

BASIC DESIGN APPROACHES

➔ (Classic) IIR filter design:

(Chapter 9)

- 1. Convert the digital filter specifications into an analog prototype lowpass filter specifications
- 2. Determine the analog lowpass filter transfer function $|H(\Omega)|$
- 3. Transform $|H(\Omega)|$ into the desired digital transfer function H(z)
 - Analog approximation techniques are highly advanced
 - They usually yield closed-form solutions
 - Extensive tables are available for analog filter design
 - Many applications require digital simulation of analog systems
- FIR filter design is based on a direct approximation of the specified magnitude response, with the often added requirement that the phase be linear (or sometimes, even minimum)
 - The design of an FIR filter of order M may be accomplished by finding either the length-(M+1) impulse response samples of h[n] or the (N+1) samples of its frequency response H(ω)
 (Chapter 10)

FIR FILTER DESIGN

Let's start with the ideal lowpass filter

We know that there are two problems with this filter: infinitely long, and it is non-causal

FIR FILTER DESIGN

Digital Signal Processing, © 2007 Robi Polikar, Rowan University

FIR FILTER DESIGN

This is the basic, straightforward approach to FIR filter design:

- \clubsuit Start with an ideal filter that meets the design criteria, say a filter H(ω)
- Solution Take the inverse DTFT of this $H(\omega)$ to obtain h[n].
 - This h[n] will be double infinitely long, and non-causal → unrealizable
- Struncate using a window, say a rectangle, so that M+1 coefficients of h[n] are retained, and all the others are discarded.
 - We now have a finite length (order M) filter, $h_t[n]$, however, it is still non-causal
- Shift the truncated h[n] to the right (i.e., delay) by M/2 samples, so that the first sample now occurs at n=0.
 - The resulting impulse response, *h_t*[*n*-*M*/2] is a causal, stable, FIR filter, which has an almost identical magnitude response and a phase factor or e^{-jM/2} compared to the original filter, due to delay introduced.

FIR (LOWPASS) FILTER DESIGN

FIR HIGHPASS DESIGN

$$h_{HP}[n] = \begin{cases} -\frac{\sin(\omega_c n)}{\pi n}, & |n| > 0\\ 1 - \frac{\omega_c}{\pi}, & n = 0 \end{cases}$$

FIR BPF/BSF DESIGN

$$h_{BP[n]} = \begin{cases} \frac{\sin(\omega_{c_2}(n - M/2))}{\pi(n - M/2)} - \frac{\sin(\omega_{c_1}(n - M/2))}{\pi(n - M/2)}, & 0 < n < M, \ n \neq \frac{M}{2} \\ \frac{\omega_{c_2}}{\pi} - \frac{\omega_{c_1}}{\pi}, & n = \frac{M}{2} \end{cases}$$

Similarly,

HOWEVER...

GIBBS PHENOMENON

Truncating the impulse response of an ideal filter to obtain a realizable filter, creates oscillatory behavior in the frequency domain.

She Gibbs Phenomenon

➔ We observe the following:

- As M↑, the number of ripples ↑ however, ripple widths ↓
- The height of the largest ripples remain constant, regardless of the filter length
- As M↑, the height of all other ripples ↓
- The main lobe gets narrower as M[↑], that is, the drop-off becomes sharper
- Similar oscillatory behavior can be seen in all types of truncated filters

GIBBS PHENOMENON

 (ω)

- Why is this happening?
- The Gibbs phenomenon is simply an artifact of the windowing operation.
 - Solution Multiplying the ideal filter's impulse response with a rectangular window function is equivalent to convolving the underlying frequency response with a sinc

Truncated filter
impulse response
$$\begin{array}{l}
h_t[n] = h_d[n] \cdot w[n] \Leftrightarrow H_t(\omega) = H_d(\omega) * W \\
\text{Desired filter} \\
\text{impulse response} \\
\end{array}$$
Windowing
function

- ⇒ However, we want $H_t(\omega)$ to be as close as possible to $H_d(\omega)$, which can only be possible if the $W(\omega) = \delta(\omega) \leftarrow \rightarrow w[n] = 1$, an infinite window.
 - We have conflicting requirements: On one hand, we want a narrow window, so that we have a short filter; on the other hand, we want the truncated filter as closely match as possible ideal filter's frequency response, which in turn requires an infinitely long window!

This convolution results in the oscillations, particularly dominant at the edges.

GIBBS PHENOMENON

GIBBS PHENOMENON DEMO

 $\frac{\sin\left(\omega_{c}\left(n-M/2\right)\right)}{\pi\left(n-M/2\right)}, \ 0 \le n \le M, \ n \ne n$

% FIR Lowpass filter

M=input('Enter the order of filter:'); wc=input('Enter the cutoff frequency in terms of radians:');

n=0:M;

h_LP=sin(wc*(n-M/2))./(pi*(n-M/2)); h_LP(ceil(M/2+1))=wc/pi;

```
subplot(211)
stem(n, h_LP)
axis([0 M min(h_LP) max(h_LP)])
title(['Impulse response of the ',num2str(M),...
'th order filter']);
subplot(212)
H_LP=fft(h_LP, 1024);
w=linspace(-pi, pi, 1024);
plot(w/pi, abs(fftshift(H_LP)))
title(['Frequency response of the windowed ', ...
num2str(M), 'th order filter']);
grid
axis([-1 1 0 max(abs(H_LP))])
```

Impulse response of the 20th order filter

$$0.4$$

 0.3
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.2
 0.4
 0.6
 0.8
 1

 $\frac{\omega_c}{n}$, $n = \frac{M}{2}$

 $h_{LP[n]} =$

EFFECT OF FILTER LENGTH

FIR FILTER DESIGN USING WINDOWS

➔ Here's what we want:

 \clubsuit Quick drop off \rightarrow Narrow transition band

• Narrow main lobe

Conflicting requirements

Increased stopband attenuation
 Reduce the height of the side-lobe which causes the ripples

Seduce Gibb's phenomenon (ringing effects, all ripples)

Solution Minimize the order of the filter.

Gibb's phenomenon can be reduced (but not eliminated) by using a *smoother window* that gently tapers off to zero, rather than the brick wall behavior of the rectangular filter.

- Several window functions are available, which usually trade-off main-lobe width and stopband attenuation.
 - Rectangular window has the narrowest main-lobe width, but poor side-lobe attenuation.
 - Tapered window causes the height of the sidelobes to diminish, with a corresponding increase in the main lobe width resulting in a wider transition at the cutoff frequency.

COMMONLY USED WINDOWS

1. Rectangular

Dlackman

$$w(n) = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

2. Bartlett

0

$$w(n) = 1 - \frac{2\left|n - \frac{M}{2}\right|}{M}$$

5. Blackman

$$w(n) = 0.42 - 0.5 \cos \frac{2\pi n}{M} + 0.08 \cos \frac{4\pi n}{M} \qquad \begin{array}{l} 0 < n < M \\ (length M+1) \\ In your text: \\ -M < n < M \\ (length 2M+1) \end{array}$$
5. Hann

$$w(n) = 0.54 - 0.46 \cos \frac{2\pi n}{M} \qquad (length 2M+1)$$
6. Kaiser

$$I_0 \left\{ \beta \sqrt{1 - \left(\frac{n - M/2}{M/2}\right)^2} \right\}$$

COMMONLY USED WINDOWS

Compare_windows.m

COMPARING WINDOWS

FIXED WINDOW FUNCTIONS

⇒ All windows shown so far are *fixed window* functions

Solution Magnitude spectrum of each window characterized by a main lobe centered at $\omega = 0$ followed by a series of sidelobes with decreasing amplitudes

Separameters predicting the performance of a window in filter design are:

- Main lobe width (Δ_{ML}) : the distance b/w nearest zero-crossings on both sides or transition bandwidth ($\Delta \omega = \omega_s \omega_p$)
- Relative sidelobe level (A_{sl}): difference in dB between the amp. of the largest sidelobe and the main lobe (or sidelobe attenuation (α_s))
- ✤ For a given window, both parameters all completely determined once the filter order *M* is set.

FIXED WINDOW FUNCTIONS

Windows	Mainlobe width	Sidelobe attenuation (dB)	Min. stopband Attenuation	Transition Bandwidth Δω
Rectangular	$4\pi/M$	-13	20.9	0.92π/(M/2)
Bartlett	$8\pi/M$	-27	See book	See book
Harning	$8\pi/M$	-32	43.9	3.11 π/(M/2)
Hamming	$8\pi/M$	-43	54.5	$3.32 \pi/(M/2)$
Blackman	$12\pi/M$	-58	75.3	5.56 π/(M/2)

➔ How to design:

- \clubsuit Set $\omega_c = (\omega_p + \omega_s)/2$
- Shoose window type based on the specified sidelobe attenuation (A_{sl}) or minimum stopband attenuation (α_s)
- Shoose *M* according to the transition band width ($\Delta \omega$) and/or mainlobe width (Δ_{ML}). Note that this is the only parameter that can be adjusted for fixed window functions. Once a window type and M is selected, so are A_{sl} , α_s , and Δ_{ML}
 - Ripple amplitudes cannot be custom designed.
- Adjustable windows have a parameter that can be varied to trade-off between main-lobe width and side-lobe attenuation.

The most popular adjustable window

$$w[n] = \frac{I_0 \left\{ \beta \sqrt{1 - (\frac{n - M/2}{M/2})^2} \right\}}{I_0(\beta)}, \quad 0 \le n \le M$$

where β is an adjustable parameter to trade-off between the main lobe width and sidelobe attenuation, and $I_0\{x\}$ is the modified zeroth-order Bessel function of the first kind:

$$I_0(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{(x/2)^k}{k!} \right]^2$$

In practice, this infinite series can be computed for a finite number of terms for a desired accuracy. In general, 20 terms is adequate.

$$I_0(x) \cong 1 + \sum_{k=1}^{20} \left[\frac{(x/2)^k}{k!} \right]^2$$

FIR Design Using Kaiser Window

Given the following:

- $\Rightarrow \omega_{p}$ passband edge frequency and ω_{s} stopband edge frequency
- $\beta_{\rm p}$ peak ripple value in the passband and $\delta_{\rm s}$ peak ripple value in the stopband

Calculate:

 $\alpha_s = -20\log_{10}(\delta_s) \text{ or } -20\log_{10}(\min\{\delta_s, \delta_p\})$ Minimum ripple in dB: 1. $\Delta \omega = \omega_s - \omega_p$ Normalized transition bandwidth: 2. $(0.1102(\alpha_s - 8.7)),$ $\alpha_{\rm s}$ >50 dB $\beta = \begin{cases} 0.5842(\alpha_s - 21)^{0.4} + 0.07886(\alpha_s - 21), & 21 \le \alpha_s \le 50 \, \text{dB} \\ 0, & \alpha_s \le 21 \, \text{dB} \end{cases}$ 3. Window parameters: $\frac{\alpha_s - 7.95}{2.285\Delta\omega} + 1, \\ 5.79$ Design specs for Kaiser window in , $\alpha_s > 21$ Filter length, M+1: 4. your book is different. This one, while M + 1 =may seem more complicated is actually easier to follow. $\alpha_{\rm s} < 21$ 5. Determine the corresponding Kaiser window $I_0 \{ \beta_1 | 1$ Obtain the filter by multipling 6. $0 \le n \le M$ w[n] =the ideal filter $h_{I}[n]$ with w[n]

Design an FIR filter with the following characteristics:

$$\begin{split} & \bigotimes_{p} = 0.3\pi \, \bigotimes_{s} = 0.5\pi, \, \delta_{s} = \delta_{p} = 0.01 \Rightarrow \alpha = 40 \text{dB}, \, \Delta \omega = 0.2\pi \\ & \beta = 0.5842 (\alpha_{s} - 21)^{0.4} + 0.07886 (\alpha_{s} - 21), \, 21 \le \alpha_{s} < 50 \\ & \beta = 0.5842 (19)^{0.4} + 0.07886 \times 19 = 3.3953 \\ & M + 1 = \frac{32.05}{2.285 (0.2\pi)} + 1 = 23.2886 \approx 24 \end{split}$$

$$h_{LP[n]} = \begin{cases} \frac{\sin(\omega_c (n - M/2))}{\pi (n - M/2)}, & 0 < n < M, & n \neq \frac{M}{2} \\ \frac{\omega_c}{\pi}, & n = \frac{M}{2} \end{cases} \quad h_{LP[n]} = \begin{cases} \frac{\sin(0.4\pi (n - 12))}{\pi (n - 12)}, & 0 < n < 23, & n \neq 12 \\ 0.4, & n = 12 \end{cases}$$
$$h_t[n] = h_{LP}[n] \cdot w[n], \quad -12 \le n \le 12 \end{cases}$$

COMPLETE CYCLE FOR FIR FILTER DESIGN USING WINDOWS

- Depending on your specs, determine what kind of window you would like to use.
 - Solution For all window types, except Kaiser, once you choose the window, the only other parameter to choose is filter length M.
 - For Kaiser window, determine M and beta, based on the specs using the given expressions.
- \bigcirc Compute the window coefficients w[n] for the chosen window.
- Compute filter coefficients (taps)
 - Determine the ideal impulse response h_I[n] from the given equations for the type of magnitude response you need (lowpass, highpass, etc.)
 - ✤ Multiply window and ideal filter coefficients to obtain the realizable filter coefficients (also called *taps* or *weights*): h[n]=h_I[n].w[n]
- Convolve your signal with the new filter coefficients y[n]=x[n]*h[n].

Demo: FIR window.m

In Matlab

- The following functions create *N*-point windows for the corresponding functions:
 - % rectwin(N)
 % bartlett(N)
 % hamming(N)
 % hanning(N)
 % blackman(N)
 % blackman(N)
- Try this: h=hamming(40); [H w]=freqz(h,1, 1024); plot(w, abs(H))
 Compare for various windows. Also plot gain in dB
- The function window window design and analysis tool provides a GUI to custom design several window functions.
- The function fdatool *filter design and analysis tool* provides a GUI to custom design several types of filters from the given specs.
- The function sptool signal processing tool, provides a GUI to custom design, view and apply to custom created signals. It also provides a GUI for spectral analysis.

WINDOW DESIGN & ANALYSIS TOOL

>> window

FILTER DESIGN & ÁNALYSIS TOOL

Digital Signal Processing, © 2007 Robi Polikar, Rowan University

IN MATLAB: fir1

fir1 FIR filter design using the window method.

b = fir1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the filter coefficients in length N+1 vector B. The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. The filter B is real and has linear phase. The normalized gain of the filter at Wn is -6 dB.

b = fir1(N,Wn,'high') designs an N'th order highpass filter. You can also use B = fir1(N,Wn,'low') to design a lowpass filter.

If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an order N bandpass filter with passband W1 < W < W2. You can also specify **b** = fir1(N,Wn,'bandpass'). If Wn = [W1 W2], **b** = fir1(N,Wn,'stop') will design a bandstop filter.

If Wn is a multi-element vector, Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N multiband filter with bands 0 < W < W1, W1 < W < W2, ..., WN < W < 1.

b = fir1(N,Wn,'DC-1') makes the first band a passband.

b = fir1(N,Wn,'DC-0') makes the first band a stopband.

b = fir1(N,Wn,WIN) designs an N-th order FIR filter using the N+1 length vector WIN to window the impulse response. If empty or omitted, FIR1 uses a Hamming window of length N+1. For a complete list of available windows, see the help for the WINDOW function. If using a Kaiser window, use the following b = fir1(N,Wn,kaiser(n+1,beta))