mountain Basins Greasewood S096 C BCD C C X AC
Flat

Great Basin Foothill and Lower S118 C C C C C C AC X
Montane Riparian Woodland 

and Shrubland
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TABLE 4. RELATIVE SIMILARITY SCORE (RSS) MATRIX DERIVED FROM TABLE 2 AND TABLE 3

LAND-COVER CLASS Code

Inter-Mountain Basins Cliff and S009 5 1 2 2 2 1 1 1 2 1 2 1 1
Canyon

Rocky Mountain Aspen Forest and S023 1 5 3 2 1 1 1 1 2 1 1 1 2
Woodland

Rocky Mountain Subalpine Dry-Mesic S028 2 3 5 3 1 1 1 1 2 1 1 1 1
Spruce-Fir Forest and Woodland

Great Basin Pinyon-Juniper Woodland S040 2 2 3 5 2 2 2 1 2 2 2 1 2

Inter-Mountain Basins Mountain S050 2 1 1 2 5 3 2 2 2 2 1 1 1
Mahogany Woodland and Shrubland

Inter-Mountain Basins Big Sagebrush S054 1 1 1 2 3 5 4 3 3 3 2 2 2
Shrubland

Great Basin Xeric Mixed Sagebrush S055 1 1 1 2 2 4 5 3 2 3 2 2 1
Shrubland

Inter-Mountain Basins Mixed Salt S065 1 1 1 1 2 3 3 5 1 2 2 4 1
Desert Scrub

Inter-Mountain Basins Montane S071 2 2 2 2 2 3 2 1 5 4 2 1 2
Sagebrush Steppe

Inter-Mountain Basins Big Sagebrush S078 1 1 1 2 2 3 3 2 4 5 3 2 2
Steppe

Inter-Mountain Basins Semi-Desert S090 2 1 1 2 1 2 2 2 2 3 5 2 1
Grassland

Inter-Mountain Basins Greasewood S096 1 1 1 1 1 2 2 4 1 2 2 5 3
Flat

Great Basin Foothill and Lower Montane S118 1 2 2 2 1 2 1 1 2 2 1 3 5
Riparian Woodland and 

Shrubland
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from Tables 4 and 5. Here, the first numeral represents the
number of reference sites in the cell (from Table 5) and the
second numeral (in bold) indicates the RSS for that cell (from
Table 4). Table 7b summarizes information in the combined
matrix presenting the frequency of multiple set memberships
from a producer’s perspective. The frequency of multiple set
memberships for each RSS threshold provides information
about the relative heterogeneity (or generality) of the mapped
land-cover classes based on gradations of recognized ecologi-
cal similarity (i.e., RSS thresholds).

To provide a single metric of set membership errors we
compute the weighted mean RSS for errors, which is the
mean relative similarity score for each land-cover class. It is
calculated by multiplying the frequency of errors for each
RSS category by the RSS, summing the products for all RSS
categories, and dividing by the total number of sites found
off the diagonal (i.e., total number of errors). Formally it is
expressed:

where Rj is the weighted mean RSS of errors for land-cover
class j, f is the frequency of errors for membership category r,
e is the total number of errors for class j, and n is the total
number membership categories that constitute errors (e.g.,
with five similarity categories there are four that represent
some level of error, so n � 4). The weighted mean RSS value
therefore, is an index of set membership based on the
observed errors (Table 5) and recognized similarities (Table 4).
It can also be thought of as a measure of the average severity
of the errors for a given class due to class similarity, assuming

Rj �
�
n

i�1
(fr*r)

ej

that errors with less similarity are more severe. The index
ranges from 1.00 to 4.00. A value of 1.00 indicates that, on
average, the errors for a given land-cover class have no
ecological similarity with the “true” or intended land-cover
class, indicating high misclassification severity. A value of
4.00, on the other hand, indicates that on average, errors for a
given class are “very similar” to the true land-cover class. If
there are no errors, then the index is not applicable, and a
value of NA is given. It should be noted that confidence in
this metric will be determined by the number of error sites, or
sample size, per land-cover class (Lohr, 1999).

The intent of set membership analysis is to identify
possible sources of error by revealing degrees of similarity
among misclassified land-cover classes. This is useful when
interpreting the quality of the map product, but may have
greater utility during early phases of the mapping process to
determine whether land-cover class definitions need refine-
ment. For example, from Table 7a we see that classes S054
and S055 are highly confused with each other. From a
producer’s perspective (i.e., errors of omission, or errors
along the vertical axis) we note that S054 is confused with
four other classes: S055, S071, S078, and S090 (for class
names, see Table 7a). Including the relative similarity score
(in bold) for each cell highlights the ecological similarity of
the errors for each mapped class. For example, of the five
reference sites omitted from the correct classification of
S054, two of them were mapped as S055, which is consid-
ered ecologically very similar to S054.

In summary, by combining the RSS matrix with the
original error matrix, map users can readily identify the
severity of confused classes and map producers receive
additional insight into the sources of map errors. In addition
to facilitating error interpretation, the weighted mean RSS for
errors provides a single metric of ecological similarity of the
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TABLE 5. ORIGINAL ERROR MATRIX

REFERENCE

LAND-COVER CLASS Code

Inter-Mountain Basins Cliff and S009 5 1 6 83%
Canyon

Rocky Mountain Aspen Forest and S023 4 4 100%
Woodland

Rocky Mountain Subalpine Dry-Mesic S028 5 5 100%
Spruce-Fir Forest and Woodland

Great Basin Pinyon-Juniper S040 17 1 18 94%
Woodland

Inter-Mountain Basins Mountain S050 1 1 100%
Mahogany Woodland and Shrubland

Inter-Mountain Basins Big Sagebrush S054 1 54 12 2 2 6 3 1 81 67%
Shrubland

Great Basin Xeric Mixed Sagebrush S055 2 8 1 2 1 14 57%
Shrubland

Inter-Mountain Basins Mixed Salt S065 1 3 3 67%
Desert Scrub

Inter-Mountain Basins Montane S071 1 2 1 1 3 18 2 1 1 30 60%
Sagebrush Steppe

Inter-Mountain Basins Big Sagebrush S078 1 0 1 2 0%
Steppe

Inter-Mountain Basins Semi-Desert S090 1 3 4 75%
Grassland

Inter-Mountain Basins Greasewood S096 1 1 2 50%
Flat

Great Basin Foothill and Lower S118 6 6 100%
Montane Riparian Woodland

and Shrubland

Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176

Producers (%) 83% 67% 100% 94% 50% 92% 32% 33% 82% 0% 38% 25% 100% 70%

KHAT � 0.63
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errors for each land-cover class, based on the observed
errors and the criteria established by the ecological similar-
ity decision framework.

Discussion
This paper demonstrates how a decision framework, based
on pre-defined ecological similarity types, can be used to
derive an ordinal relative similarity score matrix from which
new, revised “fuzzy matrices” are computed for each RSS
threshold. New user and producers accuracies are calcu-
lated, as is a new KHAT statistic.

Congalton and Green (1999) suggest errors within the
error matrix can be attributed to four possible sources:
(a) errors in the reference data, (b) sensitivity of the classifi-
cation legend, (c) inappropriateness of remote-sensing
technology for mapping a specific land-cover class, and
(d) true “random” mapping error. The primary objective of
error analysis is to learn more about why reference sites do
not match their intended land-cover classes. The use of
fuzzy sets for error analysis provides an ideal conceptual and
objective framework for a closer examination of map errors
by providing additional information beyond the binary right-
or-wrong response. In general, the use of fuzzy sets in error
assessment provides insight into the four potential sources of

error outlined by Congalton and Green (1999). The focus of
our methodology is to glean information from errors resulting
from the complexity or generality of the classification legend
which are indicative of the sensitivity of the classification
legend. By default, if our analysis cannot attribute the source
of error to the sensitivity of the classification legend, errors
must be attributed to one or more of the other three sources.

As the field of remote sensing-based mapping matures,
land-use/cover classification legends are becoming increas-
ingly more complex (Green and Congalton, 2004). In general,
this means that attempts are made to map a greater number
of land-use/cover classes with subtler distinctions, some-
times referred to as ambiguous or fuzzy class boundaries
(Gopal and Woodcock, 1994; Congalton and Green, 1999).
To address the question of ambiguous class boundaries, this
paper has focused on similarities between classes defined by
their ecological composition and function. With categorical
classifications based on a continuous field such as tree size
or canopy closure, error variance between classes (e.g., 1 to
10 percent versus 11 to 30 percent canopy closure classes)
can be addressed from a fuzzy set perspective by simply
accepting as “correct,” errors that fall plus or minus one
class from the intended tree size or canopy closure class
(Congalton and Green, 1999). Quantifying class variance for
land-use/cover maps that are not based on a continuous
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TABLE 6. REVISED “FUZZY SET” MATRIX COMPUTED FROM THE ORIGINAL MATRIX (TABLE 5) AND THE RELATIVE SIMILARITY SCORE (RSS) 
MATRIX (TABLE 4) USING A RSS THRESHOLD OF �4 (VERY SIMILAR). USER AND PRODUCER ACCURACIES AND KHAT ARE RECALCULATED. 

FOR ILLUSTRATIVE PURPOSES, VALUES THAT HAVE CHANGED ARE IN BOLD ITALICS

REFERENCE

LAND-COVER CLASS Code

Inter-Mountain Basins Cliff and S009 5 1 6 83%
Canyon

Rocky Mountain Aspen Forest and S023 4 4 100%
Woodland

Rocky Mountain Subalpine Dry-Mesic S028 5 5 100%
Spruce-Fir Forest and Woodland

Great Basin Pinyon-Juniper S040 17 1 18 94%
Woodland

Inter-Mountain Basins Mountain S050 1 1 100%
Mahogany Woodland and Shrubland

Inter-Mountain Basins Big Sagebrush S054 1 56 2 2 6 3 1 71 79%
Shrubland

Great Basin Xeric Mixed Sagebrush S055 2 20 1 2 1 24 83%
Shrubland

Inter-Mountain Basins Mixed Salt S065 1 3 4 75%
Desert Scrub

Inter-Mountain Basins Montane S071 1 2 1 1 3 18 1 1 28 60%
Sagebrush Steppe

Inter-Mountain Basins Big Sagebrush S078 1 2 1 4 50%
Steppe

Inter-Mountain Basins Semi-Desert S090 1 3 4 75%
Grassland

Inter-Mountain Basins Greasewood S096 1 2 50%
Flat

Great Basin Foothill and Lower S118 6 6 100%
Montane Riparian Woodland

and Shrubland

Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176

Producers (%) 83% 67% 100% 94% 50% 95% 80% 50% 82% 22% 38% 25% 100% 80%

KHAT � 0.75
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field is much more problematic, and underlies the goals of a
context-based decision framework such as the one we
describe in this paper.

A legitimate question regarding the use of fuzzy sets for
map error assessment is whether or not we are actually
dealing with the concept of “hierarchical classification.”
That is, when we conduct a fuzzy set error assessment, are
we not revising our perspective of the errors by simply
using a coarser thematic scale? We suggest that in a periph-
eral sense we are, but this is not the principle function or
outcome of a fuzzy set error analysis. Instead, the intent of a
fuzzy set error analysis is to provide a perspective that
includes the recognition of acceptable levels of variance
between and among land-cover classes. If the principle
outcome of a fuzzy set assessment were simply a revised
perspective from a coarser thematic scale, the result would
be a summary of map errors with fewer functional classes.
This distinction is important because the notion that a fuzzy
set assessment is simply the “lumping up” of classes belies
the utility gained through a better understanding of the
sources of map error.

A key point of this paper, and the methodology we
present, is that a more meaningful assessment of errors due
to class similarity can be made if the context and criteria of

class similarities are explicitly established. Our design for
the decision framework for the SWReGAP maps focused on
ecological similarities among land-cover classes because map
units in the classification legend were defined by groups of
plant communities with similar ecological processes, substrates
and/or ecological gradients. This is important, as it makes
interpretation of the fuzzy set analysis more meaningful and
potentially useful to map users. As an example, the similarity
between the Inter-Mountain Basins Big Sagebrush Shrubland
(S054) and Great Basin Xeric Mixed Sagebrush Shrubland
(S055) is considered “very similar” due to common physiog-
nomic structure, dominant species, and juxtaposition on the
landscape. This information is available to the map user using
the ecological similarity matrix, and aptly describes why these
two classes are considered very similar. Map users can use
this information to decide whether the accuracy of the map is
acceptable, given the ecological similarities between these
classes. Providing revised “fuzzy set” matrices at multiple
levels of similarity allows the map user to choose the level of
similarity they wish to accept. For example, map users may
find the revised error matrix based on the “very similar”
threshold of similarity to be reasonable, but the revised error
matrix based on the “moderately similar” threshold too liberal.
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TABLE 7A. COMBINED INFORMATION FROM ORIGINAL MATRIX (FIRST NUMERAL) AND RELATIVE SIMILARITY

SCORE MATRIX (SECOND NUMERAL IN BOLD)

REFERENCE

CodeLAND-COVER CLASS

Inter-Mountain Basins Cliff and S009 5:5 1:1 6 83%
Canyon

Rocky Mountain Aspen Forest and S023 4:5 4 100%
Woodland

Rocky Mountain Subalpine Dry-Mesic S028 5:5 5 100%
Spruce-Fir Forest and Woodland

Great Basin Pinyon-Juniper S040 17:5 1:2 18 94%
Woodland

Inter-Mountain Basins Mountain S050 1:5 1 100%
Mahogany Woodland and Shrubland
Inter-Mountain Basins Big Sagebrush S054 1:2 54:5 12:4 2:3 2:3 6:3 3:2 1:2 81 67%

Shrubland
Great Basin Xeric Mixed Sagebrush S055 2:4 8:5 1:3 2:2 1:3 14 57%

Shrubland
Inter-Mountain Basins Mixed Salt S065 1:3 2:5 3 67%

Desert Scrub
Inter-Mountain Basins Montane S071 1:2 2:2 1:2 1:3 3:2 18:5 2:4 1:2 1:1 30 60%

Sagebrush Steppe
Inter-Mountain Basins Big Sagebrush S078 1:3 0:5 1:2 2 0%

Steppe
Inter-Mountain Basins Semi-Desert S090 1:2 3:5 4 75%

Grassland
Inter-Mountain Basins Greasewood S096 1:4 1:5 2 50%

Flat
Great Basin Foothill and Lower S118 6:5 6 100%

Montane Riparian Woodland
and Shrubland

Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176

Producers (%) 83% 67% 100% 94% 50% 92% 32% 33% 82% 0% 38% 25%100% 70%
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An important advantage to a matrix-based approach to
fuzzy set error analysis is the ability to calculate the kappa
statistic (KHAT) at each similarity level (i.e., KHAT can be
calculated for each revised “fuzzy set” matrix). KHAT measures
the degree to which the agreement between the map and the
reference data could occur by chance, and is determined by
the relationship between the correctly mapped reference sites
(diagonal cells) and “chance agreement” from the row and
column totals (Congalton, 1991; Jensen, 2005). As the number

of reference sites in the off-diagonals increase, KHAT decreases,
indicating errors are occurring more randomly across all
classes. When all the reference sites lie on the diagonal, KHAT
is 1.0. Thus, it is often reported that a higher KHAT indicates
there is a strong agreement between the reference data and the
map, and a lower KHAT indicates poor agreement, or in other
words, the results of the error matrix are more likely an
occurrence of chance (Landis and Koch, 1977). A measure of
variance around KHAT can also be calculated indicating the

TABLE 7B. SUMMARY OF COMBINED MATRIX (TABLE 7A) FROM A PRODUCER’S PERSPECTIVE SHOWING FREQUENCY

OF ERRORS FOR EACH SET MEMBERSHIP GROUP (I.E., RSS THRESHOLD)

SET MEMBERSHIPS as frequency

No membership (RSS = 1) 1 1

Multiple set membership (RSS � 2) 1 2 1 1 1 3 2 5 2

Multiple set membership (RSS � 3) 2 1 3 2 6

Multiple set membership (RSS � 4) 2 12 1 2

Single set membership (RSS = 5) 5 4 5 17 1 54 8 2 18 3 1 6

Total Sites 6 6 5 18 2 59 25 6 22 8 8 4 6

Total Errors 1 2 0 1 1 5 17 4 4 8 5 3 0

Weighted Mean RSS for 
Errors 2.00 2.00 NA 2.00 2.00 3.20 3.41 3.25 2.50 3.25 2.00 1.67 NA
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significance of the statistic at given confidence interval (e.g.,
95 percent confidence) (Congalton and Green, 1999).

Using our approach, calculating KHAT for each of the
revised “fuzzy matrices” based on RSS thresholds is carried
out in the same manner as the original error matrix. As
reference sites are taken from the off-diagonal cells and
added to the diagonal cells, KHAT increases. (As demon-
strated in this case study, KHAT increased from 0.63 in the
original matrix to 0.75 in the revised fuzzy matrix computed
with an RSS ≥ 4). Mathematically this is to be expected.
Conceptually, this is understandable because the chance for
agreement between the map and the reference data is being
assessed under more liberal terms with each RSS threshold.
In other words, the likelihood of chance agreement between
the map and the reference data decreases as the require-
ments for agreement between the map and reference data
become more liberal.

Conclusions
Our approach is unique among previous efforts to assess
map uncertainty using fuzzy sets since the methodology
involves evaluating errors within the error matrix rather
than errors at individual reference sites. One of the advan-
tages to this approach is that it reduces the amount of time
it takes to evaluate map errors using fuzzy sets. Rather than
evaluating individual reference sites, the mapping expert
evaluates the off-diagonal cells in the error matrix, and
makes decisions regarding set membership based on
criteria established by the decision framework. An addi-
tional benefit of the error matrix format is that it offers a
relatively simple means of conveying map error informa-
tion to map users in a manner that is commonly under-
stood (Foody, 2002). As demonstrated in Table 7a it is
possible to extend the utility of the conventional error
matrix by including additional information provided by
relative similarity scores. It should be noted, however, that
because our method focuses on an analysis of the error
matrix rather than individual reference sites, it cannot
detect variability among individual sample locations. In
other words, the methodology assumes that all reference
sites are labeled correctly.

Previous efforts (Woodcock and Gopal 1992; Laba et al.,
2002; Fritz and See, 2005) have used a fuzzy set approach for
determining multiple set membership. In these efforts, experts
used their mapping knowledge and experience to guide their
decisions regarding acceptable alternative classes for multiple
set memberships. Others (Hansen et al., 2004) used decision
rules to guide the fuzzy set assessment process, but these
have generally been applied to relatively few land-cover
classes within a single legend. One of the requirements of our
methodology was the need to apply decisions to an undefined
number of classes. (In SWReGAP there were 125 classes for the
entire region, however not all 125 classes occurred in each
mapping zone, and many mapping zones shared land-cover
classes). By establishing a decision framework, rather than
individual rules for each land-cover class, our methodology
meets this requirement. We note that while the decision
framework presented in this paper focuses on ecological
similarities, it is the concept of a decision framework that can
be applied to other land-cover mapping efforts, not necessar-
ily the specific criteria presented in this paper. For example,
a more liberal or conservative decision framework could be
constructed. The merit of a decision framework is that it
provides a standardized decision process multiple mapping
experts can use to determine “acceptable” misclassifications
at different levels of class similarity for an undefined number
of land-cover classes. This does not completely remove
subjectivity from the decision-making process, but instead

channels subjectivity to pre-established bounds defined
within an accepted context.
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