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Abstract 

We present a simple model of a credit market in which firms borrow from multiple 
banks and credit relationships are simultaneous and interdependent. In this environment, 
financial and real shocks induce credit reallocation across more and less affected lenders and 
borrowers. We show that the interdependence introduces a bias in the standard estimates of 
the effect of shocks on credit relationships. Moreover, we show that the use of firm fixed 
effects does not solve the issue, may magnify the problem and that the same bias 
contaminates fixed effects estimates. We propose a novel model that nests commonly used 
ones, uses the same information set, accounts for and quantifies spillover effects among credit 
relationships. We document its properties with Monte Carlo simulations and apply it to real 
credit register data. Evidence from the empirical application suggests that estimates not 
accounting for spillovers are indeed highly biased. 
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1 Introduction1

Most research in empirical banking treats credit relationships in isolation, as determined

only by firm, bank and relationship’s characteristics. Recent attempts at relaxing this as-

sumption have mostly focused on competitive interaction among firms and local spillovers

due to sharing geographic locations. To the best of our knowledge, no recent work jointly

addressed simultaneity in the borrowing decision of the same firm from multiple banks,

and in the lending decision of the same bank to multiple firms.

However, credit relationships are embedded in a network of links, originated by sharing

the firm or bank to which they belong. As such, shifts in banks’ supply to each firm

change that firm’s relative cost of borrowing across its entire portfolio of relationships.

Conversely, shifts in firms’ demand for credit change the opportunity cost of lending for

each bank, as equity and managerial resources are, after a certain point, scarce.

This paper aims at identifying the importance of spillover effects for the transmis-

sion of financial shocks over credit markets. We apply recent advancements in network

econometrics to study how ignoring spillovers can affect standard estimates of the bank

lending channel (e.g. Khwaja and Mian, 2008; Peek and Rosengren, 2000).2 Moreover, we

present a feasible way to correct the measurement of idiosyncratic shifts in credit demand

and supply, as well as the assessment of aggregate effects in the presence of correlated

demand shocks (Amiti and Weinstein, 2018; Jiménez et al., 2020), when credit-network

spillovers are important.

To present our argument, we introduce an extremely simplified model of credit demand

and supply joint determination. We consider the case of two banks and two firms that

optimize jointly their full portfolio of relationships, nesting simultaneity in Khwaja and

Mian (2008)’s model. We use this framework to argue four points. First, interdependence

introduces bias in OLS estimates of the bank lending channel and any other treatment

of interest. Second, in the presence of correlated demand shocks, fixed effect estimation

may actually worsen the bias.3 Third, and conversely, if spillovers are large but correlated

1Authors are Stefano Pietrosanti: Bank of Italy, stefano.pietrosanti@bancaditalia.it; Edoardo Rain-
one: Bank of Italy, edoardo.rainone@bancaditalia.it. We thank Alessio Anzuini, Vladimir Asriyan,
Emilia Bonaccorsi di Patti, Francesco Bripi, Christian Brownlees, Andrea Caggese, Giuseppe Cappel-
letti, Francesco Columba, Guido Deiana, Alessio De Vincenzo, Kirill Evdokimov, Giovanni Guazzarotti,
Louis-Marie Harpedanne de Belleville, Dmitry Kuvshinov, Xiaodong Liu, Geert Mesters, Alessandro
Peri, Andrea Polo, Bjorn Richter, Gianmarco Ruzzier, Andres Sarto, Enrico Sette and seminar partici-
pants at the Bank of Italy, EIEF, UPF econometrics and finance seminar series, Colorado Boulder and
the Stockholm School of Economics for their comments. All the errors are our own. The views expressed
in the paper do not necessarily represent those of the Bank of Italy.

2 The name often given in the empirical literature to the sensitivity of credit supply to banks’ shocks.
3 Using firms with multiple bank relationships to perform a fixed effect estimate of supply movements

is a standard procedure in the empirical banking literature, first popularized in Khwaja and Mian (2008).
A far from complete list of influential works using this strategy in order to assess the effect of different
bank shocks includes Jimenéz et al. (2012), Schnabl (2012), Jiménez et al. (2014), Behn, Haselmann,
and Wachtel (2016), Bonaccorsi di Patti and Sette (2016), Jiménez et al. (2017).
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demand shocks are not, OLS and fixed effects estimates may still differ. As a consequence,

interpreting their difference as a measure of demand bias (e.g. Jiménez et al., 2020) may

be misleading. Fourth and last, spillovers may contaminate the OLS estimates of firm

and bank fixed effects, stopping us short of measuring pure demand and supply shifts

(Amiti and Weinstein, 2018).4

The key challenge in addressing these concerns is the reflection problem (Manski,

1993). Reflection is the type of endogeneity that arises when shocks to one agent affect

all other agents, and can induce extremely complex distortion patterns. We proceed laying

down an estimation framework to address such distortions, building on the literature on

spatial autoregressive models (e.g. Arduini, Patacchini, and Rainone, 2015; Bramoullé,

Djebbari, and Fortin, 2009; Calvó-Armengol, Patacchini, and Zenou, 2009; Lee, 2007) as

extended in Rainone (2020a), to model outcomes on links (credit relationships), instead

of nodes (firms or banks). We propose a new method to construct instrumental variables

based on overlapping portfolios (OPIVs).

We show that the very structure of the credit market network, in which many nodes

are only indirectly connected, provides instruments for spillover identification. Indeed,

firms borrowing from multiple lenders create overlapping portfolios of relationships at

the firm and bank level. As idiosyncratic shocks to one relationship can affect the others

involving the same parties, they can provide relevant instruments for the spillover effects.

If these portfolios are not fully overlapping, such instruments are exogenous. We show

how to use these OPIVs to identify spillovers and recover unbiased treatment effects, as

well as idiosyncratic demand and supply movements.

The model we propose separately identifies two types of spillovers arising from the net-

work nature of credit relationships, uncovering two channels that affect credit equilibrium

outcomes. These are the bank supply allocation effect and the firm demand allocation ef-

fect. They capture the endogenous adjustment of credit supply and demand across all

relationships of the same bank and firm after a shock. Noticeably, even if we focus on

negative spillovers in most of the present draft, this assumption is not necessary in our

framework. In future developments of this paper, we plan to study spillover heterogeneity

to better understand the mechanics of shock propagation in the credit market.

Indeed, negative spillover estimates imply that substitution effects across firms’ or

banks’ portfolios dominate endogenous demand or supply adjustments. We would ex-

pect such findings in most “normal times” situations. For example, if a monetary policy

tightening induces a large contraction in supply for some banks, firms may reallocate

their demand to absorb the hit. Nonetheless, even cases of complementarity across dif-

ferent credit relationships could be very relevant. For instance, during a sizable financial

shock, banks could internalize the negative effect of the global credit contraction on firms’

4 This point is related to the one risen by Altavilla, Boucinha, and Bouscasse (2022). We elaborate
on the differences between the two contributions in the Related Literature part of this Introduction.

6



prospects. In such a case, every decision to cut credit could reinforce the other, with pos-

itive spillovers at the bank level. Furthermore, we can augment the model to study bank-

and firm-type specific spillovers and, eventually, combinations of the two depending on

the specific empirical question.5

We explore the properties of the econometric model through Monte Carlo simulation.

First, we study the bank lending channel’s estimate bias if we ignore the network nature

of credit relationships. We show that both the magnitude and sign of the bias depend

on observables, as the share of relationships hit by a shock, the number of relationship

sharing firms or banks (the density of the network), and unobservables, as the size of

spillovers. Hence, such bias cannot be addressed without a strategy to estimate cross-

network demand and supply adjustments. Second, we confirm that fixed effects can

exacerbate spillover bias. What is more, we show that standard estimates of bank and

firm fixed effects may pinpoint nonexistent demand and supply idiosyncratic movements,

especially for banks and firms that are highly connected (have high centrality in the

network). Third, we document that the network estimator performs very well in finite

samples, estimating spillovers, treatment effects and idiosyncratic shocks with negligible

error. We confirm the economic significance of these results calibrating the network

structure of our Monte Carlo simulations to mimic real networks of credit relationships

observed in the Bank of Italy’s Credit Register.

Finally, we use information from 2012 to 2018 to show that spillover effects play

an important role in the Italian credit market. We use complete data from the Bank of

Italy’s Credit Register matched with firms’ financials from CERVED, the main Italian risk

rating issuer, and banks’ financials from Italian Supervisory Reports. We exploit changes

in credit granted due to changes in the interbank rate, mediated by each relationship’s

exposure to other connected relationships’ revolving credit fraction. Revolving credit is a

natural channel of idiosyncratic shocks’ transmission across firms and banks. For example,

firms use revolvers as a buffer for unforeseen needs (see, e.g. Acharya and Steffen, 2020),

exposing banks to shocks hitting firms. On the other hand, revolving credit contracts

are renegotiated more often, as banks can easily change rates or adjust the granted limit.

Hence, firms more dependent on revolvers may be more affected by shocks hitting banks.

All spillover parameters are significant, with the firms’ one being particularly large.

We demonstrate that spillovers lead to a significant empirical bias in treatment and

idiosyncratic effects’ estimates. Our exercise suggests that ignoring network spillovers

would lead to overestimating the effect of interest rate changes on more revolving-intensive

credit relationships by a factor of two. Furthermore, focusing on estimated fixed effects,

we suggest that spillover bias may lead to an underestimation of firm fixed effects by a

5 For example, one may be interested in studying the substitution of credit from low-tech banks to
high-tech banks by firms or the reallocation of credit from a specific type of firms to another one by
banks.
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factor of a half to three-fourths, as well as a two-thirds to one overestimation of bank

fixed effects.

1.1 Contributions To The Related Literature

We contribute to the empirical literature on financial shocks’ pass-through in two ways.

First, we build a methodology to account for endogenous reallocation of demand and

supply induced by shocks. Second, we apply it, deriving numerical and empirical evidence

on the importance of the credit market structure for the pass-through of shocks, and

quantifying how endogenous reallocation plays an important role in mediating the effect

of monetary policy.

The methodology we propose addresses an important limitation of standard instru-

mental variable (e.g. Paravisini, 2008; Peek and Rosengren, 2000) and within-firm (Jiménez

et al., 2014, 2017; Khwaja and Mian, 2008) estimates of bank shocks’ effect on firms’ credit

access. These approaches cannot control for endogenous reallocation of demand and sup-

ply across portfolios of credit relationships. We show how this may affect (i) attempts at

using the difference between OLS and fixed effects estimates to track the extent of demand

bias (Jiménez et al., 2020), and (ii) attempts at using estimates of bank and firm fixed

effects as direct measures of pure credit demand and supply shifts (Amiti and Weinstein,

2018). We offer a solution to these problems, based on novel and classical results in net-

work econometrics (e.g. Ballester, Calvó-Armengol, and Zenou, 2006; Calvó-Armengol,

Patacchini, and Zenou, 2009).6

Such contribution is complementary to works deepening the identification of financial

shocks’ pass-through to credit and real outcomes. While we focus on the identification

challenges stemming from endogenous substitution of credit, Paravisini, Rappoport, and

Schnabl (2023) highlights those implied by a lack of perfect substitutability. In particular,

it shows that bank specialization causes shocks to distribute unevenly across the relation-

ships of the same firm, limiting the effectiveness of within-firm strategies to control for

unobservable confounders.7 Research building on these premises, such as Bripi (2021) and

Altavilla, Boucinha, and Bouscasse (2022), estimates credit demand systems, focusing on

the interest rate elasticity of credit. These works, though, need price data for estima-

tion and do not address cross-substitution within the same firm or bank’s relationship

portfolios.

6 See Jackson (2010), Jackson and Zenou (2015) and Jackson, Rogers, and Zenou (2017) for a complete
critical survey of the theoretical literature on the economics of networks. See Bramoullé, Djebbari, and
Fortin (2020), De Paula (2020) and Graham and De Paula (2020) for insightful reviews of the literature
on network econometrics.

7 In the same thread, though not focusing on identification problems per se, are papers such as
De Jonghe et al. (2020) and Giometti and Pietrosanti (2022). Within-firm differences across relationships
are also a standard topic of investigation in the relationship-lending literature. See, e.g., Petersen and
Rajan (1994), Berger and Udell (1995), Bharath et al. (2007), Bartoli et al. (2013), Dewally and Shao
(2014), Bolton et al. (2016).
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Moreover, our work closely relates to the growing strand of papers in macro-finance

and banking focusing on spillovers’ implications for the identification of shocks’ effects.

For example, Mian, Sarto, and Sufi (2022) proposes a method to recover general equilib-

rium multipliers from differences in the regional impact of credit supply shocks. Berg,

Reisinger, and Streitz (2021) studies how spillovers from firms’ interactions may affect the

measurement of shocks’ effect on firm level outcomes. Moreover, it highlights how within

group (fixed effect) identification may worsen spillover bias, in line with our evidence.

Finally, Huber (2022) provides overall guidance to empirical researchers on how to deal

with multiple contemporaneous spillovers (spatial, competitive, agglomeration, general

equilibrium and so on) and in the presence of mechanical bias from the mismeasurement

of treatment.

Whereas these works focus on the impact of peers’ treatment status (being more or less

hit by shocks, i.e., contextual effects) in reduced form, we uniquely focus on identifying

and controlling for the effects of peers’ outcomes (endogenous effects). Our approach leads

us to recover parameters that can be precisely mapped to the primitives of a structural

model, thus having a direct behavioral interpretation. Measuring these primitives is

especially interesting in the case of credit relationships. The bank-firm relationship is a

key determinant of financial shocks’ pass-through, but its working is a black box. Our

model allows us to unpack the black box and uncover the importance of bank supply and

firm demand allocation across different relationships to determine the effect of shocks in

equilibrium.

Our investigation also complements the recent works by Darmouni and Sutherland

(2021) and Gupta et al. (2023), addressing spillovers in banks’ credit contract design,

the first in SME lending and the other in syndicated lending to large firms, both in the

US. The latter paper, in particular, exploits the network structure of banks’ overlap-

ping lending portfolios through a spatial autoregressive model to estimate the degree of

complementarity in banks’ interest rates setting. Nonetheless, using Dealscan data which

does not track credit commitments’ evolution over time, Gupta et al. (2023) cannot follow

changes in credit quantity and, ultimately, how shocks bolster or impair credit access. In-

stead, we exploit each bank’s borrowers’ and each firm’s lenders’ networks to do precisely

that.

From a methodological standpoint, our work is close to other corporate finance pa-

pers that directly address Manski (1993)’s reflection problem. Recent works did so to

quantify peer effects in firms’ capital structure (Grieser et al., 2022; Leary and Roberts,

2014), corporate governance (Foroughi et al., 2022), and banks’ liquidity choices (Silva,

2019). We cover firm access to credit and financial shocks’ pass-through. From the finan-

cial shocks’ pass-through perspective, our contribution is also complementary to Alfaro,

Garćıa-Santana, and Moral-Benito (2021) and Huremovic et al. (2020). The latter two

works study the propagation of financial shocks across the production network among

9



firms. Instead, we focus on the propagation of shocks through the credit network among

bank-firm links.

More in general, our approach is related to studies decomposing market’s aggregate

outcomes to derive instrumental variables, such as shift share instrumental variables

(SSIVs), used initially in Bartik (1991), Blanchard et al. (1992) and recently in Borusyak,

Hull, and Jaravel (2022) and Goldsmith-Pinkham, Sorkin, and Swift (2020), and granular

instrumental variables (GIVs), proposed in Gabaix and Koijen (2020) and applied to

banking in Galaasen et al. (2020). However, our approach differs from the GIVs and

SSIVs approaches substantially. The GIVs and SSIVs are procedures designed to estimate

price elasticities, while OPIVs is designed to estimate objects more similar to elasticities

of substitution. OPIVs and both these approaches are actually complements, because

they can be used in different types of markets. GIVs and SSIVs consider centralized

markets where there is only one price, while the OPIVs consider decentralized markets

where the price varies at the pair level. In Section 3.3, where we introduce the OPIVs,

we compare them with SSIVs and GIVs in more detail.

In suggesting and applying this approach, we provide our second contribution: A

unique quantification of spillover effects across credit relationships, and empirical evidence

on the role of credit market structure for shock propagation. Such quantification is closely

related to a recent stream of works measuring the link between credit market structure

and the effect of financial shocks. Important examples are Andreeva and Garćıa-Posada

(2021); Benetton (2021); Benetton and Fantino (2021); Corbae and D’Erasmo (2021);

Giannetti and Saidi (2019). Again, our work is complementary to Huremovic et al.

(2020) and Alfaro, Garćıa-Santana, and Moral-Benito (2021). Whereas they document

that financial shock propagation worsens when firms’ market power is greater, we show

that banks’ market power has a similar effect in our Monte Carlo study. This distinct

amplification mechanism may counterbalance the stabilizing role of credit concentration

documented by Giannetti and Saidi (2019).

Finally, and with respect to other works studying peer effects in networks, our context

allows us to achieve identification of spillover effects under lighter assumptions. Differ-

ently from social networks, credit networks are easier to observe. The detail in credit

register data mitigates the concern of unobservable relevant connections, a widespread

worry when studying other types of interactions (see Battaglini et al., 2020; Battaglini,

Patacchini, and Rainone, 2022; De Paula, Rasul, and Souza, 2019; Miraldo, Propper,

and Rose, 2021, among others). Indeed, the crucial assumption of non-overlapping bank

portfolios is testable and always verified in our data.

The rest of this paper is structured as follows: In Section 2 we introduce the toy model

of a credit relationships network. In Section 3 we lay down the estimation framework,

and explain how network econometrics allows us to identify spillover effects and recover

unbiased estimates of spillovers, treatment effects and idiosyncratic shocks. In Section 4
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we explore the estimator’s characteristics in finite samples, documenting bias behavior if

spillovers are ignored and the unbiasedness of our estimator. In Section 5 we use Italian

credit register data to show that spillover effects through firm links are highly statistically

and economically significant. Section 6 presents a few extensions to the model. We take

stock in Section 7.

2 Model

In Section 2.1 we draft a simple example to highlight how (i) network spillovers affect the

identification of financial shocks’ effects; (ii) network spillovers can harm the effectiveness

of fixed effects as controls for demand and supply biases; (iii) network spillovers may

distort firms and banks’ fixed effects estimates, lowering their correlation with actual

idiosyncratic demand and supply shifts.

2.1 The Traditional Identification Challenge, With Networks

We present the logic of our results using a simple static model of bank-firm relationships,

which modifies Khwaja and Mian (2008)’s to allow firms and banks to optimize simul-

taneously their full portfolio of relationships. Consider a network of two firms, i and j,

and two banks, a and b. Bank a and b both lend to firm i, while bank b also lends to

firm j. Figure 1 provides the visual counterpart. While the standard approach takes

credit relationships in isolation (panel (a)), we stress how they form a network (panel

(b)). Credit relationship ia links to relationship ib, as they share the same borrower (i),

and to jb, as they share the same lender b.

Figure 1: A Toy Credit Network

(a) (b)

Notes: Nodes a, b are banks, i, j are firms, edges are credit relationships.

The following is a static model of an exogenous network between banks and firms.

Banks fund their loans with a given mix of costless (insured) deposits and costlier re-

sources (equity, uncovered bonds, etc). As loans cannot be fully funded with costless
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resources, banks face a resource allocation problem, which gives rise to the bank lending

channel, i.e. the elasticity of credit to sudden changes in banks’ balance sheets. In the

application (Section 5), we will focus on the classic bank lending channel of monetary

policy (Jiménez et al., 2014; Kashyap and Stein, 2000). By the “bank lending channel of

monetary policy”, we mean the sensitivity of heterogeneous banks’ lending to monetary

policy changes. We start assuming that such elasticity is the same for all relationships.

We make this choice to isolate our point clearly at the start, but heterogeneity in ef-

fects is very important too, mattering for identification. We will explore the topic of

heterogeneity in further updates to this draft.

Formally, we assume that banks set their credit supply maximizing:

Assumption 1. πb(cib, cjb) =
(
rib − ω(cib, xib, cjb, νib)

)
cib +

(
rjb − ω(cjb, xjb, cib, νjb)

)
cjb

where : ω(cib, xib, cjb, νib) = ω cib
2
− ω(ξxib + νib − θcjb)

We specify the ω cost function as linear, ω is thus a parameter that captures the baseline

cost to the bank of one more dollar of commitment.8 Such functional form adapts Khwaja

and Mian (2008) to our setting. ri,jb are the interest rates bank b obtains for its credit

from firms i and j; cib, cjb are the quantity of credit supplied to firms i and j; xi,jb are

our treatments of interest, tracking some relationship’s characteristic that changes

bank b’s marginal cost of lending to the specific firm by −ξ dollars when monetary policy

changes; νi,jb are unobservable random shifts in supply.

At difference with Khwaja and Mian (2008), cjb enters the supply choice to firm i

directly (and viceversa), capturing the supply-side of interdependence in lending decisions.

Everything else equal, if bank b already lends one more dollar to firm j, this rises the

cost of lending to i by θ dollars, capturing the scarcity in bank resources. The resulting

supply equations follow from first order conditions (we display derivations in Appendix

A.1):

rib = ωcib − ω (ξxib + νib − θcjb)︸ ︷︷ ︸
uib

rjb = ωcjb − ω (ξxjb + νjb − θcib)︸ ︷︷ ︸
ujb

ria = ωcia − ω (ξxia + νia)︸ ︷︷ ︸
uia

(1)

and enter each firm’s demand problem as the firm’s cost function.

On the firm side, we consider a setting in which firms sustain multiple relationships in

equilibrium due to decreasing return to scale (increasing costs) in borrowing more from

only one lender (for empirical evidence on the cost of credit captivity, see Ioannidou and

8 The assumption of a common ω parameter across banks implies that banks face the same capital
market. Deviations from this assumption imply that impact effects are actually heterogeneous in the
system we estimate. We will empirically explore the relevance of this possibility in the further sections.
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Ongena, 2010).9 We start from a case in which, as in Khwaja and Mian (2008) and at

difference with Paravisini, Rappoport, and Schnabl (2023), demand shocks will distribute

equally across the different relationships of the same firm. At difference with Khwaja

and Mian (2008), we add that all credit funds the same project, hence it is perfectly

substitutable and there is going to be scope for endogenous reallocation. Formally, the

above translates to:

Assumption 2. The firm knows the banks’ pricing rules, and decides its credit demand

maximizing πf (cfa, cfb) =
(
ei − α(cia + cib)

)
(cia + cib)−

∑
k=a,b cikrik(cik).

Here, ei is the productivity of firm f ’s use of funds and the source of demand shocks, α

tracks the quadratic decrease in returns to scale and rfK is the loan’s cost derived above.

Firms’ profit maximization results in the following structural demand system:10

cia = ρcib + βxia + δi + εia,

cib = ρcia + φcjb + βxib + δi + εib,

cjb = φcib + βxjb + δj + εjb.

(2)

Relaxing the assumption that banks and firms optimize their choices only at the single re-

lationship level, and allowing them to more realistically maximize their profits considering

all their relationships together, we obtain a simultaneous system of equations.

We summarize the convolution of structural parameters in each equation with β, for

the supply shift we want to measure; δi,j captures firms’ demand shifters common across

relationships; ρ, the spillover from credit relationships of the same firm; φ, the spillover

from credit relationships of the same bank. In what follows, we focus on structural

parameters (ω, θ, α) such that ρ and φ are negative. Which is, we study the case in

which the substitutability of credit across different relations of the same firm drives the

ρ-spillover, and the opportunity cost of lending across different relationships of the same

bank drives the φ one. Nevertheless, the model does not need these assumptions a priori ;

complementarities (positive ρ, or φ, or both) are also possible.

For example, lenders may be market-leaders in specific credit markets and internalize

the externalities implied by cutting lending to some firms (Giannetti and Saidi, 2019).

Such internalization would lead to a complementarity in lending to different firms in that

market, and thus positive φ. On the other hand, banks may be specialized in funding

specific projects (Paravisini, Rappoport, and Schnabl, 2023). If we think of an exporting

firm, it may deal with a bank which has comparative advantage in funding export towards

a certain market, and another bank focused on funding purchases of specif machines useful

9 For the moment, we focus on active credit relationships and their intensive margin. We thus ignore
corner solutions in which links between a firm and a bank may not be active. We will explore matching
models in future extensions.

10 We display derivations in Appendix A.1.
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to produce exactly that export good. Thus, if that firms wants to scale up export, it must

scale up borrowing from both banks, with a complementarity in demand and a positive

ρ.11

In such an environment, the amount of credit that firm i borrows from bank a (cia)

depends on the amount that firm i borrows from bank b. On the other hand, the amount

of credit that bank b lends to firm j depends on the amount that bank b lends to firm

i (cib). In turn, cib depends on both cia and cjb, i.e. the single relationship’s outcome

receive impulses from all relationships sharing the same firm or bank. These endogenous

effects induce spillovers among credit relationships, based on the structure of links in the

credit network.

The model illustrates how simultaneity in credit demand and supply decisions affect

the final credit consumption observed in equilibrium. It can be represented graphically as

a system of linear supply and demand schedules that are co-determined at the intercept

level across relationships belonging to the same firm or bank. In Figure 2, we show how

this translates in a dependence of each relationship’s amount of credit on both the supply

shift we want to measure and reallocation spillovers, due to the change in relative costs.

Figure 2: Interdependence in a Toy Network

Notes: The Figure represents graphically the interaction between firm i and bank a and b, captured by
Equation 2, in the case bank a receives a negative supply shock. The blue lines are banks’ credit supply
schedules to firm i, while the red lines are firm i’s demand for credit from a and b respectively. Solid
lines are post-shock curves, while dashed lines are pre-shock curves.

Focusing on the two relationships belonging to firm i in System 2, say a supply shock

∆xia < 0 hits bank a, contracting its supply curve, while bank b supply stays still.12

Graphically, the shock moves a’s supply from the old, dashed line, to the new, solid one

by β∆xia. Then, for each amount of credit offered, the bank is asking an higher interest

11 To solve the system, we also assume here that |φ| < 1 and |ρ| < 1. This is not strictly required in
more general cases. We define formally the space of these parameters in the next sections.

12 Figure 2 ignores reallocation through banks, i.e. φ. This is done just for clarity, as reallocation
across different relationships of the same firm is enough to convey the intuition of the problem at hand.
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rate to i. As a consequence, i will not only comply with the restriction imposed by a,

but demand less from a and more from b overall, as a’s credit became relatively more

costly with respect to credit from b. This will translate in a ρ∆cia shift in the equilibrium

consumption of cib, partly compensated by an opposite shift by ρ∆cib = ρ2∆cia in cia. In

conclusion, the final change in equilibrium credit from bank a to firm i will be composed

by two elements, one directly related to the supply shift and governed by parameter β,

and one indirect, due to reallocation and governed by parameter ρ.

We then consider how all the above relates to the standard identification problem

in the empirical banking literature, the recovery of a treatment effect β, which can be

correlated with firms’ demand shocks. To further simplify the example, we assume that

Assumption 3. Treatment only hits relationship ia (xib, xjb = 0), δj = 0, and β < 0 to

mimic a contraction in credit.

If the researcher ignores the simultaneity of choices across credit relationships and

estimates the following system of equations instead of (2),

cia = βxia + εia,

cib = βxib + εib,

cjb = βxjb + εjb.

(3)

the OLS estimator for β will be biased:

Proposition 1. Under Assumptions 1, 2, and 3 the estimator of β for the system of

equations in (3) is biased. The bias can be expressed as

β̂OLS = cov(cia,xia)
var(xia)

= β + ρ
cov(xia, cib)

var(xia)︸ ︷︷ ︸
spillover bias

+
cov(xia, δi)

var(xia)︸ ︷︷ ︸
demand bias

(4)

Proof. Looking at the first Equation in the estimated System 3 and comparing it with

the real Equation in System 2, we can see that the error term εia actually equals to:

εia = δi + ρcib + εia

The structural demand system in 2 can be expressed in terms of its reduced form com-

ponents. In particular, we can express cib as:

cib = (1+ρ)
1−φ2−ρ2 δi + β ρ

1−φ2−ρ2xia +
ρεia+φεjb+εib

1−φ2−ρ2

From which β̂OLS = cov(cia,xia)
var(xia)

= β + ρ cov(xia,cib)
var(xia)

+ cov(xia,δi)
var(xia)

derives.

That cov(xia,cib)
var(xia)

= 1+ρ
1−ρ2−φ2

cov(xia,δi)
var(xia)

+ β ρ
1−ρ2−φ2 6= 0, cov(xia,δi)

var(xia)
6= 0 and that cov(xia,δi)

var(xia)
6=

ρ cov(xia,cib)
var(xia)

if not for specific values of the parameters conclude the proof. Details are

provided in Appendix A.1.
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The presence of spillovers impacts the estimate directly (the spillover bias component

in Equation (4)). A supply shift induces reallocation of credit demand, as firms demand

more from the relationships that became relatively more convenient. Moreover, spillovers

affect the bias indirectly, interacting with demand bias. Demand bias can be at play even

in absence of spillovers, but the presence of spillovers can amplify or reduce it, depending

on their magnitudes and signs. In this example, the spillover-demand bias interaction

component is captured by the role of φ and ρ parameters in the 1+ρ
1−ρ2−φ2 multiplier in

front of cov(xia,δi)
var(xia)

. We can see that, when the absolute value of spillovers is high, the

denominator of the interaction component increases, magnifying the demand bias.

In this simplified framework, we can also see how the inclusion of firm fixed ef-

fects cannot control for credit relationship interdependence, unless we also address the

spillovers problem directly. Say we attempt a within estimation, but ignore spillovers

represented in System (2). The resulting system is:

cia = βxia + δi + εia,

cib = βxib + δi + εib,

cjb = βxjb + δj + εjb.

(5)

and the resulting problem is that we will not even address demand bias.

Indicating averages with bars, so that, for example, c̄i = cia+cib
2

, we can state:

Proposition 2. Under Assumptions 1, 2 and 3, the estimator of β for the system of

equations in (5), the shift in banks’ supply curve, is biased and the bias can be expressed

as
β̂FE = cov(cia−c̄i,xia−x̄i)

var(xia−x̄i)

= β(1− ρ) + ρ(1− ρ) cov(cib,xia)
var(xia)

− ρ cov(δi,xia)
var(xia)

− φ cov(cjb,xia)

var(xia)
.

(6)

Proof. From Assumption 3 it follows that δ̂i = cib. From the structural demand system

εia = ρcib + εia and εib = ρcia + φcjb + εib. Then we have that:

β̂FE = cov(cia−c̄i,xia−x̄i)
var(xia−x̄i) = cov(cia−cib,xia)

var(xia)
= cov(βxia+εia−εib,xia)

var(xia)
= ...

...β +
cov(ρ((1−ρ)cib−βxia−δi)−φcjb,xia)

var(xia)
= ...

...β(1− ρ) + ρ(1− ρ) cov(cib,xia)
var(xia)

− ρ cov(δi,xia)
var(xia)

− φ cov(cjb,xia)

var(xia)

(7)

From the above, and the reduced form of System 2, it is evident that βFE is biased, and

that correlated demand shocks still play a role, as they are reflected back in the estimator

through reallocation spillovers. βFE is indeed a function of δi in two ways. First, through

the −ρcov(δi, xia)/var(xia) element, due to demand reallocation within the relationships

of the same firm. Second, through the impact of δi on all other bias components. Details

are provided in Appendix A.1.

From Proposition 2 and its proof, we can also drive another important conclusion.
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Proposition 3. Under Assumptions 1 and 2, β̂FE 6= β̂OLS is possible even in the absence

of demand bias (cov(xia, δi) = 0).

Proof. Using Assumption 3 and the absence of demand bias to simplify our calculation,

we can thus express the reduced form for cib, cjb in System (2):

cib = β ρxia
1−φ2−ρ2 +

ρεia+φεjb+εib
1−φ2−ρ2

cjb = β ρφxia
1−φ2−ρ2 +

φρεia+(1−ρ2)εjb+φεib
1−φ2−ρ2

In the absence of demand bias, the OLS estimator equals:

β̂OLS = β 1−φ2
1−ρ2−φ2

Using the bias expression in Proposition 2, the fixed effect estimator is:

β̂FE = β(1− ρ) + β ρ2(1−ρ)
1−φ2−ρ2 − β

φ2ρ
1−φ2−ρ2 = β 1−φ2+ρ

1−φ2−ρ2

(8)

which are different except for specific values of the reduced form parameters. Details are

provided in Appendix A.1.

This difference implies that interpreting the distance between β̂FE and β̂OLS as infor-

mative on the sign of the demand bias (see, e.g. Jiménez et al., 2020) may, at least in

some cases, lead to misguided conclusions. For an intuition, we shall use again our even

more simplified graphical framework. In Figure 3, focusing on within-firm reallocation,

we show how differentiating within firm in the absence of demand bias is tantamount to

add further spillover bias back. This may lead a within-firm assessment of a supply shift

even more off than a simple OLS.
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Figure 3: Interdependence and Fixed Effects in the Absence of Demand Bias

Notes: The Figure represents graphically how the interaction between firm i and bank a and b, captured
by Equation 2, can affect within-firm assessment of supply shifts. The blue lines are banks’ credit supply
schedule to firm i, while the red lines are firm i’s demand for credit. Solid lines are post-shock curves,
while dashed lines are pre-shock curves. Orange segments highlight how within-firm differentiation may
worsen our assessment of the supply shift.

Consider again the β∆xia supply shift we want to quantify, and suppose we mistakenly

believe both cia and cib are affected by a demand shock specific to firm i that can bias

our quantification of β∆xia. If we differentiate ∆cia − ∆cib to address this nonexistent

demand confounder, we add to the feedback effect of reallocation on cia = ρ∆cib, the

initial reallocation from ia to ib, ∆cib = ρ∆cia. Within comparison may actually increase

the role of reallocation bias in assessing the supply shifts.

Finally, the example highlights an issue with retrieving the bank and firm fixed effects

and interpreting them as credit supply and demand shifters (Amiti and Weinstein, 2018).

Proposition 4. Under Assumptions 1 and 2, firm fixed effects’ estimates contain supply

shock spillovers and bank fixed effects’ estimates may contain demand shock spillovers. As

such, they cannot be regarded as pure measures of each firm or bank demand and supply

shocks, respectively.

Proof. We start considering an alternative version of Assumption 3, that allows for

δj 6= 0. Then, we notice that if the econometrician tries and estimate System (5), then

she obtains:

δ̂i = (1+ρ)
1−φ2−ρ2 δi + φ

1−φ2−ρ2 δj

δ̂j = φ(1+ρ)
1−φ2−ρ2 δi + (1−ρ2)

1−φ2−ρ2 δj
(9)

from the the solution of System (2).

Even in this simple setting, where we focus on firms fixed effects only, we can see

that fixed effect estimate in (9) are already affected by two problems. First, fixed effects
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do not capture the pure demand shock exactly, but an amplified or attenuated version

of it (on the base of the signs and relative magnitudes of φ, ρ). Focusing on δ̂i, this is

exemplified by the (1+ρ)
1−φ2−ρ2 δi element. Second, bank links reflects other firms’ shocks back

in the estimate, further biasing the fixed effect estimates. Focusing again on δ̂i, this is

exemplified by the φ
1−φ2−ρ2 δj element.

This example is useful to get an intuition of the basic mechanics at play when banks

and firms optimize their portfolios in an integrated way, and the simple yet powerful

results that follow if these forces are ignored and standard estimation is performed. Nev-

ertheless, actual credit networks can be much more complex, involving thousands of firms

and hundreds of banks. Figure 4 provides a visual example of how complex the network

formed by real credit relationships could be from a sample of only 500 real credit rela-

tionships from the Italian Credit Register data.

Figure 4: A Sampled Real Credit Network

Notes: The network is derived from a sample of 500 credit relationships observed in 2012. Banks

are represented in blue and firms in red. The estimated network is represented with a force-directed

layout with five iterations. It uses attractive forces between adjacent nodes and repulsive forces between

distant nodes. To ease the visualization, the size of the nodes is equal to the (log) of their degree. See

Fruchterman and Reingold (1991) for more details.

As a consequence, the resulting signs and magnitudes of the biases are more difficult to

derive. First, as we can already see from the simple example, if the shock hit relationship

ib instead of relationship ia, all bias expressions would change. This is actually an instance

of a standard result in the network literature, finding that the extent of spillovers is

mediated by each node’s location in the network (Ballester, Calvó-Armengol, and Zenou,

2006). Furthermore, as the number of links increases, the complexity of the feedback
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effects increases too. A network with three links incorporates feedback loops of order two

at most, i.e. a shock can affect another link and this movement can come back hitting

the initial node. A network of n links can exhibit much more complicated dynamics.

Fortunately though, the intuition we built in this Section carries through to contexts

of greater complexity, where existence and uniqueness of solution has been proven under

mild conditions in Ballester, Calvó-Armengol, and Zenou (2006). In the rest of the doc-

ument, we will introduce and estimate a generalized network model of credit relationship

between F firms and B banks.

3 The Econometric Framework

In this section we introduce an econometric framework encompassing spillovers among

credit relationships between banks and firms. The framework adds in four ways to the

toolkit currently available to the empirical researcher in banking. First, it allows us

to identify and measure spillovers through banks and firms. Second, it can be used

to consistently estimate direct and indirect effects of treatments and shocks to firms

and banks outcomes without imposing strong independence assumptions. Third, such

estimates allow to measure and understand the deep links between shocks’ effects and the

credit market structure, especially how the centrality of banks and firms in the network

of relationships affects the passthrough. Finally, as we derive the econometric framework

from the simple microfoundation of banks and firms behavior discussed in Section 2.1,

the estimates map with salient structural parameters that have an explicit economic

interpretation.

3.1 The Credit Network Model

Suppose that there are two sets, F and B, of firms and banks in the market with cardinality

respectively equal to F and B. We can easily generalize System (2) in Section 2.1 to any

number of banks, firms and relationships in the credit network as:

cib = α + φ
∑
j∈F\i

aib,jbcjb + ρ
∑
k∈B\b

aib,ikcik + δi + γb + xibβ + εib, (10)

where cib is credit from bank b to firm i. δi and γb are the firm and bank fixed effects. xib

is a vector of exogenous characteristics of the loan, which may include a specific treatment

administered to the relationship ib. εib is the error component. The term aib,jb captures

the connections among credit relationships by the lender side, being equal to one if both i

and j borrow from b. The term aib,ik captures the connections among credit relationships
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by the borrower side, being equal to one if both b and k lend to i.13

In this model, credit relationships are not i.i.d., credit granted bilaterally from banks

to firms is jointly determined. On the one hand, the amount of credit from bank b to firm

i depends on the credit that bank b gives to other firms j, as firms compete on the demand

side to get credit from bank b, which is budget constrained. It captures the effect that a

change in cjb has on cib. We call this effect, captured by φ, the bank supply allocation effect

(BSA), as it captures shifts in the supply between credit relationship involving the same

bank that are driven by its reallocation policies. On the other hand, the amount of credit

from bank b to firm i depends on the credit that firm i takes from other banks, as banks

compete on the supply side to grant credit to firm i, whose demand is not unlimited. It

captures the effect that a change in cik has on cib. We call this effect, captured by ρ, the

firm demand allocation effect (FDA), as it captures shifts in the demand between credit

relationship involving the same firm that are driven by its substitution choices.

Consider again System (2) in Section 2.1. The credit relationship ib is influenced

by ia as both share the same borrower, and by jb as they share the same lender. The

relationship ia is not influenced directly by jb, because it does not share any counterparty

with it. Nevertheless, as we discuss in more detail below, ia is indirectly exposed to jb

through adjustments in ib, as highlighted in Section 2.1. The matrix form of the credit

network model (CNM) is:

C = α + φABC + ρAFC +Xβ + ∆ + Γ + ε,

= φABC + ρAFC + Zµ+ ε. (11)

where X is the matrix of loans covariates. ∆ is the matrix containing the firm fixed

effects. Γ is the matrix containing the banks fixed effects. C is the vector containing all

the N credit relationships between banks and firms in the market. AB is the (N × N)

adjacency matrix of the network that keeps track of connections among loans through

banks whose generic element aib,jk is equal to one iff b = k. AF is the (N ×N) adjacency

matrix of the network that keeps track of connections among loans through firms whose

generic element aib,jk is equal to one iff i = j. For both adjacency matrices, we let

aib,ib = 0 for all ib, following convention. The vector ABC contains for each loan the

amount of credit granted by the same bank to other firms. The vector AFC contains for

each loan the amount of credit obtained by the same firm from other banks.

We define the isolated-credit model (ICM):

C = α +Xβ + ∆ + Γ + ε, (12)

13 Given that we want to consider the total credit, we do not row-normalize these terms as sometimes
is done in network econometrics, see Liu, Patacchini, and Zenou (2014) for a discussion.
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a model in which the credit relationships are forced to be independent, i.e. if we impose

the restriction φ = ρ = 0 in Equation (11). It is worth observing that (i) the CNM nests

the standard ICMs commonly used in the literature, and (ii) it exploits exactly the same

information set of the ICM, because the network structure (summarized by AB and AF )

comes directly from the observable firms and banks’ identities. From this perspective,

our model can be used by every researcher working with credit register data.

The matrix form of the model makes it clearer that we deal with a simultaneous system

of equations, in which the credit vector C enters the equation both on the left and the

right hand side, through ABC and AFC, the endogenous terms. This feature captures the

more realistic assumption that credit choices are not independent, but comes at the cost

of additional complexity in the econometric model and its identification. It can not be

estimated by simple OLS. Nevertheless, model (11) belongs to the spatial autoregressive

(SAR) models class, thus we can exploit some key results in this literature, especially

the branch of the literature that extended these models to the analysis of networks (see

Arduini, Patacchini, and Rainone, 2020; Bramoullé, Djebbari, and Fortin, 2009; Hsieh

and Lee, 2016; Johnsson and Moon, 2021; Lee, 2007; Lee, Liu, and Lin, 2010; Patacchini,

Rainone, and Zenou, 2017, among others). However, there are peculiarities and problems

in our framework that deserve discussion and could need tailored solutions. For example,

standard SAR models usually consider outcomes at the node level, while in our case

outcomes are at the link level. In addition, nodes here belong to two different types of

agents and links can be formed only between the two types, not within, and we have

multiple endogenous terms and parameters.

3.2 Identification

The main issue that arises when we want to estimate equation (11) is the endogeneity

of ABC and AFC, negating the consistency of OLS estimation. The simultaneity of

equations in model (11) creates an intrinsic endogeneity problem if

E[(AFC)′ε] = E[(AF (I − φAF − ρAB)−1(α + Zµ+ ε))′ε] 6= 0,

E[(ABC)′ε] = E[(AB(I − φAF − ρAB)−1(α + Zµ+ ε))′ε] 6= 0.

The last inequalities hold if

E[(AF (I − φAF − ρAB)−1ε)′ε] = σ2
ε tr(AF (I − φAF − ρAB)−1) 6= 0,

E[(AB(I − φAF − ρAB)−1ε)′ε] = σ2
ε tr(AB(I − φAF − ρAB)−1) 6= 0,

where tr is the matrix trace operator. Endogeneity is basically determined by the struc-

ture of the observed network, represented by AF and AB.

In SAR models, spatial lags of both the endogenous (here ABC and AFC) and ex-
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ogenous variables (here ABX and AFX) can be included on the right hand side. The

social networks literature calls the latter contextual effects, as they capture the direct

influence of peers’ characteristics. While endogenous effects arise quite naturally in our

context, and we explicitly discuseed them in Section 2, exogenous effects are plausible

too. For just one example, a reversal in the fortunes of some upstream and downstream

firms may impact all firms sharing the same value chain. Outcomes of such firms will thus

react directly to these shocks. Similar contextual effects have been recently studied by

works such as Berg and Streitz (2019); Huber (2018). Here, we will focus on our unique

contribution, the handling of direct effects. Nonetheless, we stress that our model can be

extended to accommodate contextual effects, if needed.

The following proposition establishes sufficient conditions under which the parameters

in model (11) are identified, even if augmented with exogenous effects ABX and AFX.

Proposition 5. (Identification of the Credit Network Model). The credit network

model in (11) is identified if IF , ABAFAB and AF are linearly independent and IB,

AFABAF and AB are linearly independent -i.e. there are intransitive quadriads in the

credit network- and φβ 6= 0 and ρβ 6= 0.

A nice feature of this result is that it translates into the easy-to-check requirement

that banks do not have fully overlapping portfolios. In other words, it requires that not

all the banks lend to the same set of firms. It follows that the credit market structure

itself can provide the solution to the endogenity problem, if it meets certain conditions.

Precisely, we need the market structure to show a certain degree of intransitiveness. The

level of intransitivity is the ratio between the number of intransitive quadriads and the

total number of quadriads. A quadriad is a set of four nodes, two banks and two firms.

The quadriad is transitive if all the between-type links are realized. For identification

purposes, the market must not be composed only by transitive quadriads. The presence

of intransitive triads is a sufficient (but not necessary) condition for the identification of

the model’s parameters.

The intuition is that intransitivity provides exclusion restrictions that allow us to

identify the system of simultaneous equations in (11). Figure 5 provides examples of

market structures that allow (networks on the left) and do not allow (networks on the

right) for identification of spillovers among credit relationships, with two (panel (a)), three

(panel (b)) and four (panel (c)) firms in the market. Let us consider the simplest networks

in panel (a). In the left network, the fact that bank k does not have a relationship with

firm j allows jb to be excluded from ik’s equation, because j is not connected with k.

It follows that jb can be used as an instrument to estimate the effect of ib on ik, as it

has a direct impact on the former but not on the latter (which in turn it influences only

through the former).
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Figure 5: Network Structure and Identification

Notes: Nodes a, b are banks, red nodes are firms, edges are credit relationships.

Intuitively, when the number of firms grows, the number of intransitive quadriads has

to grow as well. In the credit market, a transitive quadriad appears when a bank b lends

to a different set of firms w.r.t. another bank k, or specularly when a firm i borrows

from a different set of banks w.r.t. another firm j. If the market is composed only by

transitive quadriads, we cannot identify the parameters in the system, there is no valid

exclusion restriction. This situation is extremely rare credit markets.

3.3 Overlapping Portfolios Instrumental Variables

In this section, we propose a new method to construct instrumental variables based

on overlapping portfolios (OPIVs). In credit markets, firms can borrow from multiple

lenders. This feature creates overlapping portfolios of relationships both at the firm and

bank level. As idiosyncratic shocks to one relationship can affect the others involving the

same parties, they can provide relevant instruments for the FDA and the BSA. If these

portfolios are not fully overlapping, such instruments are also exogenous.

Intuition. Let us make a simple example in Figure 6. In panel (a), the credit

network is disconnected, bank a not lending at all. In panel (b), we have full overlapp.

Everybody lends/borrows from everybody. Panel (c), instead, respects all conditions for

identification. For simplicity, lets focus on how a shock to bank a helps us identify φ. In
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panel (a), a shock to bank a is not relevant, as the two banks are not connected through

any firm. In panel (b), the same shock is not exogenous, because it directly influences

jb through ja. In panel (c), a shock to bank a is a valid instrument, instead. Indeed, it

is relevant, as it directly influences bi through ai; moreover, it is exogenous to jb, as the

two relationships are only indirectly connected. The same reasoning applies to shocks

that are firm-specific or relationship-specific, for the identification of ρ.

Figure 6: Exogeneity and Relevance of OPIVs

(a) Not relevant (b) Not exogenous

(c) Relvant and exoge-

nous
Notes: Nodes a, b are banks, i, j are firms, edges are credit relationships.

Let’s consider again the example we introduced in Section 2.1, in its most basic

form, where there is no correlated demand confounder
( cov(xia,δi)

var(xia)
= 0
)

and the following

assumption holds:

Assumption 4. xjb and xia do not affect directly cib and are uncorrelated with εia and

εjb.

Then we have:

Proposition 6. Under Assumptions 1, 2, 4, and the network structure in Section 2.1,

we can identify the spillover parameters (φ and ρ) with a 2SLS procedure, and deliver an

unbiased estimate of β.

Proof. The System in 2 can be rearranged as

cia = ρπρxjb +
(
β + βρ2

1−φ2−ρ2
)
xia + ρµ+ εia

cib = πρxjb + πφxia + µ

cjb = φπφxia +
(

φ2β
1−φ2−ρ2 + β

)
xjb + φµ+ εjb

(13)
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where πρ and πφ are the reduced form parameters for the instruments’ effect on cib and

µ summarizes all other parameters we are not interested into. We use the cib equation of

the System in 13 as first stage, recovering π̂ρ,OLS, π̂φ,OLS, which in turn we use to deflate

π̂ρρOLS, π̂φφOLS in the second stage, to finally obtain ρ̂IV = ρ, φ̂IV = φ. Endowed with

unbiased estimates of the spillovers through bank and firms’ parameters, we can correct

the β̂OLS and derive an unbiased β̂IV . Details in Appendix A.1.

The key insight comes from the fact that, under Assumption 4, credit relationship jb

(ia) provides exogenous variation through xjb (xia) that does not affect directly cib, but

does affect it indirectly through cjb (cia). It then allows us to identify φ (ρ) with a 2SLS

estimator. Identification of ρ and φ allows us, in turn, to retrieve an unbiased estimator

of β.

Depending on the circumstances, Assumption 4 may be too strong, for example be-

cause there are no credible pairwise observables (for example xjb) that do not affect cib.

An example could be that the econometrician does not observe other pairwise or firm spe-

cific variables at all, and only have bank specific variables at hand. If only firm-specific

variables are available, j-specific variables (say xj) can be used as an instrument for cjb.

If only bank-specific variables are available, b specific variables (say xb) can not be used

as an instrument, because they affect directly cib.

In such cases, we can use variation in more distant credit relationships for identifi-

cation. For instance, let us add two other credit relationships to our toy example and

assume that bank a supplies credit also to firm f and firm j demands credit also to

bank k. Figure 7 provides the relative graph. In this highly intransitive credit network,

variation induced by fa (jk) to ia (jb) can be used as an instrument to identify ρ (φ)

-i.e. the effect of cia (cjb) on cib -. Here, even if the econometrician only observe banks’

characteristics, a (k) specific variables can be used as an instrument for cia (cjb) and

identify φ (ρ). A specular strategy can be used if the econometrician only observe firms’

characteristics, say f (j).

Figure 7: IV exclusion restrictions

Notes: nodes a, b, k are banks, f, i, j are firms, edges are credit relationships.

In the full model. Following Proposition 5, OPIVs are a natural way to proceed with

the estimation of equation (11). The OPIVs are substantially “network embedded”; in

other words, we can use the network topology to create IVs that are correlated with
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the endogenous variables, but independent from the error term.14 Indeed, the expected

values of the two endogenous variables, E(AFC) and E(ABC), meet these two conditions.

Taking advantage of the reduced form, we thus derive the theoretically best OPIVs as

TIVF = E(AFC) = E[(AF (I − φAF − ρAB)−1(α + Zµ))], (14)

TIVB = E(ABC) = E[(AB(I − φAF − ρAB)−1(α + Zµ))], (15)

where we can get to this conclusion as E[(I − φAF − ρAB)−1ε] = 0.

Given that the parameters in Equations (14)-(15) are unknown, TIVB and TIVF are

unfeasible. Assuming ||φAF + ρAB||∞ < 1,15 the term (I − φAF − ρAB)−1 is an infinite

sum of elements
∑∞

k=0(φAF +ρAB)k. A linear approximation, EIVF and EIVB, of vectors

appearing in equation (14) and (15) can thus be used for the empirical IV. Exploiting

only the variation of covariates, X, first order approximations of TIVF and TIVB are

respectively:

EIV 1
F = AFX, (16)

EIV 1
B = ABX, (17)

second order approximations are

EIV 2
F = [AF , AFAB]X, (18)

EIV 2
B = [AB, ABAF ]X. (19)

and so on and so forth.16 Observe that here AkF ≡ AkB ≡ 0, which is the zero matrix, for

k > 1, as we have a bipartite network with only cross types links. Let us use again our

example in Figure 7, in order to consistently estimate ρ (φ), a first order approximation

uses xia (xjb) as an IV. A second order approximation would use xfa (xjk) in addition in

14 The literature of spatial and network econometrics investigated in depth several methods to treat
the endogeneity created by these simultaneous equations, Kelejian and Prucha (1999) and Liu and Lee
(2010) proposed a GMM approach, and Lee (2004) used a Quasi-Maximum Likelihood Estimator. In
this paper we use an IV approach in the spirit of Lee, Liu, and Lin (2010), Lee (2007) and Kelejian and
Prucha (1998).

15This is a sufficient condition for the invertibility of (I−φAF −ρAB); it also determines the parameter
space for spillover effects.

16The approximation is as follows. E(AFC) = E[(AF (I − φAF − ρAB)−1(α + Zµ))] =
E[AF [

∑∞
k=0(φAF + ρAB)k](α + Xβ + ∆ + Γ)] = E[AFXβ] + E[AFABXβ] + E[AF (α + ∆ + Γ)] +

E[AFAB(α + ∆ + Γ)] + E[AF [
∑∞

k=2(φAF + ρAB)k](α + Xβ + ∆ + Γ)]. This is due from the fact that
we have a bipartite network without within type connections an thus AFAF = ABAB = 0. A specular
approximation can be derived for TIVB .
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the IV.17 The 2SLS estimator is consequently

θ̂2SLS = (W ′PQW )−1(W ′PQC), (20)

where Z = [AFC,ABC,Z], PQ = Q(Q′Q)−1Q′, Q = [EIVF , EIVB, X] and θ̂m,t,2SLS =

[φ̂2SLS, ρ̂2SLS, µ̂2SLS]. Given that we do not employ Γ and ∆ in the construction of the

OPIVs, the number of IVs does not grow with the number of banks and firms in the

sample. It follows that the main asymptotic properties of the estimator are standard and

follow those of the ICM.

Intuitively, the estimator is consistent as long as the number of credit relationships

grows faster than the number of banks and firms in the market, as it allows to include the

FEs in the model.18 Using Liu and Lee (2010)’s terminology, if we wanted to use a more

efficient“many IVs” strategy, instead of a “few IVs” strategy we adopt, we could have

employed also Γ and ∆ in the OPIVs. Nonetheless, in case, we should have derived the

asymptotic properties of such estimator to develop a bias-correction procedure. In this

paper, our main objects of interest are the identification, the finate sample properties, and

the empirical analysis of this few IVs estimator. We leave the analysis of the asymptotic

performance of a more efficient many IVs estimator for future research.

In some cases, the dimension of credit register or, more generally, bilateral credit

relationship data can be very high, eventually millions of observations. In such situations,

the curse of dimensionality can severely constrain or eventually prevent the computation

of the estimator in (20), because some of the matrices involved can not be manipulated

with standard software. We can address this problem using a within estimator. Let

F = [∆,Γ] and J = I − F (F ′F )−1F ′. Then we have

JY = φJABY + ρJAFY + JXβ + Jε.

One can thus first estimate ω = (φ, ρ, β′)′ by 2SLS.

Let R = [ABY,AFY,X] and PH = JH(H ′JH)−1H ′J where H is a matrix of IVs of

linearly independent columns of [X,ABX,AFX].19 Then

ω̂2SLSW = (R′PHZ)−1R′PHY, (21)

17 Observe that using X in the empirical IV corresponds to the ’few IV’ estimator strategy in Liu and
Lee (2010), we abstract from efficiency considerations and bias correction issues that would emerge from
the analog of the ’many IV’ estimator strategy using Z instead.

18 We abstract here from the potential consequences of violating this assumption and selecting only
firms that borrow from multiple banks in the sample, as it is a standard practice in this literature, which
could affect both the ICM and CNM. Usually this operation is justified by observing that firms with
only one relationship account for a very small share of the market.

19Observe that if pairwise exogenous X are observable in the data and exogenous effects are not
considered, a first order approximation is the preferred solution if the curse of dimensionality is binding,
because products of high dimensional matrices such as AB and AF . Unless differently specified we will
use such approximation in what follows.
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is a consistent estimator for the spillover effects. Next, one can estimate φ = (γ′, δ′)′ by

OLS. Let Û = Y −Rω̂2SLSW . Then,

φ̂2SLSW = (F ′F )−1F ′Û . (22)

3.4 Bias of ICM under Interdependent Credit Relationships

Here, we derive analytical results on the sign and magnitude of treatment effects and

idiosyncratic shocks’ biases when the DGP is a CNM and the econometrician estimates a

ICM. Which is, what happens when we ignore the network nature of credit relationships?

3.4.1 Bias of Treatment Effects

Let us first abstract from the presence of fixed effect and let the DGP be

C = φABC + ρAFC +Xβ + ε, (23)

For simplicity, let also ρ = φ. Suppose we estimate

C = Xβ + U, (24)

then the error term has the following form

U = φABC + ρAFC + ε = (φAB + ρAF )(I − φAB − ρAF )−1[Xβ + ε] + ε

= MXβ + (M + I)ε. (25)

Suppose that X is univariate and X ⊥ ε,20 we have

X ′U = X ′MXβ +X ′(M + I)ε = X ′φA
inf∑
k=0

(φA)kXβ

= X ′
inf∑
k=1

(φA)kXβ = β
inf∑
k=1

φkX ′AkX = S. (26)

If β, φ > 0 then B = β̂ − β = (X ′X)−1S > 0. The positive bias is given by the ampli-

fication generated by spillovers, which is not disentangled in the reduced form estimate.

If φ < 0 then the sign of B depends on A, i.e. the network structure, and the intensity

of the spillovers, as it contains decaying functions of φ.

Suppose X is binary. For example, a stark change in regulation hits only part of our

credit relationships population. Then, for each treated relationship, we call X ′AkX = pk

20To ease the notation we assume independence here, the same conclusions can be reached assuming
E[ε′X] = 0.
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the sum of the number of k− distant treated credit relationships. It follows that

S = β
inf∑
k=1

φkpk = β(
∑
k odd

φkpk +
∑
k even

φkpk) = β(OD + EV ).

Given that OD is negative and EV is positive, B > 0 if OD > −EV . The intuition

behind the indeterminate sign is that, when the spillovers are negative, they lower the

outcomes of odd-distant agents (at distance 1, 3, 5, etc) but increase the outcomes of even-

distant agents (at distance 2, 4, etc). Nevertheless, the negative sign is likely to prevail as

the first round effects have a higher weight, because φ < 0, especially in denser networks.

The inclusion of fixed effects, whether they are correlated or not with treatment, does

not change these last results. We show the details in Appendix A.1

3.4.2 Bias with Spillovers and Endogenous Treatments

In the previous analysis, we assumed that the main regressor is exogenous. Let us now

allow X to be an endogenous regressor. In credit markets, as in other fields in which

experiments are not possible or easy to implement, regressors are often endogenous.

Endogeneity can arise because of self-selection in the extensive (see Jiménez et al., 2014),

or in the intensive margin (see Paravisini, Rappoport, and Schnabl, 2023). Also, it can

arise due to the omission of relevant variables on the RHS. In some cases, a credible

instrument (a selection step, or a clever IV) can be found, but in many situations this

is not a possibility and the omission of relevant, and eventually endogenous, variables is

always difficult to assess in practice.

In what follows, we want to understand analytically the consequences of endogeneity

for the bias due to spillovers. For simplicity, we still focus on φ = ρ and we assume fixed

effects away. At difference with the previous sections, we assume that ε = ιX + V , with

V being an error term such that V ⊥ X, ε. Suppose we estimate the following CNM’s

and ICM’s parameters

C = φABC + ρAFC +Xβ + ε, (27)

C = Xβ + U, (28)

When the DGP comes from Equation 27, the error term of Equation 28 has the

following form

U = φABC + ρAFC + ιX + V

= (φAB + ρAF )(I − φAB − ρAF )−1[Xβ + ιX + V ] + ιX + V,
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then, given that V ⊥ X, we have

X ′U = S +X ′(M + I)(ιX + V )

= S︸︷︷︸
spillovers

+ ιX ′X︸ ︷︷ ︸
endogeneity

+ ιX ′MX︸ ︷︷ ︸
combination

,

X ′ε = ιX ′X + ιX ′MX.

In this case, the estimate of β is biased for both Equations (27) and (28). Nonetheless, the

bias of (28), BICM , has three drivers: The pure spillover component; the pure endogeneity

component; the combination of the two. On the other hand, the bias of (27), BCNM , is

only affected by the last two. It follows that even in a context rid with endogeneity,

we can use our model to study firms and banks credit reallocation, system-wide. More

formally D = BICM−BCNM 6= 0 does not imply that ι 6= 0, but it does imply that S 6= 0,

and thus D can inform about the presence of (and the bias induced by) spillovers even if

the estimate of β is biased.

We get this result because unbiased spillovers can be recovered even in the presence

of treatment endogeneity: the network lags used as instrumental variables for the iden-

tification of the spillovers, for example the EIV in Equations (16) and (17), are still

uncorrelated with the error term, i.e. E[ε′AX] = 0. The intuition is that the treatments

to other agents in the economy can still be valid instruments for their outcomes, even

if they are endogenous.21 The key requirement is that they are not endogenous to their

network lags.22

3.4.3 Bias of Idiosyncratic Firm and Bank Shocks

Again, we find that estimating and retrieving banks and firms fixed effects we face an

indeterminate bias sign. The intuition behind this result is similar to the one for the treat-

ment effect bias’ indeterminacy: Portfolio wide optimization and higher order loops let

idiosyncratic shocks diffuse through the credit network. Propagation may stress different

shocks reflecting throught the network, giving rise to oscillating sums and inderterminate

biases. We provide the details in Appendix A.1.

21 Such result would not stand if the order of the EIV used to approximate the TIV is higher, because
X ′AkX could contain powers of the same xi when k ≥ 2. Using a first order approximation helps to
avoid it.

22 Simulation in Section 4 confirm the result, while we show that our method can easily accommodate
a instrumental variable strategy in Section 6.
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4 Monte Carlo Study

In this section, we simulate networks to illustrate our method’s validity and its properties,

in finite samples under different settings, using both simulated and real credit (sampled

from the credit register) networks. Furthermore, we use these numerical experiments

to study the bias of the isolated-credit network estimator. The key take away from our

simulation is that the sign and size of the bias from ignoring the network structure cannot

be derived ex-ante. Indeed, the bias is a convolution of observables, such as the market

structure (in particular its density) and the number of treated units, and unobservables,

such as the structural parameters determining the spillovers’ magnitude. Thus, we can

experience high non linearity of the bias, sign uncertainty, and we need to tackle spillovers

directly.

4.1 Setting

We use a given set of parameters φ, ρ and β, randomly generated characteristics X, error

terms ε, and a network G as inputs. We generate G as a ‘circular network’, ordering nodes

according to natural numbers from 1 to N . If node i is odd, it is a bank, if it is even, it

is a firm. We link node i to all opposite type nodes, till node i + j for j ≤ zi, where zi

is an independent realization from a uniform distribution U(0,m) for each node i.23 For

example, if z1 (z2) = 10, bank 1 (firm 2) links with firms 2,4,6,8 and 10 (banks 3,5,7,9

and 11). In this way, there are only links between banks and firms, none within the two

types.

We label this experiment the circular network, because, when zi = 1 for all i, nodes’

connections are one to one (banks can share one borrower at most), with the last recon-

necting to the first, describing a circle. The model we use is indeed a generalization of

a simple circle that allows for a random number of connections. The variable m defines

network density. When m increases, we are increasing the average number of shared

borrowers, as well as the number of banks between which they are shared. This setup is

useful for the comparative statics exercise, because it allows us to easily change features

(size, sparsity, etc.).

In our benchmark simulation, we generate 500 networks G with n = 200 nodes in

each, 100 banks and 100 firms. Once G is randomly generated, we then derive the

links’ adjacency matrix A from G. For each link we create an observable (x) and an

unobservable (ε) variable. x is a dummy equal to 1 for a certain share s of the population

and zero otherwise, tracking whether the credit relationship received the shock. We

extract ε from a normal distribution with mean equal to zero and variance equal to σ.

We generate lender and borrower fixed effects from independent normal distributions

23 We have also repeated our simulation experiment using other distributions for zi (different from
uniform). The results are not sensitive to different specifications. Such results are available upon request.
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θN(0, 1) draws, constraining them to be positive by adding the absolute value of the

minimum draw. We thus generate credit relationships in reduced form from: C = (I −
φAB − ρAF )−1(βX + ∆ + Γ + ε). In particular, our pivotal setting has (β,N, σ, δ) =

(−2, 200, 1, 0.1) and R = 500 simulated samples.

We perform two classes of exercises within this framework. First, we look at the bias

of β̂ when we ignore the interdependence among credit relationships. Second, we study

the performance of our estimators for the treatment effect β, the spillovers φ, ρ, and

firms and banks’ fixed effects in finite samples, under different settings and assumptions.

Across all these exercises, on top and above negative treatment effect, we also assume

negative spillovers. Doing so, we focus on a framework resembling a typical negative

shock hitting the credit supply of some banks to some firms (e.g. a monetary policy

contraction, to which some banks are more sensitive than others), where these firms and

banks can reallocate credit freely across relationships in their portfolio.

4.2 Results with Simulated Networks

4.2.1 Treatment Effects

Bias under Interdependencies. We first study the bias of β in absence of fixed

effects. We set the spillover parameters φ and ρ such that φ = ρ for simplicity, but our

results hold in more general settings, as shown in the Appendix. Across exercises, we

vary the value of spillovers, the share of treated relationships in the population, and we

attach different amounts of credit relationships to each bank and firm node (i.e., we vary

the network’s number of connections, its density).

Figure 8 reports the mean bias (upper panel) and mean square errors (MSE) from

estimating the treatment effect parameter β in the isolated and connected credit models.

Blue lines represent ICM results, while red line represent CNM results. Shade intensity

is darker as we increase the network density, while we report across different elements of

each panel the results we obtain changing the strength of spillovers. In particular, we

display results for ρ = φ = −0.2 in the first element of each panel, and ρ = φ = −0.4 in

the second.24

24 We report only two such plots per panel for expositional clarity, and we will do so through other
Figures over this Section. Nonetheless, in Appendix Tables A.1 through A.7, we report all underlying
numbers, also presenting results for the intermediate value of ρ = φ = −0.3 and additional experiments
that add to the scope of our results.
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Figure 8: Treatment Effect Estimates - ICM and CNM Performance

Mean Bias Mean Bias

Mean Squared Error Mean Squared Error

Notes: Mean bias and mean squared error for treatment effect (β). We compute the mean bias across

the 500 simulated samples. For each sample, the number of nodes N in the network is 200, 100 firms

and 100 banks. In black, we plot the zero line. In different shades of blue, we plot how the mean bias

(upper two figures) and the mean square error (lower two figures) of the ICM’s estimate change. In red,

we do the same for the CNM’s estimates. Darker shades signal denser networks (m=2,4,6,8,10). In left

panels φ = −0.2, in right panels φ = −0.4. We display the plots’ underlying data in Appendix Table

A.1.

In Figure 8’s upper panel, we can appreciate that the sign and intensity of the bias

depend on observable features of the network, i.e. the treated share and the density of

relationships. Nonetheless, comparing the left and right elements of Figure 8’s upper

panel, we can also see that the bias depends on the magnitude of spillovers too. We

cannot observe directly these parameters and, as a consequence, we cannot mend the

bias without directly confronting it in estimation.

Furthermore, we note that when we treat a small fraction of units, we overestimate the

magnitude of β to be much more negative than what it really is, especially if the spillover

is larger (right upper panel), while we underestimate it eventually, as the fraction of

treated units increases and reaches a certain threshold, which depends on the magnitude

of spillovers and the density of the network.

The negative (βEV ) and positive (βOD) components of the bias, documented in Sec-

tion 3.4, explain such a pattern of over and underestimation. When there are few treated

units, βEV prevails, as most higher-order effects are feedback loops triggered by own-

treatment, which amplifies the negative direct effect. To provide economic interpretation,
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we think of a case in which credit from shocked banks becomes scarcer, and firms with

multiple lenders systematically start sourcing more credit from other providers, further

decreasing what they demand from the shocked banks in equilibrium. We stress that

this is the numeric counterpart of what we showcased through the theoretical example in

Section 2.1, when only one credit relationship faces a supply contraction.

Instead, when the supply contraction hits more nodes, the amplifying effect of feedback

loops ends up being more than offset by indirect effects from other treated units, which

are primarily positive under the assumption of negative treatment and negative spillovers.

Again, interpreting the results through economic logic, we can think of the case in which

the majority of banks must suddenly contract credit supply, causing each firm to face a

sudden increase in all other firms’ demand for credit at the few spared banks. Eventually,

this indirect effect can be so strong and credit from spared banks so scarce that firms

source more credit from the initially hit banks than they would have done in the absence

of interconnections.

Higher density, i.e. more relationships per node and thus higher share of borrowers

shared by lenders, allows for more feedback loops and thus amplifies the bias’ magnitude

in both directions. The density also determines the point in which the bias switches

its sign: the higher the number of links, the higher the number of treated units needed

to switch the sign of the bias to positive, as crowd out is less striking when each firm

has more options. Also the value of spillover effects (φ and ρ) determines the point at

which the bias changes its sign. The higher they are, the stronger direct effects and

own-treatment feedback loops, the more treated units we need to switch the bias from

negative to positive. This conclusion is the more true, the fewer units are treated, as

there is more ‘space’ to directly absorb the supply contraction.

The results shown do not depend on the setting chosen, which is quite simple but able

to point out the main forces at work. We have chosen the density as the main metric

for the network, others can be considered. Here we are not particularly interested in

finding a “sufficient” statistic for the contribution of the network structure to the bias

of β, because we can derive it: endowed with a credit register, we observe AF and AB,

as well as the treatment vector, and we provide in Section 5 a consistent estimator for φ

and ρ. With all these elements, we can precisely derive the bias ex post.
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Figure 9: Treatment Effect Estimates with Fixed Effects - ICM and CNM Performance

Mean Bias Mean Bias

Mean Squared Error Mean Squared Error

Notes: Mean bias and mean squared error for treatment effect (β). We compute the mean bias across

the 500 simulated samples, where the data generating process includes a set of fixed effects. For each

sample, the number of nodes N in the network is 200, 100 firms and 100 banks. In black, we plot the

zero line. In different shades of blue, we plot how the mean bias (upper two figures) and the mean square

error (lower two figures) of the ICM’s estimate change. In red, we do the same for the CNM’s estimates.

Darker shades signal denser networks (m=2,4,6,8,10). In left panels φ = −0.2, in right panels φ = −0.4,

for both panels θ = 0.1. We display the plots’ underlying data in Appendix Table A.2.

Finally, we show that the inclusion of bank and firm fixed effects does not solve this

issue. On the contrary, the inclusion of fixed effects, ignoring spillovers, can exacerbate

bias. In Figure 9’s upper panel, we display with blue lines how the bias’ severity in-

creases the higher the spillovers and the denser the network. The change in sign for

sparse networks confirms again the intuition we conveyed within our theoretical example

in Section 2.1, especially in Figure 3. By adding back endogenous reallocation in the

treatment, fixed effects put more weight on own-treatment’s feedback loops, overplaying

shocks’ severity.

Estimator Performance. Next, we analyze the performance of our estimator. First,

we report the mean bias and the MSE of β̂ for the same setting used above. We visualize

the results as the red lines in Figures 8 and 9. In every simulation, the mean bias is

negligible in all settings, with different shares of treated units, magnitude of spillovers

and density of the credit network (Figure 8’s upper panel). Moreover, our estimator is

precise, as measured by the low MSE, which decreases with the number of treated units
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and with the density (i.e. with the increase in the number of relationships, thus the

sample size; see Figure 8’s lower panel). Last, we also see that such performance is not

affected by the inclusion of fixed effects in the data generating process (Figure 9)

Second, we analyze the performance of the estimates of the spillover parameters φ

and ρ, relaxing the assumption that φ = ρ, and also studying what happens when n

grows. In Table 1 we report the mean and the standard deviation of the estimates of

φ and ρ at different intensities (by columns) and densities (by rows). We can see that

the estimates are always centered at the true values. The standard deviation decreases

with the number of nodes in the network and the density of the connections among them.

With a quite small sample size, 800 nodes, the dispersion of the estimates is limited even

with very small density (when m = 2).

Table 1: Performance of the Spillovers’ Estimators (φ̂, ρ̂)

n m true true true true true

φ ρ φ ρ φ ρ φ ρ φ ρ
200 -0.1 -0.1 -0.1 -0.2 -0.1 -0.3 -0.1 -0.4 -0.4 -0.4

2 mean -0.097 -0.100 -0.100 -0.209 -0.101 -0.306 -0.093 -0.414 -0.406 -0.406
std 0.084 0.087 0.090 0.089 0.082 0.081 0.082 0.076 0.066 0.067

6 mean -0.098 -0.098 -0.097 -0.197 -0.097 -0.295 -0.096 -0.398 -0.402 -0.395
std 0.029 0.030 0.029 0.030 0.029 0.033 0.028 0.032 0.039 0.040

10 mean -0.102 -0.096 -0.099 -0.198 -0.099 -0.297 -0.098 -0.398 -0.402 -0.397
std 0.021 0.020 0.023 0.023 0.022 0.024 0.021 0.024 0.031 0.030

800
2 mean -0.102 -0.098 -0.100 -0.201 -0.097 -0.301 -0.097 -0.401 -0.398 -0.401

std 0.041 0.043 0.044 0.042 0.042 0.042 0.040 0.037 0.034 0.033

6 mean -0.099 -0.100 -0.099 -0.200 -0.097 -0.300 -0.099 -0.400 -0.398 -0.401
std 0.015 0.014 0.015 0.016 0.014 0.016 0.014 0.016 0.021 0.020

10 mean -0.100 -0.099 -0.100 -0.200 -0.099 -0.300 -0.099 -0.400 -0.399 -0.400
std 0.010 0.011 0.010 0.011 0.011 0.012 0.010 0.012 0.015 0.015

Notes : Over this Table, we compute the mean and the standard deviation across 500
simulated samples. n is the number of nodes in the network, m regulates the network
density as described in Section 4.1. We report further simulation results in Appendix
Table A.5.

Bias under Endogenous Treatment. The analytical results in Section 3.4.2 show

that in the presence of endogenous treatments, both the CNM and ICM estimates of β can

be biased. However, the difference between the two biases can inform about the presence
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of spillovers and the latter can be still estimated without distortion. In this section, we

study the performance of both estimators when treatment endogeneity is introduced and

sequentially increased in finite samples. To analyze this case, we start from the settings

used above and generate ε = ιX +V , with V being a normal error term with mean equal

to 0 and variance equal to σ. On the one hand, we increase sequentially the endogeneity

of the treatment with ι = 0, 0.2, 0.5. On the other hand, we increase the magnitude of

spillovers φ = ρ = 0,−0.2,−0.4, as in the previous exercises.

Table 2 reports our results. The first interesting result is that spillovers are always

correctly estimated by the CNM, even in the presence of high treatments endogeneity.

This is because the spillovers among agents’ outcomes can be still recovered even if

the treatment is endogenous, as discussed in Section 3.4.2. Moreover, we can see that

while if spillovers do not really matter there is no significant difference between the ICM

and CNM, when they do matter the estimator we propose performs strictly better than

the ICM. The second one is that CNM’s estimate bias increases steadily in ι, but is

not sensitive to φ and ρ, at difference with the ICM estimates’, where biases compound.

Indeed, we can see that the bias of the ICM increases in both ι and φ = ρ, almost doubling

the magnitude of the estimated effect when spillovers and treatment endogeneity are high.

Table 2: Performance of All Estimators When Treatment is Endogenous

ι = 0 ι = -0.2 ι = -0.5

φ̂ ρ̂ β̂ φ̂ ρ̂ β̂ φ̂ ρ̂ β̂

φ = ρ = 0 CNM mean 0.001 -0.001 -2.007 0.003 0.004 -2.194 0.003 0.001 -2.495
std 0.033 0.035 0.076 0.031 0.032 0.075 0.027 0.027 0.077

ICM mean -2.008 -2.193 -2.494
std 0.073 0.071 0.074

φ = ρ = -0.2 CNM mean -0.197 -0.197 -2.002 -0.199 -0.197 -2.203 -0.200 -0.199 -2.500
std 0.033 0.034 0.073 0.029 0.031 0.072 0.027 0.026 0.073

ICM mean -2.231 -2.457 -2.789
std 0.085 0.084 0.087

φ = ρ = -0.4 CNM mean -0.398 -0.399 -2.003 -0.400 -0.398 -2.196 -0.399 -0.401 -2.496
std 0.030 0.030 0.077 0.027 0.028 0.083 0.023 0.023 0.076

ICM mean -2.915 -3.197 -3.649
std 0.152 0.152 0.183

Notes : Over this Table, we compute the mean and the standard deviation across 500
simulated samples. The number of nodes is 800, m = 2 and β = −2.
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4.2.2 Idiosyncratic Firm and Bank Shocks

Thanks to our methodology, we can also improve on the estimation of firms and banks

fixed effects, carefully separating reallocation from actual idiosyncratic credit supply and

demand movements. Fixed effects are not only an important tool to mitigate the concern

of unobservable demand and supply shocks biasing treatment estimates. They are also

key tools to actually measure idiosyncratic credit demand and supply shifts, allowing

us to quantify their real effects (Amiti and Weinstein, 2018). Nonetheless, if we ignore

endogenous reallocation of demand and supply across the network of credit relationships,

we may confuse it for actual idiosyncratic shocks. Moreover, idiosyncratic shocks dif-

fuse through the credit network themselves, producing feedback loops that may unduly

magnify their own estimates.

We discuss the details of our fixed effects estimators’ good performance in the Ap-

pendix, commenting Table A.6. Here, we instead focus on a short graphical presentation,

stressing how bias distributes across nodes in the network and its relation with centrality.

We focus on a setting with n = 2000, m = 10 and φ = ρ = −0.4, to see how idiosyncratic

shocks estimates perform with dense networks and high spillovers.

In panel (a) of Figure 10 we plot the true value of the idiosyncratic shocks on the

x-axis against themselves (in yellow), the CNM fixed effects estimates (in orange) and

the ICM fixed effects estimates (in blue) on the y-axis. We can see that bias for the ICM

estimates can be quite severe for some nodes, upward or downward. Indeed, the bias can

be positive or negative under negative spillovers, with sign depending on the network

topology.25

25 This is consistent with the results in Section A.1.4.
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Figure 10: ICM and CNM Fixed Effects’ Estimate and Distribution over Nodes

(a) True, CNM and ICM estimates (b) Centrality and FE bias

Notes: We sample this network setting n = 2000, m = 10 and φ = ρ = −0.4, the other parameters

are the same as in the pivotal simulation described previously. In panel (a), x-axis: true value of the

idyosincratic shock, y-axis: true value (in yellow), CNM FE estimates (in orange) and ICM FE estimates

(in blue). In panel (b), x-axis: our node i centrality measure D′iMDi, y-axis: ICM FE estimate for node

i.

Panel (b) of Figure 10 plots the nodes’ centrality on the x-axis, against the absolute

value of the ICM-estimates’ bias on the y-axis. We measure the centrality of relationships

in which node i is involved with D′iMDi. As shown in Equations (A.11)-(A.12), the bias

sign and magnitude depends on the number of loops in which the firm or bank is involved

in. In particular, spillovers distort more the fixed effects estimate of more ‘central’ lenders

and borrowers in the credit network.26 In the Figure, we can indeed see that the higher

the centrality of the node, the higher the value of the ICM estimates’ bias.

In other words, even if their idiosyncratic variation is negligible, lenders or borrowers

that are more central in the credit network may show particularly high values of their

ICM-estimated fixed effects. Nevertheless, these large values may just be the result

of shocks originated by other nodes in the network. Given that central nodes are more

exposed to other nodes’ influence, they may accumulate a large amount of variation which

is not originated by themselves, but which comes from other banks and firms instead.

4.3 Results with Networks Sampled from the Credit Register

We conclude our simulation study with Monte Carlo experiments based on an observed set

of real credit relationships. So far we considered fairly simple network structures. Here,

we test whether our method still works when the complexity of the credit relationships

topology increases, resembling a real credit market structure. We thus construct G using

realized credit relationships between banks and firms from the credit network we use in

26 Still, we remind that under negative spillovers the bias can be close to zero even for central nodes,
as positive spillovers from even loops can offset negative ones from odd loops.
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the empirical application in Section 5. We randomly extract n = 400, 800, 2000 nodes

from the full set of relationships observed in 2012 in the Italian credit market between

banks and firms and use the links among them in the simulation exercise. The other

elements of the simulation are generated in the same way described above.

Figure 11 depicts the network for the 2000 nodes sample. We highlight two features

of such a credit network. First, the high interconnectedness between banks and firms;

second, the high concentration of connections. In panel (a), the color of each node changes

with its degree, i.e. the number of connections it has; more violet nodes represent more

connected banks and firms. We can se that the real credit network features high skewness,

with some nodes, especially banks, having a very high number of relationships. Some

banks lend to thousands of firms in the sample, others only to few of them. This feature

of the real credit network is also important for identification, as it guarantees that banks

have not fully overlapping portfolios (see Section 3.2 and Proposition 5).

Figure 11: The Credit Network

(a) Degree (b) Banks and firms

Notes: We derive the Figure’s network sampling 2000 credit relationships observed in 2012. In panel (a),

the color of each node is proportional to its degree, more violet nodes represent more connected banks

and firms. In panel (b), we represent banks in red and firms in blue. We plot the estimated network

with a force-directed layout with five iterations. A force-directed layout uses attractive forces between

adjacent nodes and repulsive forces between distant nodes. To ease the visualization, the size of the

nodes is equal to the (log) of their degree. See Fruchterman and Reingold (1991) for more details.

In panel (b) we color the nodes denoting firms in blue and banks in red. Looking

at the Figure, we note a tight group of banks with a prominently central position in

the network, surrounded by a cloud of more peripheral banks. We also highlight a large

layer of firms connected to both central and peripheral banks, whose credit relationships

connect indirectly many banks. This core-periphery structure resembles that observed in

interbank networks (see Boss et al., 2004; Craig and Von Peter, 2014; Iori et al., 2008;

Soramäki et al., 2007, among others), only, in this case, connections are not directly
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through banks, but indirectly through firms.27

Figure 12: ICM Bias and CNM Performance in a Real Network

Fixed Effects Estimators Fixed Effects Estimators

Treatment Estimator Treatment Estimator

Notes: We present results from sampled networks, chosen as random subsets of 400, 800, 2000 relation-

ships from the 2012 Italian Credit Register. In different shades of blue, we plot how the mean bias of the

isolated-credit model’s estimates changes as the share of treated increase. In red, how the mean bias for

the credit network model does so. Darker shades signal larger real samples. We report the underlying

simulation results in Table A.7.

We report mean bias for idiosyncratic shocks (upper panels) and treatment effects

(lower panels) in Figure 12, varying the intensity of spillovers, the share of treated units

and the sample size.28 First, we note that the mean bias of the CNM estimator is always

around zero for both treatment effects and idiosyncratic shocks. On the contrary, the ICM

estimator presents a relevant bias, which on average increases with spillovers’ magnitude.

Second, we note that the ICM fixed effects estimates’ bias grows with the number of nodes

we sample. This growth is also due to the higher density of bigger networks. Indeed,

the bigger the network sampled, the less we censor links between sampled and left-out

nodes. Accordingly, our 400 nodes sample has a density of 1.25, while the 800 and 2000

samples have respectively 1.75 and 2.4. Third, we highlight how the treatment effect’s

27 As we are working with a sample, the position of each node is not necessarily correctly represented.
Nevertheless, the sampling procedure guarantees that all the connections among sampled nodes are
included. In the empirical analysis we consider the whole credit network. Unfortunately, its huge
dimension does not allow to examine it visually with standard software.

28 Clearly, as we are sampling from a real network, we cannot vary the density here.

42



bias increase with the share of treated units, exactly as discussed for Figure 8 in Section

4.2.1.

In conclusion, the results of our last Monte Carlo experiment confirm that our esti-

mator provides consistent estimates for treatment effects and idiosyncratic shocks even

under a more complex structure of credit relationships, while conventional estimators are

still severely biased.

5 Empirical Application

In our empirical exercise, we focus on the dynamics of credit to firms at the intensive

margin. Following the vast majority of recent and past works in empirical banking, we

employ the yearly log change of credit granted on each relationship as our dependent

variable of interest.

As we want to study the bias of estimated bank and firm fixed effects (idiosyncratic

shocks) as well as of treatment effects, we do not focus on point-in-time treatments at the

firm or bank-level (e.g., banks’ interbank market exposure during a freeze, as in Bonac-

corsi di Patti and Sette, 2016; Iyer et al., 2013). We instead focus on relationship-level

exposure to recurring macroeconomic shocks. The relationship-level effect of macroe-

conomic shocks has been often explored in the literature by interacting relationships’

characteristics with changes in macroeconomic variables, which allows joint estimation of

banks and firms’ fixed effects (see Jiménez et al., 2014, among others).

Our aim here is not validating a specific strategy used in the literature. Our focus is

on the quantification of relationship-level endogenous spillovers, as well as their effects on

treatment and fixed effects’ estimates. The specific setting, or the endogeneity challenge

each single study aims to tackle, is really not the point here, also because we have

shown analytically and numerically (see Section 3.4.2 and 4.2.1, respectively) that we

can precisely quantify spillovers and their importance for other parameters even if the

treatment is endogenous.

For all these reasons, we do not replicate a specific analysis. We instead focus on

relationship-level effects of changes in the policy rates. Monetary policy is a consis-

tent source of changes in banks cost of funding, allows this paper not to be time or

experiment-specific. Furthermore, it is especially interesting nowadays, when we want

to better understand the foreseeable effects of rates increases on firms. In the following,

we will use the interaction between the one-year lag of relationships’ revolving intensity

and percentage points changes in the Italian interbank overnight rate as our primary

independent variable. Indeed, revolving credit lines have either variable or relatively

easy-to-re-bargain rates; hence, revolving-intensive credit relationships will likely bear

the most immediate effects of changes in banks’ cost of funding.
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5.1 Data Description

To perform such an exercise, we use 2012 to 2018 data from (i) the Italian credit register,

which tracks all credit relationships between Italian firms and banks whose total exposure

in terms of granted credit is greater than 30 thousand euros. We match this data with (ii)

the Company Accounts Data System (CADS), balance sheet information for the universe

of Italian non-financial corporations provided by the Cerved group, and (iii) the Italian

Supervisory Reports, which contain Italian banks’ balance sheets and group structure.

Following the literature, we focus on firms with multiple credit relationships so that we

can estimate firm fixed effects. Thus, we drop observations belonging to firms with only

one relationship each year. Furthermore, we drop all observations belonging to firms with

troubled credit relationships (deteriorati and sofferenze), as well as relationships belonging

to foreign banks or non-bank financial intermediaries. Finally, we drop observations with

missing granted credit data. We obtain seven yearly samples as a result. Each covers

between five and four hundred thousand observations, belonging to about 150 thousand

unique firms and five-to-four hundred banks.

Table 3 documents the basic characteristics of each yearly sample. First, the dynamic

of granted credit in log changes is mostly negative across the whole study period, with the

worst performance recorded in 2012, immediately after the European sovereign debt crisis.

Then, we report our relationship-level explanatory variables, the ratio between revolving

and total credit (F. Revolving); the ratio between credit granted on the relationship and

total credit granted to the firm (F. Granted); a dummy taking value one if the firm and

bank’s headquarters are located in the same province (Same Prov.). These variables are

mostly stable across the years we consider.

As our independent variable of interest is the interaction between lag revolving ratios

and overnight rate changes, tracking the heterogeneous impact of movements in banks’

refinancing rates, we also document the end-of-year change (year-on-year) in the Italian

banks overnight refinancing rate in percentage points.29 Finally, due to our interest in

fixed effects estimation, we report data on the number of relationships per firm and bank,

which are stable over the years. The number of firms is stable over time, while the number

of banks decreases gradually, mainly because of consolidation in the banking sector.

29 3-Month or 90-day Interbank Rates for Italy, retrieved from the ECB Statistical Data Warehouse.
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Table 3: Descriptive Statistics

2012 2013 2014

Mean Std Dev. Count Mean Std Dev. Count Mean Std Dev. Count

∆ Log Granted -0.092 0.445 517,885 -0.070 0.418 484,953 -0.028 0.431 446,107

F. Revolving 0.289 0.336 517,885 0.298 0.342 484,953 0.295 0.342 446,107

F. Granted 0.084 0.068 517,885 0.084 0.067 484,953 0.085 0.066 446,107

Same Prov. 0.275 0.446 517,885 0.270 0.444 484,953 0.258 0.438 446,107

Value Value Value

∆ Overnight Rate % -1.3 0.046 -0.16

Mean Median Max Mean Median Max Mean Median Max

N. Rel. Firm 3.922 2.239 27 3.907 2.238 25 3.898 2.258 23

N. Rel. Bank 30,417 20,668 70,708 27,964 19,480 66,748 25,437 18,037 60,554

Count Count Count

N. Firm 159,893 157,352 145,474

N. Banks 546 542 525

2015 2016 2017

Mean Std Dev. Count Mean Std Dev. Count Mean Std Dev. Count

∆ Log Granted -0.024 0.464 423,056 -0.021 0.452 423,829 -0.011 0.453 410,045

F. Revolving 0.281 0.337 423,056 0.267 0.332 423,829 0.255 0.327 410,045

F. Granted 0.086 0.069 423,056 0.086 0.071 423,829 0.086 0.071 410,045

Same Prov. 0.247 0.431 423,056 0.235 0.424 423,829 0.225 0.418 410,045

Value Value Value

∆ Overnight Rate % -0.171 -0.223 -0.016

Mean Median Max Mean Median Max Mean Median Max

N. Rel. Firm 3.917 2.290 27 3.969 2.364 25 3.929 2.345 21

N. Rel. Bank 24,336 17,638 57,891 23,635 17,733 56,275 23,372 18,053 54,870

Count Count Count

N. Firm 141,297 137,321 128,953

N. Banks 493 467 428

2018

Mean Std Dev. Count

∆ Log Granted -0.019 0.467 402,919

F. Revolving 0.245 0.322 402,919

F. Granted 0.085 0.070 402,919

Same Prov. 0.206 0.404 402,919

Value

∆ Overnight Rate % 0.013

Mean Median Max

N. Rel. Firm 3.908 2.339 37

N. Rel. Bank 25,034 27,786 59,289

Count

N. Firm 138,328

N. Banks 400

Notes: This Table presents descriptives for the samples used in the estimation. Each panel covers one year. In each

panel, the first four lines record descriptives for the dependent and main relationship-level independent variables.

The fifth line reports the value of the end-of-year change in the bank overnight rate in percentage points. The sixth

and seventh lines report descriptives concerning the number of relationships per firm and bank. Finally, the last

two lines report the total firm and bank count.
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5.2 Empirical Specification

We estimate model (10) using the estimators in (21)-(22), and data pooled from 2012 to

2018. As said, we want to measure the impact on relationships’ granted credit growth

of the interaction between the one-year lag of revolving intensity and percentage point

changes in overnight interbank rate. Our main concern with such a specification is that

revolving credit intensity can correlate with relationship lending, as revolving lines em-

body the actual bank-firm relationship (Berger and Udell, 1995), while other forms of

credit most often come from non-recurring needs for funding.

First, we notice that this potential bias is acceptable in principle, because it implies

underestimating rate changes’ effect. There is indeed ample evidence (e.g. Berlin and

Mester, 1998; Sette and Gobbi, 2015) that relationship lenders at least partially shelter

their long-term customers from the impact of shocks. Moreover, we use our rich dataset to

mitigate this concern further. As relationship lending can be correlated with unobservable

firm and bank characteristics, we fully control for these with bank-time and firm-time

fixed effects. Then, we add two different proxies of relationship lending, i.e., the lag of the

ratio between credit granted on the relationship and credit granted to the firm, measuring

the relationship’s importance to the firm, and a dummy taking the value of one if the

firm and bank’s headquarters are located in the same province.30

The resulting Isolated Credit Model (ICM) is as follows:

∆Log Grantedibt = δit + γbt + β∆Overnight Ratet−1 ∗ F. Revolvingibt−1 + ...

µControlsibt−1 + εibt

(29)

where δit is the firm-time fixed effect; γbt the bank-time fixed effect; ∆Overnight Ratet ∗
F. Revolvingibt is our main variable of interest, which we will refer to as Treatibt when

displaying results in Table 4; Controlsibt is a matrix containing the lag in the relationship

revolving ratio not interacted with changes in rates, the ratio between credit granted on

the relationship and total granted, and the headquarter location dummy.

The ICM’s β tracks differences in the growth of credit granted on bank-firm relation-

ships that are more revolving credit intensive, after a rate change, within the same firm,

absorbing all time-varying bank unobservables, and controlling for relationship charac-

teristics. However, the ICM does not control for spillover effects among relationships.

For example, following the arguments in Section 2.1, after the rates drop, a firm could

reallocate its credit demand towards relationships for which the discount’s pass-through

is greater, from relationships for which it is smaller. Comparing credit growth on two

such relationships will bias the estimated β’s magnitude upward, if we do not account for

30 On the relationship between distance and lending, see Agarwal and Hauswald (2010); Degryse and
Ongena (2005).
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endogenous reallocation first.

To account for such bias, as well as from higher order indirect effects (derived and

presented in Section 3.4), we estimate the following Credit Network Model (CNM):

∆Log Grantedibt = δit + γbt + β∆Overnight Ratet ∗ F. Revolvingibt−1 + ...

φNB∆Log Grantedibt + ρNF∆Log Grantedibt + ...

µControlsibt−1 + εibt

(30)

here, we introduce as further controls the bank- and firm-network lags of the dependent

variable, which keep track of the connections among relationships through banks and

firms. We formalize this addition with the NB and NF operators, such that NBxibt =∑
j∈F\i aib,jbxjbt is the bank-network lag of xibt and NFxibt =

∑
k∈B\b aib,ikxikt the firm-

network lag of xibt.

5.3 Main Results

Estimated Spillovers and Treatment Effects. Table 4 reports the results, with the

2SLS’ second stage estimates of the ICM and the CNM on the left panel and the CNM’s

first stages for the two endogenous variables on the right panel.

First, we note that the bank and firm’s spillover coefficients are highly statistically

significant, with ratios between coefficients and standard errors well above three. Con-

cerning magnitudes, the estimate of ρ (FDA) is about -0.6, while the estimate of φ (BSA)

is much smaller. We expect this size disparity, as banks have many more relationships

than firms. Thus, we re-scale the φ estimate by 10,000, or slightly less than half the

number of corporate credit relationships of the average bank (see Table 3), obtaining the

final φ∗ estimate of -0.07.

We can perform the following two back-of-the-envelope calculations to understand the

above estimates’ magnitudes and their economic significance. For firms, we can think of

one with three relationships (the average number we report in Table 3), seeing granted

credit shrinking by 20 percent from two of its three banks. Such a firm will likely ask for

an extension of the remaining line, and our ρ estimate suggests that this last will grow by

about 24 percent (0.24 = −0.6 ∗ 2 ∗ −0.20). For banks, we can think of one granting 20

percent more credit to 10,000 borrowers. Our φ∗ estimate suggests that such action would

imply a 1.5 percent crowd-out on all bank’s other credit lines (−0.0146 = 0.2 ∗ −0.073).

Then, we report the estimates of treatment and controls’ coefficients. First, we see

that credit relationships belonging to the same firm with greater revolving ratios expand

47



more after overnight rate decreases.31 Then, overall, credit relationships that are more

revolving intensive (F. Revolvingibt−1), as well as relationships that are more important

for the total credit access of the firm (F. Grantedibt−1), grow less, while relationships for

which firm and bank’s headquarters are in the same province grow slightly more. These

conclusions hold in both the estimated CNM and ICM.

Focusing on the main variable of interest in the CNM (Table 4, Column (1), line

4) and re-scaling the treatment effect by the standard deviation in revolving fractions

(about 0.3, see Table 3), we observe that credit relationships one standard deviation

more revolving-intensive grow by 6 percent more after a one percent decrease in the

overnight rate. We would have overestimated the magnitude of this coefficient by a

factor of 2.5 had we not accounted for the network nature of credit relationships, as we

can appreciate from the ICM panel (Table 4, Column (3), line 4). We expect such a

large bias, as, looking at within-firm changes, the ICM estimator is likely to sum the

endogenous demand reallocation induced by supply shifts, magnifying the estimates.

Regarding the first stage, we derive the dependent variables computing, for each

relationship, the total growth in credit on other relationships by the same bank (Table

4, Columns (5-6)) or firm (Table 4, Columns (7-8)).32 Then, we regress these quantities

on all the bank and firm-network lags of controls we include in the second stage. As we

employ both network lags jointly in each first stage, the coefficients we display are net of

the bank-lags and firm-lags effects and are difficult to interpret meaningfully. Nonetheless,

the critical insight from the first stage panel in Table 4 is that the values of FSW , the F-test

for weak instruments in linear IV models with multiple endogenous variables proposed

by Sanderson and Windmeijer (2016), are large and do not lend support to weak IV

concerns (see Table 4, Columns (5) through (8), third line from the bottom).33 These

large FSW s indicate that the instruments are relevant and both endogenous variables are

sharply identified.

31 We comment on negative variations of the overnight rate as most large changes in our sample,
documented in Table 3, are negative. Hence, the most empirically relevant variation is the effect of a
one percent drop, as the one registered in 2012.

32 Coefficients and errors for variables’ bank-network lag in the first stage of NF ∆Log Creditibt are
multiplied by 10,000(Table’s Columns (7-8), first four lines). Moreover, in the NB∆Log Creditibt first
stage, the coefficients and errors for the variables’ firm-network lags are divided by 10,000 (Table’s
Columns (5-6), last four lines).

33 In greater detail, both figures are largely above the relevant minimum eigenvalue’s threshold for the
Cragg-Donald statistic, tabulated by Stock and Yogo (2002).
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Table 4: Spillovers Estimates, First and Second Stage

(1) (2) (3) (4) (5) (6) (7) (8)

Second Stage First Stage

Dependent Variable: ∆Log Creditibt NB∆Log Creditibt NF∆Log Creditibt

CNM ICM

coeff. std. err. coeff. std. err. IV coeff. std. err. coeff. std. err.

Firm Spillover: ρ -0.6204 0.0032 NBTreat.ibt−1 0.1050 0.0002 -0.0161 0.0011

Bank Spillover: φ∗ -0.0703 0.0001 NBF. Revolvingibt−1 -0.2388 0.0004 0.0252 0.0029

NBSame Prov.ibt−1 -0.1419 0.0003 0.0353 0.0019

Treat.ibt−1: β -0.1887 0.0016 -0.4661 0.0020 NBF. Grantedibt 0.5796 0.0015 -0.2028 0.0103

F. Revolvingibt−1: µ1 -0.1616 0.0014 -0.4148 0.0011 NFTreat.ibt−1 -0.0201 0.0004 -0.1760 0.0029

Same Prov.ibt : µ2 0.0112 0.0003 0.0258 0.0006 NFF. Revolvingibt−1 -0.0087 0.0002 -0.1847 0.0016

F. Grantedibt−1 : µ3 -0.5302 0.0049 -1.4116 0.0042 NFSame Prov.ibt−1 -0.0023 0.0001 -0.0115 0.0007

NFF. Grantedibt -0.3282 0.0048 -0.5356 0.0322

N 3,108,758 3,108,758 3,108,758 3,108,758

FSW 154,602 2,144

Bank-FE Yes Yes Yes Yes

Firm-FE Yes Yes Yes Yes

Notes: Estimated coefficients and standard errors for the second and first stages of model (11) employing
the 2SLS estimator in Equation (22), in the particular case of Equation (30). The second stage dependent
variable ∆Log Creditibt is the yearly log growth rate of the credit relationship. NB is the bank-network
lag operator, and it equals to

∑
j∈F\i aib,jbxjbt for every x covariate; NF is the firm-network lag operator,

and it equals to
∑

k∈B\b aib,ikxikt for every x covariate. Treat.ibt−1 is the revolving ratio multiplied by
the change in the overnight interest rate. Bank-related coefficients are re-scaled to account for the
disparity in the number of relationships between banks and firms. In particular, φ∗ and its errors are
multiplied by 10,000, as well as coefficients and errors for variables’ bank-network lag in the first stage
of NF ∆Log Creditibt (Table’s columns 7 and 8, first four lines). Moreover, in the NB∆Log Creditibt
first stage, the coefficients and errors for the variables’ firm-network lags are divided by 10,000 (Table’s
columns 5 and 6, last four lines). FSW statistics are reported for the first stages. The FSW is the F-test
for weak instruments in linear IV models with multiple endogenous variables proposed by Sanderson and
Windmeijer (2016).

Idiosyncratic Shocks’ Bias. We now analyze the estimated banks’ and firms’ fixed

effects. Following our simulation study in Section 4, we focus on the distortion that occurs

when spillovers are not accounted for. Given that we found significant spillover effects,

we use the estimates from the CNM as unbiased measures of γbt and δit and compare

them with ICM estimates, i.e., the ones not including the endogenous terms capturing

the BSA and the FDA.

In Table 5, we report the empirical Mean and Median Bias, as well as the Mean

and Median Absolute Bias, separately for firms and banks’ fixed effects (FEs henceforth)

estimates.
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Table 5: Fixed Effects, Empirical Bias Measures

Bank Firm

Mean Bias 1.329 -0.750

Median Bias 0.735 -0.444

Mean Absolute Bias 1.414 1.297

Median Absolute Bias 0.742 0.564

Notes: The Table reports the empirical mean bias, mean absolute bias, median bias,
and median absolute bias for firm and bank estimated fixed effects. We consider the
fixed effects estimated correcting for network structure as the true parameters. We
compute the bias measures with the following formulas, here reported only for the

bank fixed effect case: MBBank = 1/B
{∑B

k=1(γ̂kICM − γ̂kCNM )/|γ̂kCNM |
}

, MABBank =

1/B
{∑B

k=1 |γ̂kICM − γ̂kCNM |/|γ̂kCNM |
}

, MedBBank = Med
{

(γ̂ICM − γ̂CNM )Diag
[
||γ̂CNM ||−1

]}
,

MedABBank = Med
{

(||γ̂ICM − γ̂CNM ||)Diag
[
||γ̂CNM ||−1

]}
. Where B is the number of banks in the

market, Med is the median operator, MB stands for Mean Bias, MedB for Median Bias, MAB for Mean
Absolute Bias, and MedAB for Median Absolute Bias.

In Table 5, each indicator aggregates the difference between the FE estimated by

the ICM and the FE estimated by the CNM. We focus on differences divided by the

absolute value of the CNM’s FEs so that magnitudes are in percentage of the unbiased

estimate and easier to compare. First, looking at the mean and median bias, bank FEs

are overestimated on average by the ICM. On the contrary, firm FEs are underestimated.

The positive bias for banks ranges between 73 (median) to 133 (mean) percent of the

true parameter, while the negative bias for firms ranges between 44 (median) to 75

(mean) percent. Second, we notice that the bias’s average and median absolute values

are prominent for bank and firm fixed effects. The median absolute bias stands around

74 percent for banks and 56 percent for firms. The values for the mean absolute bias are

even higher, pointing to the presence of highly biased FE for some banks and firms.

The large magnitude of the bias is easily explained by looking at the economic im-

portance of spillover effects in Table 4’s estimates and thinking of links’ density over

banks. At the firm level, first-order spillovers are substantial, while many relationships

are connected through banks. When not accounting for the network nature of credit

relationships, first-order spillovers through firm links lead to overestimating treatment

effects. This overestimation happens at the expense of the idiosyncratic firm component

if the latter is correlated with the treatment status. Then, as banks connect many nodes

in the network, the network-wide transmission of spillovers through bank links leads us to

overestimate the banks’ idiosyncratic effects. When accounting for the network structure,

we see that this last bias was just the result of the high centrality of banks in the credit

relationships’ network, as suggested before by simulation results (see Figure 10).

We can deepen the nature of the ICM-estimated fixed effects bias by plotting the
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ICM estimates against the CNM unbiased estimates for each firm and bank. We do

so in Figure 13, which we read as follows. First, on the left panel, we see that almost

all ICM-estimated bank fixed effects are above the 45-degree. Hence, the ICM model

is systematically overestimating idiosyncratic credit supply changes. In particular, it

underestimates the magnitude of bank-level credit contractions. Furthermore, one-quarter

of the scatter points lie in the upper-left quadrant; which is, we have numerous cases in

which the CNM unbiased estimate is negative while the ICM biased estimate is positive.

This sign discrepancy means that the bias in the ICM model would point to nonexistent

idiosyncratic supply expansions for one in four banks.

Then, in the right panel, we can see a graphical depiction of how the ICM system-

atically underestimates the magnitude of idiosyncratic demand changes. Moreover, even

if less often than with banks, the ICM switches the sign of firms’ idiosyncratic demand

changes for seven percent of firms. In conclusion, the evidence we gather points to the

fact that estimating bank and firm fixed effects in an ICM may lead to a large bias in a

real empirical setting. The bias’s size and magnitude are node-specific, often switching

the sign of the estimated idiosyncratic shock. Thus, using such estimates may be highly

misleading.
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Figure 13: The Empirical Distribution of Fixed Effects Estimates’ Bias

Notes: The Figure displays, on the left, the scatterplot of bank fixed effects’ estimates in the CNM (x-

axis) and ICM (y-axis); on the right, the scatterplot of firm fixed effects’ estimates in the CNM (x-axis)

and ICM (y-axis). The short-dashed line is the 45-degree line.

6 Extensions and Discussions

In this section, we present some extensions of the CNM, to allow for the endogeneity of

credit relationships and treatments, and for heterogeneous φ and ρ, which may be of prac-

tical relevance in empirical studies. We then compare our model with other approaches

used in the literature.

6.1 Endogenous Credit Relationships Network

A common concern in the econometric analysis of spillovers over networks is the possible

endogeneity of the network itself. Issues can arise if, for example, some unobserved factors

drive the formation of the links (here the credit relationships) and the outcomes (credit

quantity). For the link formation, the following type of dyadic network formation model

is a standard choice
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gib = I(d(hi, hb) ≥ uib), (31)

where gib = 1 if there exist a credit relationship between firm i and bank b, hi and hb are

unobserved individual specific characteristics, uib is a link-specific random component,

and d(., .) is some matching function. The unobserved node-specific characteristic hi

can be interpreted as a factor that increases the likelihood of forming a link. Network

endogeneity may arise if firm (bank) individual unobserved characteristic hi (hb), affecting

link formation, is correlated with firm’s (bank’s) unobserved characteristic determining

the outcome cib. It is indeed easy to imagine that lower firm risk or higher profitability

of projects, as well as advantages in monitoring or screening for banks, affect match-

likelihood and credit granted both.

Compared to models in which the outcome is at the node level (see Arduini, Patac-

chini, and Rainone, 2015; Auerbach, 2022; Goldsmith-Pinkham and Imbens, 2013; Hsieh

and Lee, 2016; Johnsson and Moon, 2021; Patacchini and Rainone, 2017; Qu and Lee,

2015, among the others), a key difference in our context is that we model outcomes at

the link level. This feature allows us to include node fixed effects (δi and γb), which

alleviates this type of concerns. Nevertheless, one can also assume that there are link

level correlated unobservables. For example, think of

gib = I(d(hi, hb, hib) ≥ uib), (32)

with hib correlated with εib. In this case, a connection between two credit relationships

is observed if

aib,jb = gibgjb = I(d(hi, hb, hib) ≥ uib)I(d(hj, hb, hjb) ≥ ujb). (33)

It follows that even if E[h′ibεib] 6= 0 it does not imply that E[a′ib,jbεib] 6= 0 because hib

enters aib,jb in a highly non linear form and it is multiplied by terms not necessarily

correlated with εib. In addition, all the terms in (33) only share b-indexed variables, but

node b specific factors are absorbed by γb.

It is, however, possible to apply a control function approach at the link level similar

to those developed by Arduini, Patacchini, and Rainone (2015); Johnsson and Moon

(2021),34 or a Bayesian approach (in the spirit of Goldsmith-Pinkham and Imbens, 2013;

Hsieh and Lee, 2016; Patacchini and Rainone, 2017). Therefore, controlling for hib, the

network A and εib become mean independent, that is,

E(εib|A, hib) = E(εib|hib) =: k(hib). (34)

34See Rainone (2020b) for an application of interbank markets. Even if his model does not include
node fixed effects, the control function approach does not change the estimated parameters significantly.
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We can then consider the outcome equation that controls for ĥib nonparametrically,

cib = α + φ
∑
j∈F\i

aib,jbcjb + ρ
∑
k∈B\b

aib,ikcik + δi + γb + xibβ + k(ĥib) + uib, (35)

where uib := εib − k(ĥib). Once we control the endogeneity of the network, the regressor

of the spillover effect becomes exogenous, and we can estimate coefficient φ using the

conventional partially linear regression estimation method (Robinson, 1988).

It is worth noting that in our model the endogeneity of credit relationship may not

only affect the estimate of β or other coefficients per se, it can also affect the estimates

of φ and ρ through the potential endogeneity of AB and AF , as discussed above. To the

best of our knowledge, the only paper that accounts for endogeneity of links in the credit

market is Jiménez et al. (2014). They exploit unique data on loan applications to restrict

the dimensionality problem, estimate a selection equation that involves the granting of

loans in the first stage and credit outcome equations for the applications granted in the

second stage. Differently from our study, they focus on sample selection issues, and do

not model interdependence among credit relationships.35 Unfortunately, loan application

information is not always available in credit register data. Further, we note that staple

models of network formation do not allow for network effects in link formation, as a link

between i and b depends only on the characteristics of i and b. Indeed, especially in

this context an interesting extension could incorporate a transferable matching step in

the spirit of Fox (2009). As this is a non-trivial extension, we leave this work for future

research. For all these reasons, we focus on conditionally exogenous networks for the time

being.

6.2 Endogenous Treatments

In the previous analysis, we assumed that the main regressor is exogenous. Our method

can accommodate a instrumental variable strategy. For example, let us now allow X to be

an endogenous regressor and assume that a valid instrument W is available, X = Wκ+ω,

and E[ε′ω] 6= 0, then we can include the instrument and its network-lags in the first step

in a quite straightforward way (see Anselin and Lozano-Gracia, 2008; Dall’Erba and

Le Gallo, 2008, for applications of this procedure).36 In practice, the empirical IV in

35In particular, Jiménez et al. (2014) use the method proposed by Kyriazidou (1997) (see also Arel-
lano and Honoré, 2001; Honore, Kyriazidou, and Powell, 2000), which does not require distributional
assumptions (like normality of the errors in the selection equation) and differences out both the sample
selection effect and the unobservable individual effect from the equation of interest, under the condi-
tional exchangeability assumption. This assumption could be stronger for our model, given the presence
of interdependence.

36 See Fingleton and Le Gallo (2008) for the finite sample properties of this type of estimators.
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Equations (16) and (17) can be augmented in the following way

EIV 1W
F = [AFX,AFW,W ], (36)

EIV 1W
B = [ABX,ABW,W ]. (37)

6.3 Heterogeneous BSA and FDA

The CNM can be augmented to have bank- and firm-type specific spillovers, for example

if one is interested in studying the substitution of credit from a type of banks to another

type of banks by firms, or the reallocation of credit from a certain type of firms to another

one by banks, and eventually combinations of the two depending on the specific empirical

questions.

A typical example for the FDA is the substitution of credit from low technology banks

to high technology ones by firms demanding new and more modern financial services.37

Another one, focusing this time on the BSA, is the reallocation of credit by banks from

sectors hit by specific shocks to unaffected ones.38 Let us focus on the first case and

suppose that there are H (high tech) and L (low tech) banks.

If we have these two types, we will have four types of ρs. ρH captures the spillovers

among relationships involving type H banks; ρL captures the spillovers among relation-

ships involving type L banks; ρLH captures the spillovers from relationships with type H

bank to those with type L; ρHL captures the spillovers from relationships with type L

bank to those with type H. If, for example, one expects high substitution of credit from

low tech banks to high tech banks, ρHL should be higher than the others.

Model (11) will then become:

C = (ρHAHF + ρLALF + ρHLAHLF + ρLHALHF )C + φABC + Zµ+ ε. (38)

where the matrix AHF keeps track of connections among relationships involving the same

firm and banks of type H; the matrix ALF keeps track of connections among relationships

involving the same firm and banks of type L; AHLF and ALHF are symmetrically equal

matrices that keep track of connections among relationships involving the same firm and

banks of both types.

In such extension of the baseline model, the instrumental variables change accordingly

to the different specification. First order approximations of the best IV for the five

37 See Fuster et al. (2019), Fuster et al. (2018), Branzoli, Rainone, and Supino (2023), Core and De
Marco (2021) and Kwan et al. (2021), among the others, for studies on the effects of bank technological
adoption and credit.

38 See Paravisini, Rappoport, and Schnabl (2023), Federico, Marinelli, and Palazzo (2023) and Fed-
erico, Hassan, and Rappoport (2023), among the others, for studies on lending behavior by banks more
specialized or with loan portfolios concentrated in sectors more exposed to shocks.
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endogenous variable are respectively:

EIV 1
FH = AHFX,

EIV 1
FL = ALFX,

EIV 1
FLH = ALHF X,

EIV 1
FHL = AHLF X,

EIV 1
B = ABX.

Second order approximations of the best IV for the five endogenous variable are respec-

tively:

EIV 2
FH = AHF [I, AB]X,

EIV 2
FL = ALF [I, AB]X,

EIV 2
FLH = ALHF [I, AB]X,

EIV 2
FHL = AHLF [I, AB]X,

EIV 2
B = AB[I, AHF , A

L
F , A

LH
F , AHLF ]X.

Similar derivations can be computed for higher order approximations.

If we are interested in heterogeneous reallocation policies by the banks, suppose within

and between two sectors (say S and P ), we will have again four types of φs. φS captures

the spillovers among relationships involving firms in sector S; φT captures the spillovers

among relationships involving firms in sector T ; φTS captures the spillovers from rela-

tionships with firms in sector S to those in sector T ; φST captures the spillovers from

relationships with firms in sector T to those in sector S. If, for example, one expects high

substitution of credit from low tech banks to high tech banks, ρLH should be higher than

the others.

Model (11) will then become:

C = (φSASB + φTATB + φSTASTB + φTSATSB )C + ρAFC + Zµ+ ε. (39)

where the matrix ASB keeps track of connections among relationships involving the same

bank and firms of sector S; the matrix ATB keeps track of connections among relationships

involving the same bank and firms of sector T ; ASTB and ATSB are symmetrically equal

matrices that keep track of connections among relationships involving the same bank and

firms of both sectors.

In such extension of the baseline model, the instrumental variables change accordingly

to the different specification. First order approximations of the best IV for the five
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endogenous variable are respectively:

EIV 1
FH = ASBX,

EIV 1
FL = ATBX,

EIV 1
FLH = ATSB X,

EIV 1
FHL = ASTB X,

EIV 1
B = AFX.

Second order approximations of the best IV for the five endogenous variable are respec-

tively:

EIV 2
FH = ASB[I, AF ]X,

EIV 2
FL = ATB[I, AF ]X,

EIV 2
FLH = ATSB [I, AF ]X,

EIV 2
FHL = ASTB [I, AF ]X,

EIV 2
B = AF [I, ASB, A

T
B, A

TS
B , ASTB ]X.

Similar derivations can be computed for higher order approximations.

Overall, when we are interested in heterogeneous FDA and BSA, instrumental vari-

ables depend on the final specification and thus on the specific research question. We thus

do not provide sufficient identification conditions as those in Proposition 5, for any pos-

sible configuration. Nevertheless, a more general condition for identification is that the

matrix including the expected value of the endogenous variables and the other covariates

in the model has full rank. In this example, we need the matrix

[E(ASBC), E(ATBC), E(ASTB C), E(ATSB C), E(AFC), Z]

to have full rank. The intuition is that as long as there are intransitive quadriads for

any combination of heterogeneous BSA and FDA resulting from the selected choices,

this condition is always respected, the parameters are identified and the IVs can be

constructed as linear combinations of the vectors appearing in the expected value of each

endogenous terms.

6.4 Comparison between OPIVs, SSIVs, and GIVs

In general terms, OPIVs are related to other approaches decomposing market’s aggregate

outcomes to derive instrumental variables, such as shift share instrumental variables (Bar-

tik, 1991; Blanchard et al., 1992; Borusyak, Hull, and Jaravel, 2022; Goldsmith-Pinkham,

Sorkin, and Swift, 2020, SSIVs, see), and granular instrumental variables (GIVs, Gabaix
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and Koijen, 2020). However, our approach differs from the GIVs and SSIVs approaches

substantially. OPIVs and both these approaches are actually complements, because they

can be used in different types of markets.

The GIVs and SSIVs are procedures designed to estimate price elasticities in central-

ized markets, where there is only one price, while we design OPIVs to estimate objects

more similar to elasticities of substitution in decentralized markets, where the price varies

at the pair level and the identity of counterparties matters. For example, GIVs exploit

the fact that in centralized markets single agents demand (or supply) depends on the

aggregate price, but the aggregate price does not depend on the demand of the single

agent, rather the aggregate demand. The instrumental variable is obtained when few

large actors account for a substantial fraction of aggregate demand (supply) and idiosyn-

cratic shocks are volatile relative to the volatility of aggregate shocks. Although being

deeply different from each other, both GIVs and SSIVs derive instruments by decompos-

ing aggregate quantities (like the aggregate demand, for example) and using exogenous

components, under different assumptions.

The OPIV does not decompose any aggregate quantity, it instead derives instrumental

variables for endogenous disaggregated outcomes, exploiting intransitivity in decentral-

ized markets. The OPIVs exploits the fact that in decentralized markets agents demand

(or supply) in a single contract depends on what happens in other contracts involving

the same parties. We obtain OPIVs under the condition that agents have not fully over-

lapping portfolios of counterparties. Whereas GIVs use players’ size disparities to derive

exclusion restrictions, OPIVs use intransitivity. GIVs need that idiosyncratic shocks to

large players can be separated from systemic ones (granularity). What OPIVs need is

that not all banks lend to all firms.

6.5 Comparison with Spillover Papers in Corporate Finance

In this section we discuss the main differences between our model and those of the family

which Huber (2022), Berg, Reisinger, and Streitz (2021) belong to. The first difference

is about the main outcome variables and the source of spillovers considered. We study

the formation of outcomes in the credit market, and specifically we focus on quantities of

loans. They study the effects of shocks to banks to firms’ outcomes, such as employment.

They assume that spillovers come from firms operating in the same region or sector. Our

spillovers come from relationships that share the very same counterparty. In other words,

they provide tools to account for spillovers among firms when the effects of financial

shocks on real outcomes are analyzed. We provide a tool to model spillovers among

credit relationships and account for them when the effects of financial shocks on credit

outcomes are analyzed.

That we focus on credit outcomes implies another difference: we study outcomes
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at the bilateral level, because we look at credit market outcomes that are bilateral by

construction, the other papers look at individual outcomes. This feauture allows us to

exploit the micro structure of the market for identification and infer on counterparties

specific behaviors. It comes with non trivial differences in the complexity of the model

and in the interpretation of the results. Indeed, we can provide a structural model that

not only controls for spillovers, but also allows to recover parameters that have a direct

behavioral interpretation in terms of credit substitution and reallocation, as discussed

above.

In summary, we focus on endogenous effects and they focus on exogenous effects. The

endogenous effects capture agents’ choices/outcomes that depend on that of others, and

can be interpreted through assumed response functions of agents, while exogenous (or

contextual) effects control for others’ exogenous characteristics or treatment status. From

this perspective, the two approaches can be useful complements to study the effects of

financial shocks.

7 Conclusion

In the last three decades, empirical research has consistently demonstrated that shocks to

banks significantly impact firms’ credit availability (e.g., Behn, Haselmann, and Wachtel,

2016; Jiménez et al., 2017; Khwaja and Mian, 2008; Paravisini, 2008; Paravisini et al.,

2014; Peek and Rosengren, 1995, 2000), subsequently influencing employment and invest-

ment decisions (e.g., Amiti and Weinstein, 2018; Chodorow-Reich, 2014; Chodorow-Reich

and Falato, 2022; Cingano, Manaresi, and Sette, 2016; Jiménez et al., 2020).

A pivotal tool in achieving these findings has been the within-firm (and often within-

bank) estimation strategy, popularized initially by Khwaja and Mian (2008). This tool is

crucial due to non-random matching between banks and firms (see, e.g., Schwert, 2018),

necessitating the separation of shocks to banks from the unobservable idiosyncratic shocks

affecting their partner firms. The ability to disentangle these two types of shocks is a key

initial step in assessing the impact of credit supply contractions and expansions on the

real economy.

However, fixed effects have inherent limitations. First, they assume a uniform distri-

bution of idiosyncratic shocks across different credit relationships within the same firm or

bank. If the data violates this assumption, residual bias may persist, affecting estimates

(as noted in Paravisini, Rappoport, and Schnabl, 2023). Second, fixed effects cannot ac-

count for contextual spillovers, and they isolate sets of observations where these are more

likely (as noted in, e.g. Berg and Streitz, 2019; Huber, 2018). Last, fixed effects cannot

address the endogenous reallocation of demand and supply of credit across relationships

after a shock.

In this paper, we introduced a methodology for measuring exactly such reallocation
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without relying on additional information such as price data. To do so, we adapted stan-

dard results in network theory and estimation (Ballester, Calvó-Armengol, and Zenou,

2006; Bramoullé, Djebbari, and Fortin, 2009) to the credit market. Using overlapping

portfolio instrumental variables, we demonstrated how to estimate the extent to which

firms and banks reallocate credit across their relationships’ portfolios following a finan-

cial shock. Furthermore, by controlling for reallocation, we provided a possible avenue to

tackle the reflection bias in treatment and fixed effects estimates. Our approach strength-

ens the standard methodology and mitigates the concern that reallocation contaminates

fixed effects estimates, when retrieved to proxy for demand and supply idiosyncratic

shifts.

The ability to directly quantify reallocation across relationship portfolios is essential

to comprehend how credit supply movements translate into real effects. For instance, how

much does credit market concentration matter for the shocks’ pass-through? Do special-

ized lenders play an oversized role, and how? Our methodology should aid researchers

in addressing similar questions, even in the absence of extremely rich datasets or quasi-

experimental settings to account for reallocation.39 Moreover, the tool we propose could

be especially useful for studying the effects of regulation changes and monetary policy,

often enacted when reallocation is possible and easy. Indeed, as a practical applica-

tion, we used the Italian Credit Register data to demonstrate how failing to account for

endogenous reallocation of credit demand and supply would lead to overestimating the

pass-through of monetary policy from 2012 to 2018.

The primary contribution of this paper is providing an innovative tool to estimate

and control for credit reallocation effects. Our ongoing work will expand this framework

to account for relationship heterogeneity, the creation margin of credit relationships, and

facilitating accessibility by offering computational tools for estimation.

39 In terms of setup, researchers could use a partial population design to account for reallocations
and endogenous effects, as Angelucci and De Giorgi (2009), which uses village-level randomization of
treatment to assess cash transfers’ effects. Nonetheless, such a setup is extremely difficult to run into in
reality.
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Appendix

A.1 Proofs

A.1.1 Model

Full derivation of the toy model, proving Proposition 1.

Bank Problem:

Bank b: max
cib, cjb

(
rib − ω(cib − ξxib − θcjb − νib)

)
cib +

(
rjb − ω(cjb − ξxjb − θcib − νjb)

)
cjb

Bank a: max
cia

(
ria − ω(cia − ξxia − νia)

)
cia

FOC deliver:

rib = ωcib − ω (ξxib + νib − θcjb)︸ ︷︷ ︸
uib

rjb = ωcjb − ω (ξxjb + νjb − θcib)︸ ︷︷ ︸
ujb

ria = ωcia − ω (ξxia + νia)︸ ︷︷ ︸
uia

(A.1)

Firm problem:
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Firm i: max
cia, cib

(
ei − α(cia + cib)

)
(cia + cib)−

∑
K=a,b ciKω(ciK − uiK)

Firm j: max
cjb

(
ej − αcjb

)
cjb − cjbω(cjb − ujb)

FOC deliver:

ei − 2αcia − 2αcib − 2ωcia + ω(ξxia + νia) = 0

ei − 2αcib − 2αcia − 2ωcib + ω(ξxib + νib − θxjb) = 0

ej − 2αcjb − 2ωcjb + ω(ξxjb + νjb − θxib) = 0

Which simplifies to:

cia = − α
α+ω

cib + 1
2(α+ω)

ei + ω
2(α+ω)

(ξxia + νia)

cib = − α
α+ω

cia + 1
2(α+ω)

ei + ω
2(α+ω)

(ξxib + νib − θcjb)
cjb = 1

2(α+ω)
ej + ω

2(α+ω)
(ξxjb + νjb − θcib)

And delivers the following structural demand system:

cia = ρcib + βxia + δi + εia

cib = ρcia + φcjb + βxib + δi + εib

cjb = φcib + βxjb + δj + εjb

Calling:

ρ = − α
α+ω

φ = − θω
2(α+ω)

β = ξω
2(α+ω)

δi,j = 1
2(α+ω)

ei,j

εia,ib,jb =
ωνia,ib,jb
2(α+ω)

From the above, we can derive the following reduced form system:
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cia = ρcib + βxia + δi + εia

cib = ρ(ρcib + βxia + δi + εia)...

+φ(φcib + βxjb + δj + εjb) + βxib + δi + εib

cjb = φcib + βxjb + δj + εjb

cia = ρcib + βxia + δi + εia

(1− ρ2 − φ2)cib = β(ρxia + xib + φxjb)...

+(1 + ρ)δi + φδj + ρεia + φεjb + εib

cjb = φcib + βxjb + δj + εjb

cia = ρ
( (1+ρ)δi+φδj

1−φ2−ρ2 + β
ρxia+φxjb+xib

1−φ2−ρ2 +
ρεia+φεjb+εib

1−φ2−ρ2
)
...

+βxia + δi + εia

cib =
(1+ρ)δi+φδj

1−φ2−ρ2 + β
ρxia+φxjb+xib

1−φ2−ρ2 +
ρεia+φεjb+εib

1−φ2−ρ2

cjb = φ
( (1+ρ)δi+φδj

1−φ2−ρ2 + β
ρxia+φxjb+xib

1−φ2−ρ2 +
ρεia+φεjb+εib

1−φ2−ρ2
)
...

+βxjb + δj + εjb

cia =
ρ(1+ρ−φ2)δi+ρφδj

1−φ2−ρ2 + β
(1−φ2)xia+ρφxjb+ρxib

1−φ2−ρ2 +
(1−φ2)εia+ρφεjb+ρεib

1−φ2−ρ2

cib =
(1+ρ)δi+φδj

1−φ2−ρ2 + β
ρxia+φxjb+xib

1−φ2−ρ2 +
ρεia+φεjb+εib

1−φ2−ρ2

cjb =
φ(1+ρ)δi+(1−ρ2)δj

1−φ2−ρ2 + β
ρφxia+(1−ρ2)xjb+φxib

1−φ2−ρ2 +
φρεia+(1−ρ2)εjb+φεib

1−φ2−ρ2

(A.2)

Adding Assumption 3 and considering the case in which the econometrician ignores

spillovers and correlated demand shocks both, we obtain:

cia = βxia + εia

εia = δi + ρcib + εia

cib = (1+ρ)
1−φ2−ρ2 δi + β ρ

1−φ2−ρ2xia +
ρεia+φεjb+εib

1−φ2−ρ2

(A.3)

which results in

β̂OLS = cov(cia,xia)
var(xia)

= β + ρ
cov(xia, cib)

var(xia)︸ ︷︷ ︸
spillover bias

+
cov(xia, δi)

var(xia)︸ ︷︷ ︸
demand bias

(A.4)

The fact that cov(xia,cib)
var(xia)

= 1+ρ
1−ρ2−φ2

cov(xia,δi)
var(xia)

+ β ρ
1−ρ2−φ2 6= 0 concludes the proof.

Proof of Proposition 2.

Indicating averages with bars, so that, for example, c̄i = cia+cib
2

, we have that:
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cia = βxia + δi + εia,

cib = δi + εib.

⇒ δ̂i = cib

β̂FE = cov(cia−c̄i,xia−x̄i)
var(xia−x̄i) =

cov
(
cia−cib

2
,
xia
2

)
var
(
xia
2

) = cov(cia−cib,xia)
var(xia)

= ...

... cov(βxia+εia−εib,xia)
var(xia)

From the structural demand system:

εia = ρcib + εia

εib = ρcia + φcjb + εib

⇒ cov(βxia+εia−εib,xia)
var(xia)

= β +
cov(ρ(cib−cia)−φcjb,xia)

var(xia)
= ...

...β +
cov(ρ((1−ρ)cib−βxia−δi)−φcjb,xia)

var(xia)
= ...

...β(1− ρ) + ρ(1− ρ) cov(cib,xia)
var(xia)

− ρ cov(δi,xia)
var(xia)

− φ cov(cjb,xia)

var(xia)

From the reduced form system, simplified thanks to Assumption 3:

cib = (1+ρ)δi
1−φ2−ρ2 + β ρxia

1−φ2−ρ2 +
ρεia+φεjb+εib

1−φ2−ρ2

cjb = φ(1+ρ)δi
1−φ2−ρ2 + β ρφxia

1−φ2−ρ2 +
φρεia+(1−ρ2)εjb+φεib

1−φ2−ρ2

(A.5)

From the above, and the reduced form of System 2 displayed in the last passage, it is

evident that βFE is biased, and that correlated demand shocks still play a role, as they are

reflected back in the estimator through reallocation spillovers. βFE is indeed a function

of δi through the −ρcov(δi, xia)/var(xia) element, from demand reallocation within the

relationships of the same firm, and through the impact of δi on all other bias components.

Proof of Proposition 3. From the end of Proposition 1’s Proof and the absence of

demand bias it follows that:

β̂OLS = β
(

1 + ρ2

1−φ2−ρ2

)
= β 1−φ2

1−φ2−ρ2

From the reduced form demand system, Proposition 2’s and the absence of demand

bias:

β̂FE = β(1− ρ) + ρ(1− ρ) cov(cib,xia)
var(xia)

− φ cov(cjb,xia)

var(xia)
= ...

β(1− ρ) + β(1− ρ) ρ2

1−φ2−ρ2 − β
φ2ρ

1−φ2−ρ2 = ...

β (1−ρ)(1−φ2−ρ2)+ρ2(1−ρ)−φ2ρ
1−φ2−ρ2 = β 1−ρ−φ2+ρφ2−ρ2+ρ3+ρ2−ρ3−φ2ρ

1−φ2−ρ2 = ...

β 1−φ2+ρ
1−φ2−ρ2

(A.6)
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A.1.2 The econometric framework

Proof of Proposition 5. It follows from the proof of Proposition 1 in Arduini,

Patacchini, and Rainone (2020) when G, the network among nodes, and its sub-matrices

are replaced by A and its sub-matrices, the network among links. Moving from nodes

to links implies that quadriads instead of triads intransitivity is needed. Quadriads

intransitivity is implied by linear independence of IF , ABAFAB and AF and IB, AFABAF

and AB. See condition 1 of the proposition. Alternatively, also the proof of Proposition 1

in Rainone (2020a) brings to the same result if multiple endogenous terms are considered.

Details for the identification example in Section 3.3.

cia = ρcib + βxia + εia

cib = ρcia + φcjb + εib

cjb = φcib + βxjb + εjb

(A.7)
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cia = ρcib + βxia + εia

cib = ρ(ρcib + βxia + εia) + φ(φcib + βxjb + εjb) + εib

cjb = φcib + βxjb + εjb

cia =
(

ρ2β
1−φ2−ρ2 + β

)
xia + ρ φβ

1−φ2−ρ2xjb +
(1−φ2)εia+ρφεjb+ρεib

1−φ2−ρ2

cib = ρβ
1−φ2−ρ2xia + φβ

1−φ2−ρ2xjb +
ρεia+φεjb+εib

1−φ2−ρ2

cjb =
(

φ2β
1−φ2−ρ2 + β

)
xjb + φρβ

1−φ2−ρ2xia +
(1−ρ2)εjb+φρεia+φεib

1−φ2−ρ2

call µ =
ρεia+φεjb+εib

1−φ2−ρ2

and πρ = βφ
1−φ2−ρ2

and πφ = βρ
1−φ2−ρ2

⇒ cia = ρπρxjb +
(
β + βρ2

1−φ2−ρ2
)
xia + ρµ+ εia

cib = πρxjb + πφxia + µ

cjb = φπφxia +
(

φ2β
1−φ2−ρ2 + β

)
xjb + φµ+ εjb

π̂ρ,OLS = πρ

π̂φ,OLS = πφ

π̂ρρOLS = πρρ

π̂φφOLS = πφφ

ρ̂IV =
π̂ρρOLS
π̂ρ,OLS

= ρ

φ̂IV =
π̂φφOLS
π̂φ,OLS

= φ

β̂OLS = β
(
1 + ρ2

1−φ2−ρ2
)

β̂IV = β̂OLS −
ρ̂2IV

1−φ̂2IV −ρ̂
2
IV

(A.8)

A.1.3 Further results for the econometric framework

Econometric model with fixed effects. Let us now introduce also the presence of

bank and firm fixed effects. Suppose now that the DGP is

C = φAFC + ρABC +Xβ + ∆ + Γ + ε,

= +φABC + ρAFC + Zµ+ ε, (A.9)

where ∆ = Dδ is a matrix of firm FEs and Γ = Gγ is a matrix of bank FEs. For simplicity

let again ρ = φ. Suppose we estimate

C = Xβ + ∆ + Γ + U, (A.10)
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then the error term has the following form

U = φAFC + ρABC + ε

= (φAB + ρAF )(I − φAB − ρAF )−1[Xβ + ∆ + Γ + ε] + ε

= M [Xβ + ∆ + Γ] + (M + I)ε

Suppose again that X is univariate and X ⊥ ε, we have

X ′U = X ′M [Xβ + ∆ + Γ] + (M + I)ε = X ′φA
inf∑
k=0

(φA)k[Xβ + ∆ + Γ]

= X ′
inf∑
k=1

(φA)k[Xβ + ∆ + Γ] = S +
inf∑
k=1

φkX ′Ak[∆ + Γ]

Here, Ak∆ = Dk is a vector whose generic element contains the FEs of borrowers of credit

relationships at distance k from the relative relationship. Symmetrically, AkΓ = Gk is

a vector whose generic element contains the FEs of lenders of credit relationships at

distance k from the relative relationship. If X ⊥ ∆,Γ, then the bias obtained estimating

(A.1.4) is equal to S, similarly to random effects models. If not, φ > 0 and X is positively

correlated with ∆ and Γ, then B = (X ′X)−1X ′U > 0. Otherwise, the sign of the bias is

again ambiguous.

A.1.4 Bias of Idiosyncratic Firm and Bank Shocks

We can now derive the bias of firm and bank FEs defining the DGP as C = Xβ+∆+Γ+U,.

Let ∆i (Γb) be the ith (bth) column of ∆ (Γ) and ∆−i (Γ−b) the matrix containing all the

columns of ∆ (Γ) but the ith (bth). Following the same derivations as above, we have

D′iU = D′iφAM [Xβ + ∆i + ∆−i + Γ] + (M + I)ε = δi

inf∑
k=1

φkD′iA
kDi

= δi

inf∑
k=1

φk1 = δi(
∑
k even

φklik −
∑
k odd

φklik) = δi(Ei −Oi) (A.11)

where lik is the number of loops from (to) firm i that involve chains of length k in the

credit network.

A similar derivation can be done for G′iU :

G′iU = D′iφAM [Xβ + ∆ + Γb + Γ−b] + (M + I)ε

= γb(
∑
k even

φklbk −
∑
k odd

φklbk) = γb(Eb −Ob) (A.12)

where lbk is the number of loops from (to) bank b that involve chains of length k in the
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credit network. Given that both Ob and Eb are positive, the sign of the bias depends

on the credit network topology. In indirect networks, we may expect Eb > Ob, as loops

generate paths of even length going back and forth at each step.

A.2 Monte Carlo Tables

Table A.1: Simulation study - ICM treatment effect bias under different
share of treated, spillovers and density

m=2 m=4 m=6 m=8 m=10

φ = ρ % of treated

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse

0.10 -0.059 0.124 -0.198 0.110 -0.299 0.143 -0.390 0.199 -0.456 0.251

0.25 -0.007 0.036 -0.037 0.026 -0.080 0.029 -0.117 0.031 -0.155 0.039

-0.2 0.50 0.142 0.035 0.238 0.067 0.295 0.095 0.314 0.106 0.328 0.114

0.75 0.266 0.079 0.516 0.272 0.660 0.441 0.749 0.565 0.813 0.664

0.90 0.339 0.123 0.685 0.473 0.879 0.774 1.006 1.014 1.095 1.201

0.10 -0.253 0.213 -0.660 0.574 -0.958 1.016 -1.206 1.546 -1.352 1.909

0.25 -0.105 0.063 -0.397 0.208 -0.588 0.388 -0.766 0.629 -0.901 0.848

-0.3 0.50 0.093 0.031 0.067 0.026 0.013 0.020 -0.064 0.022 -0.113 0.029

0.75 0.313 0.110 0.517 0.277 0.601 0.369 0.642 0.421 0.661 0.444

0.90 0.436 0.197 0.791 0.630 0.961 0.929 1.056 1.118 1.133 1.288

0.10 -0.622 0.653 -2.029 4.629 -3.048 9.756 -3.766 14.635 -4.245 18.382

0.25 -0.410 0.280 -1.512 2.479 -2.334 5.623 -2.890 8.530 -3.295 11.025

-0.4 0.50 -0.052 0.043 -0.638 0.491 -1.117 1.337 -1.457 2.199 -1.723 3.042

0.75 0.273 0.095 0.201 0.073 0.081 0.042 -0.032 0.032 -0.099 0.040

0.90 0.478 0.238 0.728 0.541 0.807 0.665 0.840 0.718 0.867 0.765

Notes. The mean bias and the MSE are copmuted across the 500 simulated samples. The number of nodes N in

the network is 200, 100 firms and 100 banks, in each sample. The column spillovers intensity reports the value of

φ = ρ in the simulations.
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Table A.2: Simulation study - ICM treatment effect bias with FEs under
different share of treated, spillovers and density

m=2 m=4 m=6 m=8 m=10

φ = ρ % of treated

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse

0.10 -0.085 0.121 -0.332 0.202 -0.855 0.872 -1.119 1.373 -1.221 1.574

0.25 0.000 0.038 -0.211 0.083 -0.753 0.627 -1.073 1.196 -1.204 1.489

-0.2 0.50 0.136 0.037 0.028 0.019 -0.586 0.378 -0.990 1.020 -1.169 1.399

0.75 0.263 0.078 0.312 0.108 -0.254 0.095 -0.755 0.615 -1.077 1.200

0.90 0.340 0.123 0.512 0.269 0.125 0.042 -0.389 0.212 -0.790 0.684

0.10 -0.284 0.217 -0.896 0.994 -1.936 4.023 -2.529 6.666 -2.785 7.962

0.25 -0.116 0.064 -0.663 0.522 -1.776 3.282 -2.433 6.035 -2.773 7.776

-0.3 0.50 0.112 0.035 -0.271 0.114 -1.443 2.182 -2.255 5.170 -2.663 7.165

0.75 0.306 0.104 0.235 0.075 -0.816 0.748 -1.833 3.480 -2.430 6.000

0.90 0.439 0.201 0.564 0.328 -0.142 0.084 -1.099 1.347 -1.933 3.900

0.10 -0.552 0.564 -2.471 6.830 -5.149 27.597 -6.650 45.138 -7.313 54.346

0.25 -0.385 0.245 -2.082 4.646 -4.786 23.521 -6.530 43.221 -7.351 54.391

-0.4 0.50 -0.069 0.043 -1.222 1.657 -4.062 16.962 -6.022 36.735 -7.067 50.276

0.75 0.277 0.094 -0.287 0.146 -2.669 7.507 -5.097 26.517 -6.503 42.740

0.90 0.480 0.240 0.418 0.204 -1.162 1.610 -3.363 11.971 -5.331 29.257

Notes. The mean bias and the MSE are computed across the 500 simulated samples. The number of nodes N in

the network is 200, 100 firms and 100 banks, in each sample. The column spillovers intensity reports the value of

φ = ρ in the simulations.
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Table A.3: Simulation study - CNM estimator performance under different
share of treated, spillovers and density

m=2 m=4 m=6 m=8 m=10

φ = ρ % of treated

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse

0.10 0.058 0.118 0.022 0.059 0.013 0.039 0.000 0.030 -0.006 0.024

0.25 0.006 0.034 0.002 0.017 0.005 0.013 0.009 0.009 0.006 0.008

-0.2 0.50 0.020 0.017 0.002 0.009 0.005 0.007 0.003 0.005 0.002 0.004

0.75 0.010 0.015 0.004 0.009 0.013 0.007 0.006 0.005 0.005 0.004

0.90 0.007 0.021 0.018 0.015 0.013 0.011 0.007 0.008 0.007 0.007

0.10 0.009 0.098 0.016 0.058 0.000 0.045 0.000 0.032 0.011 0.033

0.25 0.012 0.035 0.005 0.020 0.009 0.013 0.007 0.011 0.004 0.009

-0.3 0.50 0.010 0.016 -0.004 0.008 -0.001 0.006 -0.002 0.005 0.002 0.004

0.75 0.009 0.015 0.003 0.007 0.004 0.005 0.008 0.003 -0.002 0.003

0.90 0.012 0.014 0.011 0.010 0.012 0.007 0.000 0.005 0.008 0.005

0.10 0.019 0.096 0.014 0.070 -0.001 0.058 0.019 0.045 0.007 0.040

0.25 -0.009 0.034 0.001 0.022 -0.006 0.017 -0.001 0.011 0.009 0.012

-0.4 0.50 0.013 0.017 0.004 0.009 0.004 0.006 -0.001 0.005 0.000 0.004

0.75 0.008 0.011 0.004 0.005 0.001 0.004 -0.001 0.000 0.000 0.002

0.90 0.003 0.011 0.005 0.006 0.004 0.004 0.003 0.003 0.003 0.002

Notes. The mean bias and the MSE are computed across the 500 simulated samples. The number of nodes n in the

network is 200, 100 firms and 100 banks, in each sample. The first column reports the spillovers intensity, i.e. the

value of φ = ρ in the simulations.
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Table A.4: Simulation study - CNM estimator performance with FEs under
different share of treated, spillovers and density

m=2 m=4 m=6 m=8 m=10

φ = ρ % of treated

mean bias mse mean bias mse mean bias mse mean bias mse mean bias mse

0.10 0.025 0.120 0.037 0.069 0.008 0.139 -0.010 0.309 0.018 0.547

0.25 0.014 0.034 0.005 0.023 0.027 0.045 0.018 0.091 0.012 0.209

-0.2 0.50 0.015 0.020 0.005 0.011 0.016 0.021 -0.001 0.040 0.009 0.081

0.75 0.005 0.017 0.003 0.010 0.005 0.013 -0.010 0.026 -0.016 0.056

0.90 0.003 0.022 0.007 0.016 0.007 0.014 -0.013 0.021 0.015 0.039

0.10 0.002 0.098 0.011 0.072 0.015 0.146 0.035 0.309 0.033 0.835

0.25 0.011 0.031 0.016 0.025 0.007 0.057 -0.003 0.116 -0.031 0.234

-0.3 0.50 0.016 0.018 -0.002 0.011 0.004 0.024 -0.009 0.052 -0.012 0.107

0.75 0.001 0.012 0.014 0.008 0.006 0.015 0.002 0.032 -0.019 0.058

0.90 0.016 0.018 0.005 0.009 0.003 0.013 -0.008 0.026 -0.018 0.049

0.10 0.048 0.130 0.007 0.081 0.008 0.164 0.004 0.333 0.007 0.675

0.25 0.017 0.034 -0.006 0.029 0.006 0.053 0.001 0.126 0.030 0.220

-0.4 0.50 0.004 0.016 0.011 0.012 -0.006 0.029 0.016 0.049 -0.029 0.102

0.75 0.008 0.011 0.004 0.008 -0.001 0.018 -0.004 0.035 0.006 0.087

0.90 0.015 0.014 0.003 0.003 0.012 0.015 -0.005 0.034 -0.005 0.065

Notes. The mean bias and the MSE are computed across the 500 simulated samples. The number of nodes n in the

network is 200, 100 firms and 100 banks, in each sample. The first column reports the spillovers intensity, i.e. the

value of φ = ρ in the simulations.
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Table A.5: Simulation study - estimator performance under different
spillovers, size and density

n m true true true true true

φ ρ φ ρ φ ρ φ ρ φ ρ

200 -0.1 -0.1 -0.1 -0.2 -0.1 -0.3 -0.1 -0.4 -0.4 -0.4

2 mean -0.097 -0.100 -0.100 -0.209 -0.101 -0.306 -0.093 -0.414 -0.406 -0.406

std 0.084 0.087 0.090 0.089 0.082 0.081 0.082 0.076 0.066 0.067

4 mean -0.099 -0.096 -0.095 -0.194 -0.094 -0.299 -0.096 -0.395 -0.402 -0.395

std 0.040 0.041 0.040 0.040 0.040 0.044 0.040 0.042 0.039 0.040

6 mean -0.098 -0.098 -0.097 -0.197 -0.097 -0.295 -0.096 -0.398 -0.402 -0.395

std 0.029 0.030 0.029 0.030 0.029 0.033 0.028 0.032 0.039 0.040

8 mean -0.101 -0.097 -0.101 -0.197 -0.100 -0.296 -0.098 -0.398 -0.403 -0.396

std 0.024 0.022 0.025 0.026 0.024 0.026 0.024 0.028 0.033 0.032

10 mean -0.102 -0.096 -0.099 -0.198 0.000 -0.297 -0.098 -0.398 -0.402 -0.397

std 0.021 0.020 0.023 0.023 0.022 0.024 0.021 0.024 0.031 0.030

800

2 mean -0.102 -0.098 -0.100 -0.201 -0.097 -0.301 -0.097 -0.401 -0.398 -0.401

std 0.041 0.043 0.044 0.042 0.042 0.042 0.040 0.037 0.034 0.033

4 mean -0.098 -0.098 -0.099 -0.198 -0.098 -0.300 -0.097 -0.400 -0.398 -0.401

std 0.022 0.021 0.021 0.022 0.021 0.022 0.018 0.020 0.021 0.020

6 mean -0.099 -0.100 -0.099 -0.200 -0.097 -0.300 -0.099 -0.400 -0.398 -0.401

std 0.015 0.014 0.015 0.016 0.014 0.016 0.014 0.016 0.021 0.020

8 mean -0.100 -0.099 -0.100 -0.200 -0.099 -0.300 -0.099 -0.399 -0.401 -0.399

std 0.012 0.012 0.012 0.014 0.013 0.014 0.012 0.014 0.015 0.016

10 mean -0.100 -0.099 -0.100 -0.200 -0.099 -0.300 -0.099 -0.400 -0.399 -0.400

std 0.010 0.011 0.010 0.011 0.011 0.012 0.010 0.012 0.015 0.015

Notes. The mean and the std are computed across the 500 simulated samples. n is the number of

nodes in the network, m regulates the network density as described in Section 4.1.

Idiosyncratic Firm and Bank Shocks, Detailed Exposition. Here we deepen the

properties firm and bank FEs’ estimates, which account for idiosyncratic shocks, when us-

ing the isolated credit model (ICM) and the credit network model (CNM). To better assess

the magnitude of the bias in finite samples, we let all FEs be positive by adding the mini-

mum draw for each replication. To aggregate all the firms’ and banks’ specific parameters,

we use the mean bias, the mean absolute bias and the root mean squared bias: MB =

1/R
∑R

r=1{1/N [
∑F

j=1(δ̂rj − δ) +
∑B

k=1(γ̂rk− γ)]} , MAB = 1/R
∑R

r=1[1/N(
∑F

j=1 |δ̂rj − δ|+∑B
k=1 |γ̂rk − γ|)], RMSE = 1/R

∑R
r=1[1/N

√∑F
j=1(δ̂rj − δ)2 +

∑B
k=1(γ̂rk − γ)2].
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Table A.6 reports these indicators for different network sizes (n = 200, 800 and 2000),

network densities (m = 4,6,8 and 10) and magnitude of spillovers (φ and ρ). The bias for

the ICM is increasing in both the density of the network and the magnitude of spillovers,

while the bias of the CNM is always close to zero and converges to it as n tends to infinity.

Given that θ = 0.1 in our pivotal setting and we constrained the FEs to be positive,

the average FE is greater than 0.3 with a probability lower than 0.001. The bias of the

ICM ranges from about 0.3 (when m = 4 and φ = ρ = −0.2) and 3 (when m = 10 and

φ = ρ = −0.4), which means that with low (high) density and small (large) spillovers the

ICM estimate is on average about the double (ten times) the real idiosyncratic shock with

very high probability. The intuition behind this result is that competitive interactions

let positive idiosyncratic shocks diffuse through the credit network and amplify them,

overestimating them, if such feedback loops are not accounted for.
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Table A.6: Simulation study - ICM and CNM estimators performance under
different spillovers, size and density

φ = ρ = −0.2 φ = ρ = −0.3 φ = ρ = −0.4

n m MB MAB RMSE MB MAB RMSE MB MAB RMSE

200
4 ICM 0.303 0.394 61 0.412 0.460 73 0.628 0.648 98

CNM 0.002 0.418 67 0.002 0.424 71 -0.005 0.420 69

6 ICM 0.435 0.532 627 0.676 0.739 843 1.283 1.330 1,446
CNM -0.005 0.447 556 -0.009 0.448 556 -0.009 0.447 547

8 ICM 0.650 0.732 1,472 1.066 1.125 2,163 2.230 2.281 4,316
CNM -0.013 0.472 1,025 0.001 0.466 1,002 -0.014 0.462 995

10 ICM 0.820 0.891 2,234 1.414 1.462 3,599 3.074 3.138 7,628
CNM -0.027 0.498 1,376 -0.021 0.494 1,376 -0.018 0.474 1,312

800
4 ICM 0.276 0.377 484 0.376 0.429 527 0.594 0.620 729

CNM 0.000 0.414 543 -0.002 0.415 535 0.001 0.417 539

6 ICM 0.412 0.516 4,851 0.642 0.710 6,427 1.253 1.305 11,317
CNM -0.002 0.437 4,299 -0.002 0.436 4,284 -0.002 0.435 4,257

8 ICM 0.615 0.701 11,235 1.039 1.100 16,944 2.195 2.256 34,081
CNM -0.004 0.448 7,707 0.000 0.448 7,664 -0.002 0.449 7,710

10 ICM 0.789 0.862 17,467 1.374 1.430 28,187 3.015 3.081 59,562
CNM -0.007 0.458 10,089 -0.002 0.454 10,007 -0.009 0.457 10,041

2000
4 ICM 0.264 0.371 1,882 0.360 0.419 2,052 0.577 0.604 2,821

CNM 0.000 0.415 2,144 -0.002 0.413 2,118 0.002 0.414 2,127

6 ICM 0.399 0.507 18,845 0.632 0.703 25,099 1.238 1.295 44,536
CNM 0.001 0.434 16,831 0.000 0.434 16,802 -0.001 0.435 16,858

8 ICM 0.602 0.691 43,662 1.023 1.086 66,298 2.171 2.231 133,100
CNM -0.001 0.444 30,017 0.000 0.443 30,005 0.000 0.444 30,024

10 ICM 0.775 0.851 68,219 1.354 1.412 109,951 3.001 3.069 234,902
CNM 0.001 0.450 39,115 -0.005 0.450 39,012 -0.004 0.448 38,915

Notes. ICM and CNM stand respectively for isolated credit model and credit network
model. n is the number of nodes in the network, m regulates the network density
as described in Section 4.1. MB, MAB and RMSE stand respectively for mean bias,
mean absolute bias and root mean square error. All are averaged across 500 replica-
tions and computed with the following formulas: MB = 1/R

∑R
r=1{1/N [

∑F
j=1(δ̂rj − δ) +∑B

k=1(γ̂rk − γ)]} , MAB = 1/R
∑R

r=1[1/N(
∑F

j=1 |δ̂rj − δ| +
∑B

k=1 |γ̂rk − γ|)], RMSE =

1/R
∑R

r=1[1/N
√∑F

j=1(δ̂rj − δ)2 +
∑B

k=1(γ̂rk − γ)2]. RMSE is reported without decimals.
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Table A.7: Simulation study - ICM and CNM estimators performance with
real credit networks

mean bias

n = 400 800 2000

treatment idiosyncratic treatment idiosyncratic treatment idiosyncratic

φ = ρ effect shocks effect shocks effect shocks

-0.2 % of treated

0.10

ICN -0.589 -0.008 -0.766 -0.042 -0.918 -0.068

CNM 0.039 -0.003 0.004 -0.001 0.000 0.001

0.50

ICN -0.445 0.432 -0.628 0.341 -0.852 0.274

CNM 0.007 -0.006 0.008 -0.005 0.001 -0.001

0.90

ICN -0.039 0.498 -0.060 0.574 -0.494 0.498

CNM 0.001 -0.002 0.001 -0.002 0.003 -0.001

-0.3 0.10

ICN -1.244 0.025 -1.695 -0.012 -2.076 -0.045

CNM 0.024 -0.002 0.017 0.000 0.011 -0.002

0.50

ICN -1.002 0.642 -1.438 0.556 -1.930 0.491

CNM 0.004 -0.002 0.005 -0.002 0.006 -0.002

0.90

ICN -0.242 0.836 -0.266 0.764 -1.219 0.780

CNM 0.006 -0.005 0.005 -0.004 0.002 0.001

0.10

-0.4 ICN -3.080 0.126 -4.364 0.104 -5.479 0.066

CNM 0.012 -0.001 0.004 0.000 0.006 -0.001

0.50

ICN -2.484 1.135 -3.772 1.146 -5.130 1.111

CNM 0.001 0.002 0.004 -0.001 0.005 -0.003

0.90

ICN -0.880 1.252 -1.691 1.279 -3.393 1.557

CNM 0.004 -0.001 0.002 0.000 0.000 -0.001

Notes. ICM and CNM stand respectively for isolated credit model and credit network model. n is the number of

nodes in the network. The links are extracted from realized credit relationships between a random sample of firms

and banks from all credit relationships observed in 2016. The bias of the treatment effect is computed as in Table

A.1, A.2, A.4 and 1. The bias of idiosyncratic shocks is computed as in Table A.6.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin. 2020. “Peer effects in networks:

A survey.” Annual Review of Economics 12:603–629.

Branzoli, Nicola, Edoardo Rainone, and Ilaria Supino. 2023. “The role of banks’ technol-

ogy adoption in credit markets during the pandemic.” Journal of Financial Stability,

fortcoming .

Bripi, Francesco. 2021. “Substituting banks: Estimating credit demand in Italy.” Un-

published Manuscript .
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