

The Diatom Pollution Tolerance Index: Assigning Tolerance Values

By Cara Muscio City of Austin - Watershed Protection & Development Review Department Environmental Resource Management

Abstract

Pollution tolerance indices are metrics that summarize the pollution sensitivity of diatom taxa in a particular community. The assemblage becomes an indicator of the relative health of the stream evaluated. The Environmental Resource Management Division of the Watershed Protection Department has adopted the Kentucky pollution tolerance index for use in its Environmental Integrity Index. Preliminary data have shown a relationship between this index and percent impervious cover $(R^2=0.34)$, which is an indication that the metric is not adequately reflecting degradation due to nonpoint source pollution associated with impervious cover. However, only one-third of the taxa found in Central Texas are assigned indicator values using the Kentucky PTI. The purpose of this report was to assign indicator scores for the Austin-area taxa through literature survey and calculation methods in order to make recommendations for improvement to the EII diatom PTI. The diatom taxa database was evaluated, and nomenclature was updated across the historical records. The new calculation method resulted in 99% of Austin-area taxa represented with indicator values. These new values were calculated across historical data, resulting in a final adjusted R² of 0.44 with impervious cover. This improvement satisfactorily justifies continued use of the metric as an indicator of degradation, along with other EII components.

Introduction

Most government bioassesment programs that examine diatom community structure employ a version of a pollution tolerance index (PTI), similar to the Hilsenhoff Biotic Index for invertebrates (Barbour et al. 1999). These indices rate diatom taxa by their sensitivities to increased environmental degradation, using diatom communities as a measure of environmental health. Barbour et al. (1999) outline the diatom pollution tolerance index as one of several recommended metrics. Oklahoma (1993), Montana (1992), and Kentucky (1991) all use some form of a pollution tolerance index (PTI) in their diatom bioassesment programs. Most of these indices are based upon Lange-Bertalot (1979), who separates taxa into three categories based on: (1) tolerance to or (3) sensitivity to pollution. The middle category (2) is reserved for taxa without strong associations. The relative abundance of each taxa (n_i /N) is then multiplied by its tolerance value (t_i), and summed over all data (Eq. 1). The result for each sample is a composite value representing the pollution tolerance of the community sampled. Tolerance values have been assigned using Lange-Bertalot's designations, other autecological surveys, and water quality data.

Eq. 1
$$PTI = \frac{\sum (n_i t_i)}{N}$$

Where PTI is the total PTI value for the sample, n_1 is the number of organisms of that taxonomic breakdown (species in this instance) and t_1 is the tolerance value for that taxon. N is the total number of organisms found at the site.

Oklahoma's pollution tolerance index is based on Lange-Bertalot (1979) and Descy (1979). However, the pollution tolerance categories are reversed, with Category 1 being most sensitive, and Category 3 being most tolerant. In addition, upper levels of the Oklahoma protocol use a diatom PTI based only on the most dominant taxa, rather than all taxa found. The taxa lists for Oklahoma were not available, and were not used in this study.

Montana (Bahls 1992) adapted the Lange-Bertalot category concept, and filled in indicator values for taxa from various water quality criteria, including Lowe (1974). In addition, Montana water quality data were used to indicate sensitivity to pollution. Bahls (1992) used the following autecological criteria to categorize the tolerance of diatoms: nutrients, organics, salts, temperature, toxics, substrate stability, and suspended solids. Obscure diatom taxa were assigned an average tolerance value by genus.

The Kentucky Division of Water (Metzmeier 1991) rated taxa on a scale of 1 to 4, with 4 being the most sensitive. This method diverges from the other classifications by breaking up the large, ubiquitous "2" category between the extremes of sensitive or tolerant. Metzmeier accomplished this with literature surveys and multivariate statistics using Kentucky water quality data. Diatoms without supporting habitat information were not given pollution tolerance scores (2001).

A wealth of information exists on diatom habitat and pollution tolerances. However, problems arise in data comparison. For example, there is a difference of scale in comparing the pollution tolerance values assigned by these different studies. In addition, taxa habitat preferences may differ by region, resulting in different authors assigning different values for the same taxa. In addition to the state surveys, works such as Lowe (1974) and Van Dam (1994) have assigned indicator values to diatom taxa based on broad regional surveys. These values are specific to environmental parameters such as pH, salinity, and trophic status. Many scientists are also calibrating diatom taxa to specific optima and tolerance values using multivariate statistics and water quality data. These methods have gained popularity due to the qualitative nature of their approach (Barbour et al. 1999; Jongman et al. 1995; Porter pers.comm; ter Braak and Van Dam 1989).

The Environmental Resource Management Division has adopted the Kentucky PTI for use in its Environmental Integrity Index survey. Preliminary data have shown a relationship between this diatom PTI and percent impervious cover (R^2 =0.34). However, only one-third of the taxa found in Central Texas are assigned indicator values in the Kentucky PTI. The purpose of this report was to assign PTI scores for the Austin-area taxa through literature survey and calculation methods and make recommendations for improvement of the EII diatom PTI.

Materials and Methods

The protocols for diatom pollution tolerance indices are described by Montana (1992), Kentucky (1991), Oklahoma (1993), and the EPA Rapid Bioassesment Protocol. In addition, several diatomists and aquatic ecologists working with diatom bioassessment were consulted. Unique sources of diatom indicator values were compared to prepare the most comprehensive, but non-repetitive, list of pollution tolerance values. The Kentucky PTI values and an updated Montana PTI list (2001) were evaluated for Austin-area taxa. In addition, nitrogen uptake metabolism, oxygen requirements, saprobity, and trophic state indicator values were used from Van Dam (1994). Since Lowe (1974) and Lange-Bertalot (1979) were used in the development of the Kentucky and Montana PTIs, they were not individually applied in this assessment.

The first task in preparing a comprehensive PTI value list was to ensure the validity of the taxa list. Upto-date taxonomic information was supplied by Bahls (2001) and Morales (2001). Supplementary information was gathered from Round et al. (1990), Krammer and Lange-Bertalot (1986), and Winsborough (pers. comm.). The naming conventions adopted for use in the ERM database follow the U.S. Geological Service's National Water Quality Assessment Program (Morales 2001) most completely, with Bahls (2001) used as a secondary reference. Database tables were queried to list a primary (most current) taxa name and database number with all synonymous taxa names, authorship information, and references. This information was linked to the historical data records to eliminate redundancy and confusion due to frequent changes in naming conventions. Once a complete taxa list was updated for generic and species level name changes, the process of assigning PTI values was undertaken.

The major difficulty with comparing indicator values was the variety of scales used by different authors. The parameters used from Van Dam (1994) had either four, five, or seven categories (Table 1). In addition, taxa sensitivity was scored from sensitive (1) to tolerant (4, 5, or 6), and possibly ubiquitous (7). The Montana and Kentucky values were scored in the opposite direction, from tolerant (1) to sensitive (3, 4). In addition, Metzmeier changed the Kentucky scale by splitting the middle category (2) into two numbers, and transforming the scale into four values (1-4). The scales used to categorize these diatoms were standardized as follows.

#	Nitrogen Uptake	Oxygen		Saprobity			
	Metabolism	Requirements					_
				Wq	O ₂	BOD_5^{20}	
				class	%	mg/L	
					sat		
1	N-autotroph, low	Continuously high	Oligo-	I, I-II	>85	<2	Oligotrophic
	tolerance for organic N	(~100% saturation)	-				• •
2	N-autotroph, elevated	Fairly high	β-meso-	II	70-	2-4	Oligo-
	tolerance for organic N	(>75% saturation)			85		Mesotrophic
3	Facultative N- heterotroph	Moderate	α-meso	III	25-	4-13	Mesotrophic
	needing periodically	(>50% saturation)			70		-
	elevated N concentrations						
4	Obligate N – heterotroph	Low	A-	III-IV	10-	13-22	Meso-
	Needing constantly	(>30% saturation)	meso/poly		25		Eutrophic
	elevated N concentrations						-
5		Very low	Poly-	IV	<10	>22	Eutrophic
		(~10% saturation)	-				-
6							Hypereutrophic
7							Ubiquitous

Table 1. Original indicator values from Van Dam (1994) for selected parameters. Each parameter column is assigned values independently.

The Montana PTI values were scaled to the Kentucky designations (Table 2) by converting the high value from 3 to 4. The twos and threes were then assigned values of 2.49, an average of the two middle categories, but a more conservative estimate. The average of these two numbers was calculated to assess differences due to calculation method.

5. The MITTIT was sould to allow relative comparison with RT values.						
Sensitivity	KY PTI	MT PTI	Scaled MT PTI			
Tolerant	1	1	1			
Moderate	2	2	2.49			
	3					
Sensitive	4	3	4			

Table 2. Assignment of pollution tolerance values for Kentucky and Montana pollution tolerance indices. The MT PTI was scaled to allow relative comparison with KY values.

The Van Dam values were first scaled to match Metzimer's category designations. (Table 3). Nitrogen uptake metabolism was not changed. The first two values in oxygen requirements (1,2) were combined to change the Category 1 to 75% saturation or higher. The other values were scaled accordingly. The first two saprobity categories (1,2) were also combined to yield a slightly broader sensitive designation. The other values were adjusted downward accordingly. The trophic status category required the most scaling. The seventh category represented taxa that were rather ubiquitous, and was dropped. Additionally, the first two categories (1,2) were combined to yield a larger oligotrophic designation. The remaining highest categories (5,6) were also combined to provide a eutrophic/hypertrophic category.

#	Nitrogen Uptake	Oxygen		Saprobi	ty		Trophic State
	Metabolism	Requirements					
				Wq	O_2	BOD_5^{20}	
				class	sat		
1	N-autotroph, low	high	Oligo-	I, II	70-	<2-4	Oligotropic
	tolerance for organic N	(>75% saturation)	β-meso-		85		Oligo/meso-
2	N-autotroph, elevated	Moderate	α-meso -	III	25-	4-13	Mesotrophic
	tolerance for organic N	(>50% saturation)			70		
3	Facultative N- heterotroph	Low	A-	III-IV	10-	13-22	Meso-
	needing periodically	(>30% saturation)	meso/poly		25		eutrophic
	elevated N concentrations						
4	Obligate N – heterotroph	Very low	Poly-	IV	<10	>22	Eutrophic
	Needing constantly	(~10% saturation)	-				hypereutropic
	elevated N concentrations						-

Table 3. Scaled Van Dam indicator values. All parameters changed to a scale of 1 to 4, with the low values being the most sensitive. Compare with Table 1 to illustrate changes.

These indicator values (IV), were scaled from 1 through 4, with low numbers indicating the most pollution-sensitive taxa. The indicator values were then inverted (Table 4), to align all indicator scales from tolerant (1) to sensitive (4).

Old Van Dam Value	Scaled Van Dam Value
1	4
2	3
3	2
4	1

The four Van Dam parameter values averaged into a single value, and then compared to the average of the PTI values. These numbers were also evaluated against the current ERM database values when possible, to determine the proximity of the values. The Van Dam means were averaged with the PTI means and medians to determine the final PTI values for each taxon. In the approximately twenty cases where synonymous names yielded different PTI values, the taxa were individually checked against the literature. These cases were mostly due to one name having more published PTI values; therefore, the value representing the most information was chosen.

In accordance with Bahls (1992), taxa lacking information in the literature were assigned PTI values. The PTI values for these taxa were averaged at the generic level, and assigned to species within their respective genera. These final diatom PTI values were calculated with all historical EII data, and the results were analyzed both by watershed and site. In addition, statistical regressions were performed on this data using percent impervious cover as a surrogate for anthropogenic development.

Results

Approximately 289 (67%) of the 429 taxa collected by ERM did not originally have PTI indicator values, and were left out of the diatom PTI calculations (Table 4). With this data set, a regression of diatom PTI values for sites against percent impervious cover showed a modest relationship ($R^2=0.34$). After taxonomic revision, the total number of taxa names identified in the database was 478. It is important to note that all valid taxa with PTI information were integrated into this new list, even if the species have not yet been found in this area. This accounts for the slightly higher number of taxa on the revised list. Of the 478 new taxa, 81% were unique taxa and 19% were synonyms. The prior lack of correlation between different names of the same taxa complicated analysis of this data, and had obscured observable trends. Linking the changes in names to taxa records was crucial to establish a consistent diatom database that could be analyzed for trends in community composition. All calculations performed on data, and references to data in the database, will refer to the most currently accepted taxon name in the future. Approximately 70 taxa names were added as name changes as the PTI database was updated. The new total taxa list (427) was split into 387 primary taxa and 91 synonyms. Of these taxa, twenty diatoms had different PTI values calculated for synonymous taxa. Sixteen of these differences resulted from the older name being used by Van Dam et al. (1994). In these instances, the older name was used to calculate the PTI value (using all sources). In four instances, PTI values were different based on different information between Kentucky and Montana PTI. In three cases, it also appeared to be related to the older name. Since the Kentucky values most often correlated with Van Dam values as well, the taxa names with the most information were used to calculate the PTI value for all synonyms. A total of 299 of the 387 primary taxa were scored using the PTI calculation method. Eighty-nine taxa were not represented in the literature, or were represented at an insufficient level of resolution. These missing taxa were checked for taxonomic changes and PTI scores were applied, if found. If taxa were still missing PTI values, a value was assigned based on the mean PTI value for its genus. Eighty-three taxa were assigned PTI values in this manner. After all taxa names were calculated and compared, there was only one PTI value for any one primary taxon name, with that PTI value assigned to its synonyms. Six taxa currently do not have adequate information in the literature to assign PTI values. Those taxa are as follows: Cymbellopsis sp., Encyonemopsis silesiacum, Encyonemposis grunowii, Gomphosphenia recheltii (G. grovei), Mayamaya cf. atomus, Terpsinoe musica, and Terpsinoe americana. As more information becomes available, these taxa will be assigned PTI values.

Statistic	Old List	New List			
Number of taxa	429	478			
Unique taxa	429	387 (91 synonyms)			
Total number of PTI values	138	382			
Number of species PTI values	138	299			
Number of generic PTI values	0	83			
Percent total taxa w/ PTI values	33%	99%			

Table 4. Statistics for diatom taxa lists.

To maintain consistency, this calculation method was applied to all diatom taxa found in the ERM diatom taxa list. Scores were calculated for this metric with both the old and new PTI value lists. The results of these calculations are illustrated in the following figures. The old PTI calculations are listed in Table 4 and Figures 1 and 3. The new PTI distribution appears more skewed; however, the classes are represented differently in the two graphs (Figures 1, 2). The new method produces a tighter fit in the regression to impervious cover. In addition, the R^2 increased with the new PTI values (Figures 3, 4).

Figure 1. Frequency plot of EII PTI calculations by site using old PTI values.

Figure 2. Frequency plot of EII PTI calculations by site using the revised PTI values.

Figure 3. Regression of EII PTI calculations and percent impervious cover with site data, $R^2=0.34$. These calculations were performed using old PTI values.

Figure 4. Regression of EII PTI calculations and percent impervious cover with site data, R²=0.44. These calculations were performed using revised PTI values

Discussion

The revised calculation method for pollution tolerance values has increased the reliability of this metric. All taxa are now represented with indicator values, providing a more certain indication of the diatom community. The original Kentucky PTI index contained indicator values for only 138 (33%) of the 429 taxa found in this region. The revised PTI calculation now has calculated indicator values for 337 (84%) taxa. Generic values are calculated for an additional 23% of the taxa, yielding 99% of taxa contributing to the pollution tolerance index. This is an improvement of 66% of taxa identified. In addition, the data show a stronger relationship to impervious cover, as a surrogate for anthropogenic impacts. The R² value for the pollution tolerance index has risen over its several iterations to the present method. The old calculation method yielded a final EII R² of 0.34, while the final method with generic taxa values 0.44. The new calculation method has produced a more robust periphyton index, and will be useful in assessing impact to the biological communities in Central Texas creeks. In addition, the literature survey and taxonomic revision updated this index to current research levels on a national level.

Many of these final values differed from Metzmeier's (1991) pollution tolerance rating for the Kentucky study. However, the values are now the average of a wider range of studies, rather than a specific ecoregion. The most rigorous, complete method of determining indicator values for ERM-collected diatom taxa would qualitatively compare diatom and water quality data from this region. Using multivariate programs such as CALIB and WA-CALIB, taxa optima as well as tolerances of particular diatoms can be determined and used to improve resolution of community analysis. Further information regarding these procedures can be found in Jongman et al. (1995). Porter (2001) especially recommends this approach. However, Wu and Stevenson (2001) comment that adjusting already established PTIs and metrics is an acceptable method to establish a periphyton monitoring program. Until parameters can be definitively linked to variables in the blackland prairie and Edwards plateau ecoregions, this averaging of values from different studies will provide the best insight into the information contained within the

diatom community in Central Texas. The possibility of expanding to this more quantitative regional approach should be a future consideration of this program.

References

- Bahls, L. 1992. Periphyton bioassessment methods for Montana streams. Water Quality Bureau, Dept. of Health and Environmental Science. Helena, MT.
- Bahls, L. 2001. Personal communication.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. USEPA 8410B-99-002. 2nd ed.
- Jongman, R.H.G., C.J.F. Ter Braak, O.F.R. Van Tongren, eds. 1995. Data analysis in community and landscape ecology. Cambridge University.
- Kentucky Division of Water (Metzmeier, L.) 1991. Use of a diatom bioassessment index for water quality assessment in Kentucky.
- Krammer, K, and H Lange-Bertalot. 1986. Subwasserflora von Mitteleuropa. Vol 1-4. Gustav Fisher Verlag.
- Metzmeier, L. 2001. Personal communication.
- Morales, E. 2001. First, second, third, fourth, and fifth NAWQA taxonomy workshops. Diatom analysis laboratory, phycology section. Patrick Center for Environmental Research, Academy of Natural Sciences of Philadelphia. CD-ROM.
- Oklahoma Conservation Commission. Development of rapid bioassessment protocols for Oklahoma utilizing characteristics of the diatom community.
- Porter, S. 2001. Personal communication.
- Round, F.E., R.M. Crawford, and D.G. Mann. 1990. The Diatoms. Cambridge University.
- TerBraak, C.J.F., and H. Van Dam. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia. 178: 209-233.
- Van Dam, H., A. Mertens, and J. Sinkledam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology. 28(1): 117-133.

Winsborough, B. 2001. Personal communication.

Wu, Y., and R.J. Stevenson. 2001. Personal communication.

Acknowledgements:

The following people deserve thanks for their extensive assistance.

Rob Clayton, Chris Herrington, and Martha Turner, City of Austin.

Loren Bahls, Hannaea, Inc.

Lythia Metzmeier, Texas Natural Resource Conservation Commission.

Eduardo Morales, Patrick Research Center, Philadelphia Academy of Science.

Appendix: Revised Taxa list and PTI values.

No.	DESCRIPTION	PTI	Genus
1407	ACHNANTHES AMOENA	3	Achnanthes
565	ACHNANTHES BIASOLETTIANA	3	Achnanthes
955	ACHNANTHES BUTTERFASSIANA	3	Achnanthes
1408	ACHNANTHES CURTISSIMA	3	Achnanthes
1410	ACHNANTHES DELICATULA	2	Achnanthes
956	ACHNANTHES DUTHEII	3	Achnanthes
566	ACHNANTHES EXIGUA	3	Achnanthes
1409	ACHNANTHES GRISCHUNA	3	Achnanthes
568	ACHNANTHES LANCEOLATA	2	Achnanthes
569	ACHNANTHES LANCEOLATA SUBSP. DUBIA	2	Achnanthes
2039	ACHNANTHES LEVANDERI	4	Achnanthes
570	ACHNANTHES LINEARIS	4	Achnanthes
574	ACHNANTHES SCOTICA	3	Achnanthes
1133	ACHNANTHES SP.1	3	Achnanthes
1478	ACHNANTHES THERMALIS	4	Achnanthes
2040	ACHNANTHIDIUM MINUTISSIMUM	3	ACHNANTHIDIUM
1476	AMPHIPLEURA LINDHEIMERI	2	Amphipleura
575	AMPHIPLEURA PELLUCIDA	3	Amphipleura
578	AMPHORA CF. NORMANI	3	Amphora
1519	AMPHORA COFFEAEFORMIS	2	Amphora
1412	AMPHORA LIBYCA	3	Amphora
577	AMPHORA MONTANA	3	Amphora
579	AMPHORA OVALIS	3	Amphora
581	AMPHORA PEDICULUS	3	Amphora
582	AMPHORA VENETA	2	Amphora
2041	ANOMOEONEIS SERIANS VAR. ACUTA	2	Anomoeoneis
583	ANOMOEONEIS SPHAEROPHORA	2	Anomoeoneis
2649	AULACOSEIRA AMBIGUA	3	AULACOSEIRA
958	AULACOSEIRA GRANULATA	3	AULACOSEIRA
959	AULACOSEIRA GRANULATA VAR. ANGUSTISSIMA	3	AULACOSEIRA
1168	BACILLARIA PARADOXA	2	Bacillaria
1413	BRACHYSIRA BREBISSONII	4	BRACHYSIRA
584	BRACHYSIRA VITREA	3	BRACHYSIRA
586	CALONEIS ALPESTRIS	3	Caloneis
587	CALONEIS BACILLUM	3	Caloneis
588	CALONEIS HYALINA	2	Caloneis
1172	CALONEIS LEPTOSOMA	4	Caloneis
591	CALONEIS MACEDONICA	2	Caloneis
1414	CALONEIS MOLARIS	2	Caloneis
1415	CALONEIS SCHUMANNIANA	3	Caloneis
592	CALONEIS SILICULA	3	Caloneis
585	CALONEIS SP.1	3	Caloneis
1240	CALONEIS TENUIS	3	Caloneis
2043	CALONEIS WESTII	3	Caloneis
2044	CAMPYLODISCUS CLYPEUS	2	Campylodiscus
960	CAMPYLODISCUS HIBERNICUS	2	Campylodiscus
593	COCCONEIS PEDICULUS	3	Cocconeis
594	COCCONEIS PLACENTULA	3	Cocconeis

1425	CRATICULA ACCOMODA	1	CRATICULA
689	CRATICULA CUSPIDATA	2	CRATICULA
2647	CRATICULA DECUSSIS	3	CRATICULA
691	CRATICULA HALOPHILA	2	CRATICULA
961	CYCLOSTEPHANOS INVISITATUS	2	CYCLOSTEPHANOS
2673	CYCLOTELLA ATOMUS	2	Cyclotella
1516	CYCLOTELLA BODANICA	4	Cyclotella
595	CYCLOTELLA MENEGHINIANA	2	Cvclotella
2470	CYCLOTELLA OCELLATA	3	Cyclotella
596	CYCLOTELLA PSEUDOSTELLIGERA	2	Cvclotella
597	CYCLOTELLA STELLIGERA	3	Cyclotella
614	CYMATOPLEURA ELLIPTICA	3	Cymatopleura
615	CYMATOPLEURA SOLEA	2	Cymatopleura
599	CYMBELLA AFFINIS	3	Cymbella
600	CYMBELLA AMPHICEPHALA	4	Cymbella
601	CYMBELLA ASPERA	4	Cymbella
603	CYMBELLA CISTULA	3	Cymbella
604	CYMBELLA CYMBIEORMIS	4	Cymbella
605		4	Cymbella
1443	CYMBELLA DESCRIPTA	4	Cymbella
2471		3	Cymbella
606		4	Cymbella
607	CYMBELLA INCERTA	4	Cymbella
608	CYMBELLALAEVIS	3	Cymbella
1441		0 4	Cymbella
1247		4	Cymbella
612		+ 1	Cymbella
1008	CYMBELLA SP 1 (GRACILE)	3	Cymbella
508	CVMBELLA SP 2	3	Cymbella
1137	CYMBELLA SP 3	3	Cymbella
2045	CYMBELLA SPECIES (NO STRIAE)	3	Cymbella
12/18		J	Cymbella
062		4	Cymbolia
2/72	CYMBELLA TOMIDOLA	+	
616		3	Donticula
618		3	Denticula
610			Denticula
1170		. J	Denticula
686		3 2	
1/05		2	DIADESINIS
622		2	Diatoma
617		3	Diatoma
2645		3	Diploneis
2040		3	Diploneis
2014		4	Diploneis
1/10		4	Diploneis
1410		4	Dipioneis
020 607		3	Diploneis
021 620	DIFLUIVEIS FSEUDUVALIS	2	Diploneis
020		3	Diploneis
023		3	Diploneis
ю <u>2</u> 9	DIFLUNEIS SUBCONSTRICTA	3	Dipioneis

621	DIPLONEIS SUBOVALIS	3	Diploneis
1416	ENCYONEMA BREHMII	3	ENCYONEMA
963	ENCYONEMA AUERSWALDII	2	ENCYONEMA
2046	ENCYONEMA CARINA	3	ENCYONEMA
2047	ENCYONEMA EVERGLADIANUM	3	ENCYONEMA
1446	ENCYONEMA GAEUMANNII	3	ENCYONEMA
964	ENCYONEMA GRACILE	3	ENCYONEMA
2643	ENCYONEMA HUSTEDTI	3	ENCYONEMA
1099	ENCYONEMA MESIANA	2	ENCYONEMA
610		2	ENCYONEMA
1417	ENCYONEMA NEOGRACILE	4	ENCYONEMA
1119	ENCYONEMA OBSCURUM	3	ENCYONEMA
1262	ENCYONEMA PROSTRATIM	3	ENCYONEMA
634	ENCYONEMA SILESIACA	3	
611		3	
065	ENCYONEMA SELSIACOM	3	
800	ENCYONEMA SP2	J 2	
622	ENCYONEMA SP 2	ວ ວ	
63Z	ENCYONEMA SP.3	3	
633	ENCYONEMA SP.5	3	ENCYONEMA
966	ENCYONEMA SP.6	3	ENCYONEMA
613	ENCYONEMA TRIANGULUM	3	ENCYONEMA
2675	ENCYONEMOPSIS GRUNOWII		ENCYONEMOPSIS
2049	ENCYONEMOPSIS SILESIACUM		ENCYONEMOPSIS
602	ENCYONOPSIS CESATII	3	ENCYONOPSIS
609	ENCYONOPSIS MICROCEPHALA	3	ENCYONOPSIS
1166	EPITHEMIA ADNATA	3	Epithemia
635	EPITHEMIA ARGUS	3	Epithemia
1249	EPITHEMIA SOREX	3	Epithemia
636	EPITHEMIA TURGIDA	3	Epithemia
567	EUCOCCONEIS FLEXELLA	4	EUCOCCONEIS
637	EUNOTIA ARCUS	4	Eunotia
1429	EUNOTIA BILUNARIS	3	Eunotia
640	EUNOTIA CF. MONODON	3	Eunotia
2050	EUNOTIA FLEXUOSA	4	Eunotia
1135	EUNOTIA FORMICA	4	Eunotia
1419	EUNOTIA MINOR	3	Eunotia
639	EUNOTIA MONODON	4	Eunotia
1449	EUNOTIA PALUDOSA	4	Eunotia
1250	EUNOTIA PECTINALIS	3	Eunotia
2474	EUNOTIA PRAERUPTA	4	Eunotia
1389	FALLACIA MONOCULATA	2	FALLACIA
706	FALLACIA PYGMAEA	2	FALLACIA
983	FALLACIA SUBHAMULATA	2	FALLACIA
642	FRAGILARIA ARCUS	<u>-</u> 4	Fragilaria
1258	FRAGILARIA CAPITATA (DILITATA)	3	Fragilaria
644	FRAGILARIA CAPLICINA	3	Fragilaria
6/7	FRAGILARIA CAPLICINA VAR MESOLEDTA	ວ ວ	Fragilaria
615		2	Fragilaria
040		ວ ວ	Fragilaria
1/00		ວ ວ	Fragilalia
142U		3	Fragilalia
001	FRAGILARIA FASUIUULATA	3	Fragilaria

968	FRAGILARIA PARASITICA	4	Fragilaria
1518	FRAGILARIA PULCHELLA	3	Fragilaria
641	FRAGILARIA SP.1	3	Fragilaria
969	FRAGILARIA SP.2	3	Fragilaria
2150	FRAGILARIA TENERA	4	Fragilaria
1261	FRAGILARIA ULNA	3	Fragilaria
653	FRAGILARIA VAUCHERIAE	2	Fragilaria
648	FRAGILLARIA CAPUCINA VAR. VAUCHERIAE	3	Fragilaria
654	FRUSTULIA VULGARIS	3	Frustulia
2676	FRUSTULIA WEINHOLDII	4	Frustulia
655	GOMPHONEMA ACLIMINATUM	3	Gomphonema
656	GOMPHONEMA AFEINE	3	Gomphonema
658	GOMPHONEMA ANGUSTATUM	2	Gomphonema
657	GOMPHONEMA ANGUSTUM	2	Gomphonema
659	GOMPHONEMA AUGUR	3	Gomphonema
660	GOMPHONEMA CLAVATUM	3	Gomphonema
661		3	Gomphonema
662		2	Gomphonema
1/21		3	Gomphonema
070		3	Gomphonema
970	COMPHONEMA GROVELVAR. LINGULATUM	ວ ວ	Gomphonema
000		3	Gomphonema
000	GOMPHONEMA INTRICATUM VAR. VIBRIO	3	Gomphonema
971		3	Gomphonema
007		1	Gomphonema
668	GOMPHONEMA PSEUDOAUGUR	2	Gomphonema
972		3	Gomphonema
1422	GOMPHONEMA SP.1	3	Gomphonema
669		3	Gomphonema
670	GOMPHONEMA TRUNCATUM	3	Gomphonema
2475	GOMPHOSPHENIA REICHELTII (G. GROVEII)	0	GOMPHOSPHENIA
1450	GYROSIGMA ATTENUATUM	3	Gyrosigma
2476	GYROSIGMA EXILIS	2	Gyrosigma
671	GYROSIGMA NODIFERUM	3	Gyrosigma
672	GYROSIGMA OBSCURUM	2	Gyrosigma
973	GYROSIGMA SCALPROIDES	2	Gyrosigma
673	GYROSIGMA SPENCERII	2	Gyrosigma
674	HANTZSCHIA AMPHIOXYS	3	Hantzschia
710	KOBAYASIELLA SUBTILISSIMA	4	KOBAYASIELLA
1385	LUTICOLA GOEPPERTIANA	2	LUTICOLA
699	LUTICOLA MUTICA	2	LUTICOLA
1162	MASTOGLOIA BALTICA	3	Mastogloia
676	MASTOGLOIA CF. SMITHII (COARSE)	2	Mastogloia
974	MASTOGLOIA ELLIPTICA	2	Mastogloia
675	MASTOGLOIA GREVILLEI	2	Mastogloia
677	MASTOGLOIA SMITHII	3	Mastogloia
678	MASTOGLOIA SMITHII VAR. AMPHICEPHALA	2	Mastogloia
679	MASTOGLOIA SMITHII VAR. LACUSTRIS	3	Mastogloia
2638	MAYAMAEA CF. ATOMUS		MAYAMAEA
1423	MELOSIRA LINEATA	3	Melosira
1471	MELOSIRA VARIANS	2	Melosira
681	MERIDION CIRCULARE	3	Meridion

1424	NAVICULA ABSOLUTA	3	Navicula
1426	NAVICULA ANGUSTA	3	Navicula
1427	NAVICULA ARVENSIS	1	Navicula
1428	NAVICULA ATOMUS	2	Navicula
1381	NAVICULA BACILLOIDES	2	Navicula
2051	NAVICULA CAPITATA	2	Navicula
687	NAVICULA CAPITATA VAR. HUNGARICA	3	Navicula
684	NAVICULA CARI	2	Navicula
975	NAVICULA CINCTA	- 2	Navicula
976			Navicula
2152	NAVICIJI A CONSTANS VAR SYMMETRICA	4	Navicula
688	NAVICIJI A CRYPTOCEPHALA	3	Navicula
1382	ΝΑΥΙΟΙΕΙ Α ΟΒΥΡΤΟΤΕΝΕΙ Ι Δ	3	Navicula
1383		3	Navicula
2052		1	Navicula
2002		2	Navicula
1204		2	Navicula
1304		2	Navicula
11/3	NAVICULA EXILIS	2	Navicula
984		2	Navicula
713	NAVICULA HUFLERI VAR. LEPTUCEPHALA	2	Navicula
1386	NAVICULA INGENUA	2	Navicula
1136	NAVICULA JAAGII	2	Navicula
/1/	NAVICULA KOTSCHYI	3	Navicula
1387	NAVICULA KRIEGERII	2	Navicula
693	NAVICULA LIBONENSIS	2	Navicula
1388	NAVICULA LONGICEPHALA	2	Navicula
696	NAVICULA MENISCULUS	2	Navicula
697	NAVICULA MINIMA	1	Navicula
1160	NAVICULA MINUSCULA	3	Navicula
978	NAVICULA MUTICA VAR. MUTICA	2	Navicula
695	NAVICULA MUTICOPSIS	2	Navicula
700	NAVICULA OBLONGA	3	Navicula
701	NAVICULA PLACENTULA (PSEUDANGLICA)	2	Navicula
703	NAVICULA PSEUDOBRYOPHILA	2	Navicula
1498	NAVICULA PSEUDOLANCEOLATA	3	Navicula
702	NAVICULA PUMULA	2	Navicula
707	NAVICULA RADIOSA	3	Navicula
1475	NAVICULA RECENS	2	Navicula
1390	NAVICULA REICHARDTIANA	3	Navicula
709	NAVICULA RHYNCHOCEPHALA	3	Navicula
1431	NAVICULA SALINICOLA	1	Navicula
1472	NAVICULA SANCTAECRUCIS	2	Navicula
980	NAVICULA SCHROFTERII	2	Navicula
977	NAVICULA SOFHRENSIS VAR HASSIACA	4	Navicula
682	NAVICI II A SP 1	2	Navicula
683	NAVICULA SP 2	2	Navicula
000 081	NAVICIJI A SP 2 (CE TEXANA)	2	Navioula
1302	NAVICIII A SP 3	2	Navicula
130/	ΝΔΥΙΟύζΑ ΟΓ.Ο	2	Navicula
1205		2	Navioula
1202		2	Navioula
1032		2	inavioula

982	NAVICULA STANKOVICII	2	Navicula
712	NAVICULA STROEMII	3	Navicula
1252	NAVICULA SUBLUCIDULA	2	Navicula
714	NAVICULA SUBMINISCULA	2	Navicula
2637	NAVICULA SUECORUM VAR DISMUTICA	2	Navicula
715	NAVICULA SYMMETRICA	2	Navicula
985	NAVICIJI A TENELI OIDES	2	Navicula
1396	NAVICI II A TRIDENTI II A	- 3	Navicula
716		о З	Navicula
694		2	Navicula
718		2	Navicula
086		2	Navicula
1/73		2	Navicula
710		3	Navicula
719		3	Navicula
720		4	Nitzochio
2477		2	Nitzachio
24/7		2	Nitzschia
987		1	Nitzschia
726		2	Nitzschia
988		2	Nitzschia
727	NITZSCHIA ANGUSTATA	3	Nitzschia
/36	NITZSCHIA CF. PUNCTATA	2	Nitzschia
1257	NITZSCHIA CF. SINUATA VAR. DELOGNET	2	Nitzschia
1253	NITZSCHIA CLAUSII	2	Nitzschia
2636	NITZSCHIA COMMUNIS	1	Nitzschia
1117	NITZSCHIA COMPRESSA	1	Nitzschia
1254	NITZSCHIA DEBILIS	3	Nitzschia
730	NITZSCHIA DISSIPATA	3	Nitzschia
989	NITZSCHIA FILIFORMIS	2	Nitzschia
731	NITZSCHIA FILIFORMIS VAR. CONFERTA	2	Nitzschia
990	NITZSCHIA FONTICOLA	3	Nitzschia
732	NITZSCHIA FRUSTULUM	2	Nitzschia
1397	NITZSCHIA GRACILIFORMIS	2	Nitzschia
991	NITZSCHIA INCONSPICUA	2	Nitzschia
1255	NITZSCHIA LACUNARUM	2	Nitzschia
1398	NITZSCHIA LIBETRUTHII	2	Nitzschia
733	NITZSCHIA LINEARIS	3	Nitzschia
734	NITZSCHIA MICROCEPHALA	2	Nitzschia
1399	NITZSCHIA NANA	3	Nitzschia
735	NITZSCHIA PALEA	1	Nitzschia
1400	NITZSCHIA PALEACEA	2	Nitzschia
1401	NITZSCHIA PELLUCIDA	2	Nitzschia
1402	NITZSCHIA PUMILA	2	Nitzschia
1434	NITZSCHIA RECTA	3	Nitzschia
1116	NITZSCHIA REVERSA	2	Nitzschia
1403	NITZSCHIA SCALPELLIFORMIS	1	Nitzschia
1256	NITZSCHIA SERPENTIRAPHE	2	Nitzschia
1163	NITZSCHIA SIGMA	2	Nitzschia
1167	NITZSCHIA SIGMOIDEA	3	Nitzschia
2479	NITZSCHIA SINUATA	3	Nitzschia
992	NITZSCHIA SINUATA VAR. TABELLARIA	3	Nitzschia

737	NITZSCHIA SOLITA	1	Nitzschia
722	NITZSCHIA SP.1	2	Nitzschia
723	NITZSCHIA SP.2	2	Nitzschia
724	NITZSCHIA SP.3	2	Nitzschia
738	NITZSCHIA TROPICA	2	Nitzschia
1447	NITZSCHIA VERMICULARIS	3	Nitzschia
993	NITZSCHIA VITREA	1	Nitzschia
1134	PINNULARIA ACROSPHAERIA	4	Pinnularia
2634	PINNULARIA APPENDICULATA	4	Pinnularia
1435	PINNULARIA BOREALIS	3	Pinnularia
1444	PINNULARIA BRAUNII	4	Pinnularia
744	PINNULARIA CF. VIRIDIS	3	Pinnularia
739	PINNULARIA GIBBA	3	Pinnularia
1436	PINNULARIA LUNDII	3	Pinnularia
740	PINNULARIA MAIOR	3	Pinnularia
741	PINNULARIA MESOGONGYLA	3	Pinnularia
742	PINNULARIA MICROSTAURON	3	Pinnularia
1171	PINNULARIA SP.1	3	Pinnularia
743	PINNULARIA STOMATOPHORA	4	Pinnularia
1437	PINNULARIA SUBROSTRATA	3	Pinnularia
745	PINNULARIA VIRIDIS	3	Pinnularia
745	PINNULARIA VIRIDIS	3	Pinnularia
1169	PLACONEIS ELGINENSIS	3	PLACONEIS
1517	PLACONEIS GASTRUM	3	PLACONEIS
2053	PLACONEIS PLACENTULA	3	PLACONEIS
979	PLACONEIS PSEUDANGLICA	3	PLACONEIS
2480	PLAGIOTROPIS LEPIDOPTERA VAR. PROBOSCIDEA	2	Plagiotropis
994	PLEUROSIGMA DELICATULUM	2	Pleurosigma
1438	PLEUROSIGMA SALINARUM	4	Pleurosigma
1499	PI FUROSIRA I AFVIS	2	PLEUROSIRA
573	PSAMMOTHIDIUM ABUNDANS F. ROSENSTOCKI	4	PSAMMOTHIDIUM
2671	PSAMMOTHIDIUM MARGINUI ATUM	4	PSAMMOTHIDIUM
1411	PSAMMOTHIDIUM SUBATOMOIDES	4	PSAMMOTHIDIUM
643	PSEUDOSTAUROSIRA BREVISTRIATA	4	PSEUDOSTAUROSIRA
746	REIMERIA SINUATA	3	Reimeria
2056	REIMERIA SINUATA VAR. DELOGNEI	3	Reimeria
747	RHOICOSPHENIA CURVATA	3	Rhoicosphenia
2153	RHOPAL ODIA BREBISSONII	1	Rhopalodia
748	RHOPAL ODIA GIBBA	3	Rhopalodia
2482	RHOPALODIA GIBBERLILA	2	Rhopalodia
1477	RHOPALODIA GIBBERIJI A VAR VANHEURCKII	2	Rhopalodia
1520	RHOPALODIA OPERCIJI ATA	1	Rhopalodia
692	SELLAPHORA LAEVISSIMA	2	SELLAPHORA
704	SELLAPHORA PUPULA	2	SELLAPHORA
705	SELLAPHORA RECTANGULARIS	2	SELLAPHORA
711	SELLAPHORA SEMINULUM	1	SELLAPHORA
1496	STAURONEIS ANCEPS	3	Stauroneis
749	STAURONEIS I AUENBURGIANA	3	Stauroneis
2057	STAURONEIS OBTUSA	4	Stauroneis
750	STAURONEIS PHOENICENTERON	3	Stauroneis
2058	STAURONEIS PSEUDOSUBORTUSOIDES	3	Stauroneis
		U U	

751	STAURONEIS SMITHII	3	Stauroneis
995	STAURONEIS SP.1	3	Stauroneis
649	STAUROSIRA CONSTRUENS	3	STAUROSIRA
2631	STAUROSIRA CONSTRUENS VAR VENTER	3	STAUROSIRA
650	STAUROSIRA CONSTRUENS VAR. VENTER	3	STAUROSIRA
652	STAUROSIRELLA PINNATA	3	STAUROSIRA
2630	STEPHANODISCUS MEDIUS	2	Stephanodiscus
1404	STEPHANODISCUS PARVUS	2	Stephanodiscus
752	SURIRELLA ANGUSTA	2	Surirella
753	SURIRELLA BIFRONS	2	Surirella
754	SURIRELLA BISERIATA	3	Surirella
1439	SURIRELLA BREBISSONII	2	Surirella
755	SURIRELLA ELEGANS	3	Surirella
996	SURIRELLA MINUTA	2	Surirella
997	SURIRELLA OVALIS	2	Surirella
1405	SURIRELLA PATELLA	2	Surirella
756	SURIRELLA SPIRALIS	3	Surirella
1497	SURIRELLA TENERA	3	Surirella
757	SYNEDRA BICEPS	3	Synedra
759	SYNEDRA CAPITATA	3	Synedra
760	SYNEDRA DILATATA	3	Synedra
1251	SYNEDRA NANA	4	Synedra
761	SYNEDRA RADIANS	2	Synedra
762	SYNEDRA TENERA	2	Synedra
758	SYNEDRA ULNA	2	Synedra
1259	TERPSINOE AMERICANA		Terpsinoe
998	TERPSINOE MUSICA		Terpsinoe
999	THALASSIOSIRA WEISSFLOGII	2	Thalassiosira
729	TRYBLIONELLA APICULATA	2	TRYBLIONELLA
728	TRYBLIONELLA CALIDA	2	TRYBLIONELLA
2635	TRYBLIONELLA HUNGARICA	2	TRYBLIONELLA
1433	TRYBLIONELLA LEVIDENSIS	2	TRYBLIONELLA
2478	TRYBLIONELLA LITTORALIS	2	TRYBLIONELLA