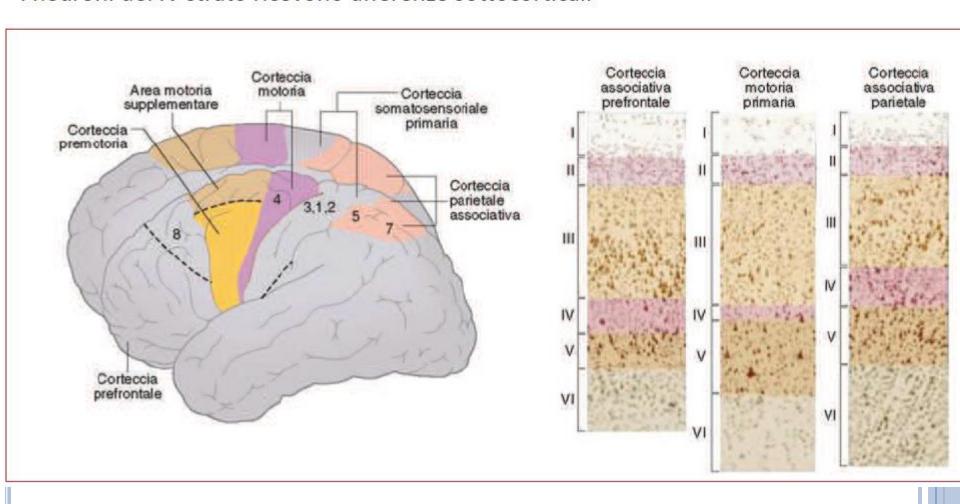


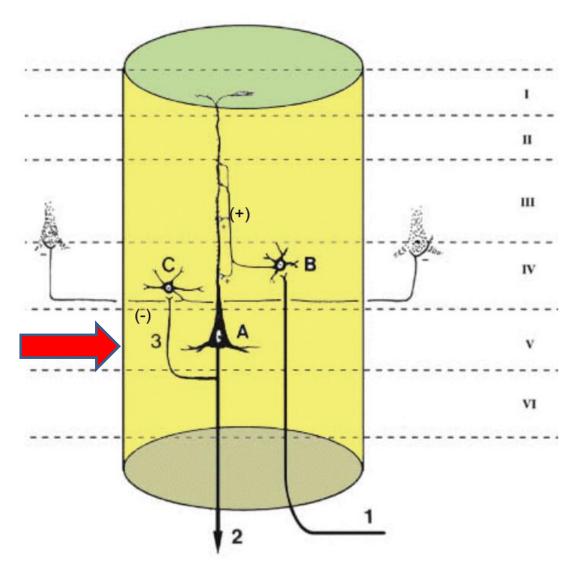
LE PATOLOGIE DEL PRIMO E SECONDO MOTONEURONE

IL SISTEMA NERVOSO MOTORIO

- SISTEMA PIRAMIDALE: catena bineuronica con Primo motoneurone corticale e secondo motoneurone tronco-midollare che raggiunge le fibre scheletriche. Effettore diretto dei comandi motori.
- SISTEMA EXTRAPIRAMIDALE: Ha la funzione di trasmettere programmi motori ai motoneuroni inferiori e autocontrollare le attività motrici stesse. Comprende nuclei della base, nuclei specifici del talamo, nucleo rosso del mesencefalo, nucleo olivare inferiore bulbare.



- Informazione sensoriale in ingresso.
- Programmazione e decisione.
- 3 Coordinazione e temporizzazione: informazioni verso e dal cervelletto.
- Esecuzione: via corticospinale verso i motoneuroni.
- 5 Esecuzione: influenza extrapiramidale su postura equilibrio e locomozione.
- Feedback sensoriale continuo.


corteccia motoria primaria: neuroni piramidali di Betz (V strato) e assenza di neuroni tipic del IV strato, corteccia agranulare

corteccia premotoria (area 6): neuroni piramidali medi del V strato e pochi neuroni del IV strato, corteccia disgranulare

dai neuroni del V strato originano proiezioni spinali (via cortico-spinale) i neuroni del IV strato ricevono afferenze sottocorticali

Organizzazione colonnare della neocorteccia

- A. neurone piramidale
- B. cellula eccitatoria
- C. cellula inibitoria
- I. fibra afferente
- 2. fibra efferente
- 3. fibra corticotalamica

All'interno di una colonna i neuroni piramidali si eccitano reciprocamente determinando un'attivazione globale della colonna stessa.

Ogni colonna eccita debolmente le colonne limitrofe e inibisce quelle più distanti tramite interneuroni inibitori.

Rappresentazione Topografica della **Corteccia Motoria Primaria**

Caviglia-

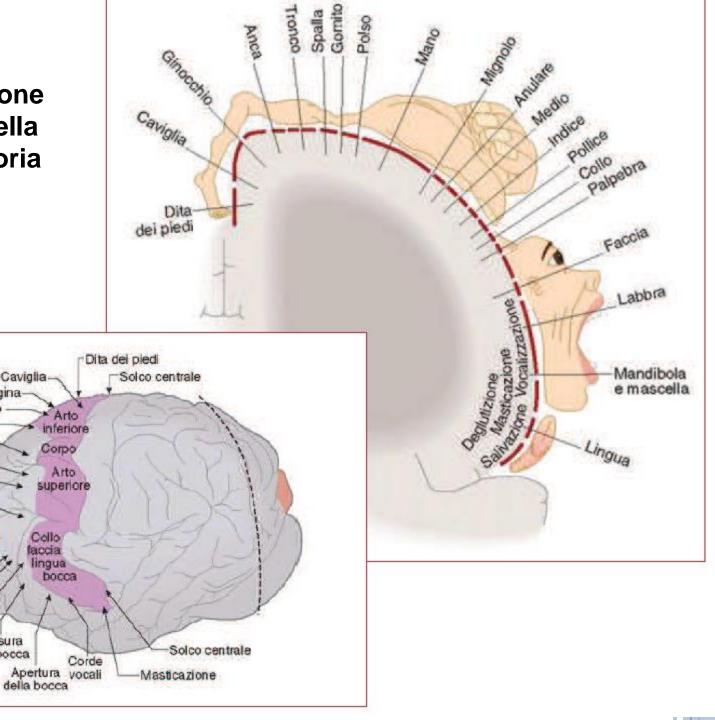
Collo

Ano e vagina-Ginocchio

Anca

Occhi

Chiusura

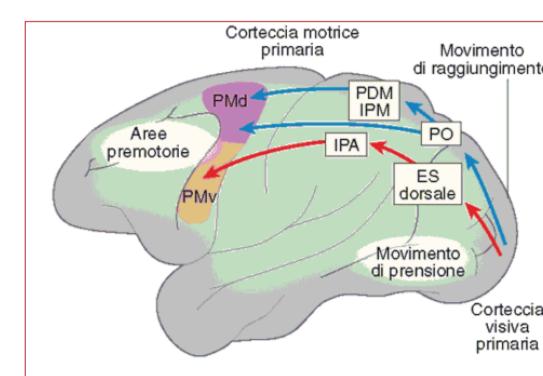

della bocca

Spalla

Gomito Polso-

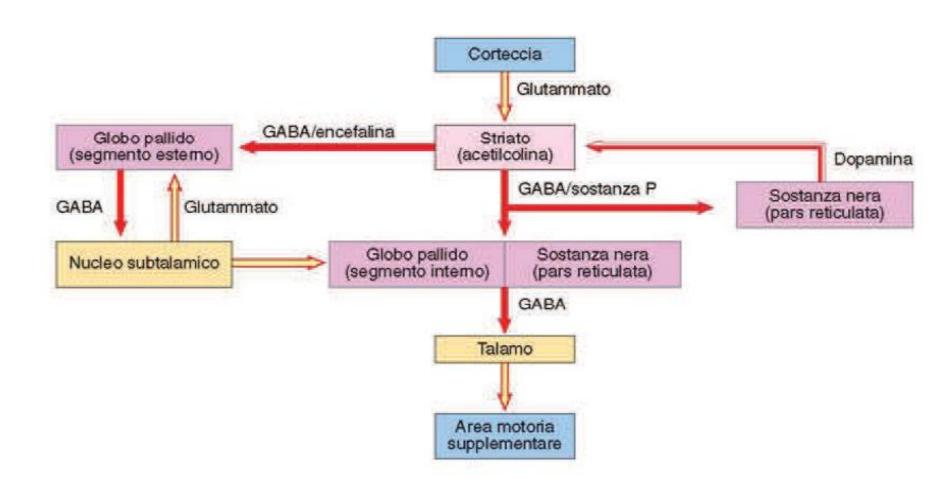
Dita delle mani e pollice

> Orecchio Palpebra


corteccia motoria primaria

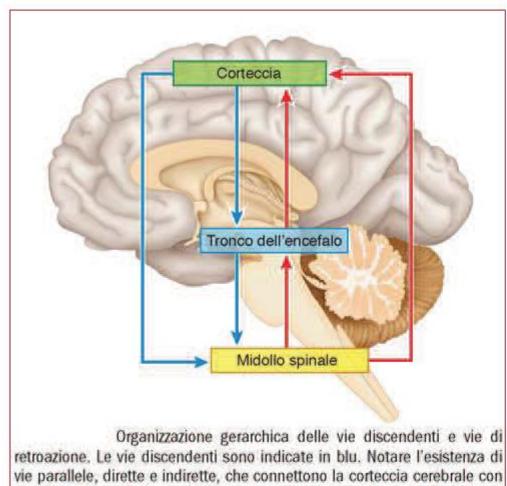
elaborazione del programma motorio ed esecuzione codificazione della forza codificazione della direzione

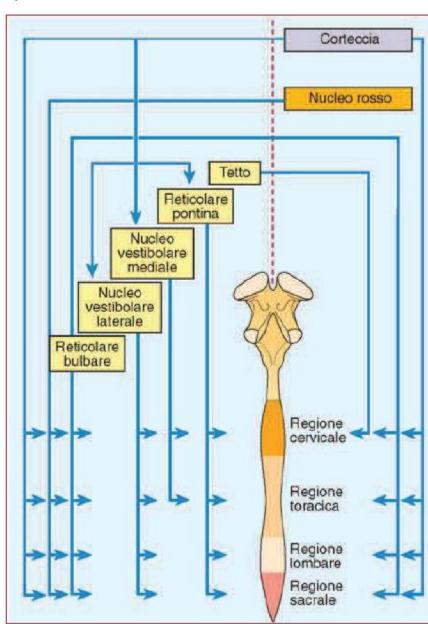
corteccia premotoria e motoria supplementare


partecipazione alla programmazione della direzione motoria, ma trasferimento delle informazioni alla corteccia motoria primaria partecipazione a programma motorio specifico programma mentale per la ripetizione del movimento

circuiti parieto-motori

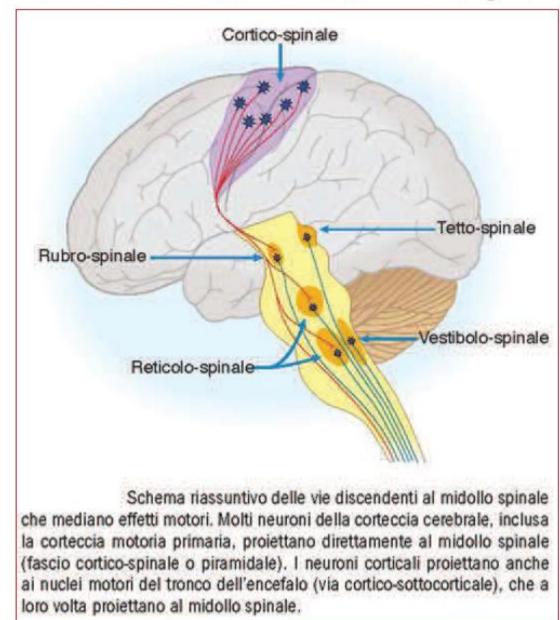
Circuiti parieto-premotori. Nel movimento di raggiui mento l'area parieto-occipitale 5 (PO) stimola l'area premotoria dors (PMd) sia direttamente che indirettamente, tramite due aree del so intraparietale: l'area parietale dorsale mediale (PDM) e intrapariet mediale (IPM). Nel movimento di prensione neuroni dell'area extrastri dorsale (ES) della corteccia parietale stimolano all'area premotoria v trale (PMv) indirettamente, tramite l'area intraparietale anteriore (IPA).


Il programma motorio è frutto di un network in cui intervengono diverse aree motorie e sensitive


La programmazione del comando motorio avviene all'interno di un network in cui intervengono diversi mediatori eccitatori e inibitori

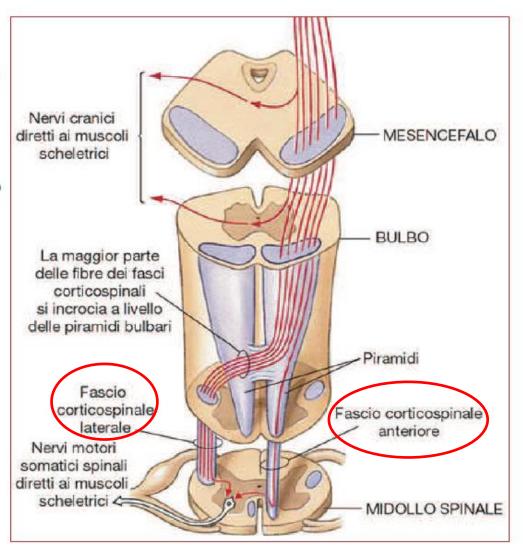
vie discendenti motorie

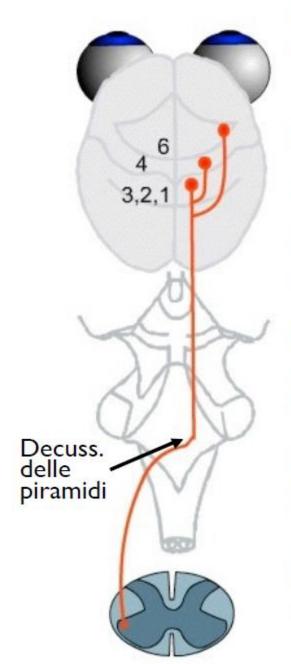
organizzazione gerarchica, in parallelo, ridondanza, vie di retroazione



il midollo spinale. Le vie di retroazione sono indicate in rosso. Queste vie servono ad informare i centri gerarchicamente superiori sul livello funzionale dei centri inferiori.

vie discendenti dalla corteccia cerebrale: via cortico-sottocorticale


consente alla corteccia di coordinare le attività sottocorticali sinergiche ai comandi moto


vie discendenti dalla corteccia cerebrale: via cortico-spinale (piramidale)

movimento fine e volontario, massimo sviluppo nei primati nell'uomo, ca. un milione di fibre per lato 30% corteccia motoria primaria (area 4), 30% area premotoria e motoria supplementare (area 6), 40% aree somestesiche (aree 1, 2, 3a, 3b)

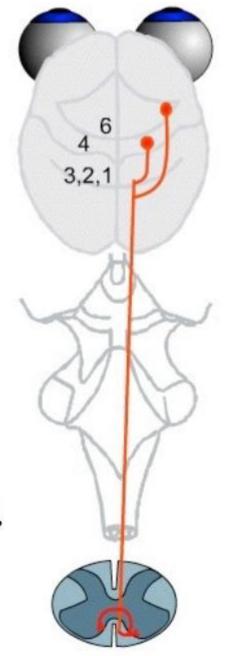
neuroni piramidali giganti (di Betz, area 4) e neuroni piramidali delle altre aree fibre veloci mieliniche (2/3%), fibre lente mieliniche e non (più del 90%) organizzazione somatotopica piramidi bulbari via laterale crociata (ca. 80%) via ventrale diretta

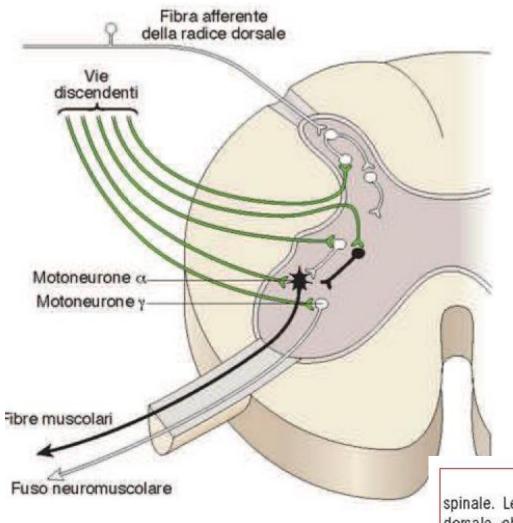
Cortico-spinale dorsolaterale (crociato)

Possiede il 70-90% delle fibre, che originano: 1/3 dalla corteccia premotoria 1/3 dalla corteccia motoria primaria 1/3 dalla corteccia

Si incrocia alla decussazione delle piramidi (bulbo).

somatosensoriale.

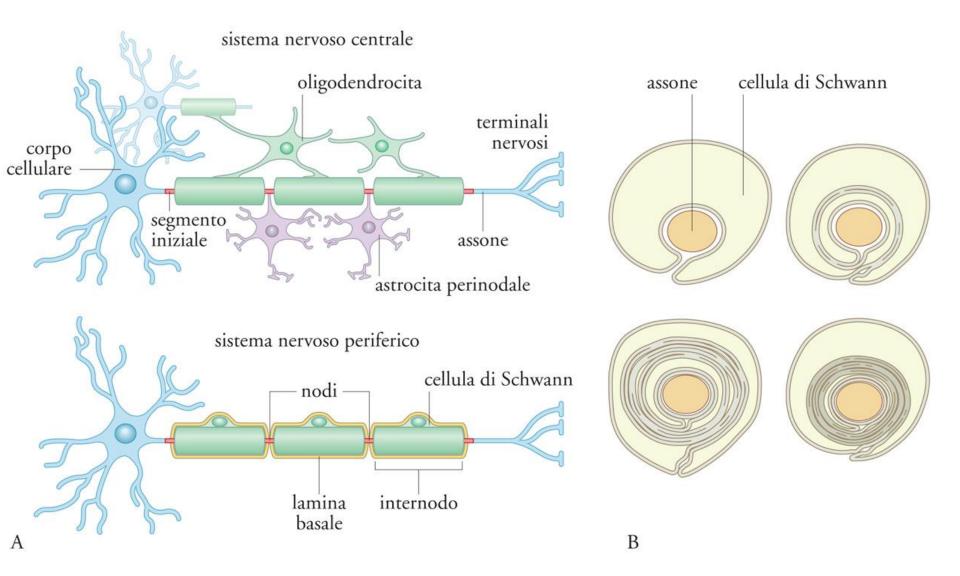

Proietta al corno ventro laterale e si connette ai motoneuroni dei muscoli distali.


Permette ad es. i movimenti indipendenti e fini delle dita.
Non è completamente sviluppato alla nascita.
È massimamente sviluppato nei primati.

Cortico-spinale ventromediale (diretto)

Non incrocia fino al midollo spinale.

Qui si formano connessioni bilaterali e con motoneuroni dei muscoli assiali/prossimali, usati principalmente per la postura.



Giunto al metamero di destinazione, il primo motoneurone trasmette l'impulso al secondo, che diventa l'effettore diretto del comando motorio.

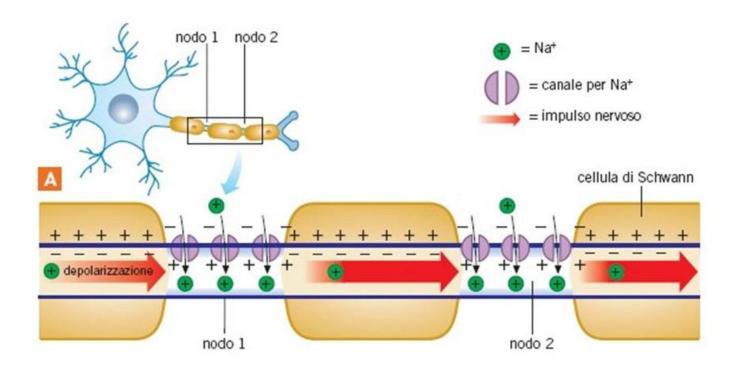
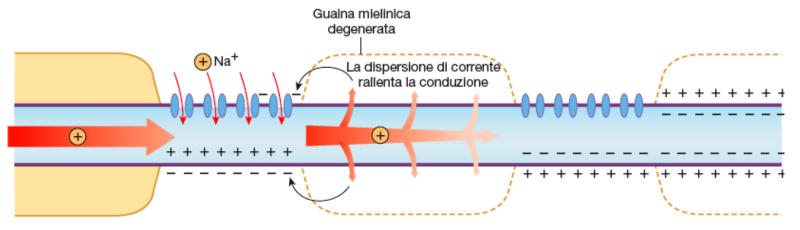
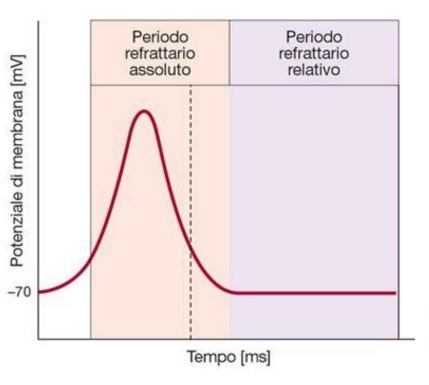

Questa via diretta bineuronale è controllata e integrata da afferenze propriocettive e dall'azione di interneuroni (agendo ad esempio sui muscoli antagonisti degli effettori).

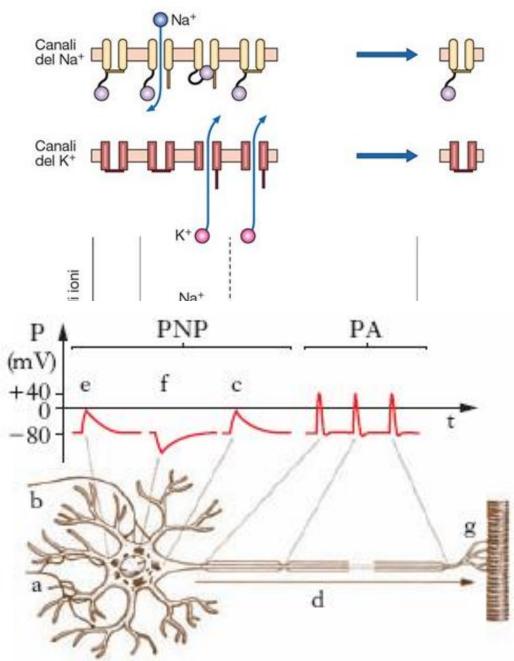
Illustrazione schematica delle connessioni neuronali a livello spinale. Le informazioni in ingresso provengono dalle fibre della radice dorsale, che portano informazioni dalla periferia e dalle fibre discendenti dai centri superiori. Le vie in uscita sono costituite da assoni dei motoneuroni α , che si portano alle fibre muscolari, e dei motoneuroni γ , che si portano ai fusi neuromuscolari. Solo poche fibre della radice dorsale e delle vie discendenti si mettono direttamente in contatto con i motoneuroni α . Tutte le altre fibre afferenti si connettono ai circuiti intraspinali, costituiti da interneuroni eccitatori (in bianco) ed inibitori (in nero), che controllano l'eccitabilità dei motoneuroni spinali.



Tipo di fibra	Funzione	Diametro micron	Velocità conduz. m/ sec		
Α α	Propriocezione, moto	12-30	70-120		
β	Tatto, pressione	5-12	30-70		
Y	Motrici (fusi m.)	3-6	15-30		
δ	Dolore, temperatura	2-5	12-30		
В	Pregangliari Sist.autonomo	0.5-2	3-15		
С	Dolore	0.4-1.2	0.5-2		


Il **motoneurone alfa** innerva direttamente il muscolo portando il comando motorio. Le **fibre gamma** innervano le regioni polari, contrattili, dei fusi neuromuscolari tunzione di mantenimento della sensibilità del fuso neuromuscolare mantenendone lo stato di tensione.

Lungo gli assoni dotati di guaina mielinica la **conduzione** dell'impulso è **saltatoria**.



(b) Nelle patologie demielinizzanti la conduzione ralienta, a causa della dispersione di corrente attraverso i tratti di membrana che non sono più isolati dalla mielina.

La generazione tramite gradienti ionici del potenziale d'azione è un processo più lento.

Nelle porzioni «isolate» dal manicotto mielinico il potenziale d'azione viaggia velocemente seguendo il gradiente elettrico, fino a giungere all'internodo successivo

La velocità di conduzione delle fibre mieliniche e amieliniche a confronto

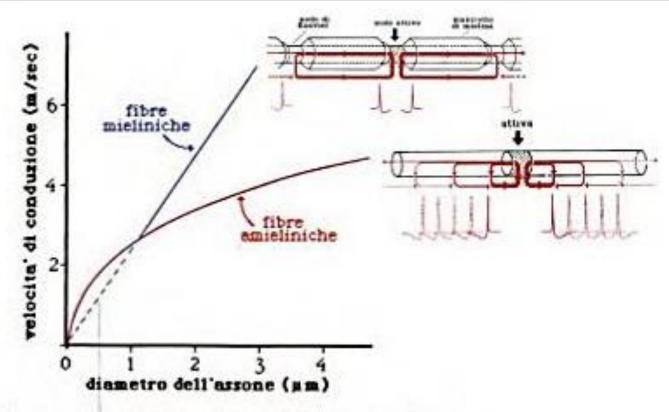
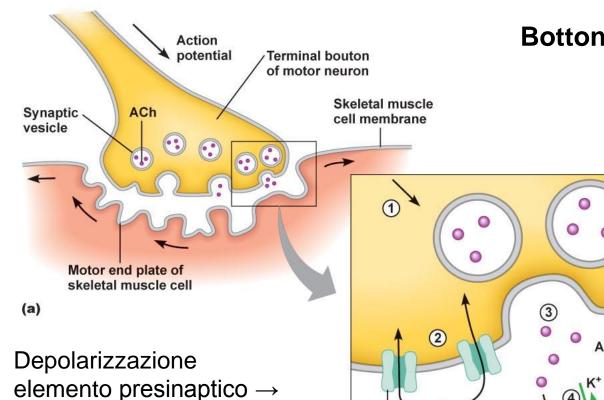
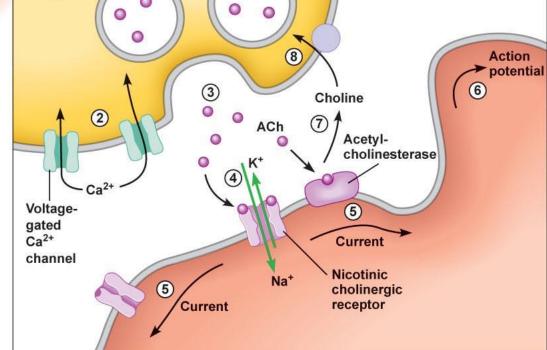
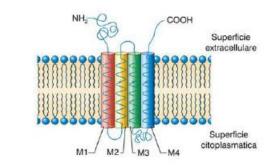
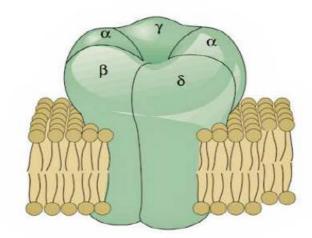




Fig. 7.9 - Il grafico illustra la diversa dipendenza della velocità di conduzione dal diametro nelle fibre amieliniche (ove è proporzionale alla radice quadrata del diametro) e nelle fibre mieliniche (ove è semplicemente proporzionale al diametro). La porzione tratteggiata della retta indica l'ambito in cui le fibre mieliniche, se esistessero, avrebbero, a parità di diametro, una velocità di conduzione minore di quella delle fibre amieliniche.

Bottone Sinaptico

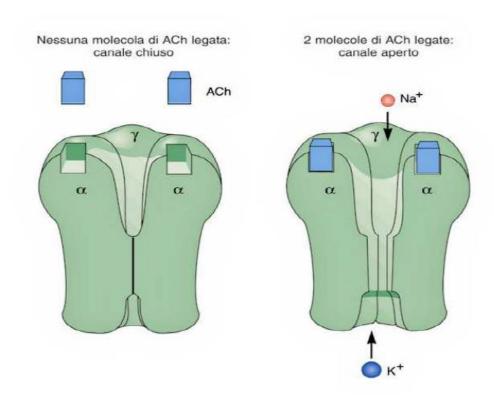

elemento presinaptico → liberazione neurotrasmettitore → legame con recettori specifici della membrana postsinaptica → modificazione potenziale di membrana.

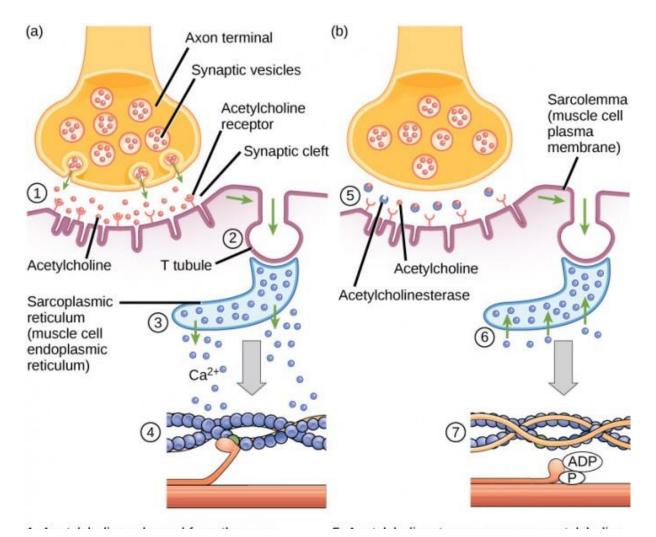


© 2011 Pearson Education, Inc.

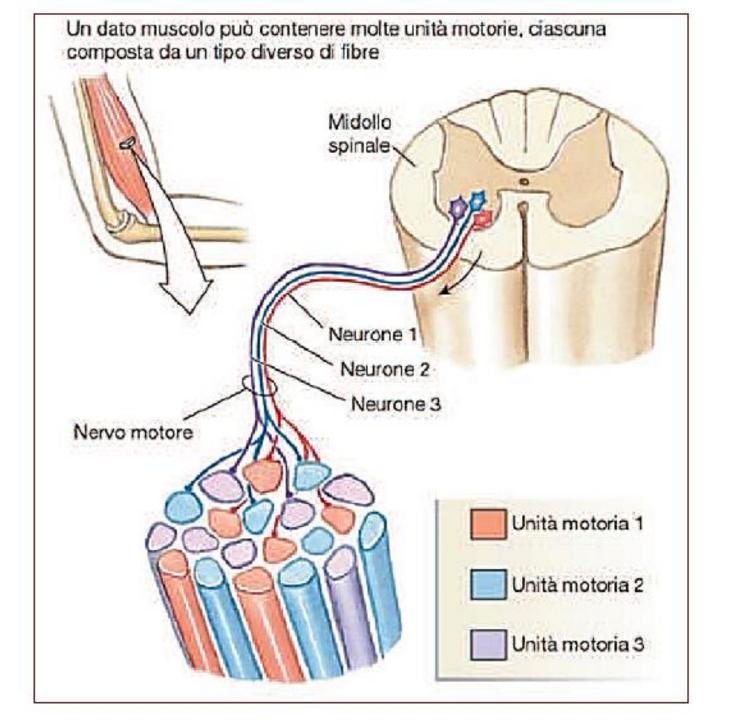
(b)

M4 M3 M2 β δ





Recettori muscolari dell'Ach


Ionotropici (nicotinici): formati da 5 subunità $(2\alpha, \beta, \gamma \in \delta)$. Hanno bassa selettività ionica. Permeabili a Na⁺ e K⁺, non a ioni caricati negativamente.

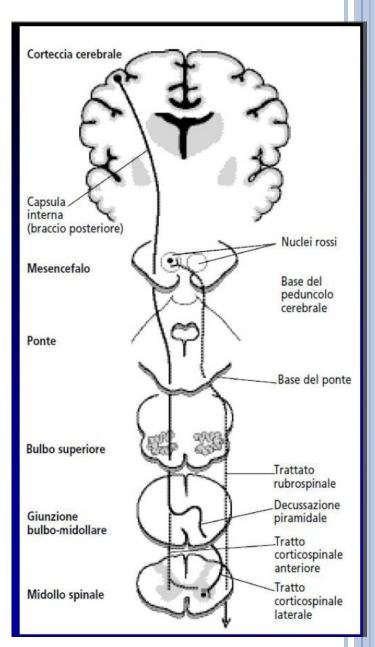
Inattivati da curaro e a-bungarotossina.

A livello della placca neuromuscolare, il legame dell'ach con il suo recettore causa depolarizzazione della membrana post sinaptica e liberazione del Ca++ presente nel reticolo sarcoplasmatico, che a sua volta permette l'accoppiamento tra actina e miosina

LESIONE 1° MOTONEURONE	LESIONE 2°MOTONEURONE			
Colpisce gruppi muscolari	Possono essere colpiti i singoli muscoli			
SPASTICITA' MUSCOLARE	IPOTONIA MUSCOLARE			
ROT+++ e BABINSKI+	ROT deboli o assenti			
Assenti Fascicolazioni	Fascicolazioni Presenti			
Atrofia Modesta dovuta a disuso	Marcata Atrofia (fino al 70-80% del volume muscolare totale			
Assenza di Patologia significativa all'ENMG	Potenziali Motori di ampiezza ridotta, potenziali di denervazioni presenti all'ENMG, velocità di conduzione motoria spesso alterata			

	Lesion	Normal	Neuroger	nic Lesion	Myogenic Lesion			
	steps		Motoneuron 2°MN	CNS 1°MN	Myopathy	Myotonia	Polymyositis	
	Insertional activity	Normal	Increased	Normal	Normal	Myotonic discharge	Increased	
1	activity	_\\\\r	- /////////////////	_##	-# -			
	Spontaneous		Fibrillation			Myotonic	Fibrillation	
2	activity		-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\			discharge	-h-h-h-h-	
			Positive wave				Positive wave	
	Monitor unit	0.5-1.0 mV	Large unit	Normal	Small unit	Myotonic	Small unit	
3	potential	T_	/\/\	٨	_/M/_	discharge		
		5-10 ms	Limited V recruitment	- \/-	Early recruitment	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Early recruitment	
	Interference	Full	Reduced	Reduced	Full amplitude	Full amplitude	Full amplitude	
4	pattern		Tast	Slow				
		A control of the file of	firing rate	firing rate	Low	Low	Low	

LESIONE PRIMO MOTONEURONE

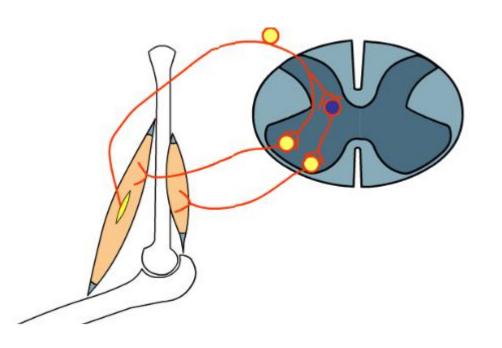

Si distinguono, in genere, due categorie di segni e sintomi:

- Segni Negativi: es. debolezza e perdita di destrezza
- 2. Segni Positivi: iperattività muscolare, spasticità, clono, aumento dei ROT, il fenomeno del coltello a serramanico

FISIOPATOLOGIA

Danno a motoneuroni corticali superiori (1° Motoneurone)

- → riduzione degli input eccitatori al 2°motoneurone → IPOSTENIA e deficit del controllo muscolare
- → La diminuzione degli input interferisce con il numero di unità motorie reclutate → deficit del controllo muscolare e ipostenia
- → Perdita di input inibitori discendenti (reticolospinale)
- → aumento di eccitabilità di gamma e alfa motoneuroni → SPASTICITA' → contratture dolore sublussazioni.



1) SPASTICITÀ

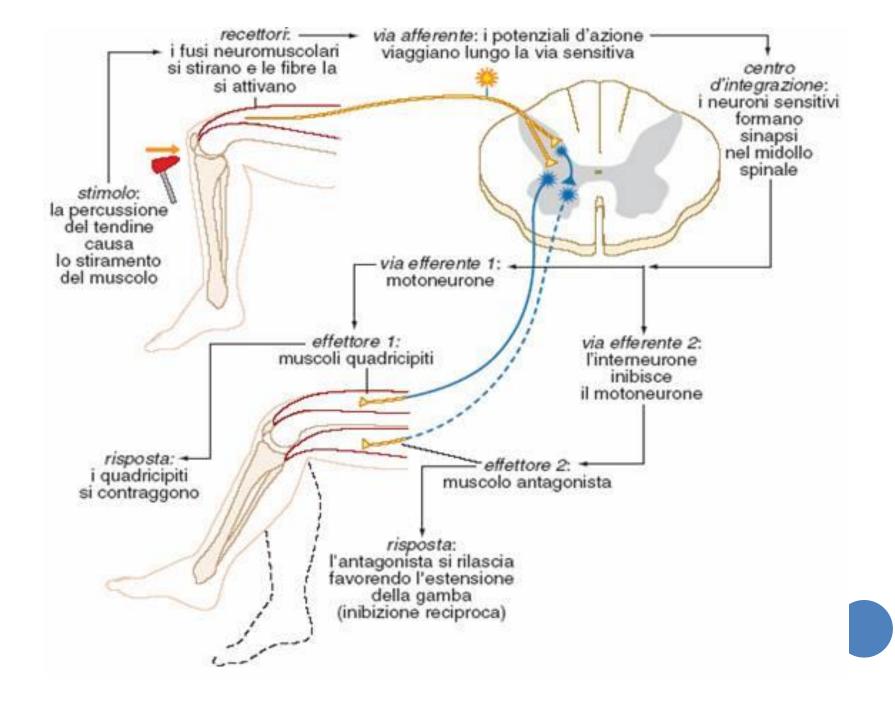
La spasticità è una forma di ipertonia dovuta all'ipereccitabilità del riflesso tonico da stiramento e ad un abbassamento della sua soglia.

- E' mediata da afferenze sensitive la (sensibili allo stiramento del fuso), che attivano circuiti spinali mono e poli-sinaptici provocando la contrazione muscolare
- E' velocità-dipendente
- E' dinamica: nella definizione classica di "spasticità", se dopo lo stretch si interrompe il movimento e si mantiene la posizione di allungamento, allora il muscolo smette di contrarsi.
- E' **lunghezza-dipendente**: l'eccitabilità del RTS dipende dalla lunghezza del muscolo da cui si fa partire l'allungamento.

Riflesso da stiramento (riflesso miotatico)

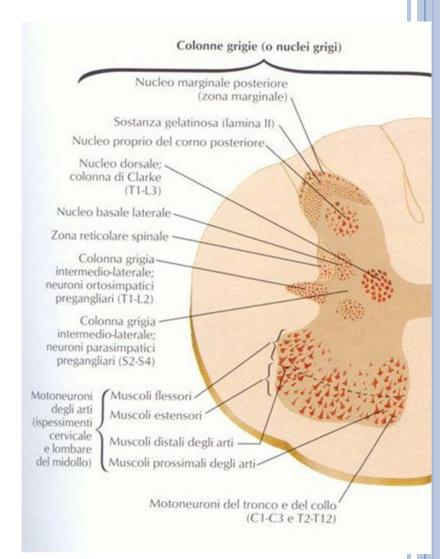
è scatenato dallo stiramento dei muscolo e ha la funzione di mantenere la lunghezza del muscolo costante.

- 1) Quando il muscolo si allunga, sia le fibre extra che intrafusali vengono stirate
- 2) Attivazione delle fibre nervose sensitive afferenti la
- 3) attivazione motoneuroni alfa.
- 4) il muscolo si contrae e la sua lunghezza diminuisce

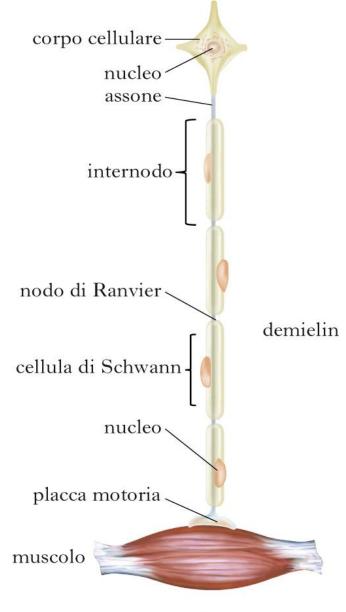

Il riflesso al muscolo antagonista è reciproco: Attivazione interneurone inibitorio → il muscolo antagonista si rilassa.

- CLONO: La resistenza del muscolo spastico allo stiramento passivo aumenta linearmente in rapporto alla <u>velocità di stiramento</u> e se questo è rapido può generare <u>risposte fasiche</u> accentuate anche ripetitive fino al CLONO
- BABINSKI: Liberazione di riflessi primitivi, che sono presenti alla nascita ma vengono poi integrati durante lo sviluppo. E' normale fino anche 9-12 mesi (tratto cortico spinale non è ancora del tutto mielinizzato).

AUMENTO ROT:


La frequenza di scarica dei motoneuroni gamma è regolata, attraverso fasci discendenti:

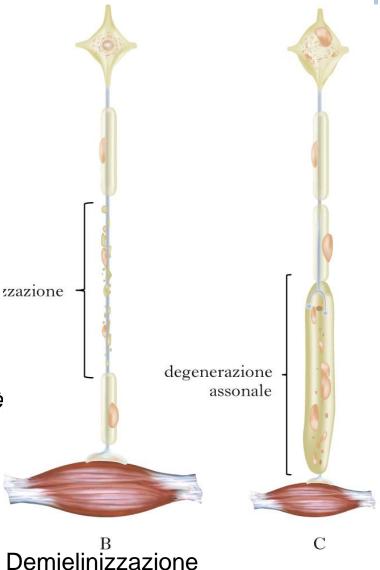
- area facilitatoria reticolare del tronco encefalico e nuclei vestibolari→ incrementano la scarica gamma, aumentando la sensibilità del fuso
- area inibitoria reticolare del tronco encefalico → riduce la scarica gamma, abbassando la sensibilità del fuso.
- Quando la scarica efferente gamma è aumentata, aumenta la sensibilità dei fusi allo stiramento, con la conseguenza che <u>la soglia del riflesso da</u> <u>stiramento risulta più bassa.</u>
- La riduzione delle fibre discendendi, <u>aumenta dell'eccitabilità dei</u> motoneuroni alfa con risposta esagerata alla riflesso.


PATOLOGIE DEL SECONDO MOTONEURONE

- Sono un gruppo di patologie che coinvolgono il neuroni di moto distribuiti:
 - sulle corna anteriori del midollo
 - l'assone
 - la mielina
- Coinvolgimento
 periferico→denervazione
 muscolare →reinnervazione
 dei motoneuroni limitrofi →
 parziale compenso alla
 denervazione

CLINICA

- Debolezza
- Atrofia muscolare
- Fascicolazioni
- Crampi
- ROT ridotti o aboliti

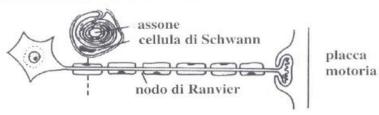

FORME EREDITARIE

- SMA: AR, corna anteriori midollo: denervazione scheletrica, debolezza muscolare simmetrica, atrofia muscolare con assenza dei riflessi osteotendinei
- S. di Brown-Vialetto-Van Laere X-linked, I-II decade, paralisi di un NC associata a sordità, con progressiva debolezza muscolare bulbare e ipostenia dei cingoli e insuff.respiratoria
- Paralisi Bulbare Progressiva Infantile- deplezione neuroni dei nuclei motori di alcuni no
- Atrofia Muscolare Spinale Distale/Neuropatia di Charcot-Marie-Tooth con debolezza muscolare simmetrica, decorso lentamente progressivo.
- Atrofia Muscolare Segmentale Distale: atrofia muscolare e debolezza nelle mani e nelle braccia uni/bilat
- Atrofia Muscolare Segmentale Prossimale: debolezza muscolareprox asimm cingolo scapolare
- Amiotrofia Monomelica Arti Inferiori: atrofia muscolare unilat
- Neuropatia Multifocale Motoria: blocchi di conduzione lungo i diversi nervi. Atrofia, debolezza muscolare distale, asimmetrica, AASS>AAII, con fascicolazione, crampi e abolizione ROT

Malatti	ia Ereditarietà	Età di esordio	Decorso clinico	Sedi arti superiore/ inferiore/bulbare	di debolezza muscola distale/prossimale	e all'esordio asimmetrico/simmetrico	Anormalità DNA	Blocco di conduzione nervosa	Trattamento No
SMA tipo	I AR	0-6 mesi	Rapido a lenta progressione	Braccia = gambe	Prossimale	Simmetrico	Delezione gene SMN 1	No	No
SMA tipo	II AR	6-18 mesi	Rapido a lenta progressione	Braccia = gambe	Prossimale	Simmetrico	Delezione gene SMN1	No	No
SMA tipo	III AR	(> 18 mesi) Illa < 3 anni IIIb > 3 anni		Braccia = gambe	Prossimale	Simmetrico	Delezione gene SMN1	l No	No
SMA tipo I	V AD/AR	20-50	Lenta progressione	Gambe > braccia	Prossimale	Simmetrico	Sconosciuto/delezion gene SMN 1	e No	No
Sindrome o Brown-Vial Van Laere		R 0-20	Rapido a lenta progressione	Bulbare	NP	NP	Sconosciuto	No	No
Sindrome di Fazio-Lon	AR nde	1-12	Rapido a lenta progressione	Bulbare	NP	NP	Sconosciuto	No	No
SMA distale	AD/AR/sporadic	o 5-70	Lenta progressione	Gambe > braccia	Distale	Simmetrico	Sconosciuto	No	No
SMA segmentale distale	Sporadico	15-60	Lenta progressione	Braccia	Distale	Asimmetrico	NP	No	No
MA egmentale rossimale	Sporadico	20-60	Lenta progressione	Braccia	Prossimale	Asimmetrico	NP	No	No
miotrofia onomelica gli arti inferi	Sporadico ori	20-40	Lenta progressione	Gambe	Distale > prossimale	Asimmetrico	NP	No	No
drome tpolio	Sporadico	Qualunque età	Lenta progressione	Braccia = gambe	Distale = prossimale	Asimmetrico	NP	No	o No
lrome da azione del ndo oneurone	NP	Qualunque età	Lenta progressione	Gambe	Distale = prossimale	Asimmetrico	NP	N	No No
opatia focale ria	Sporadico 2	20-65	Lenta progressione	Braccia > gambe	Distale > prossimale	Asimmetrico	NP		Sì Ig-endo

NERVO PERIFERICO

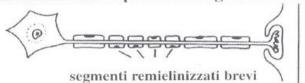
- Assonali
- Mielinica
- Ereditarie
- Acquisite
 - Infettive
 - Immunomediate
 - in corso di vasculiti
 - Dismetaboliche
 - Endocrine
- Motorie pure
- Prevalentemente Motorie (Guillain Barrè
- Prevalentemente Sensitive
- Prevalentemente Vegetative (dist della motilità pupillare, ipotensione ortostatica e dist.minzionali)
- Miste

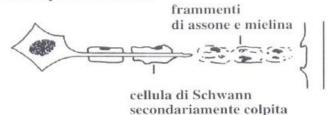

DEMIELINIZZAZIONE

- degenerazione della guaina mielinica con integrità anatomica degli assoni
- marcata riduzione della velocità di conduzione nervosa.
- distribuzione discontinua delle lesioni

NEUROPATIA ASSONALE

- Spesso dovuta a deficit di trasporto assonale.
- Le fibre più lunghe sono le prime interessate.
- L'assone muore a partire dalla regione periferica.
- Vengono secondariamente interessate le cellule di Schwann.

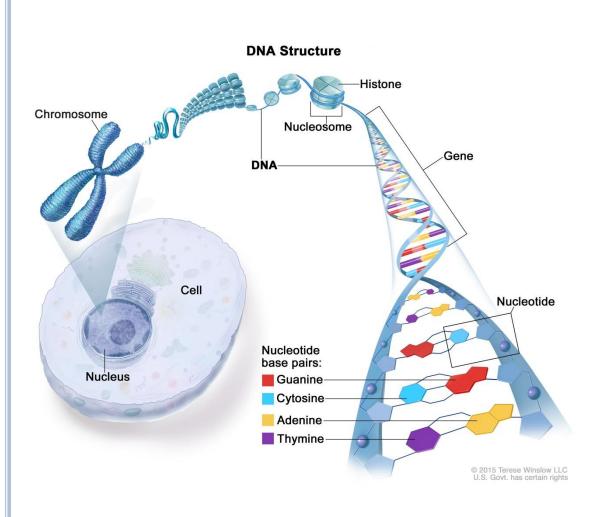

A) Fibra nervosa motoria normale

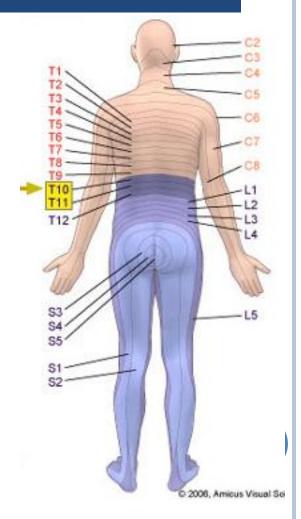

B) Demielinizzazione segmentaria di due internodi adiacenti

C) Remielinizzazione di precedenti segmenti demielinizzati

D) Neuropatia assonale

E) Rigenerazione dopo neuropatia assonale




NEUROPATIE EREDIARIE (HMSN)

HMSN1- Charcot-Marie-Tooth

- HMSN2- AD, normale velocità di conduzione nervosa (danno assonale con perdita selettiva di fibre mieliniche)
- HMSN3- AD, esordio entro due anni, molto grave con un 50% con perdita della deambulazione entro i 10 anni
- HMSN4- alterazione met.lipidi con deficit di alfa-idrossilasi e con accumulo di ac.fitanico: retinite pigmentosa+neuropatia perdiferica e degenerazione cerebellare (+ ittiosi, sordità, miocardiopatie)
- HMSN5- atrofia peroneale e paraplegia spastica, esordio nella seconda decade
- HMSN6- atrofia peroneale e atrofia ottica (variante Leber)
- HMSN7- atrofia peroneale e degenerazione retinica pigmentosa
- HSAN- neuropatie ereditarie sensitive, perdita sensibilità distale con compromissione della forza muscolare
- S. ATASSICHE EREDITARIE- spesso associate a neuropatie assonali sensitive (es. Atax Friedreich)
- ABETALIPOPROTEINEMIA- AR, segni iniziali di neuropatia periferica sensitiva con riduzione dei ROT, +/- atassia e degenerazione retinica (neurpatia assonale e mielinica con sensitivo>motorio)
- CHEDIAK-HIGASHI- AR con tumori linforeticolari, immunodeficienza, albinismo, atassia, neuropatia periferica con coinvolgimento di fibre mieliniche e non
- Paralisi plesso brachiale-HNPP- neuropatia distale sensitivo motoria con esordio in seguito a compressione prolungata, I-III decade, rallentamento della conduzione nervosa, con fibre ipermielinizzate (fibre giganti-Neuropatia Tamaculosa)
- Neuropatia assonale gigante- esordio verso 3 anno con atassia, disturbi cognitivi, cerebellari, con quadro RM simil-leucodistrofico

1° MOTONEURONE: PARAPLEGIE SPASTICHE EREDITARIE

PARAPLEGIE SPASTICHE EREDITARIE

- Sono un gruppo di affezioni caratterizzate da debolezza muscolare e spasticità
- Vari quadri clinici/sindromici
- Prevalgono ipostenia e ipertono muscolare
- Trasmissione genetica AD,AR,legata al sesso
- Prevalenza 2.7-9.7/100.000 abitanti
- Grande variabilità clinica (anche all'interno dello stesso nucleo familiare) come gravità, età di esordio, clinica
- Complicate/Complesse o non complicate/pure

Quando i sintomi originano nella primissima infanzia, la patologia può assumere un andamento non progressivo e somigliare ad un quadro di diplegia spastica da PCI.

HSP COMPLICATE

- o Ipostenia muscolare e spasticità
- In associazione si evidenziano altre manifestazioni neurologiche:
 - Convulsioni
 - Ritardo mentale
 - Neuropatia periferica
 - Cataratta, retinopatia, neurite ottica
 - Sordità
 - Amiotrofia distale
 - Atassia
 - Disturbi extrapiramidali
 - Anomalie cutanee-scheletriche-ematiche
 - Disturbi endocrini
 -

HSP NON COMPLICATE

- Debolezza muscolare, spasticità progressiva AAII, disfunzione vescicali
- Spasticità muscoli posteriori della coscia, quadricipite, soleogastrocnemio, adduttori; debolezza ileopsoas, tibiale anteriore
- +/- ↑ROT patellare e delle anche
- Babinski+
- ↓sens vibratoria piedi
- Talora lieve atrofia muscoli distali delle gambe senza fascicolazioni, crampi o amiotrofia
- Talvolta si associano urgenza minzionale e parestesie AAII
- Possono insorgere piede cavo, alluci flessi ed altre altreazioni muscolo-scheletriche
- +/- disturbi cognitivi
- Inenni AASS, masticazione e fonazione
- Esordio a qualsiasi età
- Progressione lenta e lineare/non progressione

FISIOPATOLOGIA HSP NON COMPLICATE

- Degenazione assonale e lesioni demielinizzanti (fibre motorie e sensitive) del SNC:
 - tratto corticospinale (toracici>cervicali)
 - porzioni distali delle fibre delle colonne dorsali (sens.vibratoria)
- Diminuzione dei neuroni nelle colonne di Clarke (nucleo dorsale – sensibilità propriocettiva diretta al cervelletto)
- Lieve riduzione cellule dei corni anteriori
- Lesioni minime cerebellari, dei gangli della base e tratti rubrospinali

Diversi quadri neuopatologici nelle diverse forme

DIAGNOSTICA STRUMENTALE:

- o ENG: nella norma/ neuropatia subclinica
- Potenziali Evocati: alterazione della conduzione nervosa nei tratti dorsali delle fibre corticospinali
- o RM encefalo: solitamente normale
- o RM midollo: normale/lieve atrofia

(solo forme legate a ch15 hanno assottigliamento corpo calloso)

PATOGENESI

- AD-AR-X link (loci SPG)
- Meccanismi/vie biochimiche coinvolte
 - Fosforilazione ossidativa
 SPG13 (caperonina) SPG7 (paraplegina): prot.mitocondriali
 - Trasporto assonale
 SPG10 (KIF5): movimento e trasporto assonale
 SPG4 (spastina): microtubuli
 - Mielinizzazione
 SPG2 (PLP): mielina
 - Sviluppo embrionario dei tratti corticospinali SPG1(L1/CAM): proteine di adesione molecolare

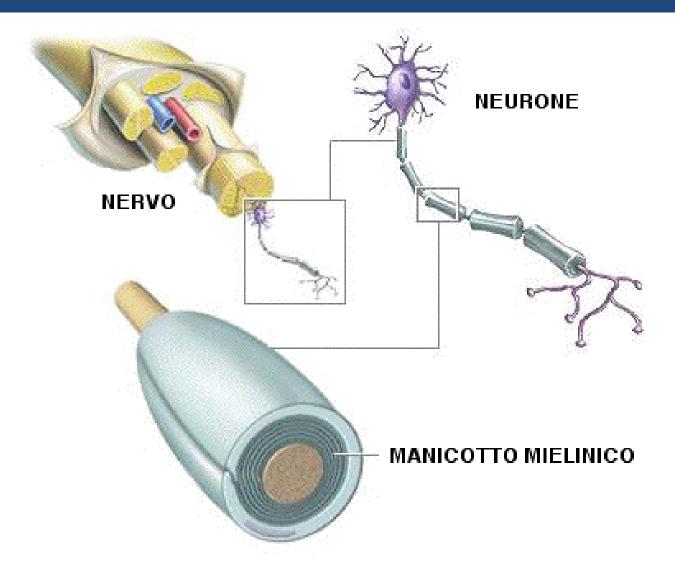
AD	AR 15-20%	X
SPG4/spastina: non complicata, talvolta associata a segni neurologici e RM. SPG3A: Atlastina (GTP-asi) SPG6: trasportatore Mg SPG8: KIAA0196 SPG 13:Heat shok prot SPG10: KIF5A- trasp.assonale	SPG11 SPG 14 SPG5A SPG7: paraplegina SPG15 SPG20: spartina ARSACS: sacsina SSPG24 SPG21: maspardina	SPG1: L1-CAM SPG2: PLP1 (mielina) SPG16:UnknownSPG 22:Monocarboxylate transport 8 SPG34: Unknown
SPG12: reticulon-2 SPG13: Chaperonin 60	SPG28 []	MITOCONDRIALI
SPG17: BSCL2 SPG31: Receptor expressionenhancing protein 1 SPG33: Protrudin SPG42: Acetil-coA transp SPG 9, 19,29, 36,37,38,40,41: Unknown		Mitochondrial gene MT-ATP6: Progressive spastic paraplegia:
	Attualmente sono s 56 HSP loci and 4 gene	d 41HSP-related

DIAGNOSI

- Segni neurologici caratteristici (ipostenia+spasticità bileterale simmetrica a esordio insidioso e carattere progressivo)
- Familiarità
- Esclusione di altre malattie in DD:
 - Anomalie strutturali encefalo e midollo: Chiari, spondililisi cervicale o lombare, sindrome della corda ritenuta, neoplasie
 - Malattie degenerative: SM, SLA, Slprimaria, atassie spinocerebellari
 - Leucodstrofie
 - Malattie metaboliche
 - Infettive
 - Altre: distonia DOPA responsiva
- RM, liquor, EMG, ENG: solitamente nella norma (nelle forme non complicate)
- Studio Genetico.

Attenzione: essendo che la diagnostica attuale non include TUTTI I possibili geni che causano HSP, la mancata identificazione di una variante genica patogenetica non esclude la diagnosi

DIAGNOSI DIFFERENZIALE:


- Structural abnormalities involving the brain or spinal cord
- Other motor neuron disorders such as slowly progressive amyotrophic lateral sclerosis (ALS) or primary lateral sclerosis (PLS)
- Leukodystrophies such as steadily progressive multiple sclerosis, B deficiency, Krabbe disease, metachromatic leukodystrophy, and adrenomyeloneuropathy
- Spinocerebellar ataxias (SCAs) e.g., Machado-Joseph disease [SCA 3], Friedreich ataxia, spastic ataxia of Charlevoix-Saguenay or other spastic ataxias).
- Infection (e.g., human immunodeficiency virus [HIV AIDs], tropical spastic paraplegia (also known as human T-cell leukemia virus 1 [HTLV1] -associated myelopathy), and neurosyphilis
- Metabolic disorders including homocysteine re-methylation defects (due to methylene tetrahydrofolate reductase (MTHFR) deficiency) and cobalamin C disease, urea cycle defects, biotinidase deficiency, phenylketonuria, glycine encephalopathy, cerebral folate deficiency, homocarnosinosis, cerebrotendinous xanthomatosis, Sjögren-Larsson syndrome, adult polyglucosan body disease, and nucleoside phosphorylase deficiency
- Early-onset dementias including frontotemporal dementia-ALS (see Amyotrophic Lateral Sclerosis Overview) and familial Alzheimer disease caused by mutation of PSEN1 (encoding presenilin-1), PSEN2 (encoding presenilin-2), or APP (encoding amyloid precursor protein) (see Early-Onset Familial Alzheimer Disease)
- Dopa-responsive dystonia. It is important to consider dopa-responsive dystonia in all individuals— particularly children-- with progressive gait disturbance. See GTP Cyclohydrolase 1-Deficient Dopa-Responsive Dystonia, Tyrosine Hydroxylase Def.

TRATTAMENTO

Attualmente non ci sono terapie che prevengono la progressione della patologia

- I trattamenti sono diretti a ridurre I sintomi e migliorare forza e coordinazione
- Sono indicati farmaci per ridurre la spasticità (Lioresal, Tossina Botulinica)
- Sono indicati eventualmente trattamenti farmacologici per ridurre l'urgenza minzionale

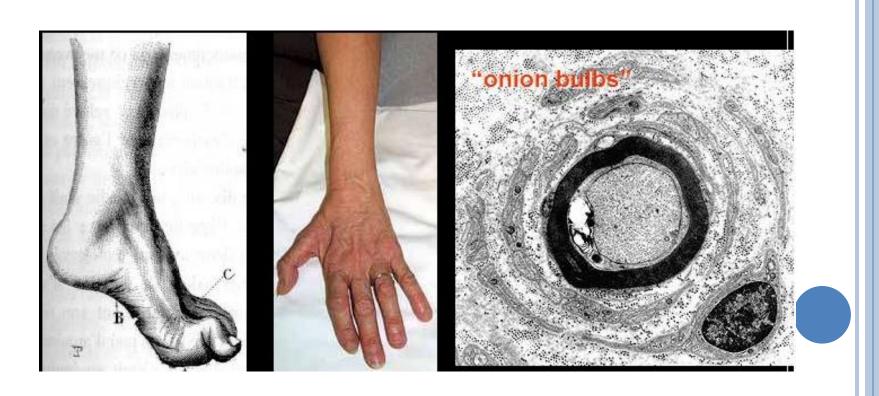
2° MOTONEURONE: CHARCOT MARIE TOOTH

CHARCOT MARIE TOOTH-HMSN1

- Neuropatia Ereditaria a trasmissione AD/AR
- Danno della Mielina e aspetto bioptico a bulbo di cipolla→ marcata riduzione della velocità di conduzione nervosa
- Primi segni ENG nella prima infanzia; primi segni clinici tra I-II decade
- Blocchi di conduzione nervosa e dispersione temporale

CLINICA

- Atrofia e debolezza AI: gambe a cicogna
- +/- lievi alterazioni scheletriche (scoliosi, pectus escavatum, piede cavo)
- 50% associa debolezza mani
- ROT diminuiti o assenti
- Sintomi Motori>Sensitivi
- 30% ha tremore essenziale (S.Roussy-Levy)
- Pattern di deambulazione steppante (punta cadente)
- Lentissima
 progressione: solo
 una parte dei
 pazienti perderà il
 cammino



• BIOPSIA:

- Aumento diamentro fascicolo nervoso
- Formazioni a bulbo di cipolla per la proliferazione cell. di schwann
- Riduzione delle fibre mieliniche con fibre amieliniche conservate

TYPES OF CMT

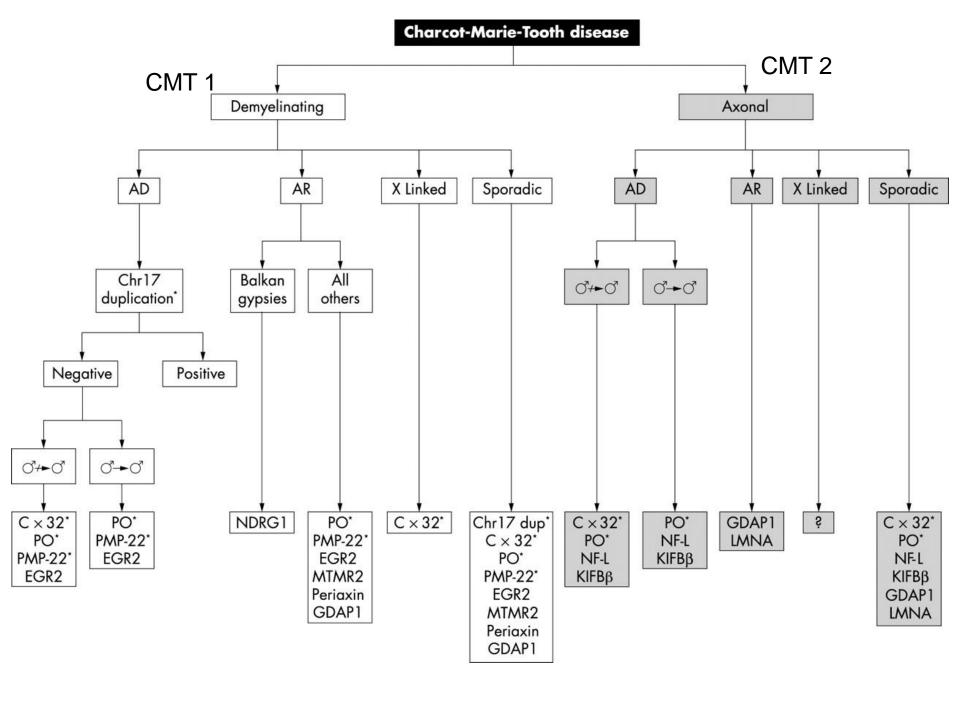
CMT1

- CMT1A: duplication of gene on chromosome 17
- CMT₁B: mutation in gene that carries instruction for making myelin protein zero

CMT2

Abnormalities in axon of peripheral nerve

CMT3


Severe demyelinating, point mutation in PO or PMP-22 gene

CMT4

Recessive demyelinating motor and sensory neuropathies

CMTX

Mutation in the connexin-32 gene on X chromosome

CMT2- ASSONALE

Charcot-Marie-Tooth è una neuropatia ereditaria con interessamento periferico assonale (non demielinizzante) caratterizzata da:

- Atrofia e ipostenia muscolatura distale
- Deficit moderato della sensibilità
- Velocità di conduzione nervosa normale o lievemente ridotta.
- 30% delle neuropatie ereditarie
- prevalenza di 1:10.000

Simile a CMT1ma clinicamente meno grave e con nervi periferici non ipertrofici.

I sottotipi di CMT2 sono simili e talvolta distinguibili solo da un esame molecolare.

CLINICA:

 Esordio sintomatologico ≈ 25 aa con ipostenia piedi e caviglie

> Baets et al [2011] review ha mostrato primi segni nel primo anno di vita.

motorio>> sensitivo

Inizilamente:

- debolezza e atrofia distale lentamente progressive di mani e piedi
- + ↓ROT
- + lieve o nessun deficit sensitivo

Progressione:

- Passo steppante con punta cadente
- Muscolatura prossimale indenne
- +/- deficit sensibilità propriocettiva, vibratoria, dolore/temperatura
- Dolore piedi nel 20%-40%
- Sono stati osservati: disturbi dell'udito, interessameto delle corde vocali e del nervo frenico, gambe senza riposo, apnee nel sonno

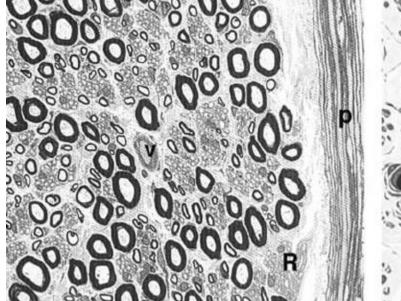
CMT2 ha andamento lentamente **progressivo** con lunghi **plateau periods** di mancata progressione

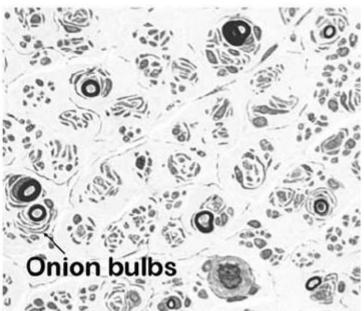
DIAGNOSI

Diagnosi clinica con ausilio di ENG/EMG e analisi genetica.

CLINICAMENTE:

- Neuropatia periferica sensitivo-motoria progressiva
- Velocità di conduzione nervosa solitamente in range (>40-45 m/s), o lievemente ridotta(30-40 m/s)
- EMG conferma neuropatia assonale:
 - positive waves
 - potenziali polifasici/fibrillazione
 - ampiezza ridotta di risposte motoria e sensitiva
- Fortemente ridotti i compound motor action potentials (CMAP)
- Storia familiare: solitamente AD.


Note: la biopsia del nervo non è necessaria per la diagnosi.


Biopsia del Nervo:

- Riduzione delle fibre mielinizzate con segni di rigenerazione, sprouting assonale e assoni atrofici (non l'ipertrofia a bulbo di cipolla della CMT1);
- Alcuni studi suggeriscono una possibile formazione anomala della formazione degli internodi assonali [Manganelli et al 2015].

Healthy

Neuropathy

GENETICA

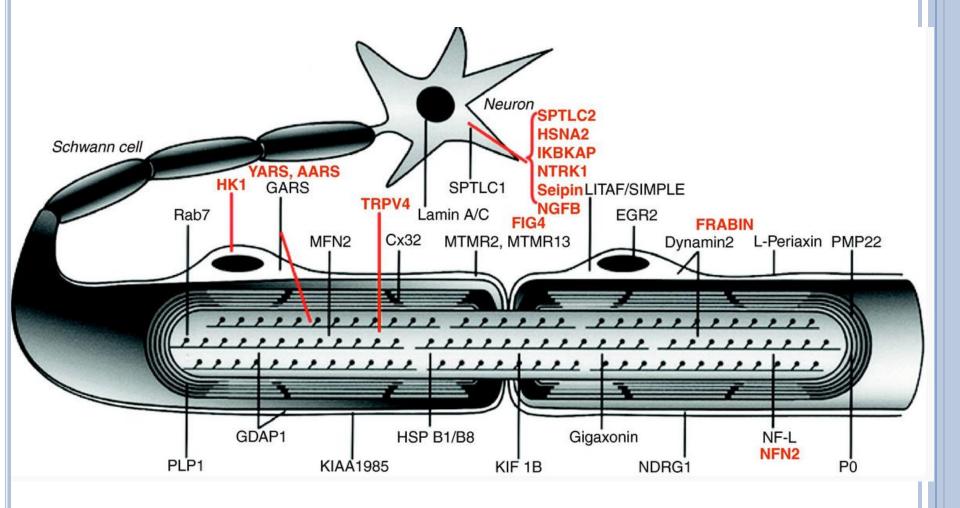
- La maggior parte delle forme di CMT2 ha trasmissione AD, raramente AR
- Il fenotipo clinico può orientare la ricerca di una specifica variante.
 Es:
 - Atrofia ottica: CMT2A2 (*MFN2*)
 - Paresi Corde Vocali: CMT2C (TRPV4) and CMT2H/K (GDAP1)

CMT2 Subtype	Gene ¹	моі	Comment
CMT2A2	MFN2	AD, AR	10%-30% of CMT2 [Rossor et al 2013, Rudnik-Schöneborn et al 2016] 16% of CMT in Spain [Casasnovas et al 2010] 3.4% of CMT in Norway [Braathen et al 2010] 8% of Germans w/CMT2 [Gess et al 2013] 18% of CMT2 in mainland China [Xie et al 2016] Deletion of exons 7 and 8 is a founder variant in the UK [Carr et al 2015].
CMT2I/J	MPZ	AD	8% [Rudnik-Schöneborn et al 2016] 2% of Germans with CMT2 [DiVincenzo et al 2014] 1% of CMT2 [Rossor et al 2013]
CMT2F	HSPB1 (HSP27)	AD	4% of CMT2 in Italy [Capponi et al 2011]

CMT2 Subtype	Gene ¹	MOI	Comment
CMT2A1	KIF1B	AD	Can mimic MS incl white-matter lesions on brain MRI [Genari et al 2011, Klein et al 2011b]
CMT2B	RAB7A	AD	Prominent sensory loss, reduced tendon reflexes, distal weakness w/distal ulceration. Also reported: onset > age 50 yrs [Shimizu et al 2010] & autonomic dysfunction [Manganelli et al 2012]. See also Auer-Grumbach et al [2000], Verhoeven et al [2003], Houlden et al [2004], Meggouh et al [2006].
CMT2B1	LMNA	AR	Primarily in Algeria; mean age of onset 14 yrs (range 6-27 yrs); functional disability ranging from mild to severe [Tazir et al 2004]
CMT2B2	MED25	AR	In a Costa Rican family w/adult onset [Leal et al 2001, Berghoff et al 2004, Leal et al 2009]
CMT2C	TRPV4	AD	Frequent vocal cord & phrenic nerve paralysis that may require tracheotomy [Santoro et al 2002, McEntagart et al 2005, Chen et al 2010, Deng et al 2010, Landouré et al 2010]. Also reported: mild sensory loss [Chen et al 2010], scapular winging, elevated serum CK, respiratory insufficiency, hearing loss, skeletal dysplasia [Echaniz-Laguna et al 2014, Evangelista et al 2015]
CMT2D	GARS	AD	Mainly distal motor weakness w/wasting of hand muscles [Antonellis et al 2003]
CMT2E/1F	NEFL	AD	In multiple families w/a progressive SMN; phenotypic overlap w/CMT1 w/slow NCVs & overlap w/dominant intermediate CMT [Berciano et al 2016]
CMT2G	12q12-q13.3 (gene unknown)	AD	In 1 Spanish family [Nelis et al 2004]
CMT2H/K GDAP1	AR	Incl pyramidal findings [Barhoumi et al 2001]	
	GDAP1	AD	Zimoń et al [2011]
CMT2L	HSPB8 (HSP22)	AD	In 1 Chinese family; onset 15-33 yrs; normal NCV [Tang et al 2004, Tang et al 2005]; myofibrillar myopathy in some families [Ghaoui et al 2016]
CMT2M	DNM2	AD	See DNM2-related intermediate Charcot-Marie-Tooth neuropathy

CMT2M	DNM2	AD	See DNM2-related intermediate Charcot-Marie-Tooth neuropathy
CMT2N	AARS	AD	In 3 families: 2 French & 1 Australian [Latour et al 2010, McLaughlin et al 2012]; hyperreflexia & myelopathy reported in a 4 th family [Motley et al 2015]
CMT2O	DYNC1H1	AD	In a 4-generation family w/childhood-onset delayed motor milestones w/progressive distal lower-limb weakness, pes cavus, variable sensory loss, nml CNVs; occasional proximal weakness, & waddling gait [Weedon et al 2011]. Also reported: arthrogryposis, SMA, cognitive impairment, spasticity [Scoto et al 2015, Strickland et al 2015]. HMSN in 1 family & SMA in an individual w/a de novo pathogenic variant [Peeters et al 2015].
CMT2P LRSAMI	AR	1 family w/onset in 2^{nd} - 3^{rd} decade; progressive distal muscle weakness & atrophy [Guernsey et al 2010]	
	AD	2 families w/mild sensory loss [Weterman et al 2012, Nicolaou et al 2013].	
CMT2Q	DHTKD1	AD	In a large Chinese family [Xu et al 2012]
CMT2R	TRIM2	AR	Early onset ± vocal cord paralysis [Ylikallio et al 2013, Pehlivan et al 2015]
CMT2S	IGHMBP2	AR	Axonal neuropathy [Cottenie et al 2014, Schottmann et al 2015]

CMT2 Subtype	Gene ¹	моі	Comment
CMT2T	DNAJB2	AR	Distal motor neuropathy [Gess et al 2014]
CMT2U	MARS	AD	In 2 families; onset age >50 yrs [Gonzalez et al 2013, Hyun et al 2014]
CMT2V	NAGLU	AD	Painful axonal neuropathy [Tétreault et al 2015]
CMT2W	HARS	AD	5 families, incl both axonal & demyelinating motor & sensory neuropathies [Safka Brozkova et al 2015]
Not assigned	MME	AR	Weakness, muscle atrophy, sensory loss, no dementia Late onset (4 th -6 th decades) [Higuchi et al 2016]


CMT2 subtypes accounting for $\leq\!\!2\%$ of the disorder; listed alphabetically by subtype.

MOI = mode of inheritance

AD = autosomal dominant

AR = autosomal recessive

 $1. \quad \text{Click } \underline{\text{here}} \text{ (pdf) for information on the genes included in } \underline{\text{Table 1b}}.$

- *Guidelines for molecular diagnosis of Charcot-Marie-Tooth disease
- J. Bercianoa; Neurologia 2012, Review article

TRATTAMENTO

Trattamento sintomatico:

- Ortesi per la caduta dell'avanpiede e
- Trattamenti chirurgici per alterazioni scheletriche
- Fisioterapia
- Trattamento sintomatico per dolore, depressione, apnee del sonno e gambe senza riposo

Prevenzione delle complicanze:

stretching per la prevenzione della retrazione del tendine di Achille.

Evitare:

- obesità, che può peggiorare le difficoltà di deambulazione
- farmaci noti per possibili danni ai nervi (e.g., vincristina, isoniazide, nitrofurantoina...).

BIBLIOGRAFIA

Neurologia Pediatrica

Pavone

Charcot-Marie-Tooth Neuropathy Type 2 GeneReviews®

Thomas D Bird, MD, Seattle VA Medical Center, Departments of Neurology and Medicine, University of Washington Last Revision: April 14, 2016.

 Charcot-Marie-Tooth type 2 and distal hereditary motor neuropathy:Clinical, neurophysiological and genetic findings from a single-centreexperience

Clinical Neurology and Neurosurgery, Marco Luigettia,* March 2016

- Guidelines for molecular diagnosis of Charcot-Marie-Tooth disease
 - J. Bercianoa; Neurologia 2012, Review article
- Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing.

Neurogenetics, Kishore R, September 2016

Hereditary Spastic Paraplegia Overview

Pagon RA, Adam MP, GeneReviews®, February 6, 2014.