Section 5: Forecast Evaluation and Skill Scores

What is Forecast Evaluation ?

• Assessing the quality / error structure of forecasts by comparison to independent observations

Skill scores: Measures of forecast quality

"Forecasts"

• Weather Forecast

How accurate are temperature forecasts one day ahead?

• Simulations of Climate

Reproduce the distribution of mean summer precipitation in Europe?

• Spatial analysis

Estimate precipitation at a non-instrumented site from observations in the neighbourhood?

• Remote sensing, ...

Air Temperature [deg C] WWW.Meteoswiss.ch Mean: 16.1 Min/Max: 1.0/ 29.8 [deg C]

Observations

- Generic for "measure of reality"
- The chosen Reference
- In practice:
 - o In-situ measurements
 - Indirect estimates of "reality": re-analyses, remote sensing
- Important:
 - Role of observation errors for your evaluation?
 - Are observations and model independent?

wegc203116.uni-graz.at

www.euro4m.eu

Why Forecast Evaluation?

• Learn how to properly use / interpret forecast

- E.g. the issuing of a public flood warning depends on the frequency with which the forecast produces false alarms
- Learn how and where to improve forecast
 - E.g. by comparison of forecast quality for different model parametrizations
- Justify investments made into models, instruments
 - E.g. launching of new weather satellites depends on the expected improvement of weather forecasts (pay-back on investment)

ECMWF MR-Forecast

Anomaly correlation of 500 hPa Geopotential

ECMWF 2012

Forecasts

• Continuous:

o real value, e.g. temperature in Zürich

• Categorial:

• values in discrete classes (e.g. cold, normal or warm) or events (e.g. a tornado tomorrow).

• Deterministic:

o a single number, e.g. the expected temperature tomorrow

• Probabilistic:

- o probabilities, e.g. the prob. of rain tomorrow
- o expresses the degree of forecast uncertainty

- Deterministic categorial forecasts
- Deterministic continuous forecasts
- Probability forecasts
- Evaluation based on economic value

• Material based on:

- o Wilks 2005, Chap 7, (von Storch & Zwiers 1999, Chap 18)
- o Richardson 2000, Wilks 2001
- Web-Site of WWRP/WGNE WG Forecast Verification Research: http://www.cawcr.gov.au/projects/verification/

Section 5: Forecast Evaluation and Skill Scores

Deterministic Categorial Forecasts

Contingency Table

- Y = {yes, no}, e.g. events: tomorrow it will (will not) rain
- o simplest categorial case

• Contingency Table

Finley Tornado Forecasts 1884

U.S. Army forecasts of tornado occurrence east of the Rockies, based on synoptic information

ted		yes	no	
Tornados forecast	yes	28	72	100
	no	23	2680	2703
		51	2752	2803

Tornados Observed

Oldest known tornado photograph taken near Howard, South Dakota, on August 28th, 1884. Courtesty of NOAA Photo Library

www.photolib.noaa.gov

Galway 1985

Simple Scores

• Bias score:

 $B = \frac{a+b}{a+c} = \frac{\text{forecasted events}}{\text{observed events}}$

- B = 1 unbiased, B < 1 underforecast, B > 1 overforecast
- o depends on marginals only, does not measure 'correspondence'
- Probability of detection (hit rate):

 $POD = \frac{a}{a+c} = \frac{\text{hits}}{\text{observed events}}$

- Fraction of all observed events correctly forecasted
- o $0 \le POD \le 1$, best score: POD = 1, best score \neq perfect fcst
- Focus on events. No penalty for false alarms.

• False alarm ratio:

 $FAR = \frac{b}{a+b} = \frac{\text{false alarms}}{\text{forecasted events}}$

- Fraction of forecasted events that were false alarms
- $0 \le FAR \le 1$, best score: FAR = 0, best score \ne perfect fcst
- Probability of false detection (false alarm rate):

$$POFD = \frac{b}{b+d} = \frac{\text{false alarms}}{\text{non-events}}$$

- o Fraction of all non-events when forecast predicted an event
- **o** $0 \le POFD \le 1$, best score: POFD = 0, best score \neq perfect fc

Simple Scores

• Accuracy (fraction correct):

 $ACC = \frac{a+d}{N} = \frac{\text{correct forecasts}}{\text{all forecasts}}$

- Fraction of all forecasts that were correct
- o $0 \le ACC \le 1$, best score: ACC = 1, best score = perfect fcst
- Events and non-events treated symmetrically
- For rare events the score is dominated by non-events
- Finley tornado forecast:
 - *ACC* = (28+2680)/2803 = 0.96 (!)
 - But: *POD* = 28/51 = 0.54 and *FAR* = 0.72 (!)

Simple Scores

• Threat score (Critical Success Index):

$$TS = CSI = \frac{a}{a+b+c} = \frac{\text{hits}}{\text{all forecasted or observed events}}$$

- Fraction of all forecasted or observed events that were correct
- **o** $0 \le TS \le 1$, best score: TS = 1, best score = perfect fcst
- Asymmetric between events and non-events.
- Finley tornado forecast:
 - $TS = \frac{28}{28+72+23} = 0.23$

Limitations of Simple Scores

- How large is a "good" score?
- Best score not necessarily perfect forecast!
- Hedging ("Playing") a score:
 - Example: Modify Finley's Forecast --> constant forecast

Finley:	<i>ACC</i> = 0.96
Constant:	<i>ACC</i> = 0.98 (!)

Generic Form of a Skill Score

$$SS = \frac{A - A_{ref}}{A_{perf} - A_{ref}}$$

Aaccuracy score, e.g.
$$ACC$$
 or TS A_{ref} accuracy of reference forecast, e.g. random A_{perf} accuracy of perfect forecast

- SS = 1 perfect forecast
- SS > 0 skillful, better than reference
- SS < 0 less skillful than reference

Heidke Skill Score

... ACC as A and random forecast as reference

$$A = \left(\frac{a+d}{N}\right) \qquad A_{perf} = 1$$

$$\left(\left(a+b\right)\right) \left(\left(a+c\right)\right) \quad \left(\left(d+c\right)\right) \quad \left(\left(d+c\right)$$

$$A_{ref} = \left(\frac{\left(a+b\right)}{N}\right) \cdot \left(\frac{\left(a+c\right)}{N}\right) + \left(\frac{\left(d+c\right)}{N}\right) \cdot \left(\frac{\left(d+b\right)}{N}\right)$$

• Heidke Skill Score

$$HSS = \frac{ad - bc}{\left(\left(a + c\right) \cdot \left(c + d\right) + \left(a + b\right) \cdot \left(b + d\right)\right)/2}$$

$$-\infty < HSS \le 1$$
, $HSS \le 0$ no skill

HSS for Finley Forecast

• HSS

- o for Finley forecast: *HSS*=0.355
- o for constant forecast: *HSS*=0.0
- o note, ACC is large even for random forecast:

$$ACC_{random} = \left(\frac{28+72}{2803}\right) \cdot \left(\frac{28+23}{2803}\right) + \left(\frac{2680+23}{2803}\right) \cdot \left(\frac{2680+72}{2803}\right) = 0.947$$

• HSS (generic form of skill scores) compensates for high random ACC, when events are very rare.

Hanssen-Kuipers Discriminant

Similar to HSS but unbiased ACC in denominator

$$SS = \frac{ACC - ACC_{random}}{1 - ACC_{unbiased random}}$$
$$ACC_{unbiased random} = \frac{(a+c)^2 + (b+d)^2}{N^2}$$

Hanssen-Kuipers (also True Skill Statistic, Pierce Skill Score)

$$HK = \frac{ad - bc}{(a + c) \cdot (b + d)} = POD - POFD$$

- $-1 \le HK \le 1, HK \le 0$ no skill,
- for unbiased forecasts: HK = HSS
- HK(Finley) = 0.523, HK(constant) = 0.0

Example

Hanssen-Kuipers Score (in %) for daily precipitation occurrence (P>1 mm)

LokalModell: Operational NWP model of DWD in 2002, dx = 7 km)

Evaluation for all grid points in Germany for year 2002

Skill varies between seasons: E.g. 24h fcst in summer is less accurate than 48h fcst in winter.

U. Damrath (DWD)

Equitable Threat Score

d obs c a b fcst

- Equitable Threat Score (also Gilbert Skill Score)
 - Use TS (CSI) for A in generic form, random forecast as reference

$$ETS = \frac{a/(a+b+c) - a_{ref}/(a+b+c)}{1 - a_{ref}/(a+b+c)} = \frac{a - a_{ref}}{a - a_{ref}+b+c}$$

$$a_{ref} = (a+c) \cdot (a+b) / N$$

- o $-1/3 \le ETS \le 1$, $ETS \le 0$ no skill,
- ETS(Finley) = 0.216, ETS(constant) = 0
- Unlike with *HSS* and *HK*, with *ETS* focus is on events only

Skill Scores Differ ...

• ... in the relative importance of systematic and random errors

• E.g. artificially biasing a forecast decreases *HK* linearly but less than linearly for *HSS*

• ... in the relative role of events and non-events

• *ETS* values only events <--> *HSS*, *HK* value both

• ... in their behaviour for rare events

• Most skill scores tend to approach 0 for more and more rare events

• There is no single best recommendation!

Uncertainty in Scores

- You' ve got 30 event forecasts. You obtain HSS=0.2. Not too bad but ...
- ... what is the probability that such a score is obtained by chance?

Further Remarks

• Sampling uncertainty

- Accuracy of skill scores decreases with sample size
- Scores for forecasts of very rare events may be difficult to determine accurately.
- Use resampling methods to quantify skill uncertainty.

• Multi-category skill scores:

- o 2x2 Table --> *k*x*k* Table
- Extend classical scores to multi-category case.
- E.g. *ACC* is sum of diagonal table elements divided by total forecasts.
- Ordered multi-category case: introduce weights to penalize for elements more far off the diagonal. (Gerrity 1992, see Wilks p. 274)

Section 5: Forecast Evaluation and Skill Scores

Deterministic Continuous Forecasts

Notation

• Sample, forecast-observation pairs (real valued)

$$\{y_i, o_i\}, \quad i=1..N$$

• Sample means

$$\overline{y} = \frac{1}{N} \sum_{i} y_{i}, \quad \overline{o} = \frac{1}{N} \sum_{i} o_{i}$$

• Sample variance

$$s_{y}^{2} = \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2}, \quad s_{o}^{2} = \frac{1}{N} \sum_{i} (o_{i} - \overline{o})^{2}$$

Example Data

Charles Doswell

- 24-h forecasts of T-max Oklahoma City
- Comparison of:
 - o NWS: Human forecast
 - NGM, LFM: Numerical model forecasts with MOS
 - PER: Persistence forecast
- Here
 - o 2 summers (1993/4, N=182)

Brooks & Doswell 1996

Simple Error Scores

• Bias (mean error, systematic error):

o additive, multiplicative

$$B_{add} = \overline{y} - \overline{o}, \quad B_{mult} = \overline{y} / \overline{o}$$

- Mean absolute error:
 - o Mean of absolute deviations from obs

$$MAE = \frac{1}{N} \sum_{i} \left| y_i - o_i \right|$$

• Mean squared error (MSE), root MSE (RMSE):

$$MSE = \frac{1}{N} \sum_{i} (y_i - o_i)^2, \quad RMSE = \sqrt{MSE}$$

- o Sensitive to outliers, dominated by large deviations
- o Favors forecasts avoiding large deviations from the mean

Simple Error Scores

• Root means squared fraction (RMSF):

$$RMSF = \exp\left(\sqrt{\frac{1}{N}\sum_{i}\left[\log\left(\frac{y_{i}}{o_{i}}\right)\right]^{2}}\right)$$

- similar to RMSE but for multiplicative errors
- "average multiplicative error"
- meaningful for rainfall, wind speed, visibility, ... (>0 !)
- o *log* insures that multiplicative under- / overestimates are equally penalized.
- perfect forecast: RMSF = 1

Golding 1998

Correlation Skill Score

• Linear correlation coeff.

$$\rho = \frac{\frac{1}{N} \sum_{i}^{N} (y_i - \overline{y}) \cdot (o_i - \overline{o})}{s_y \cdot s_o}$$

- o $-1 \le \rho \le 1$, $\rho = 1$ best score
- A measure of random error (scatter around best fit)
- Insensitive to biases and errors in variance
- o ρ^2 : fraction of variance in obs explained by "best" linear model
- o ρ measures potential skill (see also later)

Linear Regression:

$$o_i = \beta \cdot y_i + a + \varepsilon_i$$

Conditional Bias

• Linear regression slope

$$\beta = \frac{s_o}{s_y} \cdot \rho$$

- β = 1 best score
- Deviations of β from 1 measure conditional bias
- o β > 1: Large (small) values tend to be under- (over-) estimated (unless compensated by absolute bias).
- β is a function of correlation and fraction of variances

Linear Regression:

$$o_i = \beta \cdot y_i + a + \varepsilon_i$$

Decomposition of RMSE

• RMSE' (debiased RMSE)

• Geometric interpretation (cosine triangle theorem):

$$\cos \kappa = \rho \frac{s_y / s_o}{\kappa - 1} \frac{RMSE' / s_o}{\kappa - 1}$$

Taylor 2001

Derivation

$$RMSE^{2} = \frac{1}{N} \sum (y_{i} - o_{i})^{2} = \frac{1}{N} \sum ((y_{i} - \overline{y}) - (o_{i} - \overline{o}) + (\overline{y} - \overline{o}))^{2}$$
$$= \frac{1}{N} \sum ((y_{i} - \overline{y}) - (o_{i} - \overline{o}))^{2} + \frac{1}{N} \sum (\overline{y} - \overline{o})^{2}$$
$$= s_{y}^{2} + s_{o}^{2} - 2s_{y}s_{o}\rho + B^{2}$$

$$RMSE^2 - B^2 = s_y^2 + s_o^2 - 2s_y s_o \rho$$

Taylor Diagram

- Visualisation of forecast performance by three related scores in one graph.
- Ideal for:
 - Comparing several forecast models,
 - Comparing to a reference forecast
 - Comparing to several observation datasets.
 - Assessing skill uncertainty e.g. by ensembles.

Oklahoma JJA Daily Max. Temperatures

Taylor 2001

Taylor Diagram

- Visualisation of forecast performance by three related scores in one graph.
- Ideal for:
 - Comparing several forecast models,
 - Comparing to a reference forecast
 - Comparing to several observation datasets.
 - Assessing skill uncertainty e.g. by ensembles.

Oklahoma JJA Daily Max. Temperatures

NWS: human forecaster NGM, LFM: numerical models PER: persistence forecast

Taylor 2001

Quiz

 How will the points change with another obs. reference?

Reduction of Variance

$$SS = \frac{MSE - MSE_{clim}}{MSE_{perfect} - MSE_{clim}} = 1 - \frac{MSE}{MSE_{clim}} = 1 - \frac{\frac{1}{N}\sum(y_i - o_i)^2}{s_o^2}$$

- o also called *Brier score* or *Nash-Sutcliffe Efficiency* (Hydrology)
- generic form of skill score with *A*=*MSE* and climatological forecast as reference.
- value range: $-\infty < SS \le 1$
- perfect forecast: SS = 1
- climatology forecast: SS = 0
- random forecast with same variance and mean like observations: SS = -1
- o sensitive to biases and errors in variance
- Always: $SS \le \rho^2$ (see later)
- Oklahoma Temperature Forecast (NGM): SS = 0.607 ($\rho^2 = 0.77$)

Murphy-Epstein Decomposition

• Decomposition of SS (Reduction of Variance)

Analysis of Climate and Weather Data | Forecast Evaluation and Skill Scores | HS 2013 | christoph.frei [at] meteoswiss.ch 42

Murphy-Epstein Decomposition

• Implications

- $SS = \rho^2$ only for absolute and conditionally unbiased forecasts. I.e. ρ^2 is a measure of potential skill.
- A non-perfect forcast ($\rho^2 < 1$) can only be conditionally unbiased if $s_y < s_o$, i.e. if variance is underestimated.
- Conditional bias can be minimized by setting $s_y/s_o = \rho$, i.e. *SS* can be "played"!
- Among forecasts with the same ρ and the same absolute bias, *SS* (and *RMSE*) favors those with small conditional bias, i.e. too smooth forecasts.
- Forecasts with "good variance" are generally handicaped.

Oklahoma Temperatures

Model	$ ho^2$	(Conditional bias)^2	(Absolute bias)^2	SS			
NWS	0.824	0.002	0.000	0.822	human forecast		
NGM	0.771	0.026	0.138	0.607			
LFM	0.750	0.002	0.000	0.748			
PER	0.382	0.141	0.000	0.241	persistence forecast		
β <1, because $s_y = s_o$							

- Correlation is a measure of potential skill only.
- A thorough assessment of forecast quality requires consideration of several skill scores.
- Frequently used scores favor *smooth* forecasts. It is difficult to demonstrate skill of high variability forecasts.
- Use creative graphics (such as the Taylor diagram) to visualize several skill measures.