

Astrochemistry I. Basic processes

Ewine F. van Dishoeck

Leiden/MPE Spring 2009

What is astrochemistry? (or molecular astrophysics)

- 'Formation, destruction and excitation of molecules in astronomical environments and their influence on the structure, dynamics and evolution of astronomical objects'
- 'Blending of astronomy and chemistry in which each area enriches the other in a *mutually stimulating* interaction'
- 'Astrophysics is almost entirely applied atomic, molecular and optical physics'

Dalgarno 2008, ARA&A

1.1 Introduction

Molecules are found throughout the universe

- Molecular clouds, evolved stars, planetary nebulae, protoplanetary disks, stellar and (exo-) planetary atmospheres, solar photosphere, comets, galaxies (nearby to high z),
- Some typical conditions
 - Diffuse clouds: $T_{kin} \sim 100$ K, $n \sim 100$ cm⁻³
 - Dense clouds: $T_{kin} \sim 10-100$ K, $n \sim 10^4-10^8$ cm⁻³
 - Hot cores: $T_{kin} \sim 100-1000$ K, $n \sim 10^{6}-10^{8}$ cm⁻³
 - Disk midplane: T_{kin} ~10-1000 K, n~10⁸-10¹³ cm⁻³
 - Compare atmosphere at sea level: $T_{kin} \sim 300$ K, $n \sim 3 \ 10^{19}$ cm⁻³
- => Conditions very different from those normally encountered in lab on Earth: *molecular physics*

Intro (cont'd)

- Interstellar clouds are birthplaces of new stars
 - Evolution abundances molecules: *astrochemistry*
 - Molecules as physical diagnostics: *astrophysics*
- Progress strongly driven by observations:
 technology

=> Very interdisplinary topic!

Birth and death of stars: astrochemical evolution

Based on Ehrenfreund & Charnley 2000 Lifecycle of gas and dust R.Ruiterkamp 2001

1.2 Composition clouds Cosmic (solar) abundances elements

Element	Abundance	Element	Abundance
Н	1.00	Mg	4.2×10-5
Не	0.075	Al	3.1×10 ⁻⁶
С	3.5×10-4	Si	4.3×10 ⁻⁵
Ν	8.5×10 ⁻⁵	S	1.7×10 ⁻⁵
0	5.5×10-4	Ca	2.2×10-6
Na	2.1×10-6	Fe	4.3×10-5

- Precise values for C, N and O under discussion because of revision of solar abundances

The Astronomers' Periodic Table

B. McCall 2001

Interstellar grains

- Small solid particles ~0.01-0.5 μ m in size consisting of silicates and carbonaceous material; ~10⁻¹² by number w.r.t. H
- Most of Si, Mg, Fe incorporated in silicate cores;
 ~30% of O; ~60% of C in carbonaceous material
- Cold dense clouds (T_{dust} ~10 K): gas-phase species condense on grains forming an icy mantle

1.3. How do we observe molecules?

 $E = E^{\text{el}} + E^{\text{vib}} + E^{\text{rot}}$

Cold dense clouds

- Opaque at visible and UV wavelengths => molecules shielded from dissociating UV radiation
- Millimeter emission: *rotational* transitions
 - Limitation: molecule must have permanent dipole moment => cannot observe H₂, C₂, N₂, CH₄, C₂H₂, ...
 - Advantage: many molecules down to low abundances; lines in emission => map
- Infrared absorption: *vibrational* transitions
 - Limitation: need background IR source => only info along line of sight
 - *Advantage:* symmetric molecules + solid state
- Earth's atmosphere prevents observations of key molecules from ground: H₂O, O₂, CO₂

Infrared: absorption gas and solids

Vibrational transitions of gases and solids

1.4 Identified interstellar molecules

N	=2	N	=3	N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H ₂	AICI	CH ₂	C ₂ S	NH ₃	CH4	СН₃ОН	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH₃)₂CO
СН	PN	H ₂ S	OCS	H₂CO	SiH4	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH ₃ C ₄ CN
NH	SiN	NHz	MgCN	H₂CS	CH₂NH	C ₂ H ₄	CH₃CHO	HC ₆ H	C ₂ H ₅ CN	CH₃CH₂CHO
ОН	SiO	H ₂ O	MgNC	H₂CN	C ₅	H ₂ C ₄	c-CH ₂ OCH ₂	C ₇ H	CH₃C₄H	(CH ₂ OH) ₂
O2(?)	SiS	HNO	NaCN	I-C₃H	/-C3H2	CH₃CN	CH₂CHCN	носн ₂ сно	C₅H	
HF	PO	C ₂ H	SO2	c-C₃H	c-C ₃ H ₂	CH ₃ NC	HC₄CN	сн₃соон	HC₅CN	
C2	SH	HCN	N ₂ O	нссн	H₂CCN	NH₂CHO	С _в Н	H ₂ CCCHCN	CH ₃ CONH ₂	N = 11
CN	AIF	HNC	SICN	HNCO	H ₂ NCN	H ₂ CCHO	H ₂ CCHOH	H₂C _€	CH ₂ CHCH ₃	HC ₈ CN
со	FeO	нсо	SiNC	HNCS	CH ₂ CO	C₅H		СН₂СНСНО		CH₃C ₆ H
CS	SiC	c-SiC ₂		HCCN	нсоон	C _s N		C₂H ₆		
СР		MgCN		C2CN	C₄H	HC₄N				
NO		MgNC		C30	HC ₂ CN	C ₅ S (?)				N = 12
NS		AINC		C38	HC₂NC	HC₄H				C ₆ H ₆
SO		НСР	H3+	c-SiC3	C₄ S i	CH₂CNH				
HCI	CH+	C3	HCO+	C ₃ N ⁻	HNCCC	HC₂CHO				
NaCI	CO+	C ₂ O	HOC+	H ₃ O ⁺		c-C ₃ H ₂ O				N = 13
KCI	SO+	CO2	N_2H^+	HCNH ⁺	H ₂ COH ⁺	-				HC ₁₀ CN
N ₂ (?)	CF ⁺		HCS+	HOCO+	C₄H·	HC₃NH+	C ₆ H∙		C _s H-	

- ~150 total, not including isotopologues

Herbst, priv. comm.

- number of new molecules still increasing by ~3 per year

Diversity of molecules

- About 150 different molecules firmly identified
- Ordinary molecules
 NH₃, H₂O, H₂CO, CH₃CH₂OH,
- Exotic molecules HCO⁺, N₂H⁺, HCCCCCCN,

⇒Unusual molecules (rare on Earth but not in space)

Millimeter spectra: myriads of lines!

Some (recent) detections

- H₃+, H₂D+, D₂H+: cornerstones ion-molecule chemistry
- C_4 , C_6H_2 , CH_3CHCH_2 : new carbon chains
- Cyclic C_2H_4O : fifth ring
- C₆H₆: benzene: simplest PAH
- C_6H^- , C_8H^- , C_4H^- : first negative ions!
- D₂CO, ND₃, CD₃OH: doubly + triply deuterated molecules
- NaCN, AlCN, SiN: metal-containing species

Not convincingly detected: O₂, glycine,

Negative ions

McCarthy et al. 2006

Larger chains have large electron affinity (binding energy) Herbst & Osamura 2008

Propene in TMC-1

Marcelino et al. 2007

Molecules at high redshift: z=6.4!

CO and [C II] in quasar SDSS J1148+5251 at z=6.4

Walter et al. 2003, Maiolino et al. 2005

HCO⁺, CN at high z

Riechers et al. 2007a,b

- Detection of HCO⁺ and CN toward Clover Leaf quasar at z=2.56 (lensed system => signal enhanced)
- Both lines require high densities 10⁵-10⁶ cm⁻³ for excitation

1.5 Importance of molecules

- Exotic chemistry: unique laboratory
- Astrochemical evolution
- Molecules as diagnostics of temperature T_{kin} , density $n_{\rm H}$, velocity, ...
- Molecules as coolants
- Radiation escapes from cloud => net kinetic energy lost => cloud cools down
 Collisions
 CO(J=0)
 CO(J=1)
 CO(J=0)

Questions addressed

- What are chemical processes leading to formation and destruction of molecules?
- How well are basic molecular processes known from experiments or theory
- What is evolution of molecules in the universe, from their creation at high redshifts to interstellar clouds to incorporation in new solar systems
- How can molecules be used as physical and chemical diagnostics of physical structure, evolution, cosmic-ray ionization, ...

1.6 Basic molecular processes: gas phase

- Because of low temperatures and densities in clouds, chemistry is *not* in thermodynamic equilibrium but controlled by two body reactions
 => abundances depend on physical conditions (*T*,*n*,radiation field), history, ...
- Three body reactions do not become important until $n > 10^{12}$ cm⁻³
- Although models contain thousands of reactions, only few different types of processes
- Rate of reaction: $k n(X) n(Y) \text{ cm}^{-3} \text{ s}^{-1}$

*Rate coefficient in cm*³ *s*⁻¹

Chemical network: example Carbon chemistry and its coupling with oxygen

These networks look complicated but are built up from only a handful of basic types of reactions

Types of chemical reactions

- <u>Formation</u> of bonds
 - Radiative association:
 - Associative detachment
 - Grain surface:
- Destruction of bonds
 - Photo-dissociation:
 - Dissociative recombination:
 - Collisional dissociation:
- Rearrangement of bonds
 - Ion-molecule reactions:
 - Charge-transfer reactions:
 - Neutral-neutral reactions:

 $X^{+} + Y \rightarrow XY^{+} + h\nu$ $X^{-} + Y \rightarrow XY + e$ $X + Y:g \rightarrow XY + g$

 $\begin{array}{l} XY + h\nu \rightarrow X + Y \\ XY^+ + e \rightarrow X + Y \\ XY + M \rightarrow X + Y + M \end{array}$

```
\begin{array}{l} X^{+} + YZ \rightarrow XY^{+} + Z \\ X^{+} + YZ \rightarrow X + YZ^{+} \\ X + YZ \rightarrow XY + Z \end{array}
```

1.7 Radiative association

•
$$X + Y \xrightarrow[\tau_c]{\tau_c} XY^* \xrightarrow[\tau_r]{\tau_c} XY + hv$$

Energy conservation => photon must be emitted, which is a very slow process

 $\tau_r = 10^{-2} \cdot 10^{-3}$ s vibrational transition $\tau_{c,d} = 10^{-13}$ s collision time

 $\Rightarrow Molecule formation occurs only$ $1:10^{10} collisions$

Radiative association (cont'd)

- Process becomes more efficient if electronic states available: τ_r smaller
 - $C^+ + H_2$ example
- Also more efficient for larger molecules: τ_d longer

=> Efficiency increased to 1:10⁵

Radiative association (cont'd)

- Radiative association is extremely difficult to measure in laboratory because 3-body processes dominate under most lab conditions.
- Many rate coefficients are based on theory; overall uncertainties 1-2 orders of magnitude
- Exception: $C^+ + H_2 \rightarrow CH_2^+ + hv$
 - $k \sim 10^{-15} \text{ cm}^3 \text{ s}^{-1}$ within factor of 2-3
 - Initiates carbon chemistry

1.8 Associative detachment

- Usually not important in cold clouds, but can play a role in partly ionized regions and early universe
- Form negative ions by radiative attachment $X + e \rightarrow X^- + hv$ slow process
- Form molecule by associative detachment $X^- + Y \rightarrow XY + e \quad fast \text{ process}$

Associative detachment

• Examples: $H + e \rightarrow H^- + hv$ $H^- + H \rightarrow H_2 + e$ fast

Application: early universe chemistry

First molecules in universe: He₂⁺ and HeH⁺

Latter 1989

He₂⁺ and HeH⁺ formed by radiative association

H chemistry in early universe

- Hydrogen chemistry in early universe is very different from that in the current era due to the absence of dust => H₂ must be formed by slow gas-phase reactions
- Direct formation by radiative association
 H + H → H₂ + hv is much too slow since H₂
 does not have a dipole moment => consider
 other routes

H⁺ route

- H₂ formation:
 - $H + H^+ \rightarrow H_2^+ + hv$
 - $H_2^+ + H \rightarrow H_2 + H^+$
- H₂⁺ can be destroyed by photodissociation and dissociative recombination
 - $H_2^+ + h\nu \rightarrow H + H^+$
 - $H_2^+ + e \rightarrow H + H$
 - => Formation of H_2 only becomes effective when T_R <4000 K and photodissociation of H_2^+ ceases

H⁻ route

- At later times (z~100), H₂ can be formed through H⁻
 - $H + e \rightarrow H^- + hv$
 - $H^- + H \rightarrow H_2 + e$
- H⁻ is destroyed by photodetachment
 - $H^- + hv \rightarrow H + e$

with threshold of 0.75 eV => need T_R < 1000 K before route becomes effective

H₂ chemistry

- Both H⁺ and H⁻ routes are catalytic, since H⁺ and *e* returned
- H₂ destroyed by
 - ${}^{\bullet} \operatorname{H}_2 + \operatorname{H}^+ \to \operatorname{H}_2^+ + \operatorname{H}$
 - $H_2 + e \rightarrow H + H^-$
- Net result: $f(H_2) = n(H_2)/n_H \sim 10^{-6}$ as $z \to 0$

Small molecular fraction in early universe

(but very important as coolants, allowing clouds to collapse and setting the mass of the first stars)

H₂ formation in early universe by H⁺ and H⁻ routes

Latter 1989

Sensitivity to cosmological parameters

Hatched area covers range of variation of $\Omega_0=0.1-1$, $h=H_0/100=0.3-1$ and $\eta_{10}=baryon/photon=1-10$

1.9 Photodissociation

• $XY + h\nu \rightarrow X + Y$

Direct photodissociation OH, H_2O , CH, CH_2 , ...

Predissociation CO, NO,

- Experiments available for stable molecules, but not for radicals or ions
- Small molecules: theory works well: quantum chemical calculations of potential surfaces of excited states + transition dipole moments, followed by nuclear dynamics to obtain cross sections

Examples experiments

 H_2O absorption followed by direct dissociation: accurate cross sections within 20%

NO absorption (full) and fluorescence (dashed); mostly predissociation through discrete transitions; large uncertainties (order of magnitude)

H₂ spontaneous radiative dissociation

90% of absorptions into B and C states are followed by emission back into <u>bound</u> vibrational levels of the X state
10% of the absorptions are followed by emission into the <u>unbound</u> vibrational continuum, leading to dissociation

Both H_2 and CO p.d. initiated by line absorptions => self-shielding

Interstellar radiation field

Figure 5. The intensity of the interstellar radiation field as a function of wavelength cf. Draine (1978) (full line), Mathis et al. (1983) (long-dashed line), Gondhalekar et al. (1980) (short-dashed line) and Habing (1968) (dash-dotted line). Average radiation provided by early-type stars in solar neighborhood

Note that H_2 and CO p.d. and C photoioniation only occur at 912-1100 Å C can be photoionized by ISRF, but not O and N

Cosmic-ray induced radiation: UV radiation inside dense clouds

-Detailed line + continuum spectrum peaking around 1600 Å and continuing below 912 Å

Other radiation fields

- Ly-α dominated
 - Shocks,
- Stellar blackbodies T_{eff} =4000-10000 K
 - Disks, (exo-)planets, cool PDRs, ...
- Solar radiation T_{eff} =5500 K + Ly α
 - Comets

http://www.strw.leidenuniv.nl/~ewine/photo

See van Dishoeck et al. 2006

1.10 Dissociative recombination

- Atomic ions: $X^+ + e \rightarrow X + hv$ Radiative: slow
- Molecular ions: $XY^+ + e \rightarrow XY + hv$ Radiative: slow

Dissociative: rapid at low T

slow

- Need curve crossing between XY⁺ and repulsive XY potential for reaction to proceed fast
- Most rates well known; branching ratios products major uncertainty

Storage ring experiments

CRYRING, Stockholm

- Also Aarhus, Heidelberg

- Literature values range from <10⁻¹² to 10⁻⁷ cm³ s⁻¹ at 300 K over last 25 years
- High rate coefficients now also reproduced by theory, even without curve crossing
- Affects determination cosmic ray ionization rates in diffuse clouds

1.11 Ion-molecule reactions

- Ion induces dipole moment in molecule when it approaches it => long-range attraction which goes as $\propto 1/R^4$
- Reaction is rapid even at low *T* if the reaction is exothermic; rate can be readily computed by classical capture theory developed by Langevin 1905

- Reaction only occurs if impact parameter *b* small enough that X⁺ is 'captured', i.e., spends enough time near YZ for reaction to take place
- Gas-phase reaction networks built on ion-molecule reactions;
 initial ionization provided by cosmic rays (H⁺ and H₃⁺) or photons (C⁺)

Ion-molecule processes

- $X^+ + YZ \rightarrow XY^+ + Z$ exchange $\rightarrow X + YZ^+$ charge transfer
- Many experiments performed at room *T*, some at low *T*. Most reactions (>90%) indeed proceed at Langevin rate, but some exceptions known

Experiments

-Rate coefficients for ion-polar reactions may be factors of 10-100 larger than Langevin values at low *T*, because $V(R) \propto R^{-2}$ Example: C⁺ + OH \rightarrow CO⁺ + H

1.12 Neutral-neutral reactions

- Long-range attraction weak: van der Waals interaction $\propto 1/R^6$
- Potential barriers may occur in entrance and exit channels => reactions thought to be slow at low T
- Experiments: *reactions can be fast at low T!*

CN + **C**₂**H**₆: or why extrapolation is unreliable

I. Sims et al. Rennes/Birmingham

CN + **C**₂**H**₆: or why extrapolation is unreliable

CN + C₂H₆: or why extrapolation is unreliable

CN + C₂H₆: reaction stays rapid at low *T*!

boundary layer sets

scale of apparatus

nozzle throat diameter 3 mm – 5 cm

> uniform supersonic flow T = 7 - 220 K $\rho = 10^{16} - 10^{18} \text{ cm}^{-3}$

axisymmetric Laval nozzle

chamber pressure 0.1 – 0.25 mbar pumping speed ~ 30000 m³ hr⁻¹

Laval nozzle and isentropic flow

Types of neutral-neutral reactions

Not all neutral-neutral reactions are rapid

See also Smith 2006, Faraday Disc

1.13 Pure gas-phase models

- Most recent models contain nearly ~4500 gasphase reactions between ~450 species containing up to 13 atoms. Publicly available on web
 - UMIST code
 - http://www.udfa.net/
 - Ohio state code
 - http://www.physics.ohiostate.edu/~eric/research.html
- Most dark cloud models ignore depth dependence
 ⇒ solve chemical networks for given *T*, *n* at single position and assume

$$x(AB) = \frac{N(AB)}{N(H_2)} = \frac{n(AB)}{n(H_2)}$$

observed calculated

How important are reactions? Sensitivity analysis gas-phase networks

- Take estimated uncertainties in rate coefficients into account
- Uncertainties become larger for large molecules
- Observed CH₃OH cannot be produced by pure gas-phase reactions
- Use analysis to identify critical reactions for which rates need to be better determined Wakelam et al. 2005

1.14 Gas-grain chemistry

- Evidence for gas-grain chemistry
 - H₂ in interstellar clouds
 - NH in diffuse clouds
 - Abundances H₂O, CO₂, CH₃OH, ... in ices higher than expected from freeze-out of gas phase

Formation mechanisms

 Diffusive mechanism (Langmuir-Hinshelwood)
 X + g:Y → X:g:Y → X-Y:g → XY + g sticking diffusion + desorption molecule formation
 Direct mechanism (Eley-Rideal)
 X + Y:g → X-Y:g → XY + g direct desorption reaction

• Surface can be silicates, carbonaceous, ice, ...

See Lecture 2 for more on grain surface processes

Simulations diffuse mechanism

Summary lecture 1

- Large variety of molecules observed in ISM
- Basic processes for formation and destruction identified
- Networks built for explaining abundances
- Results completely dependent on thousands of input rates
 - Many not known under astrophysical conditions (but for many accurate rates not needed)
 - Key: identify those reactions which are important to study well
- Many experiments and theory on basic processes over last 30 years
 - Good, new chemical physics questions!
 - Significant progress in neutral-neutral reactions, surface reactions
- Some processes now well understood, others take decades of hard work to make just a little progress
 - Funding of lab astrophysics groups becoming major problem
 - Note: photoionization codes like CLOUDY got atomic input data thanks to huge efforts in atomic and plasma physics