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Section 5: 
Forecast Evaluation and  
Skill Scores 
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What is Forecast Evaluation ? 
•  Assessing the quality / error structure of forecasts by  

comparison to independent observations 

Input / 
Conditions 

Model 

Forecast: 
Statement  

about Reality 

Reality / 
Observations 

Skill scores:  
Measures of forecast quality 
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“Forecasts”  
•  Weather Forecast 

How accurate are temperature 
forecasts one day ahead? 

•  Simulations of Climate 
Reproduce the distribution  
of mean summer precipitation in 
Europe? 

•  Spatial analysis 
Estimate precipitation at a  
non-instrumented site from 
observations in the neighbourhood? 

•  Remote sensing, … 

Räisänen et al. 2004 

Obs Model 

www.meteoswiss.ch 
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Observations 
•  Generic for “measure of 

reality” 

•  The chosen Reference 

•  In practice: 
  In-situ measurements 
  Indirect estimates of “reality”:  

re-analyses, remote sensing 

•  Important: 
  Role of observation errors for 

your evaluation? 
  Are observations and model 

independent? 

wegc203116.uni-graz.at 

www.euro4m.eu 
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Why Forecast Evaluation? 
•  Learn how to properly use / interpret forecast 

  E.g. the issuing of a public flood warning depends on the frequency with 
which the forecast produces false alarms 

•  Learn how and where to improve forecast 
  E.g. by comparison of forecast quality for different model parametrizations 

•  Justify investments made into models, instruments 
  E.g. launching of new weather satellites depends on the expected 

improvement of weather forecasts (pay-back on investment) 
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ECMWF MR-Forecast 
Anomaly correlation of 500 hPa Geopotential 

ECMWF 2012 
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Forecasts 
•  Continuous:  

  real value, e.g. temperature in Zürich 

•  Categorial:  
  values in discrete classes (e.g. cold, normal or warm)  

or events (e.g. a tornado tomorrow). 

•  Deterministic:  
  a single number, e.g. the expected temperature tomorrow 

•  Probabilistic: 
  probabilities, e.g. the prob. of rain tomorrow 
  expresses the degree of forecast uncertainty 

Ty
pe

 
N
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ur

e 
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Outline 
•  Deterministic categorial forecasts 

•  Deterministic continuous forecasts 

•  Probability forecasts 

•  Evaluation based on economic value 

•  Material based on: 
  Wilks 2005, Chap 7, (von Storch & Zwiers 1999, Chap 18) 
  Richardson 2000, Wilks 2001 
  Web-Site of WWRP/WGNE WG Forecast Verification Research:

http://www.cawcr.gov.au/projects/verification/ 
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Deterministic Categorial Forecasts 

Section 5: Forecast Evaluation and Skill Scores 
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yes no 

yes 
a 

hits 

b 
false alarms	



a+b 

yes fcsts 

no 
c  

misses  

d 
correct rejects 

c+d 
no fcsts 

a+c 
yes obs 

b+d 
no obs 

N 
total fcsts 

Contingency Table 
•  Binary Forecasts 

  Y = {yes, no}, e.g. events: tomorrow it will (will not) rain 
  simplest categorial case 

•  Contingency Table 
  Distribution (Y,O)	

 Observation 
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Marginal of Obs 
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a	


c	



b	



obs. evts 

fcst. evts 
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Finley Tornado Forecasts 1884 

yes no 

yes 28 72	

 100 

no 23  2680 2703 

51 2752 2803 

Tornados Observed 

To
rn

ad
os

 fo
re
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ed
 

U.S. Army forecasts of tornado occurrence  
east of the Rockies, based on synoptic information 

www.photolib.noaa.gov 

Galway 1985 
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Simple Scores 
•  Bias score: 

   B = 1 unbiased, B < 1 underforecast, B > 1 overforecast 
  depends on marginals only, does not measure ‘correspondence’ 

•  Probability of detection (hit rate): 

  Fraction of all observed events correctly forecasted 
   0 ≤ POD ≤ 1, best score: POD = 1, best score ≠ perfect fcst 
  Focus on events. No penalty for false alarms. 

d	



a	



c	



b	



obs 

fcst 

B = a+ b
a+ c

=
forecasted events
observed events

POD =
a

a+ c
=

hits
observed events
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Simple Scores 
•  False alarm ratio: 

  Fraction of forecasted events that were false alarms 
   0 ≤ FAR ≤ 1, best score: FAR = 0, best score ≠ perfect fcst  

•  Probability of false detection (false alarm rate): 

  Fraction of all non-events when forecast predicted an event 
   0 ≤ POFD ≤ 1, best score: POFD = 0 , best score ≠ perfect fc 

FAR = b
a+ b

=
false alarms

forecasted events

POFD =
b

b+ d
=

false alarms
non-events

d	



a	



c	



b	



obs 

fcst 
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Simple Scores 
•  Accuracy (fraction correct): 

  Fraction of all forecasts that were correct  
   0 ≤ ACC ≤ 1, best score: ACC = 1, best score = perfect fcst  
  Events and non-events treated symmetrically 
  For rare events the score is dominated by non-events 
 
  Finley tornado forecast: 

•   ACC = (28+2680)/2803 = 0.96 (!) 
•  But: POD = 28/51 = 0.54 and FAR = 0.72 (!) 

ACC = a+ d
N

=
correct forecasts

all forecasts

d	



a	



c	



b	



obs 

fcst 
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Simple Scores 
•  Threat score (Critical Success Index): 

  Fraction of all forecasted or observed events that were correct  
   0 ≤ TS ≤ 1, best score: TS = 1, best score = perfect fcst  
  Asymmetric between events and non-events. 

  Finley tornado forecast: 
•   TS = 28/(28+72+23) = 0.23 

TS =CSI = a
a+ b+ c

=
hits

all forecasted or observed events

d	



a	



c	



b	



obs 

fcst 
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Limitations of Simple Scores 
•  How large is a “good” score?  

•  Best score not necessarily perfect forecast! 

•  Hedging (“Playing”) a score: 
  Example: Modify Finley’s Forecast --> constant forecast 

yes no 

yes 28  0 72  0	



no 23  51  2680  2752 

Observed 

Fo
re

ca
st

ed
 

Finley:  ACC = 0.96 
Constant:  ACC = 0.98 (!) 
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Generic Form of a Skill Score 

SS =
A! Aref
Aperf ! Aref

A  accuracy score, e.g. ACC or TS 
Aref  accuracy of reference forecast, e.g. random 
Aperf  accuracy of perfect forecast 

SS = 1  perfect forecast 
SS > 0  skillful, better than reference 
SS < 0  less skillful than reference 
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Heidke Skill Score 
•  Generic Score with … 

… ACC as A and random forecast as reference 

•  Heidke Skill Score 

Aperf =1A = a+ d
N
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HSS = ad ! bc
a+ c( ) " c+ d( )+ a+ b( ) " b+ d( )( ) 2

!" < HSS #1, HSS # 0  no skill

d	
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c	



b	



obs 

fcst 
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HSS for Finley Forecast 
•  HSS 

  for Finley forecast:   HSS=0.355 
  for constant forecast:  HSS=0.0 

  note, ACC is large even for random forecast: 

•  HSS (generic form of skill scores) compensates for high random 
ACC, when events are very rare. 
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Hanssen-Kuipers Discriminant 
•  Similar to HSS but unbiased ACC in denominator 

•  Hanssen-Kuipers (also True Skill Statistic, Pierce Skill Score) 

   –1 ≤ HK ≤ 1, HK  ≤ 0 no skill, 
  for unbiased forecasts: HK = HSS	


   HK(Finley) = 0.523, HK(constant) = 0.0	



HK =
ad ! bc

a+ c( ) " b+ d( )
= POD!POFD

SS = ACC ! ACCrandom

1! ACCunbiased random

ACCunbiased random =
a+ c( )2 + b+ d( )2

N 2

d	



a	



c	



b	



obs 

fcst 
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24h forecast 
48h forecast 

U. Damrath (DWD) 

Example 

LokalModell: Operational 
NWP model of DWD in 
2002, dx = 7 km) 

 
Evaluation for all grid points in 

Germany for year 2002 
 
Skill varies between seasons: 

E.g. 24h fcst in summer is 
less accurate than 48h 
fcst in winter. 

Hanssen-Kuipers Score (in %) 
for daily precipitation occurrence (P>1 mm) 
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Equitable Threat Score 
•  Equitable Threat Score (also Gilbert Skill Score) 

  Use TS (CSI) for A in generic form, random forecast as reference 

   –1/3 ≤ ETS ≤ 1, ETS ≤ 0 no skill, 
   ETS(Finley) = 0.216, ETS(constant) = 0	


  Unlike with HSS and HK, with ETS focus is on events only 

ETS =
a a+ b+ c( )! aref a+ b+ c( )

1! aref a+ b+ c( )
=

a! aref
a! aref + b+ c

aref = a+ c( ) ! a+ b( ) N

d	



a	



c	



b	



obs 

fcst 
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Skill Scores Differ … 
•  … in the relative importance of systematic and random errors 

  E.g. artificially biasing a forecast decreases HK linearly  
but less than linearly for HSS	



•  … in the relative role of events and non-events  
  ETS values only events <--> HSS, HK value both 

•  … in their behaviour for rare events 
  Most skill scores tend to approach 0 for more and more rare events 

•  There is no single best recommendation! 
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Uncertainty in Scores 
•  You’ve got 30 event forecasts. 

You obtain HSS=0.2.  
Not too bad but … 

•  … what is the probability that 
such a score is obtained by 
chance? 
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Further Remarks 
•  Sampling uncertainty 

  Accuracy of skill scores decreases with sample size 
  Scores for forecasts of very rare events may be difficult to determine accurately. 
  Use resampling methods to quantify skill uncertainty. 

•  Multi-category skill scores: 
  2x2 Table --> kxk Table 
  Extend classical scores to multi-category case.  
  E.g. ACC is sum of diagonal table elements divided by total forecasts. 
  Ordered multi-category case: introduce weights to penalize for elements more 

far off the diagonal. (Gerrity 1992, see Wilks p. 274) 
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Deterministic Continuous Forecasts 

Section 5: Forecast Evaluation and Skill Scores 
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Notation 
•  Sample, forecast-observation pairs (real valued) 

•  Sample means 

•  Sample variance 

yi,oi{ }, i =1..N

y = 1
N

yi
i
! , o = 1

N
oi

i
!

sy
2 =

1
N

yi ! y( )
i
"

2
, so

2 =
1
N

oi !o( )2
i
"
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Example Data 

•  24-h forecasts of T-max 
Oklahoma City 

•  Comparison of: 
  NWS: Human forecast 
  NGM, LFM: Numerical model 

forecasts with MOS 
  PER: Persistence forecast 

•  Here 
  2 summers (1993/4, N=182) 

Charles Doswell 

Brooks & Doswell 1996 
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Simple Error Scores 
•  Bias (mean error, systematic error): 

  additive, multiplicative 

•  Mean absolute error: 
  Mean of absolute deviations from obs 

•  Mean squared error (MSE), root MSE (RMSE): 

  Sensitive to outliers, dominated by large deviations 
  Favors forecasts avoiding large deviations from the mean 

Badd = y !o, Bmult = y o

MSE = 1
N

yi !oi( )2 , RMSE = MSE
i
"

MAE = 1
N

yi !oi
i
"

0 !
MAE
MSE
RMSE

"

#
$

%
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&

'
$

(
$
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Simple Error Scores 
•  Root means squared fraction (RMSF): 

  similar to RMSE but for multiplicative errors 
  “average multiplicative error” 
  meaningful for rainfall, wind speed, visibility, … (>0 !) 
  log insures that multiplicative under- / overestimates are equally penalized. 
  perfect forecast: RMSF = 1 

RMSF = exp 1
N

log yi
oi

!

"
#

$

%
&

'

(
)

*

+
,

2

i
-

!

"

#
##

$

%

&
&&

Golding 1998 
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Correlation Skill Score 
•  Linear correlation coeff. 

  –1 ≤ ρ ≤ 1, ρ = 1 best score   
  A measure of random error 

(scatter around best fit)  
  Insensitive to biases and errors 

in variance 
   ρ2: fraction of variance in obs 

explained by “best” linear 
model 

   ρ measures potential skill (see 
also later) 

! =

1
N

yi ! y( ) " oi !o( )
i

N

#
sy " so

Linear Regression:	



Data: Brooks&Doswell 1996 

1:1 

best linear regression fit 

NGM	



ρ=0.88 

oi = ! ! yi + a+"i
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Conditional Bias 
•  Linear regression slope 

   β = 1 best score   
  Deviations of β from 1 measure 

conditional bias 
   β > 1: Large (small) values 

tend to be under- (over-) 
estimated (unless compen-
sated by absolute bias). 

   β is a function of correlation 
and fraction of variances 

! =
so
sy
!"

Data: Brooks&Doswell 1996 

1:1 

best fit 

NGM	



ρ=0.88 
 

β=1.23 

Linear Regression:	



oi = ! ! yi + a+"i
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Decomposition of RMSE 
•  RMSE’ (debiased RMSE) 

 

•  Geometric interpretation (cosine triangle theorem): 

RMSE 2 = y !o( )2 + sy2 + so2 ! 2syso!

Taylor 2001 

relative error  
in variance 

degree of  
correspondence 

!
RMS "E 2

so
2 =

RMSE 2 #B2

so
2 =1+

sy
2

so
2 # 2

sy
so
!

1	


RMSE’ / so 

sy / so	



κ	


cos κ = ρ	
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Derivation 

RMSE 2 =
1
N

yi !oi( )2" =
1
N

yi ! y( ) ! oi !o( )+ y !o( )( )
2"

=
1
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1
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y !o( )2"
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RMSE 2 !B2 = sy
2 + so

2 ! 2syso!
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Taylor Diagram 
•  Visualisation of forecast 

performance by three related 
scores in one graph. 

•  Ideal for: 
  Comparing several forecast 

models,  
  Comparing to a reference 

forecast 
  Comparing to several 

observation datasets. 
  Assessing skill uncertainty e.g. 

by ensembles.  

Taylor 2001 

RMSE’ / so sy / so	



κ=arccos ρ	



ρ	
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NWS: human forecaster 
NGM, LFM: numerical models 
PER: persistence forecast 

Taylor Diagram 
•  Visualisation of forecast 

performance by three related 
scores in one graph. 

•  Ideal for: 
  Comparing several forecast 

models,  
  Comparing to a reference 

forecast 
  Comparing to several 

observation datasets. 
  Assessing skill uncertainty e.g. 

by ensembles.  

Taylor 2001 
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Quiz 
•  How will the points change 

with another obs. reference? 

Indian Monsoon in 
global climate models 

(AMIP Models) 
(from Taylor 2001) 
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Reduction of Variance 

  also called Brier score or Nash-Sutcliffe Efficiency (Hydrology) 
  generic form of skill score with A=MSE and climatological forecast as 

reference. 
  value range: 
  perfect forecast: SS = 1	


  climatology forecast: SS = 0	


  random forecast with same variance and mean like observations: SS = –1	


  sensitive to biases and errors in variance 
  Always: SS ≤ ρ2 (see later) 
  Oklahoma Temperature Forecast (NGM): SS = 0.607 (ρ2 = 0.77) 

SS = MSE !MSEclim

MSEperfect !MSEclim

=1! MSE
MSEclim

=1!

1
N

yi !oi( )2"
so
2

!" < SS #1
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Murphy-Epstein Decomposition 
•  Decomposition of SS (Reduction of Variance) 

MSE
MSEclim

=
RMSE 2
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linear correspondence 
“maximum explained variance” 

penalty for  
absolute bias 

penalty for  
conditional bias 

Murphy & Epstein 1989 

(see previously 
Taylor diagram) 
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Murphy-Epstein Decomposition 
•  Implications 

   SS = ρ2 only for absolute and conditionally unbiased forecasts. I.e. ρ2 is a 
measure of potential skill. 

  A non-perfect forcast (ρ2 < 1) can only be conditionally unbiased if sy < so ,  
i.e. if variance is underestimated. 

  Conditional bias can be minimized by setting sy/so = ρ,  
i.e. SS can be “played”! 

  Among forecasts with the same ρ and the same absolute bias, SS (and 
RMSE) favors those with small conditional bias, i.e. too smooth forecasts.  

  Forecasts with “good variance” are generally handicaped.  
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Oklahoma Temperatures 

Model ρ2 (Conditional 
bias)^2 

(Absolute 
bias)^2 SS	



NWS 0.824 0.002 0.000 0.822 

NGM 0.771 0.026 0.138 0.607 

LFM 0.750 0.002 0.000 0.748 

PER 0.382 0.141 0.000 0.241 persistence 
forecast 

human 
forecast 

β<1, because sy=so 	
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Summary 
•  Correlation is a measure of potential skill only. 

•  A thorough assessment of forecast quality requires consideration of 
several skill scores.  

•  Frequently used scores favor smooth forecasts. It is difficult to 
demonstrate skill of high variability forecasts. 

•  Use creative graphics (such as the Taylor diagram) to visualize 
several skill measures. 


