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Lecture 18
Cointegration

• Suppose yt and xt are I(1). We regress yt against xt. What happens? 

• The usual t-tests on regression coefficients can show statistically 
significant coefficients, even if in reality it is not so. 

• This the spurious regression problem (Granger and Newbold (1974)).

• In a Spurious Regression the errors would be correlated and the 
standard t-statistic will be wrongly calculated because the variance of 
the errors is not consistently estimated.

Note: This problem can also appear with I(0) series –see, Granger, 
Hyung and Jeon (1998). 

Spurious Regression 
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Examples:
(1) Egyptian infant mortality rate (Y), 1971-1990, annual data, on 
Gross aggregate income of American farmers (I) and Total Honduran 
money supply (M)

ŷ = 179.9 - .2952 I - .0439 M, R2 = .918, DW = .4752, F = 95.17
(16.63) (-2.32) (-4.26) Corr = .8858, -.9113, -.9445

(2). US Export Index (Y), 1960-1990, annual data, on Australian 
males’ life expectancy (X)

ŷ = -2943. + 45.7974 X, R2 = .916, DW = .3599, F = 315.2
(-16.70) (17.76) Corr = .9570

(3) Total Crime Rates in the US (Y), 1971-1991, annual data, on Life 
expectancy of South Africa (X)

ŷ = -24569 + 628.9 X, R2 = .811, DW = .5061, F = 81.72
(-6.03) (9.04) Corr = .9008

Spurious Regression - Examples 

• Suppose yt and xt are unrelated I(1) variables. We run the regression:

• True value of β=0. The above is a spurious regression and et ∼ I(1).

• Phillips (1986) derived the following results:
- መߚ not   0. It non-normal RV not necessarily centered at 0. 

=> This is the spurious regression phenomenon.

-The OLS t-statistics for testing H0: β=0 diverge to ±∞ as T→ ∞. 
Thus, with a large enough T it will appear that β is significant. 

- The usual R2 1 as T → ∞. The model appears to have good
fit well even though it is misspecified.

Spurious Regression - Statistical Implications 
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• Intuition:
With I(1) data sample moments converge to functions of Brownian 
motion (not to constants).

• Sketch of proof of Phillip’s first result.
- Consider two independent RW processes for yt and xt. We regress:

- OLS estimator of β:

- Then, ߚመ (not)           0. ߚመ non-normal RV.

Spurious Regression - Statistical Implications 
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• Given the statistical implications, the typical symptoms are: 
- High R2, t-values, & F-values. 
- Low DW values.

• Q: How do we detect a spurious regression (between I(1) series)?
- Check  the correlogram of the residuals.
- Test for a unit root on the residuals.

• Statistical solution: When series are I(1), take first differences. Now, 
we have a valid regression. But, the economic interpretation of the 
regression changes. 

. When series are I(0), modify the t-statistic: 

Spurious Regression – Detection and Solutions 
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• The message from spurious regresssion: Regression of I(1) variables 
can produce nonsense.

Q: Does it make sense a regression between two I(1) variables?
Yes, if the regression errors are I(0). That is, when the variables are 
cointegrated.

Spurious Regression – Detection and Solutions 

• Integration: In a univariate context, yt is I(d) if its (d-1)th difference 
is I(0). That is, Δdyt is stationary.

=> yt is I(1) if Δyt is I(0).

• In many time series, integrated processes are considered together 
and they form equilibrium relationships:
- Short-term and long-term interest rates
- Inflation rates and interest rates.
- Income and consumption

Idea:  Although a time series vector is integrated, certain linear 
transformations of the time series may be stationary.

Cointegration 
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• An mx1 vector time series Yt is said to be cointegrated of order (d,b), 
CI(d,b) where 0<bd, if each of its component series Yit is I(d) but 
some linear combination ’Yt is I(db) for some constant vector ≠0.

•: cointegrating vector or long-run parameter. 

• The cointegrating vector is not unique. For any scalar c
c ’Yt = *’Yt is I(db) ~ I(db)

• Some normalization assumption is required to uniquely identify  . 
Usually, 1=(the coefficient of the first variable) is normalized to 1.

• The most common case is d=b=1.

Cointegration - Definition

• If the mx1 vector time series Yt contains more than 2 components, 
each being I(1), then there may exist k (<m) linearly independent 1xm 
vectors 1’, 2’,…, k’, such that ’Yt ~ I(0) kx1 vector process, 
where  = (1,2’,…, k) is a kxm cointegrating matrix.

• Intuition for I(1) case
’Yt forms a long-run equilibrium. It cannot deviate too far from the 
equilibrium, otherwise economic forces will operate to restore the 
equilibrium.

• The number of linearly independent cointegrating vectors is called 
the cointegrating rank:

 Yt is cointegrated of rank k.

If the mx1 vector time series Yt is CI(k,1) with 0<k<m CI vectors, 
then there are m-k common I(1) stochastic trends.

Cointegration - Definition
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Example: Consider the following system of processes

where the error terms are uncorrelated WN processes. Clearly, all the 
3 processes are individually I(1).

- Let yt=(x1t,x2t,x3t)’ and =(1,1,2)’ => ’ yt=ε1t ~I(0).

Note: The coefficient for x1 is normalized to 1.

- Another CI relationship: x2t & x3t.. Let *=(0 1,-3)’ =>’yt =ε2t~I(0).

- 2 independent C.I. vectors => 1 common ST:  Σt ε3t.

Cointegration - Example
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VAR with Cointegration

• Let Yt be mx1. Suppose we estimate VAR(p)

or 

• Suppose we have a unit root. Then, we can write

• This is like a multivariate version of the ADF test:
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VAR with Cointegration

• Rearranging the equation

where Rank((1)I)<m. There are two cases:

1. (1)= I, then we have m independent unit roots, so there is no
cointegration, and we should run the VAR in differences.

2. 0< Rank((1)I) = k < m, then we can write (1)I =’ where 
and  are mxk. The equation becomes:

• This is called a vector error correction model (VECM). Part of Granger 
Representation Theorem: “Cointegration implies an ECM.”

     .B1 t1t
*

1t aYYIYt  
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*
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13

VAR with Cointegration

• Note: If we have cointegration, but we run OLS in differences,
then the modeled is misspecified and the results will be biased.

• Q: What can you do?
- If you know the location of the unit roots and cointegration
relations, then you can run the VECM by doing OLS of Yt on lags
of Y and ’Yt1.
- If you know nothing, then you can either

(i) run OLS in levels, or
(ii) test (many times) to estimate cointegrating relations. 
Then, run VECM.

• The problem with this approach is that you are testing many times
and estimating cointegrating relationships. This leads to poor finite
sample properties. 

14
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Residual Based Tests of the Null of No CI

• Procedures designed to distinguish a system without cointegration 
from a system with at least one cointegrating relationship; they do not 
estimate the number of cointegrating vectors (the k). 

• Tests are conditional on pretesting (for unit roots in each variable).

• There are two cases to consider.

• CASE 1 - Cointegration vector is pre-specified/known (say, from 
economic theory) : 
Construct the hypothesized linear combination that is I(0) by theory; 
treat it as data. Apply a DF unit root test to that linear combination. 

• The null hypothesis is that there is a unit root, or no cointegration.

15

• CASE 2 - Cointegration vector is unknown. It should be estimated.
Thus, if there exists a cointegrating relation, the coefficient on Y1t is 
nonzero, allowing us to express the “static regression equation as

• Then, apply a unit root test to the estimated OLS residual from 
estimation of the above equation, but
- Include a constant in the static regression if the alternative allows 
for a nonzero mean in ut

- Include a trend in the static regression if the alternative is stochastic 
cointegration -i.e., a nonzero trend for A’Yt.

Note: Tests for cointegration using a prespecified cointegrating

vector are generally more powerful than tests estimating the vector.

t2t1t uY  Y

16

Residual Based Tests of  the Null of  No CI
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• Steps in cointegration test procedure:

1. Test H0(unit root) in each component series Yit individually, using 
the univariate unit root tests, say ADF, PP tests.

2. If the H0 (unit root) cannot be rejected, then the next step is to test 
cointegration among the components, i.e., to test whether ’Yt is I(0). 

• In practice, the cointegration vector is unknown. One way to test 
the existence of cointegration is the regression method –see, Engle 
and Granger (1986) (EG).

• If Yt=(Y1t,Y2t,…,Ymt) is cointegrated, ’Yt is I(0) where =(1, 
2,…, m). Then, (1/1) is also a cointegrated vector where 10.

17

Engle and Granger Cointegration

Engle and Granger Cointegration

• EG consider the regression model for Y1t

where Dt: deterministic terms.

• Check whether t is I(1) or I(0):  

- If t~I(1), then Yt is not cointegrated.

- If t~I(0), then Yt is cointegrated with a normalized cointegrating vector  
’=(1,1,…, m1) .

• Steps:

1. Run OLS. Get estimate

2. Use residuals et for unit root testing using the ADF or PP tests 
without deterministic terms (constant or constant and trend). 18

tmtmttt YYDY    1211 
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• Step 2: Use residuals et for unit root test.

- Note: 

If εt ~I(1), t-test has a non-standard distribution.

- H0 (unit root in residuals): =0 vs H1:  <1 for the model

- t-statistic:

- Critical values tabulated by simulation in EG. 

• We expect the usual ADF distribution would apply here. But, 
Phillips and Ouliaris (PO) (1990) show that is not the case. 19
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• Phillips and Ouliaris (PO) (1990) show that the ADF and PP unit 
root tests applied to the estimated cointegrating residual do not have 
the usual DF distributions under H0 (no-cointegration).

• Due to the spurious regression phenomenon under H0, the 
distribution of the ADF and PP unit root tests have asymptotic 
distributions that are functions of Wiener processes that depends on:

- The deterministic terms, Dt, in the regression used to estimate 
- The number of variables, (m-1), in Y2t.

• PO tabulated these distributions. Hansen (1992) improved on these 
distributions, getting adjustments for different DGPs with trend 
and/or drift/no drift.

20

EG Cointegration – PO Distribution
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• EG propose LS to consistently estimate a normalized CI vector.
But, the asymptotic behavior of the LS estimator is non-standard.

• Stock (1987) and Phillips (1991) get the following results:

- T (ෝ − )         non-normal RV not necessarily centered at 0.

- The LS estimate ෝ . Convergence is at rate T, not usual 
T1/2. => We say ෝ is super consistent.

- ෝ is consistent even if the other (m-1) Yt’s are correlated with εt.

=> No asymptotic simultaneity bias.

- The OLS formula for computing aVar(ෝ ) is incorrect

=>usual OLS standard errors are not correct.

- Even though the asymptotic bias →0, as T→∞, ෝ can be 
substantially biased in small samples. LS is also not efficient.

21

EG Cointegration – Least Square Estimator

D

p

• The bias is caused by εt. If εt ~ WN, there is no asymptotic bias.

• The above results point out that the LS estimator of the CI vector 
 could be improved upon. 

• Stock and Watson (1993) propose augmenting the CI regression of 
Y1t against the rest (m-1) elements in Yt , say Yt* with appropriate 
deterministic terms Dt, with p leads and lags of ΔYt*.

• Estimate the augmented regression by OLS. The resulting estimator 
of  is called the dynamic OLS estimator or ෝ DOLS.

• It is consistent, asymptotically normally distributed and, under 
certain assumptions, efficient. 22

EG Cointegration – Least Square Estimator
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• Consider a bivariate I(1) vector Yt = (Y1t, Y2t) .

- Assume that Yt is cointegrated with CI =(1,-2). That is,

’Yt = Y1t - 2 Y2t ~ I(0).

- Suppose we have a consistent estimate ෝ (or ෝ DOLS) of .

- We are interested in estimating the VECM for ΔY1t and ΔY2t using:

ΔY1t = c1 + β1( Y1t - 2 Y2t) + Σj ψ11,j ΔY1t-j+ Σj ψ12,j ΔY2t-j + u1t

ΔY2t= c2 + β2( Y1t - 2 Y2t) + Σj ψ21,j ΔY1t-j+ Σj ψ22,j ΔY2t-j + u2t

• ෝ is super consistent. It can be treated as known in the ECM. The 
estimated disequilibrium error ෝ ’Yt =Y1t-2^ Y2t may be treated like 
the known ’Yt .  

• All variables are I(0), we can use OLS (or SUR to gain efficiency.)23

EG Cointegration – Estimating VECM with LS

• The EG procedure works well for a single equation, but it does not 
extend well to a multivariate VAR model. 

• Consider a levels VAR(p) model: 

where Yt is a time series mx1 vector. of I(1) variables.

• The VAR(p) model is stable if  

det(In − Φ1z − · · · − Φpzp) = 0

has all roots outside the complex unit circle.

• If there are roots on the unit circle then some or all of the variables 
in Yt are I(1) and they may also be cointegrated. 24

tptpttt YYDY    11

Johansen Tests
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• If Yt is cointegrated, then the levels VAR representation is not the 
right one, since the cointegrating relations are not explicitly apparent.

• The CI relations appear if the VAR is transformed to the VECM. 

• For these cases, Johansen (1988, 1991) proposed two tests: The trace 
test and the maximal eigenvalue test. They are based on Granger’s (1981) 
ECM representation. Both tests are easy to implement.
Example: Trace test simple idea:
(1) Assume εt are multivariate N(0, .). Estimate the VECM by ML, 
under various assumptions:
- trend/no trend and/or drift/no drift
- the number k of CI vectors, 
(2) Compare models using likelihood ratio tests.  25

Johansen Tests

• Consider the VECM

where 
- Dt : vector of deterministic variables (constant, trends, and/or
seasonal dummy variables);
- are m×m matrices;
- = A’ is the long-run impact matrix; A and  are m×k matrices;
- t are i.i.d. Nm(0, ) errors; and 
- det( ) has all of its roots outside the unit circle. 

• In this framework, CI happens when  has reduced rank. This is the 
basis of the test: By checking the rank of , we can determine if the 
system is CI. 

26
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Johansen Tests - Intuition
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• We can also write the ECM using the alternative representation as

where the ECM term is at lag t-p. Including a constant and or a 
deterministic trend in the ECM is also possible.

• Back to original VECM(p).

- Let Z0t= ΔYt , Z1t= Yt-1 and Z2t= (ΔYt-1 ,..., ΔYt-p-1, Dt)’

• Now, we can write: Z0t= A’ Yt-1 + Ψ Z2t+ εt

where Ψ =(Γ1 Γ2 ... Γp Γ0 ).

• If we assume a distribution for εt, we can write the likelihood. 27
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Johansen Tests - Intuition

• Assume the VECM errors are independent Nm(0, ) distribution,. 
Then, given the CI restrictions on the trend and/or drift/no drift 
parameters, the likelihood Lmax(k) is a function of the CI rank k.  

• The trace test is based on the log-likelihood ratio:
LR= 2 ln[Lmax(Unrestricted)/Lmax(Restricted)],

which is done sequentially for k = m-1,...,1,0.  

• The name comes from the fact that the test statistics involved are the 
trace (the sum of the diagonal elements) of a diagonal matrix of 
generalized eigenvalues.  

• The test examines the H0: CI rank ≤ k, vs. H1: CI rank > k.
- If the LR is greater than the critical value for a certain rank, then the 
H0 is rejected.

28

Johansen Tests - Intuition
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• Johansen concentrates all the parameter matrices in the likelihood 
function out, except for the matrix A. Then, he shows that the MLE of 
A can be derived as the solution of a generalized eigenvalue problem. 

• LR tests of hypotheses about the number of CI vectors can then be 
based on these eigenvalues.  Moreover, Johansen (1988) also proposes 
LR tests for linear restrictions on these CI vectors.

• Note: The factorization = A’ is not unique since for any k × k
nonsingular matrix F we have:

A’ =  F F-1 A’ =( F) (F-1A’ ) = *A*’
=> The factorization = A’ only identifies the space spanned by the 
CI relations. To get a unique  and A’ , we need more restrictions. 
Usually, we normalize. Finding a good way to do this is hard.

29

Johansen Tests - Intuition

• The Johansen tests examine H0: Rank() ≤ k, where k is less than m. 

• The unrestricted CI VECM is denoted H(r). The I(1) model H(k) can 
be formulated as the condition that the rank of  is less than or equal 
to k. This creates a nested set of models

- H(m) is the unrestricted, stationary VAR model or I(0) model 
- H(0) non-CI VAR (restriction =0) => VAR model for differences.  

• This nested formulation is convenient for developing a sequential 
procedure to test for the number k of CI relationships.

30

     mHkHH  0

Johansen Tests – Sequential Tests
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• Sequential tests:
i. H0: k=0,         cannot be rejected →stop →k=0

(at most zero coint)      rejected →next test
ii. H0: k<=1,      cannot be rejected →stop→k=1

(at most one coint)       rejected →next test
iii. H0: k2,     cannot be rejected →stop→k=2

(at most two coint)       rejected →next test

• Possible outcomes:
- Rank k = m   => All variables in x are I(0), not an interesting case.
- Rank k = 0 => No linear combinations of Y that are I(0). =0. 

 Model on differenced series
- Rank k  (m-1) => Up to (m-1) cointegration relationships ´Yt

31

Johansen Tests – Sequential Tests

• The Johansen tests examine H0: Rank() ≤ k, where k is less than m. 

Recall, Rank() = number of non-zero eigenvalues of .

• Since = A’ , it is equivalent to test that A and  are of full column 
rank k, the number of independent CI vectors that forms the matrix A.  

• It turns out the LR test statistic is the trace of a diagonal matrix of 
generalized eigenvalues from .  

• These eigenvalues also happen to equal the squared canonical correlations
between ΔYt and Yt−1, corrected for lagged ΔYt and Dt. They are
between 0 and 1.

32

Johansen Tests – Sequential Tests
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• Back to the VECM(p) representation: 

where Dt may include a drift and a deterministic trend. Including a 
constant and or a deterministic trend in the ECM is also possible.

• Let Z0t= ΔYt , Z1t= Yt-1, Z2t= (ΔYt-1 ,..., ΔYt-p-1, Dt)’, and 

Ψ =(Γ1 Γ2 ... Γp Γ0 ). Then, we can write:

Z0t= A’ Yt-1 + Ψ Z2t+ εt

• Assuming normality for εt ~N(0,Σ), we can write

33

Johansen Tests – Likelihood
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• Let residuals, R0t and R1t, be obtained by regressing Z0t and Z1t on 
Z2t, respectively. The (FW) regression equation in residuals is: 

• The crossproducts matrices are computed by 

• Then, the MLE for A is obtained from the eigenvectors, V, 
corresponding to the k largest eigenvalues of the following equation 

• These ’s are squared canonical correlations between R0t and R1t. 
The V’s corresponding to the k largest ’s are k linear combinations 
of Yt-1. 34

Johansen Tests – Eigenvalues
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• The eigenvectors corresponding to the k largest ’s are the k linear 
combinations of Yt-1, which have the largest squared partial 
correlations with the I(0) process,  after correcting for lags and Dt. 

• Computations.

- ’s. Instead of using 

pre and post multiply the expression by S11
-1/2 (Cholesky 

decomposition of S11). Then, we have a standard eigenvalue problem. 

=>

- V. The eigenvectors (say, ui,) are usually reported normalized, such 
that ui ’ui = 1. Then, in this case, we need to  use vොi =S11

-1/2 ui

That is,  we normalized the eigenvectors such that  ࢂ෡S11 .෡= Iࢂ
35
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Johansen Tests – Eigenvalues

• The tests are based on the ’s from 

• Interpretation of the eigenvalue equation.

Using F-W, we regress R0t on R1t, to estimate = A’ . That is

Note that

The ’s produced look like eigenvalues of [෡ ෡ ] after pre-multiplying 
by S11

-1/2 and post-multiplying by S00
-1/2, a normalization.

• Johansen also finds:
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]v,...,v,[vAÂ k21MLE 
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• Johansen (1988) suggested two tests for H0: At most k CI vectors:

- The trace test

- The maximal eigenvalue test.

• Both tests are based on the ’s from 

They are LR tests, but they do not have the usual χ2 asymptotic 
distribution under H0. They have non-standard distributions.  

37

Johansen Tests – Trace Statistic
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• The trace test:

where denotes the descending ordered eigenvalues

of 

Note: The  LRtrace statistic is expected to be close to zero if there is at 
most k (linearly independent) CI vectors.

• If LRtrace (k)>CV(for rank k), then H0 (CI Rank=k) is rejected.

• If Rank() = k0 then should all be close to 0. The
LRtrace(k0) should be small since ln(1 − ) ≈ 0 for i > k0.
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Johansen Trace Test
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• Under H0, the asymptotic distribution of LRtrace(k0) is not χ2. It is a 
multivariate version of the DF unit root distribution, which depends 
on the dimension m-k0 and the specification of Dt.  

• The statistic ln has a limiting distribution, which can be 
expressed in terms of a mk dimensional Brownian motion W as

is the Brownian motion itself (W), or the demeaned or detrended 
W, according to the different specifications for Dt in the VECM 

• Using simulations, critical values are tabulated in Johansen (1988, 
Table 1) and in Osterwald-Lenum (1992) for m-k0 = 1, . . . , 10.

39

Johansen Trace Test – Distribution

• An alternative LR statistic, given by

is called the maximal eigenvalue statistic. It  examines the null hypothesis 
of k cointegrating vectors versus the alternative k+1 CI vectors.  That 
is, H0: CI rank = k, vs. H1: CI rank = k+1.

• Similar to the trace statistic, the asymptotic distribution of this LR is 
not statistic the usual χ2. It is given by the maximum  of the 
stochastic matrix in 

which depends on the dimension m−k0 and the specification of the 
deterministic terms, Dt. See Osterwald-Lenum (1992) for CVs.

40
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Johansen Maximal EigenvalueTest
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• Suppose we find Rank() = k, 0 <k<m. Then, the CI VECM:

• This is a reduced rank multivariate regression. Johansen derived the 
ML estimation of the parameters under the reduced rank restriction

Rank() = k. 

Recall that A෡ = AMLE is given by the eigenvectors associated with the 
’s.

• The MLEs of the remaining parameters are obtained by OLS of

41

ML Estimation of  the CI VECM 
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• The factorization = A’ is not unique. The columns of AMLE may 
be interpreted as linear combinations of the underlying CI relations.

• For interpretation, it is convenient to normalize the CI vectors by
choosing a specific coordinate system in which to express the 
variables.

• Johansen suggestion: Solve for the triangular representation of the

CI system. The resulting normalized CI vector is denoted Ac,MLE. 

• The normalization of A affects the MLE of  but not the MLEs of 
the other parameters in the VECM.

• Properties of Ac,MLE: asymptotically normal and super consistent. 42

ML Estimation of  the CI VECM 
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• The Johansen MLE procedure only produces an estimate of the 
basis for the space of CI vectors.

• It is often of interest to test if some hypothesized CI vector lies in 
the space spanned by the estimated basis:

H0: A = [A0 φ] Rank() ≤ k

A0: s×m matrix of hypothesized CI vectors

φ : (k-s)×m matrix of unspecified CI vectors

• Johansen shows that a LR test can be computed, which is 
asymptotically distributed as a χ2 with s(m-k) degrees of freedom.

43

ML Estimation of  the CI VECM - Testing 

• Following Johansen (1988, 1991) one can choose a set of vectors 
A┴ such that the matrix {A, A┴} has full rank and A’ A┴ = 0. [A┴
read “A perp”]

• That is, the mx(m-k) matrix A┴ is orthogonal to the matrix A
=> columns of A┴ are orthogonal to the columns of A. 

• The vectors A┴ Yt represents the non-CI part of Yt. We call A┴ the 
common trends loading matrix. 

• We refer to the space spanned by A┴ Yt as the unit root space of Yt. 

• Reference:Stock and Watson (1988). 44

Common Trends 
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• The EG’s  two-step estimator is simple, but not asymptotically 
efficient. Several papers proposed improved, efficient methods.

- Phillips (1991): Regression in the spectral domain. 

- Phillips and Loretan (1991): Non-linear EC estimation. 

- Phillips and Hansen (1990): IV regression with a correction a la PP.

- Saikkonen (1991): Inclusion of leads and lags in the lag-polynomials 
of the ECM in order to achieve asymptotic efficiency

- Saikkonen (1992): Simple GLS type estimator 

- Park's (1991) CCR estimator transforms the data so that OLS 
afterwards gives asymptotically efficient estimators

- Engle and Yoo (1991): A 3 step estimator for the EG procedure. 

• From all of these estimators, we can get a t-values for the EC term.45

Asymptotic Efficient Single Equation Methods 

Example (Lütkepohl (1993)): m=4 U.S. quarterly macro variables: Log 
real M1, Log output, 91-day T-bill yield, 20-year T-bond yield.

Period: 1954 to 1987 

• Analysis:

1) Dickey-Fuller unit root test 

2) Johansen cointegration test integrated order 2, 

3) VECM(2) estimation. 

• SAS Code
proc varmax data=us_money; 

id date interval=qtr; 

model y1-y4 / p=2 lagmax=6 dftest print=(iarr(3)) 
cointtest=(johansen=(iorder=2)) ecm=(rank=1 normalize=y1); 

cointeg rank=1 normalize=y1 exogeneity; 

run; 46

Example: Cointegration - Lütkepohl (1993) - SAS
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• Dickey-Fuller Unit Root Tests
Variable Type Rho Pr < Rho Tau Pr < Tau

y1 Zero Mean 0.05 0.6934 1.14 0.9343

Single Mean -2.97 0.6572 -0.76 0.8260

Trend -5.91 0.7454 -1.34 0.8725

y2 Zero Mean 0.13 0.7124 5.14 0.9999

Single Mean -0.43 0.9309 -0.79 0.8176

Trend -9.21 0.4787 -2.16 0.5063

y3 Zero Mean -1.28 0.4255 -0.69 0.4182

Single Mean -8.86 0.1700 -2.27 0.1842

Trend -18.97 0.0742 -2.86 0.1803

y4 Zero Mean 0.40 0.7803 0.45 0.8100

Single Mean -2.79 0.6790 -1.29 0.6328

Trend -12.12 0.2923 -2.33 0.4170
47

Example: Lütkepohl (1993) – SAS: DF Tests

Note: In all series, 
we cannot reject H0

(unit root).  

48

• The fitted VECM(2) is given as 

Example: Lütkepohl (1993) – SAS: VECM(2)
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Cointegration Rank Test for I(2)

r\k-r-s 4 3 2 1
Trace
of  I(1)

5% CV of  
I(1)

0 384.60903 214.37904 107.93782 37.02523 55.9633 47.21

1 219.62395 89.21508 27.32609 20.6542 29.38

2 73.61779 22.13279 2.6477 15.34

3 38.29435 0.0149 3.84

5% CV I(2) 47.21000 29.38000 15.34000 3.84000

Example: Lütkepohl (1993) – SAS: VECM(2)

• Note: System is cointegrated in rank 1 with integrated order 1.

• The factorization = A’

50

Example: Lütkepohl (1993) – SAS: VECM(2)

A (Beta in SAS)

Variable 1 2 3 4

y1 1.00000 1.00000 1.00000 1.00000

y2 -0.46458 -0.63174 -0.69996 -0.16140

y3 14.51619 -1.29864 1.37007 -0.61806

y4 -9.35520 7.53672 2.47901 1.43731

 (Alpha in SAS)

Variable 1 2 3 4

y1 -0.01396 0.01396 -0.01119 0.00008

y2 -0.02811 -0.02739 -0.00032 0.00076

y3 -0.00215 -0.04967 -0.00183 -0.00072

y4 0.00510 -0.02514 -0.00220 0.00016

Normalization y1
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• The factorization = A’

51

Long-Run Parameter
Beta Estimates When

RANK=1

Variable 1

y1 1.00000

y2 -0.46458

y3 14.51619

y4 -9.35520

Adjustment Coefficient
Alpha Estimates When

RANK=1

Variable 1

y1 -0.01396

y2 -0.02811

y3 -0.00215

y4 0.00510

Example: Lütkepohl (1993) – SAS: VECM(2)

Covariances of  Innovations

Variable y1 y2 y3 y4

y1 0.00005 0.00001 -0.00001 -0.00000

y2 0.00001 0.00007 0.00002 0.00001

y3 -0.00001 0.00002 0.00007 0.00002

y4 -0.00000 0.00001 0.00002 0.00002

• Covariance Matrix

52

Schematic Representation of  Cross Correlations
of  Residuals

Variable/
Lag

0 1 2 3 4 5 6

y1 ++.. .... ++.. .... +... ..-- ....

y2 ++++ .... .... .... .... .... ....

y3 .+++ .... +.-. ..++ -... .... ....

y4 .+++ .... .... ..+. .... .... ....

+ is > 2*std error, - is < -2*std error, . is between

Portmanteau Test for Cross Correlations
of  Residuals

Up To Lag DF Chi-Square Pr > ChiSq

3 16 53.90 <.0001

4 32 74.03 <.0001

5 48 103.08 <.0001

6 64 116.94 <.0001

Example: Lütkepohl (1993) – SAS: Diagnostics
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• Note: Residuals 
for y3 & y4  are 
non-normal. 
Except the 
residuals for y4,  
no ARCH effects 
on other residuals. 

53

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation

F Value Pr > F

y1 0.6754 0.00712 32.51 <.0001

y2 0.3070 0.00843 6.92 <.0001

y3 0.1328 0.00807 2.39 0.0196

y4 0.0831 0.00403 1.42 0.1963

Univariate Model White Noise Diagnostics

Variable
Durbin
Watson

Normality ARCH

Chi-Square
Pr > ChiS

q
F Value Pr > F

y1 2.13418 7.19 0.0275 1.62 0.2053

y2 2.04003 1.20 0.5483 1.23 0.2697

y3 1.86892 253.76 <.0001 1.78 0.1847

y4 1.98440 105.21 <.0001 21.01 <.0001

Example: Lütkepohl (1993) – SAS: Diagnostics

54

Univariate Model AR Diagnostics

Variable

AR1 AR2 AR3 AR4

F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y1 0.68 0.4126 2.98 0.0542 2.01 0.1154 2.48 0.0473

y2 0.05 0.8185 0.12 0.8842 0.41 0.7453 0.30 0.8762

y3 0.56 0.4547 2.86 0.0610 4.83 0.0032 3.71 0.0069

y4 0.01 0.9340 0.16 0.8559 1.21 0.3103 0.95 0.4358

Example: Lütkepohl (1993) – SAS: Diagnostics

• Note: Except the residuals for y4,  no AR effects. 
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Testing Weak Exogeneity of
Each Variables

Variable DF Chi-Square Pr > ChiSq

y1 1 6.55 0.0105

y2 1 12.54 0.0004

y3 1 0.09 0.7695

y4 1 1.81 0.1786

• Note: Variable y1 is not weak exogeneous for the other variables, y2, 
y3, & y4; variable y2 is not weak exogeneous for variables, y1, y3, & y4. 

Weak exogeneity  Long-run non-causality

Example: Lütkepohl (1993) – SAS: Diagnostics

• If  a variable can be taken as "given" without losing information for 
statistical inference, it is called weak exogenous. In the CI model, a 
variable do not react to a disequilibrium –i.e., the EC term.


