Molecular systematics and morphological character evolution of the Condamineeae (Rubiaceae) ${ }^{1}$

Abstract

Kent Kainulainen ${ }^{2,3,6}$, Claes Persson ${ }^{4}$, Torsten Eriksson ${ }^{5}$, and Birgitta Bremer ${ }^{2,3}$ ${ }^{2}$ Bergius Foundation, Royal Swedish Academy of Sciences, SE-104 05, Stockholm, Sweden; ${ }^{3}$ Department of Botany, Stockholm University, SE-106 91, Stockholm, Sweden; ${ }^{4}$ Department of Systematic Botany, University of Gothenburg, SE-405 30, Göteborg, Sweden; and ${ }^{5}$ Entomology Department, Swedish Museum of Natural History, Box 50007 SE-104 05, Stockholm, Sweden - Premise of the study: The Condamineeae have in previous molecular studies been shown to be part of an early-divergent clade within the subfamily Ixoroideae, together with the tribes Calycophylleae, and Hippotideae, and genera of the former Cinchoneae and Rondeletieae. Generic relationships within this clade have, however, remained largely unresolved. - Methods: In this study, the systematics of the Condamineeae was further examined by phylogenetic reconstruction of six cpDNA regions and one nrDNA region using parsimony and Bayesian Markov chain Monte Carlo inference. Morphological character evolution within the tribe was assessed by ancestral state reconstruction using likelihood optimization of characters onto Bayesian trees. - Key results: Calycophylleae appears polyphyletic. "Hippotideae" is monophyletic but nested within the Condamineeae. The phylogenetic hypotheses presented support a resurrection of the genera Holtonia, Schizocalyx, and Semaphyllanthe. Furthermore, Bathysa is found to be polyphyletic, Tresanthera is found nested within Rustia, and the taxonomically disputed genus Dialypetalanthus is here shown to be sister to a Bothriospora-Wittmackanthus clade. Morphological ancestral state reconstructions indicate that protogyny have evolved at least two times within the tribe and that indehiscent fruits, loculicidal fruit dehiscence, and intrapetiolar stipules have evolved independently several times. The occurrence of calycophylls (leaf-like calyx lobes), poricidal anthers, and winged seeds also appear homoplastic within the tribe. - Conclusions: A diagnosis and delimitation of the tribe Condamineeae is presented, with taxonomic proposals to synonymize Tresanthera and to transfer several species of Bathysa as well as Phitopis to a resurrected Schizocalyx.

Key words: character evolution; Condamineeae; Dialypetalanthus; Hippotideae; Ixoroideae; Rubiaceae; seed morphology; systematics.

Molecular phylogenetic studies have revealed many unexpected relationships in the systematics of Rubiaceae (reviewed by Bremer, 2009). In a study by Bremer et al. (1999), an earlydivergent clade within the subfamily Ixoroideae was found that comprised genera previously classified in many different tribes, including Calycophylleae, Cinchoneae, Condamineeae, Hippotideae, and Rondeletieae. This clade (in the present study, considered to constitute a single tribe and referred to as the Condamineeae) included Alseis, Calycophyllum, Capirona, Chimarrhis, Condaminea, Emmenopterys, Pentagonia, Pinckneya, Pogonopus, Rustia, Simira, and Warszewiczia. Since then, many other genera have been demonstrated to be associated with the Condamineeae, i.e., Bathysa, Bothriospora, Dioicodendron,

[^0]doi:10.3732/ajb. 1000090

Dolichodelphys, Ferdinandusa, Hippotis, Macbrideina, Macrocnemum, Mastixiodendron, Parachimarrhis, Picardaea, Sommera, and Wittmackanthus (Rova, 1999; Rova et al., 2002), and Mussaendopsis (Razafimandimbison and Bremer, 2001). In addition, the enigmatic Dialypetalanthus was shown to be part of Ixoroideae in a molecular phylogenetic study by Fay et al. (2000) and as part of the Condamineeae in a study by Bremer and Eriksson (2009). Previous molecular phylogenetic studies have indicated that the Condamineeae include 30-35 genera, comprising ca. 300 species (Table 1; Govaerts et al., 2010), but have not been able to resolve the relationships within this tribe with strong support.

The Condamineeae are morphologically very diverse (Fig. 1), and a number of morphological characters that are otherwise exceptionally rare within Rubiaceae are found within the tribe, including apopetalous, rotate corollas (Dialypetalanthus, Mastixiodendron, and Mussaendopsis), poricidal anthers (Dialypetalanthus, Rustia, and Tresanthera), polyandrous stamens (Dialypetalanthus), and pinnatifid leaf blades (several species of Pentagonia and Simira). Dialypetalanthus and Mastixiodendron have historically been difficult to fit into traditional schemes of Rubiaceae classification and have at times also been considered as belonging to, or being associated with other plant families, i.e., Dialypetalanthaceae or Myrtaceae, and Cornaceae, respectively (for historical reviews, see Darwin [1977], and Piesschaert et al. [1997]). Although of complex taxonomic history, the Condamineeae can be considered as primarily including parts of the tribes Cinchoneae, Condamineeae, and Rondeletieae sensu Hooker (1873), as well as the Hippotideae.

An overview of the taxonomic history and tribal classifications of the associated genera is given in Table 1.

The Condamineeae and the Rondeletieae have traditionally (Hooker, 1873; Schumann, 1891) been considered closely allied, both being characterized by many-seeded capsules, but distinguished by aestivation patterns of the corolla lobes (valvate in Condamineeae vs. imbricate or contorted in Rondeletieae). Verdcourt (1958) found this distinction insufficient and reduced Condamineeae to Rondeletieae, whereas Bremekamp (1966) upheld the distinction and, in addition, distinguished a tribe Simireae, claiming that the placentation and number of ovules in Simira indicated an isolated position in the family. Robbrecht (1988), in his comprehensive classification of Rubiaceae, largely followed the views of Hooker (1873) and Bremekamp (1966). Like Verdcourt (1958), Delprete (1996a, b) recognized only Rondeletieae, which he considered closely related to Calycophylleae and Cinchoneae.

The Cinchoneae have historically been distinguished from the Condamineeae and the Rondeletieae by the presence of ascending, imbricate ovules and winged seeds (Hooker, 1873; Schumann, 1891). The tribe was investigated in a morphological cladistic study by Andersson and Persson (1991), and the authors transferred a number of genera from the Cinchoneae to a newly erected Calycophylleae (additional genera were included by Andersson [1995]). These genera (Alseis, Calycophyllum, Capirona, Ferdinandusa, Macrocnemum, and Wittmackanthus), and the tentatively included Dolicholobium, were shortly thereafter demonstrated as being associated with the Condamineeae (cf. Bremer et al., 1999; Rova, 1999).

The "hippotides" (Hippotis, Pentagonia, Sommera, and Tammsia; Rova and Andersson, 1995) have previously been placed in the Catesbaeeae (Hooker, 1873) or the Mussaendeae (Schumann, 1891); both tribes were characterized by valvate corolla aestivation and indehiscent fruits with many seeds. These genera were transferred into two new tribes (Hippotieae and Tammsieae by García Kirkbride [1981]) of which the latter was reduced to synonymy by Rova and Andersson (1995). The Hippotideae sensu Rova and Andersson (1995) were soon thereafter also found to be associated with the Condamineeae (Bremer et al., 1999; Rova et al., 2002). For more detailed historical reviews of Condamineeae, see Delprete (1996a); Rondeletieae, see Delprete (1999); Cinchoneae, see Andersson and Persson (1991), Andersson (1995), and Andersson and Antonelli (2005); and Hippotideae, see Rova and Andersson (1995).

Molecular phylogenetic studies (Bremer et al., 1999; Rova, 1999; Rova et al., 2002) have revealed the Condamineeae to be a diverse tribe with an unexpected phylogenetic position within the Ixoroideae, but have so far not provided much insight into the relationships within the tribe. In this sense, the Condamineeae remain one of the least known groups within the family. The objectives of this study were to investigate the systematics and morphological character evolution of the Condamineeae using phylogenetic hypotheses inferred from cpDNA and nrDNA.

MATERIALS AND METHODS

Taxon sampling-Included in this study were specimens from all the genera found to be associated with the Condamineeae in the molecular phylogenetic studies discussed, as well as material from Phitopis multiflora, Tammsia anomala, and Tresanthera condamineoides, previously not included in any molecular phylogenetic studies. An effort was made to sample material of the type of each genus; however, we were unsuccessful in obtaining DNA sequences from Mastixiodendron pachyclados (K. Schum.) Melch., Semaphyllanthe obovata (Ducke) L. Andersson, and Simira tinctoria Aubl. Sampling was increased for genera that did not appear monophyletic in preliminary analyses (Bathysa, Elaeagia, and Rustia). The ingroup comprised a sample of 71 species representing 32 genera. Luculia gratissima and 15 species from the subfamily Cinchonoideae and other representatives of the subfamily Ixoroideae were included as outgroups, however, the sampling of the fast evolving ITS and $\operatorname{trnH}-p s b A$ markers was somewhat restricted due to difficulties in finding unambiguous alignments. An overview of the sampling and voucher specimens, is given in Appendix 1.

Scanning electron microscopy (SEM)—Seeds from herbarium material were mounted on aluminum stubs, gold-coated using an SEM coating unit E5100 (Polaron Equipment, Hertfordshire, UK), and subsequently photographed using a Stereoscan 260 (Cambridge Instruments, Cambridge, UK) scanning electron microscope. The images of some of the larger seeds (Alseis, Calycophyllum, Capirona, Dialypetalanthus, Dolicholobium, and Ferdinandusa) were prepared by combining several images obtained under the same conditions using Photoshop CS2 (Adobe Systems, San Jose, California, USA). Image backgrounds were removed using the same program. Voucher specimens are cited in the legend for Fig. 6.

DNA extraction, amplification, and sequencing-The chloroplast DNA (cpDNA) markers matK, $n d h F$, rps16, $\operatorname{trnH}-p s b A, \operatorname{trnS}-G, \operatorname{trnT}-F$, and the ITS region of the nuclear ribosomal DNA (nrDNA), previously used in phylogenetic inference in Rubiaceae (Andersson and Rova, 1999; Bremer et al., 1999; Persson, 2000; Razafimandimbison and Bremer, 2002; Rova et al., 2002; Andersson and Antonelli, 2005; Kainulainen et al., 2009), were included in the study. DNA was extracted, amplified, and sequenced as outlined in Kainulainen et al. (2009). Amplification of matK was done using the primers matK1198f and matK2053r (Andersson and Antonelli, 2005) and standard PCR settings. Sequences were assembled using the Staden software package v1.5.3 (Staden, 1996). Sequences new to this study (445) were deposited in GenBank (Appendix 1). Additional sequences (105) were obtained from GenBank (for references, see Appendix 1).

Data analyses-Sequences were aligned using Clustal W (default settings; Thompson et al., 1994), as implemented in the program BioEdit (Hall, 1999) and then manually adjusted. A number of inversions were excluded from the analyses. These correspond to base pairs 231-262 (trnH-psbA), 5413-5441 (rps16), 9330-9335, and 9714-9723 (trnS-G) of the Coffea arabica chloroplast genome (GenBank accession EF044213; Samson et al., 2007). In addition, two AT-rich regions in the $t r n S$ - G and $t r n T-F$ markers, respectively (corresponding to positions 9184-9203 and 47342-47370 of the Coffea chloroplast genome), were also excluded from analyses due to difficulties in finding unambiguous alignments. Aligned data sets (Appendix S1; see Supplemental Data online at http://www.amjbot.org/cgi/content/full/ajb.1000090/DC1) of (I) the nrDNA region (ITS), (II) the combined protein-coding cpDNA regions (matK and $n d h F$), and (III) the combined noncoding cpDNA regions (the rps16 intron, $\operatorname{trnH}-p s b A, \operatorname{trnS}-G, \operatorname{trn} T-F)$, were analyzed separately and in combination. Methods of phylogenetic reconstruction included maximum parsimony (MP) and Bayesian MCMC inference (BI; Yang and Rannala, 1997), using the programs PAUP* version 4.0b10 (Swofford, 2002) and MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) respectively. Gaps were treated as missing data.

Fig. 1. Some of the morphological variation within the Condamineeae. (A) Emmenopterys henryi, (B) Dolicholobium oblongifolium, (C) Mussaendopsis beccariana, (D) Ferdinandusa elliptica, (E) Simira maxonii, (F) Wittmackanthus stanleyanus, (G) Pogonopus tubulosus, (H) Condaminea corymbosa, (I) Macbrideina peruviana, (J) Schizocalyx peruvianus (Bathysa peruviana), (K) Macrocnemum roseum, (L) Sommera donnell-smithii, (M) Pentagonia wendlandii. Image credits: A, PLANTCOL, Arboretum Kalmthout, Jan De Langhe; B and M, Johan Rova; C, copyright by Christian Puff, Faculty Centre of Biodiversity, Univ. Vienna; used with permission; D, E, I-K, Claes Persson; F, Claes Gustafsson; G, H, L, Robin Foster, The Field Museum).

Table 1. Year of publication and previously proposed tribal classifications of the genera of the Condamineeae according to Hooker (1873), Schumann (1889, 1891), Robbrecht (1988), Andersson (1995), Delprete (1996a), and Bremer and Eriksson (2009). ! = excluded from Rubiaceae, CAL = Calycophylleae, CAT = Catesbaeeae, $\mathrm{CHI}=$ Chiococceae, $\mathrm{CIN}=$ Cinchoneae, $\mathrm{CON}=$ Condamineeae, $\mathrm{COP}=\mathrm{Coptosapelteae} \mathrm{inc}=$, incertae sedis, HIP = Hippotideae, MUS = Mussaendeae, RON = Rondeletieae, SIM = Simireae, TAM = Tammsieae

Genera	Year	Hooker	Schumann	Robbrecht	Andersson	Delprete	Bremer \& Eriksson
Alseis Schott	1827	CIN	CIN	CIN	CAL	-	CON
Bathysa C. Pres1	1845	RON	RON	RON	-	RON	CON
Bothriospora Hook. f.	1870	HAM	GAR	inc	-	-	-
Calycophyllum DC.	1830	CIN	CIN	CIN	CAL	-	CON
Capirona Spruce	1859	CIN	CIN	CIN	CAL	-	CON
Chimarrhis Jacq.	1763	CON	CON	CON	-	RON?	CON
Condaminea DC.	1830	CON	CON	CON	-	RON	CON
Dialypetalanthus Kuhlm.	1925	-	-	!	-	-	CON
Dioicodendron Steyerm.	1963	-	-	CON	-	RON?	CON
Dolichodelphys K. Schum. \& K. Krause	1908	-	GAR ${ }^{5}$	GAR	-	RON	CON
Dolicholobium A. Gray	1860	CIN	CIN	CIN	CIN? ${ }^{4}$	-	CON
Elaeagia Wedd.	1849	RON	RON	RON	-	RON	-
Emmenopterys Oliv.	1889	-	CIN ${ }^{6}$	CIN	inc ${ }^{4}$	-	CON
Ferdinandusa Pohl	1829	CIN	CIN	CIN	CAL	-	CON
Hippotis Ruiz \& Pav.	1794	MUS	MUS	HIP	-	-	CON
Macbrideina Standl.	1929	-	-	RON	-	RON	CON
Macrocnemum P. Browne	1756	CIN	CIN	CIN	CAL	-	-
Mastixiodendron Melch.	1925	-	-	CHI?	-	CHI?	-
Mussaendopsis Baill.	1879	-	CIN	CIN	COP ${ }^{4}$	-	CON
Parachimarrhis Ducke	1922	-	-	CON	-	RON	CON
Pentagonia Benth.	1845	CAT	MUS	HIP	-	-	CON
Phitopis Hook. f.	1871	GAR	RON	inc	-	-	-
Picardaea Urb.	1903	-	-	CON	-	RON	CON
Pinckneya Michx.	1803	CON	CON	CON	-	RON	CON
Pogonopus Klotzsch	1853	CON	CON	CON	-	RON	CON
Rustia Klotzsch	1846	CON	CON	CON	-	RON	CON
Semaphyllanthe L. Andersson	1995	-	-	-	CAL	-	-
Schizocalyx Wedd.	1854	CIN	CIN	CIN	RON	RON ${ }^{7}$	-
Simira Aubl.	1775	CIN ${ }^{1}$	RON ${ }^{1}$	RON	-	RON	CON
Sommera Schltdl.	1835	CAT	MUS	HIP	-	-	CON
Tammsia H. Karst.	1861	CAT	MUS	TAM	-	-	-
Tresanthera H. Karst.	1859	CON ${ }^{2}$	CON	CON	-	RON	-
Warszewiczia Klotzsch	1853	RON	RON	RON	-	RON	CON
Wittmackanthus Kuntze	1891	RON ${ }^{3}$	RON ${ }^{3}$	CIN	CAL	-	CON

${ }^{1}$ As Sickingia Willd; ${ }^{2}$ As Rustia; ${ }^{3}$ As Pallasia Klotzsch; ${ }^{4}$ Andersson and Persson (1991); ${ }^{5}$ Schumann and Krause (1908); ${ }^{6}$ Schumann (1897); ${ }^{7}$ Delprete (1997); dash (-) indicates genera not classified by author; ? indicates a tentative classification.

The MP analyses were performed using heuristic searches with the tree-bisection-reconnection (TBR) branch swapping algorithm, Multrees on, 1000 random sequence addition replicates, and a maximum of 10 trees saved per replicate. Clade support was estimated using 1000 bootstrap replicates (Felsenstein, 1985), with three random addition replicates per replicate. For the Baysian inference analyses, substitution models suggested as best-fit to the data under the corrected Akaike information criterion (AICc; Akaike, 1974), as implemented in the program MrAIC v1.4.2 (Nylander, 2004), a script dependent on the program PHYML v2.4.1 (Guindon and Gascuel, 2003), were used for each data set (I, GTR+G; II, GTR+I+G; III, GTR+I+G). Model parameter estimates (except topology) were unlinked among data sets when analyzed in combination. The analyses comprised two runs of four chains each, which were monitored for 20×10^{6} generations, with every 1000th generation being sampled, and a chain heating parameter of 0.15 . Trees sampled before stable posterior probability (PP) values had been reached, were excluded from consensus as a burn-in phase (initial 50% of the sampled trees). Standard deviations of split frequencies between separate runs were calculated using the program splitsmb v.0.1.1 (Lakner and Ronquist, 2008). Nodes receiving a bootstrap support (BS) of $<70 \%$ in the MP analyses, or a PP of <0.95 in the BI analyses, were not considered as well supported.

All BI analyses performed well as judged from parameter move acceptance rates (ITS, 10-26\%; plastid coding, 10-63\% except state frequencies [4\%]; plastid noncoding, $6-57 \%$, except state frequencies [2\%]; and similarly for the combined data sets), and chain swap percentages (ITS, 7-20\%; plastid coding, $20-25 \%$, except $<1 \%$ for one chain in both analyses; plastid noncoding, $12-$ 21%; plastid combined, $33-46 \%$; all combined, 17-28\%). Initial analyses using the default chain temperature value (0.2) did not mix as well. The mean standard deviations of split frequencies between the two separate analyses for each
data set were low (ITS, 0.005; plastid coding, 0.005 ; plastid noncoding, 0.003 ; plastid combined, 0.005 ; all combined, 0.003). The potential scale reduction factor [PSRF] was 1.0 for all parameters in all analyses.

Morphological ancestral state reconstructions-Morphological information was mainly obtained from literature (primarily from protologues; Schumann [1889, 1891], Andersson and Persson [1991], Andersson [1994, 1995], Andersson and Rova [2004], Rova and Andersson [1995], Delprete [1996a, 1999], Pennington et al. [2004], and Taylor et al. 2004]), complemented with observations of herbarium material (studied at GB, MO, S, and UPS). Ancestral character states were reconstructed for the following morphological characters: stipule type, flower breeding systems, corolla lobe aestivation, calycophylls, fruit type, and seed wings. Stipules were coded as (0) interpetiolar, (1) intrapetiolar, or (2) calyptrate; breeding systems as (0) protandrous, (1) protogynous, (2) monoecious, (3) dioecous, or (4) heterostylous; aestivation as (0) imbricate, (1) left-contorted, (2) valvate, or (3) open; calycophylls as (0) absent, or (1) present; fruit type as (0) septicidal, (1) loculicidal, or (3) indehiscent; seed wings as (0) absent, (1) bipolar, (3) lateral, or (4) orbicular. The morphological data matrix is included in Appendix S2.

Using the scripts catmb.pl (written by Johan Nylander, Stockholm University) and seltree-mini.pl (written by Torsten Eriksson), we randomly selected 1000 trees from the postburn-in trees generated in the MrBayes analyses of the combined data. Ancestral states were reconstructed across these trees using maximum likelihood (Mk1 model-equal probability of change between states), as implemented in the program Mesquite v.2.72 (Maddison and Maddison, 2010), then plotted on the tree with the highest marginal likelihood (selected using the script mbscan v.1.0, written by Torsten Eriksson).

RESULTS

A summary of the tree data and statistics from the analyses is given in Table 2. There were no well-supported nodes that conflicted from the Bayesian inference analyses and the maximum parsimony analyses. In the phylogenetic hypotheses from the nrDNA data, the Condamineeae were resolved as monophyletic in both BI and MP analyses; however, this node was well supported only in the former (PP, 1.00). Within the Condamineeae, a basal trichotomy was inferred, consisting of Dioicodendron, an Emmenopterys-Pinckneya clade (PP, 1.00), and a crown group (PP, 1.00; BS, 70%) of the remaining genera of the tribe. The crown group was poorly resolved and comprised six clades: (I) Ferdinandusa; (II) a "Malesian-Pacific clade" consisting of Dolicholobium, Mastixiodendron, Mussaendopsis (PP, 1.00); (III) a "septicidal clade" consisting of Alseis, Bathysa, Bothriospora, Calycophyllum, Capirona, Chimarrhis, Dialypetalanthus, Dolichodelphys, Parachimarrhis, Simira, Warszewiczia, and Wittmackanthus (PP, 0.99); (IV) a Picardaea and Pogonopus clade (PP, 1.00; BS, 91%); (V) a clade consisting of Bathysa, Condaminea, Elaeagia, Macbrideina, and Phitopis (PP, 1.00); and (VI) a clade consisting of the hippotides (Hippotis, Pentagonia, and Sommera), and Macrocnemum, Rustia, and Tresanthera (PP, 1.00; BS, 93%). The 95% majority rule consensus tree from the Bayesian analysis of the nrDNA data are shown in Fig. 2, with bootstrap support values from the MP analysis. Besides the well-supported clades shown in the figure, a number of additional clades were well supported in the MP analysis. These were a Mussaenda-Posoqueria clade (BS, 77%), a Bathysa australis-B. stipulata clade (BS, 73\%), and a Calycophyllum multiflorum-C. spruceanum clade (BS, 87\%).

The separate phylogenetic hypotheses from the BI analyses of the protein-coding genes and of the noncoding cpDNA data sets (trees not shown) were congruent in all but one node (Si mira corumbensis formed a sister group to remaining Simira in the former and a sister group to Pogonopus in the latter). However, combining the data resulted in increased support for the former position; consequently, we did not consider combining the plastid data sets as problematic. In analyses of the combined cpDNA data, the Condamineeae appeared monophyletic and strongly supported (PP, 1.00; BS, 100\%). Within the tribe, Emmenopterys and Pinckneya formed a basal trichotomy with a Condamineeae crown group (PP, 1.00). Dioicodendron was unresolved within the crown group, as were a number of other genera (Condaminea, Macbrideina, and Picardaea). The Male-sian-Pacific clade (PP, 1.00; BS, 100%), the septicidal clade (PP, 1.00), and the hippotide-Macrocnemum-Rustia-Tresanthera clade (PP, 1.00; BS, 76\%), were all supported. Within the
latter clade, the hippotides appeared monophyletic (PP, 1.00). The 95% majority rule consensus tree from the Bayesian analysis of the cpDNA data are shown in Fig. 3, with bootstrap support values from the MP analysis. In the MP analysis, the Condamineeae formed a sister group to an Ixoroideae crown group (Alberta, Coffea, Crossopteryx, Mussaenda, Sabicea, Scyphiphora, and Steenisia; BS, 71\%).

Although generally congruent with analyses of the nrDNA data, the analyses of the cpDNA data supported a number of clades that were incongruent with the topology inferred from the nrDNA data. These incongruences were (I) Ferdinandusa as sister group to a Parachimarrhis-Simira clade (PP, 1.0), (II) Pogonopus as sister to Elaeagia myriantha (PP, 0.97), (III) Simira corumbensis as sister to the rest of the Simira species (PP, 1.0), (IV) S. glaziowii as sister to a S. cordifolia-S. maxonii clade (PP, 0.98; BS, 79\%), and (V) Rustia rubra as sister to R. viridiflora (PP, 1.00; BS, 80\%). In the MP and BI analyses of the combined cpDNA and nrDNA data (Fig. 4), the support values for the Parachimarrhis-Simira clade were increased compared to the corresponding values from nrDNA data alone, and the support values for the Picardaea-Pogonopus clade were unchanged. Consequently, these incongruences (I-II) were not considered as strong conflicts. In contrast, the support values within the Simira and Rustia clades were reduced relative to corresponding values in the separate analyses, indicating a conflict in the phylogenetic signal for incongruences III-V. Therefore Rustia rubra, Simira corumbensis, and S. glaziowii were excluded in the final analyses of the combined data.

Combining the data resulted in somewhat increased resolution (Fig. 4) and, in general, higher support values. As in the nrDNA tree, Dioicodendron, Emmenopterys, and Pinckneya were inferred as early-diverging clades within the tribe. Dioicodendron was in the BI analyses sister to the remaining tribe. However, bootstrap support for this node was $<70 \%$. Within the Condamineeae crown group (PP, 1.00; BS, 91\%), four clades were resolved; Ferdinandusa, the Malesian-Pacific clade (PP, 1.00; BS, 97\%), the septicidal clade (PP, 1.00; BS, 82%), and a "loculicidal clade" (PP, 1.00), comprising the genera Condaminea, Elaeagia, Hippotis, Macbrideina, Macrocnemum, Pentagonia, Phitopis, Picardaea, Pogonopus, Rustia, Sommera, Tammsia, and Tresanthera. Besides the supported clades indicated in Fig. 4, two additional clades were well supported in the MP analysis: a Alseis-Bothriospora-Dialypetalanthus-Wittmackanthus clade (77\%) and a Rustia alba-R. bilsana-R. formosa-R. thibaudioidesR. viridiflora-Tresanthera clade (77\%). The Calycophylleae sensu Andersson (1995) were found to be polyphyletic, whereas the Hippotideae sensu Rova and Andersson (1995) were resolved as monophyletic (PP, 1.00), nested within the loculicidal clade.

Table 2. Statistics and parameter estimates for the different DNA regions and data sets. Values in parenthesis are specific to the Condamineeae, i.e., excluding outgroup taxa. PIC = Parsimony informative characters.

Data set	ITS	matK	$n d h F$	rps16	trnH-psbA	trnS-G	trnT-L-F	cpDNA	Combined
Number of taxa	71 (65)	84 (70)	57 (42)	88 (72)	75 (72)	83 (68)	89 (73)	91 (75)	89 (73)
Excluded characters	0 (0)	0 (0)	0 (0)	34 (33)	38 (38)	178 (168)	67 (49)	317 (288)	317 (288)
Included characters	774 (768)	780 (762)	2140 (2116)	948 (853)	420 (400)	1482 (1357)	2198 (1974)	7968 (7462)	8742 (8230)
Variable characters	384 (348)	307 (189)	642 (328)	285 (153)	121 (102)	448 (224)	698 (348)	2501 (1344)	2885 (1692)
PIC	291 (265)	156 (93)	320 (122)	142 (77)	62 (52)	212 (103)	335 (169)	1227 (616)	1518 (881)
\% informative characters	37.60 (34.51)	20.00 (12.20)	14.95 (5.77)	14.98 (9.03)	14.76 (13)	14.30 (7.59)	15.24 (8.56)	15.40 (8.26)	17.36 (10.70)
Consistency index (CI)	0.41 (0.44)	0.64 (0.73)	0.68 (0.81)	0.70 (0.79)	0.71 (0.68)	0.68 (0.69)	0.77 (0.85)	0.69 (0.75)	0.61 (0.62)
Retention index (RI)	0.65 (0.69)	0.68 (0.77)	0.69 (0.69)	0.75 (0.83)	0.79 (0.76)	0.68 (0.71)	0.77 (0.84)	0.70 (0.74)	0.67 (0.70)

Note: PIC = parsimony informative characters

Fig. 2. The 95% majority rule consensus tree of all trees sampled after the burn-in in the Bayesian analysis of the nrDNA data (ITS region). Posterior probabilities are indicated below branches and bootstrap support values above. A hyphen (-) indicates a bootstrap support value $<70 \%$. Note that a number of additional nodes were supported in the maximum parsimony analysis (see Results).

Morphological character state reconstructions (Fig. 5), supported interpetiolar stipules, protandrous flowers without calycophylls, and capsules with septicidal dehiscence as ancestral states for the Condamineeae, whereas the states of corolla lobe aestivation and seed wing were equivocal. Protogyny appears to have evolved independently at least two times within Condamineeae, whereas intrapetiolar stipules, loculicidal capsules, and indehiscent fruits appear to have evolved independently at least three times.

DISCUSSION

In this study, we investigated the systematics of the Condamineeae using phylogenetic reconstruction of molecular data. Separate analyses of cpDNA and nrDNA each resolve the tribe as monophyletic. The tribe is morphologically very diverse and not easily characterized (see Synopsis), nor are any potential morphological synapomorphies known. Still, because molecular data strongly shows that the Condamineeae are monophyletic, we do not consider any alternative classification (subdivision) as being more appropriate. Below we characterize the resolved clades of the Condamineeae and discuss the inferred systematic relationships. Unless otherwise indicated, the phylogenetic hypothesis referred to is that from the combined data set (Fig. 4). The informal names "the hippotides" (Rova and Andersson, 1995), "the Malesian-Pacific clade", "the loculicidal clade", and "the septicidal clade" are used for the convenience of the discussion.

Systematic relationships-Dioicodendron-The position of Dioicodendron is not unambiguously resolved. The genus is part of a basal polytomy together with Emmenopterys, Pinckneya, and a Condamineeae crown group in the nrDNA phylogenetic hypotheses (Fig. 2), whereas it is unresolved within the crown group or within the entire tribe in the BI and MP analyses of cpDNA data, respectively (Fig. 3). In the BI analysis of the combined data (Fig. 4), Dioicodendron appears as sister to the remaining Condamineeae. Dioicodendron occurs at medium to high elevations in the Andes of northwestern South America (Delprete, 1999). It is the only dioecious genus in the Condamineeae, with small, greenish white, and relatively unspecialized flowers (in concordance with a general morphology of dioecious tropical trees as discussed by Bawa [1975]). Dioicodendron can be further characterized by valvate corolla lobe aestivation; spreading, \pm foliose, persistent stipules; and septicidal capsules with horizontally inserted seeds. The seeds of Dioicodendron are somewhat similar to seeds of Picardaea and Pogonopus, being 3-5-angular with a granulate and irregularly reticulate testa (Fig. 6Z) (Delprete, 1999).

Emmenopterys-In the phylogenetic hypotheses from the nrDNA data, Emmenopterys forms a sister group to Pinckneya. Support for this clade is not found in analyses of cpDNA data, nor in BI analyses of the combined data. Both genera are deciduous trees, with interpetiolar caducous stipules, imbricate corolla aestivation, calycophylls, fruits with caducous calyces, and winged seeds. However, unlike Pinckneya, the flowers of Emmenopterys have funnelform corollas, and included stamens and stigmas (Fig. 1A). Furthermore, the capsules of Emmenopterys are oblong-cylindrical to fusiform with the disk portion shortly prolonged into a rounded beak (C. M. Taylor, Missouri Botanical Garden, personal communication). The dehiscence is
septicidal, and the seeds are vertically inserted and imbricate and have bipolar wings (Oliver, 1889). Emmenopterys is restricted to southern China-northern Vietnam.

Pinckneya-As mentioned, Pinckneya is morphologically similar to Emmenopterys in a number of characters. However, Pinckneya differs in having flowers with tubular corollas and exserted stamens and stigmas. Furthermore, the capsules of Pinckneya are lenticellate, semiglobose, and bilobed with a somewhat convex apex. The dehiscence is loculicidal, and the seeds are horizontally inserted in two rows and have wide orbicular wings (Delprete, 1996c; cf. fig. 8G in Delprete, 1999). Pinckneya is endemic to southeastern USA. The Emmenop-terys-Pinckneya clade could consequently provide another example of a well-established southeastern Asia-southeastern United States disjunct distribution pattern found in many other extant plant groups. However, the phylogenetic relationship between the two genera requires further study.

Ferdinandusa-The neotropical genus Ferdinandusa occurs in an unresolved position in the phylogenetic hypotheses from nrDNA data, whereas it is inferred as sister group to a Parachi-marrhis-Simira clade by cpDNA data. This latter clade is not retrieved in the analyses of the combined data. No potential synapomorphies are known supporting this relationship (with the possible exception of relatively large seeds). The genus is chiefly South American, with most species concentrated in Brazil (Steyermark, 1972). Ferdinandusa has left-contorted corolla lobe aestivation, septicidal fruit dehiscence, and ascending imbricate seeds with a bipolar wing (Fig. 6B), characters states shared with several genera of the Malesian-Pacific clade as well as the septicidal clade (i.e., Capirona, Dolicholobium, Mussaendopsis, and Semaphyllanthe).

Malesian-Pacific clade-In the inferred phylogenetic hypotheses of nrDNA as well as cpDNA, Dolicholobium, Mastixiodendron, and Mussaendopsis form a well-supported clade; however, neither data set, nor the combined data, resolves the position of this clade within the tribe with strong support. All three genera are distributed in the Old World (Dolicholobium, Malesiasouthwestern Pacific; Mastixiodendron, Moluccas-Fiji; Mussaendopsis, Malesia-Sulawesi). Withintheclade, Dolicholobium forms a sister group to the Mastixiodendron-Mussaendopsis clade. A possible synapomorphy for the Malesian-Pacific clade are paired-axillary inflorescences confined to the upper nodes of the shoot. With the exception of Mussaendopsis celebica Bremek., Mastixiodendron and Mussaendopsis both have \pm apopetalous, rotate corollas (Merrill and Perry, 1945; Darwin, 1977; Puff and Igersheim, 1994). The aestivation in Mussaendopsis is left-contorted (Oliver, 1895; cf. fig. 5D in Puff and Igersheim, 1994), as is the aestivation of Dolicholobium (Bremer, 1987). In Mastixiodendron, the aestivation is valvate (Darwin, 1977). Mastixiodendron also differs in having indehiscent drupaceous fruits (autapomorhic within the clade [Fig. 5]), with solitary and pendulous ovules (Darwin, 1977), whereas the fruits of Dolicholobium and Mussaendopsis are septicidal capsules with numerous, ascending ovules (Jansen and Ridsdale, 1983; Puff and Igersheim, 1994).

Septicidal clade-This clade is resolved in the phylogenetic hypotheses from nrDNA and the combined data. It contains several genera previously classified as Cinchoneae/Calycophylleae (Alseis, Calycophyllum, Capirona, and Wittmackanthus),

Fig. 3. The 95% majority rule consensus tree of all trees sampled after the burn-in in the Bayesian analysis of the cpDNA data (matK, ndhF, rps16 intron, $\operatorname{trnH}-p s b A, \operatorname{trn} S G$, and $\operatorname{trn} T-F)$. Posterior probabilities are indicated below branches and bootstrap support values above. A hyphen (-) indicates a bootstrap support value $<70 \%$. Note that a number of additional nodes were supported in the maximum parsimony analysis (see Results).

Condamineeae (Chimarrhis and Parachimarrhis), or Rondeletieae (Bathysa, Simira, and Warszewiczia), and a number of genera of differing taxonomic classification (Bothriospora, Dolichodelphys, and Dialypetalanthus). The septicidal clade can be subdivided into three main clades: (I) a Parachimarrhis-Simira clade; (II) a clade consisting of Alseis, Bothriospora, Calycophyllum, Dialypetalanthus, and Wittmackanthus; and (III) a clade consisting of Bathysa, Chimarrhis, Dolichodelphys, and Warszewiczia. Capirona is unresolved within the septicidal clade.

As suggested by the informal name, most genera of the clade have septicidal capsules. However, Parachimarrhis and Simira have loculicidal capsules, and Bothriospora has indehiscent fruits (berries), both fruit types apparently derived in the clade (Fig. 5). Aestivation is in general imbricate, although some genera have left-contorted (Capirona and Semaphyllanthe), or open (some species of Alseis and Simira) corolla lobes in bud.

Simira and Parachimarrhis—Bremekamp (1966) considered the placentation and ovule number of Simira as indicating an isolated position within Rubiaceae and classified the genus in the monogeneric Simireae. In the phylogenetic hypothesis here presented, Simira forms a sister group to the monotypic genus Parachimarrhis. Simira is widely distributed in the neotropics, occurring from Mexico to the Atlantic forest of southern Brazil. Parachimarrhis occurs in lowland Amazonian rain forest (Delprete, 1999). Delprete (1999), suggested a close relationship of these two genera primarily on their bilobular fruits and crescent-shaped seeds with a lateral wing (Fig. 6K), inserted horizontally in two rows. Although nested within the septicidal clade, both genera have loculicidal capsules. Parachimarrhis differs from Simira in its smaller capsules and seeds and its yellowish wood (the wood of Simira typically turns reddish when exposed to air; Delprete, 1999).

Alseis, Calycophyllum, and Semaphyllanthe-Andersson (1995) transferred a number of species of Calycophyllum [C. intonsum Steyerm., C. megistocaulum (K. Krause) C. M. Taylor, C. merumense Steyerm., C. obovatum (Ducke) Ducke, C. spectabile Steyerm., C. venezuelense Steyerm.] to a new genus, Semaphyllanthe. Distinguishing characters included free stipules (vs. calyptrate), plane bracts (vs. enlarged bracts enclosing the floral buds), contorted (vs. imbricate) aestivation, and filaments attached in the lower part of the corolla tube (vs. in the throat). This distinction was not recognized by Delprete (1996b), who treated Calycophyllum in the traditional sense. In this study, C. megistocaulum is not found associated with the type C. candidissimum, hence supporting a generic distinction. Semaphyllanthe will consequently be discussed as a separate genus. However, it should be noted that S. megistocaula is the only included species and that this species was considered aberrant by Andersson (1995). Clearly, the generic delimitations within this group needs to be further studied. Calycophyllum sensu Andersson was restricted to C. candidissimum, C. multiflorum, and C. spruceanum. These are all included in this study, where the (mainly) Central American C. candidissimum is found as sister group to the South American species C. multiflorum and C. spruceanum. In the MP analyses of the combined data, Calycophyllum (s.s.) forms a sister group (BS, 77\%) to a clade consisting of Alseis, Bothriospora, Dialypetalanthus, and Wittmackanthus. No morphological synapomorphies for this clade are known.

Alseis is a widely distributed genus occurring from southern Mexico to Peru and in eastern Brazil. Alseis is unusual within Rubiaceae in its deciduous habit and protogynous flowers
(Taylor, 2002) and can be further characterized by subspicate inflorescences and pendent placentas (Andersson, 1995).

Dialypetalanthus, Bothriospora, and Wittmackanthus-The monotypic Dialypetalanthus, from the southern Amazon basin, is morphologically aberrant in Rubiaceae on account of its flowers with free petals, numerous stamens, and porate anthers. These character states have complicated the correct classification of the genus. Furthermore, Dialypetalanthus is also unusual within the Condamineeae in having deeply lobed, persistent stipules that form a low sheath around the stem (Hutchinson, 1973; Piesschaert et al., 1997 (interpreted by some authors as intrapetiolar). When Kuhlmann (1925) described Dialypetalanthus, he considered it as part of Rubiaceae and associated with tribe Cinchoneae. However, subsequent classifications have recognized Dialypetalanthus as constituting a monotypic family (Dialypetalanthaceae), part of Myrtales (Rizzini and Occhioni, 1949), Rubiales (Hutchinson, 1973), Rosales (Cronquist, 1981), or Gentianales (Piesschaert et al., 1997). Fay et al. (2000), in a molecular phylogenetic study, found the genus nested within Rubiaceae in subfamily Ixoroideae, and Bremer and Eriksson (2009) found the genus to be associated with the Condamineeae. In this study, Dialypetalanthus forms a strongly supported sister group to Bothriospora and Wittmackanthus, indicating that the unique floral morphology of Dialypetalanthus is derived. Although differing in floral characters, the fruits of Dialypetalanthus have numerous ascending and imbricate seeds (Piesschaert et al., 1997) and a fruit and seed structure similar to that of Capirona and Calycophyllum (Fig. 6G) (Pennington et al., 2004).

The sister group to Dialypetalanthus is a clade of Bothriospora and Wittmackanthus, two monotypic genera from northern South America (the latter is also found in eastern Panama). The three genera appear somewhat morphologically disparate, and no synapomorphies are known. Bothriospora is unique within the Condamineeae in having 4-5-locular, yellow berries. The seeds of Bothriospora are horizontally inserted, imbricate, oblong, exalate, and tuberculate (Hooker, 1870; Schumann, 1889). Wittmackanthus is similar to Calycophyllum (Steyermark and Kirkbride, 1975), from which it differs in having unequal and included stamens and subspicate inflorescences similar to those of Alseis (Andersson, 1995). However, unlike Alseis, the lowermost flowers of the inflorescence often have pink-lilac calycophylls (Fig. 1F) (Claßen-Bockhoff, 1996).

Capirona-Capirona, a widely distributed genus in northern South America, was in the study by Andersson (1995) closely associated with Calycophyllum (s.l.). In this study, the phylogenetic position of the genus is unresolved within the septicidal clade. Capirona, like Semaphyllanthe has contorted aestivation and filaments attached near the corolla base. However, unlike the latter Capirona has intrapetiolar stipules (autapomorhy, Fig. 5) and large and foliaceous bracts (Schumann, 1889). Calycophyllum, Capirona, and Semaphyllanthe (as well as Wittmackanthus), all have smooth, papery, reddish-brown exoliating bark (Gentry, 1993; Pennington et al., 2004).

Bathysa, Chimarrhis, Dolichodelphys, and WarszewicziaBathysa appears polyphyletic in the phylogenetic hypotheses of both cpDNA and nrDNA data. Bathysa australis, B. gymnocarpa, and the type, B. stipulata are from the Brazilian Atlantic rainforest and form a sister group to Warszewiczia, whereas species of western South America (B. bracteosa, B. obovata,

Fig. 4. The 95% majority rule consensus tree of all trees sampled after the burn-in in the Bayesian analysis of the combined data. Posterior probabilities are indicated below branches and bootstrap support values above. A hyphen (-) indicates a bootstrap support value $<70 \%$. Species names in bold represent types of genera. Note that a number of additional nodes were supported in the maximum parsimony analysis (see Results).
and B. peruviana) and Panama (B. veraguensis) form a sister group to Elaeagia. Curiously, the Brazilian species B. cuspidata is part of the latter clade (from here on termed the Schizocalyx clade). Also nested within Schizocalyx is Phitopis.

Morphologically, Bathysa and Schizocalyx are distinct. In Bathysa, the stipules are persistent (except in B. gymnocarpa; Germano-Filho, 1999) and free. In contrast, the stipules of Schizocalyx are early-caducous, coherent-connate, and calyptrate in bud (Hooker, 1873; Rova and Andersson, 1995; Germano-Filho, 1999). Interestingly, the stipules of Elaeagia, the sister group of Schizocalyx, are also united and calyptrate in bud, being oriented perpendicularly to the subtending leaves (Taylor, 2001; Taylor et al., 2004). However, unlike the stipules of Schizocalyx, the stipules of Elaeagia split into intrapetiolar sections as new leaves emerge, and these sections are more or less persistent (in some species only the lower portion persists; Taylor, 2001). The corolla of Bathysa is hypocrateriform, cream-colored or greenish yellow, and predominantly tetramerous (although B. australis can be pentamerous; Germano-Filho, 1999), whereas the corolla in Schizocalyx is funnelform, white, and pentamerous. The corolla lobes of Bathysa are imbricate in bud, whereas examined specimens of B. bracteosa and B. peruviana have left-contorted aestivation (in the original description of B. bracteosa by Weddell [1854] as Schizocalyx bracteosus), the aestivation is described as contorted-imbricate, whereas Hooker [1873] described the aestivation as strictly contorted).

Flowers of Schizocalyx, as of most Condamineeae, are protandrous. However, we observed specimens of B. australis, B. gymnocarpa, B. mendoncaei K. Schum., and B. stipulata with floral buds with stamens still included, but exserted and expanded styles, indicating protogyny. Schumann (1891), described B. stipulata as being gynodioecious and included an illustration showing a flower bud with protruding stigma (fig. 9F in Schumann, 1891), a description likely based on a misinterpretation of protogynous flowers in a female stage. A similar illustration of a flower bud with protruding style (although with unexpanded stigma lobes) is also seen with the description of Bathysa pittieri (Standl.) Steyerm, by Steyermark (1974, fig. 65d). Protogyny may consequently be an additional character state in diagnosing Bathysa.

In Bathysa, the capsules split open septicidally across the whole fruit (cf. fig. 9G in Schumann, 1891; figs. 3E and 4E in Germano-Filho, 1999), but the examined specimens of B. obovata, B. peruviana, and B. veraguensis displayed loculicidal dehiscence. Furthermore, in these species as well as in B. cuspidata, only the apex of the capsule split open; the lower part as well as the persistent calyx remain intact, with the calyx forming a tube through which the capsule opening can be seen (cf. Gentry, 1993; fig. 1D in Delprete, 1997; fig. 9A in Germano-Filho, 1999). Loculicidal capsules that split at the apex are also found in Elaeagia (Taylor, 2001).

On the basis of these observations, Schizocalyx is clearly morphologically distinct from Bathysa. The latter has free and usually persistent stipules, protogynous flowers with hypocrateriform, usually tetramerous corollas, and imbricate aestivation, and capsules dehiscing septicidally across hypanthium. In contrast, Schizocalyx has coherent-connate, calyptrate, earlycaducous stipules, protandrous flowers with funnelform pentamerous corollas and left-contorted aestivation, and capsules loculicidal at the apex. Inferred molecular phylogenetic hypotheses as well as morphology indicate that Bathysa is not monophyletic as presently circumscribed, and we consequently propose a resurrection of Schizocalyx (see Synopsis).

As mentioned, Bathysa forms a sister group to Warszewiczia. These two genera are in turn nested within a clade which also includes Chimarrhis and Dolichodelphys. Warszewiczia and Chimarrhis are both widespread in southern Central America and northern South America (the latter also in the Caribbean), whereas Dolichodelphys is a rare genus restricted to northwestern South America (Venezuela to Peru; Delprete, 1999). Chimarrhis and Warszewiczia both have protogynous flowers (Taylor et al., 2004), as do Bathysa (see above); consequently, protogyny appears to be a synapomorphy for the clade consisting of Bathysa, Chimarrhis, and Warszewiczia (Fig. 5).

Loculicidal clade-This clade is resolved in the phylogenetic hypotheses of the nrDNA and the combined data. The clade contains most of the genera of the traditional Condamineeae sensu Hooker (1873), i.e., Condaminea, Picardaea, Pogonopus, Rustia, and Tresanthera, but also the genera Elaeagia, Macbrideina, Macrocnemum, and Schizocalyx (including Phitopis), as well as the Hippotideae sensu Rova and Andersson (1995; Hippotis, Pentagonia, Sommera, and Tammsia). The loculicidal clade can be subdivided into (I) a Picardaea-Pogonopus clade; (II) a clade consisting of Condaminea, Elaeagia, Macbrideina, Phitopis, and Schizocalyx; and (III) a hippotide-Macrocne-mum-Rustia clade. All the genera have loculicidal capsules (except the hippotides, which all have indehiscent fruits), typically with horizontally inserted, compressed, polymorphic, and exalate seeds (Fig. 6Q-Y).

Picardaea and Pogonopus-Support for this clade comes from nrDNA. Both genera share short-triangular, persistent stipules, (reduplicate) valvate aestivation, caducous calyx in fruit, and irregularly angled, horizontally compressed seeds with reticulate and granulate testa (Fig. 6S, T) (Aiello, 1979; Delprete, 1999). In the phylogenetic analyses of the cpDNA data, P. tubulosus of the southern hemisphere (Peru to northern Argentina) is sister to P. exsertus (southern Mexico to northern Colombia) and P. speciosus (northern Colombia and Venezuela) of the northern hemisphere. Picardaea is a Carribean endemic found only in Cuba and Hispaniola.

Condaminea and Macbrideina-In the phylogenetic hypotheses of the nrDNA and combined data, Condaminea forms a sister group to the monotypic genus Macbrideina. Condaminea occurs from Costa Rica to Bolivia, and Macbrideina occurs from Colombia to northwestern Bolivia. Gentry (1993) considered the two genera closely related on account of similar capsules. Both genera share large, caducous, intrapetiolar stipules. Whereas the stipules of Condaminea are deeply divided, lanceolate, and connate (interpreted as two pairs of usually connate inter- and intrapetiolar stipules by Delprete [1999]), the stipules of Macbrideina are oval-oblong, entire, and free. Both genera have rather large flowers with thick, funnel-salver-shaped corollas, although with differing aestivation patterns (valvate in Condaminea, vs. imbricate in Macbrideina; Fig. 1H, I).

Elaeagia and Holtonia-In the phylogenetic hypotheses presented, Elaeagia forms a strongly supported sister group to the Schizocalyx clade. As discussed, this relationship is morphologically supported by left-contorted aestivation, calyptrate stipules in bud, and capsules with (loculicidal) dehiscence restricted to the apices. However, Elaeagia does not appear to be monophyletic because Elaeagia myriantha forms a sister group to the Condaminea-Elaeagia-Macbridenia-Schizocalyx clade.

Fig. 5. Ancestral state reconstructions for the type of (1) stipules, (2) flower breeding systems, (3) calycophylls, (4) corolla lobe aestivation patterns, (5) fruit dehiscence patterns, and (6) seed wings of the Condamineeae. Character states were estimated using likelihood across a randomly selected subset of 1000 postburn-in trees from the Bayesian inference analyses of the combined data and plotted on the tree with the highest marginal likelihood. Pie charts indicate the estimated likelihood of a character state being present at a given node. Unknown character states are indicated in pale gray.

Elaeagia myriantha was first described by Standley (1930) as Sickinga myriantha and shortly thereafter reconsidered as Holtonia myriantha by the same author (Standley, 1932). Holtonia myriantha was later transferred to Elaeagia by Taylor and Hammel (1993). Elaeagia myriantha differs from typical Elaeagia in having imbricate aestivation (Steyermark, 1972 [as Simira myriantha]; Burger and Taylor, 1993) and, furthermore, appears distinct by corollas with erect (vs. recurved) lobes, truncate-divided stipules that persists intact (Taylor and Hammel, 1993), and more complete capsular dehiscence (Dwyer, 1980, as Deppea panamensis). The phylogenetic hypotheses from nrDNA, and cpDNA both support the resurrection of the name Holtonia, and consequently, it will be discussed as a separate genus. Elaeagia is widely distributed in the neotropics, from Mexico and Cuba in the north to Bolivia in the south. Holtonia occurs from southern Costa Rica to northern Peru (Taylor and Hammel, 1993).

Phitopis-As mentioned, Phitopis is nested within the Schizocalyx clade. Delprete (1999) considered Bathysa and Phitopis as closely related and possibly congeneric. Like Schizocalyx, Phitopis also has loculicidal capsules that open only at the apex (Schumann, 1888; cf. figure 11B in Schumann, 1891) and funnelform corollas with left-contorted aestivation (Hooker, 1871; Standley, 1936; Bremer, 1987). According to Hooker (1871), the stipules of Phitopis are free and divided in two on each side (considered as a primitive character state by Robbrecht [1988]). This description is likely based on a misinterpretation of axillary buds. In contrast, Schumann (1889) described the stipules as coherent-connate and early-caducous. The calyx of Phitopis is closed before anthesis and subsequently splits unequally into two or three lobes during anthesis (Hooker, 1871; Standley, 1931). Notably, this pattern of calyx development is commonly found in Schizocalyx pervuvianus (Bathysa peruviana, Fig. 1J) as well (Standley, 1936), the species resolved as sister group to Phitopis in the phylogenetic hypothesis. Phitopis occurs on the Amazonian slopes of the Andes (Delprete, 1999). Based on our present results, we propose that Phitopis should be synonymized with Schizocalyx (see Synopsis).

Macrocnemum-According to this study, Macrocnemum is part of a well-supported clade with Rustia and the hippotides. The relationships among these three clades are unresolved. Macrocneтит occurs in southern Central America, northwestern South America, and Jamaica (Andersson, 1994). The genus is aberrant within the loculicidal clade in having seeds with a relatively long, bipolar wing (Fig. 6H) and has historically been classified in Cinchoneae (see Table 1). This character appears autapomorphic in the ancestral state reconstruction (Fig. 5). The capsules of Macrocnemum are similar to those of Picardaea in that dehiscence is loculicidal with the base and apex of the capsule remaining intact (Andersson, 1994; Delprete, 1999).

Rustia and Tresanthera-In the phylogenetic hypotheses, Tresanthera condamineoides is nested within Rustia, although the relationships within this clade are incongruent between the data sets. Tresanthera occurs in the coastal forest of Venezuela to the island of Tobago, whereas Rustia has a disjunct distribution, with one center of diversity in the northwestern South America to southern Central America, and another in the Atlantic forest of southern Brazil (Delprete, 1999). Both genera have leaves with pellucid glands and anthers opening by pores (in

Rustia by two apical pores, and in Tresanthera by a single pore below the apex; Delprete, 1999). Tresanthera was included in Rustia by Hooker (1873; as R. pauciflora), but Karsten (1887) argued for the recognition of Tresanthera and considered it distinct from the species of Rustia described at that time in a number of additional characters (i.e., corolla and filament pubescence, shape of filaments, anthers, styles and seeds, and capsule woodiness). In spite of this, an inclusion of Tresanthera in Rustia is supported by this study, and consequently we propose the reduction of the former to synonymy (see Synopsis).

The hippotides-Tribe Hippotideae sensu Rova and Andersson (1995), composed of Hippotis, Pentagonia, Sommera, and Tammsia, are in this study found to be monophyletic and nested within the Condamineeae. As mentioned, the hippotide clade forms a trichotomy with the Macrocnemum and Rustia clades. Relationships within this clade, as well as the relationships within the hippotides (which receives only weak support in the phylogenetic analyses), needs further study. The hippotides occur from Mexico to Bolivia. This group can be readily recognized by its axillary inflorescences, indehiscent fruits, and subepidermal fiber bundles in the leaf blade that cause a characteristic striation or moiré pattern between the leaf veins (Rova and Andersson, 1995; Andersson and Rova, 2004). According to Rova and Andersson (1995), the hippotides commonly also have a mixed parietal and central placentation (i.e., the ovary is bilocular at base, but becomes unilocular toward the apex, although not always; cf. Cornejo, 2006).

Morphological character evolution-Tribal classification of Rubiaceae was traditionally (Hooker, 1873; Schumann, 1891) based on a few key diagnostic characters including ovule number, fruit type (indehiscent vs. dehiscent fruits), dehiscence pattern, corolla lobe aestivation, and presence/absence of seed wing. Because none of these characters are uniform within the Condamineeae and all but ovule numbers appear to be homoplastic in relation to the phylogenetic hypotheses presented in this study, the complex taxonomic history of the tribe (see Table 1) is not surprising. Consequently, morphological characterization of the tribe (see Synopsis) is difficult, and unique tribal morphological synapomorphies are unknown. Although appearing more or less homoplastic at tribal level (Fig. 5), the characters mentioned do have some phylogenetic utility in characterizing clades within the tribe and are further discussed next.

Anther dehiscence-A transition to poricidal anthers appears to have occurred independently at least twice within the Condamineeae: in ancestral Dialypetalanthus and in the RustiaTresanthera lineage. Indeed, the dehiscence patterns differ even within the latter clade. In Rustia, the anthers open by two distinct apical pores, whereas in Tresanthera the thecae have a common pore just below the apex (Delprete, 1999). In Dialypetalanthus, an apical appendage of the thecae splits open leaving a \pm rounded pore at the apex, although sometimes the pollen sac may split further across its entire length (Hutchinson, 1973; Piesschaert et al., 1997).

Breeding system-Within the Condamineeae, both dichogamous and hercogamous breeding systems occur. Hercogamous flowers are found in Dioicodendron and Dolicholobium, of which the former is dioecious and the latter monecious (Burkill, 1900; Schumann and Lauterbach, 1901; Steyermark, 1963). Most of the Condamineeae genera have protandrous flowers,

Fig. 6. Seeds of the Condamineeae (SEM). (A) Dolicholobium oblongifolium (Smith 5109, S); (B) Ferdinandusa guainiae (Vásquez \& Jaramillo 10151, MO); (C) Capirona decorticans (Mori \& Bolten 8413, S); (D) Semaphyllanthe megistocaula (Calycophyllum megistocaulum; Prance et al., 5483, S);
but several genera within the septicidal clade are protogynous, i.e., Alseis, Chimarrhis, and Warszewiczia (Taylor et al., 2004). In addition, we found indications of protogyny in several species of Bathysa (see above). Consequently, protogyny appears to have originated at least twice within the tribe, in the ancestral lineage of Alseis, and in the ancestral lineage of the Bathysa-Chimarrhis-Warszewiczia clade (Fig. 5).

Calycophylls-Expanded, showy calyx lobes, i.e., calycophylls, occur in many species within the group, primarily within the septicidal clade. Calycophylls are found in both Emmenopterys and Pinckenya, as well as in Mussaendopsis of the Male-sian-Pacific clade. In the septicidal clade, calycophylls occur in Capirona, Parachimarrhis, and Wittmackanthus, as well as in some species of Calycophyllum, Chimarrhis, Semaphyllanthe, Simira, and Warszewiczia. In the loculicidal clade, calycophylls only occur in Pogonopus and Schizocalyx bracteosus (Bathysa bracteosa). The occurrence of calycophylls is hence homoplastic and has been suggested to be a result of a "latent potential of the calyx to enlarge all or some of its elements" (ClaßenBockhoff, 1996, p. 365).

Corolla lobe aestivation-Several different corolla lobe aestivation patterns are frequent within the Condamineeae. The character evolution appears complex, and the ancestral state reconstruction is equivocal (Fig. 5). The genera of the loculicidal clade generally have valvate aestivation, although the Elaeagia-Schizocalyx clade is characterized by left-contorted aestivation. It is notable that, Holtonia myriantha (Elaeagia myriantha), which falls outside Elaeagia in the phylogenetic analyses, has buds with imbricate aestivation. In the septicidal clade, aestivation is generally imbricate. Exceptions are found in Capirona and Semaphyllanthe, both of which have left-contorted aestivation. Left-contorted aestivation also occurs in Dolicholobium and Mussaendopsis (of the Malesian-Pacific clade), and Ferdinandusa (unresolved in the phylogenetic tree). It should also be noted that within the septicidal clade, some species of both Alseis and Simira have open aestivation (Taylor, 2002; Taylor et al., 2004) and that the buds of Chimarrhis, although appearing valvate, are in fact narrowly imbricate (Delprete, 1996b). Dioicodendron and Mastixiodendron have valvate aestivation, whereas the corollas of Emmenopterys and Pinckneya are imbricate.

Fruit types-Most genera of the tribe have capsular fruits, and the pattern of capsular dehiscence appears to be useful in characterizing the major clades of the tribe. Septicidal capsule appears to be the ancestral character state (Fig. 5.) and is found in Ferdinandusa, most genera of the Malesian-Pacific clade and the "septicidal clade" (the relationships between these clades are unfortunately not resolved), as well as in Dioicodendron and Emmenopterys. Loculicidal capsules are characteristic of Pinckneya, the Parachimarrhis-Simira clade, and the "loculi-
cidal clade" (autapomorphic in the former, and synapomorphic for the latter two clades; Fig. 5). Within the loculicidal clade, a clade consisting of Elaeagia and Schizocalyx can be further characterized by incomplete fruit dehiscence (i.e., only the apex of the capsules split open). Indehiscent fruits appear to have evolved independently at least three times, i.e., in ancestors of Bothriospora (berries), Mastixiodendron (drupes), and the hippotides (baccate).

Conspicuous lenticels are present on the fruits of Dolicholobium, Pentagonia, Pinckneya, Pogonopus, Rustia (some species), Simira, and Tresanthera. Consequently, this character appears homoplastic.

Seed wings-The occurrence of a seed wing has been considered an important character in Rubiaceae systematics and has been used in the diagnosis of Cinchoneae. However, the distinction of what constitutes a wing is not always obvious. Several genera have polymorphic seeds frequently with a (membanaceous) marginate testa surrounding the central seed body, a feature that some authors considered to be a wing. In particular, such seeds are found in Bathysa, Chimarrhis, and Macbrideina, but also in Condaminea, Dioicodendron, Elaeagia, and Rustia (cf. Burger and Taylor, 1993; Delprete, 1996a, 1999). Three forms of consistent testal extensions are here considered as wings: an extended bipolar (Fig. 6A-H), lateral (Fig. 6K), or orbicular wing (cf. fig. 8G in Delprete, 1999). Capsular-fruited genera of the Malesian-Pacific and the septicidal clades generally have seeds with a bipolar, \pm concentric wing (Fig. 6A-H), as do seeds of Emmenopterys, Ferdinandusa, and Macrocnemum. With the exception of the latter, the genera of the loculicidal clade do not have clearly winged seeds. As noted by Delprete (1996a), the ovule insertion angle and the occurrence and type of seed wing appear correlated. Genera with ascend-ing-vertical (imbricate) seeds tend to have a long, bipolar, \pm concentric wing, whereas genera with horizontally inserted (compressed) seeds do not. Capsules (loculicidal) with seeds inserted horizontally in two rows occur in the genera Pinckneya, Parachimarrhis, and Simira, all of which have (relatively large) seeds with a surrounding orbicular wing (the former), or lateral wing (the two latter). The ancestral state reconstruction of the character is equivocal (Fig. 5).

Stipules-Stipules are often very useful in distinguishing Rubiaceae genera (Gentry, 1993). The stipules of taxa in the Condamineeae are predominantly interpetiolar and caducous, and the occurrence of persistent stipules appears homoplastic. Stipules are in general persistent in Bathysa, Capirona, Chimarrhis (subgen. Pseudochimarrhis), Dialypetalanthus, Dioicodendron, Dolichodelphys, Dolicholobium, Elaeagia (some species), Holtonia, Picardaea, Pogonopus, and Wittmackanthus. Intrapetiolar stipules, otherwise rare in Rubiaceae (Robbrecht, 1988), appear to have evolved independently in several lineages, being present in Capirona, Condaminea, Elaeagia, Holtonia,
(E) Calycophyllum spruceanum (Krukoff 4768, S); (F) Alseis floribunda (Regnell 1524, UPS); (G) Dialypetalanthus fuscescens (Ferreira 9018, NY); (H) Macrocnemum roseum (Camp E-838, S); (I) Sommera donnell-smithii (Rova \& Sundbaum 2407, S); (J) Rustia formosa (Heringer et al., 5082, NY); (K) Parachimarrhis breviloba (Rimachi 10501, MO); (L) Chimarrhis microcarpa (Prance et al., 4452, S); (M) Chimarrhis ekmanii (Ekman 5246, S); (N) Bathysa australis (Jönsson 210a, S); (O) Warszewiczia coccinea (Rova et al., 2170, S); (P) Warszewiczia schwackei (Prance \& Silva 58505, S); (R) Macbrideina peruviana (Gutiérrez 63, NY); (Q) Condaminea corymbosa (Harling \& Ståhl 26936, S); (S) Picardaea cubensis (Ekman H6754, S); (T) Pogonopus exsertus (Dwyer 15265, MO); (U) Schizocalyx obovatus (Bathysa obovata; Persson \& Gustafsson 240, S); (V) Schizocalyx peruvianus (Bathysa peruviana; Asplund 13298, S); (W) Elaeagia cubensis (Ekman 5457, S); (X) Elaeagia utilis (Core 649, S); (Y) Holtonia myriantha (Elaeagia myriantha; Delprete \& Verduga 6406, UPS); (Z) Dioicodendron dioicum (Zarucchi \& Echeverry 4780, MO). Thick scale bars $=1.00 \mathrm{~mm}$, thin scale bars $=0.25 \mathrm{~mm}$.

Macbrideina, and Mussaendopsis. Consequently, intrapetiolar stipules may be a synapomorphy for the Condaminea-Elaeagia-Holtonia-Macbrideina-Schizocalyx clade, from which the calyptrate stipule type of Schizocalyx would then be derived (the stipular development in these clades needs further study). The occurrences of intrapetiolar stipules in Capirona and Mussaendopsis appear autapomorphic (Fig. 5). Puff and Igersheim (1994) found that the intrapetiolar stipules of Mussaendopsis originate from an interpetiolar position.

Synopsis-Condamineeae Hook. f., Genera Plantarum 2: 12 (1873). Type Condaminea DC.

Small trees to tall canopy trees, shrubs, or rarely monocaul treelets. Stipules calyptrate, inter- or intrapetiolar, entire or bifid, early-caducous-persistent. Inflorescences terminal and/or axillary, mostly many-flowered. Flowers hermaphrodite, mostly protandrous, in some genera protogynous, rarely dioecious (Di oicodendron), or monoecious (Dolicholobium). Calyx mostly persistent, in several taxa with one lobe expanded and showy. Corolla aestivation left-contorted, imbricate, valvate or rarely open. Ovary 2-locular (5-locular in Bothriospora, or 1-2 locular), typically with numerous ovules. Fruits mostly loculicidal or septicidal capsules, in some genera indehiscent. Seeds diverse, with reticulate testa, usually small to minute, compressed, and polymorphic, with or without a membanaceous border, alternatively with a distinct bipolar-, lateral-, or orbicular wing.

Genera included: Alseis, Bathysa, Bothriospora, Calycophyllum, Capirona, Chimarrhis, Condaminea, Dialypetalanthus, Dioicodendron, Dolichodelphys, Dolicholobium, Elaeagia, Emmenopterys, Ferdinandusa, Hippotis, Holtonia, Macbrideina, Macrocnemum, Mastixiodendron, Mussaendopsis, Parachimarrhis, Pentagonia, Picardaea, Pinckneya, Pogonopus, Rustia, Schizocalyx, Semaphyllanthe, Simira, Sommera, Tammsia, Warszewiczia, and Wittmackanthus.

As shown earlier, the genus Bathysa is not monophyletic. The type B. stipulata, as well as B. australis and B. gymnocarpa, form a sister group to Warszewiczia, whereas another group of species (B. bracteosa, B. cuspidata, B. obovata, and B. peruviana) including the genus Phitopis, forms a sister group to Elaeagia. This second group is characterized by connate and early caducous stipules (vs. free and mostly persistent stipules), relatively large, funnel-shaped corollas with left-contorted aestivation (vs. small, hypocrateriform corollas with imbricate aestivation), loculicidal capsules with only apical dehiscence (vs. septicidal capsules splitting entirely), and protandrous flowers (vs. protogynous flowers). One of the species of this group, B. bracteosa, was originally described as Schizocalyx bracteosus by Weddell (1854). To render Bathysa monophyletic, we propose to resurrect Schizocalyx, with a subsequent transfer of the species B. cuspidata, B. obovata, B. peruviana, and B. veraguensis, that conform to the description above. Of the Bathysa species not included in this study, B. mendoncaei, B. nicholsonii K. Schum., and B. sylvestrae Germano-Filho \& M. Gomes, as well as B. pittieri (cf. description by Steyermark, 1974), conform to Bathysa. Regarding B. bathysoides (Steyerm.) Delprete and B. perijaensis (Steyerm.) Delprete (both originally described as Chimarrhis), as well as B. multiflora L. O. Williams and B. panamensis Dwyer, we are unable to suggest a classification; we have not studied materials for these taxa, and available descriptions are inadequate. The position of Phitopis as sister to B. peruviana suggests that this taxon (two species) is also best accommodated in Schizocalyx. The name Schizocalyx is older than Phitopis and consequently has priority.

Schizocalyx Wedd., Ann. Sci. Nat., Bot., IV, 1: 73 (1854). Type: Schizocalyx bracteosus Wedd.

Phitopis Hook. f., Hooker's Icon. Pl. 11: t. 1093 (1871). Type: Phitopis multiflora Hook. f.

Trees. Leaves petiolate, \pm pubescent. Stipules calyptrate in bud, early caducous. Inflorescence terminal, many-flowered, \pm pubescent. Flowers protandrous. Calyx persistent, truncatedeeply lobed, sometimes unequally lobed. Calycophylls present in S. bracteosus. Corolla white, funnelform, lobes left-contorted in bud. Ovary 2-locular, with numerous horizontally inserted ovules. Fruits capsular, splitting loculicidally only in apical portion. Seeds minute, polymorphic, reticulate, not winged.

Schizocalyx cuspidatus (A. St.-Hil.) Kainul. \& B. Bremer, comb. nov. Basionym: Exostema cuspidatum A. St.-Hil., Pl. Usuel. Bras.: t. 3 (1824). Type: S. Brazil. Saint-Hilaire B1-970 (P !, image seen).

Schizocalyx multiflorus (Hook. f.) Kainul. \& B. Bremer, comb. nov. Basionym: Phitopis multiflora Hook. f., Hooker's Icon. Pl. 11: t. 1093 (1871). Type: Peru, San Martín. Mathews 1639 (K!, image seen).

Schizocalyx obovatus (K. Schum. ex Standl.) Kainul. \& B. Bremer, comb. nov. Basionym: Bathysa obovata K. Schum. ex Standl., Publ. Field Mus. Nat. Hist., Bot. Ser. 7: 280 (1931). Type: Peru. Ruiz \& Pavón s.n. (B!, image seen).

Schizocalyx peruvianus (K. Krause) Kainul. \& B. Bremer, comb. nov. Basionym: Bathysa peruviana K. Krause, Verh. Bot. Vereins Prov. Brandenburg 50: 96 (1908 publ. 1909). Type: Peru. Ule 6768 (B!, image seen).

Schizocalyx sterculioides (Standl.) Kainul. \& B. Bremer, comb. nov. Basionym: Phitopis sterculioides Standl., Publ. Field Mus. Nat. Hist., Bot. Ser. 8: 341 (1931). Type: Peru, Junín. Killip \& Smith 25747 (F!, image seen).

Schizocalyx veraguensis (Dwyer) Kainul. \& B. Bremer, comb. nov. Basionym: Bathysa veraguensis Dwyer, Ann. Missouri Bot. Gard. 67: 40 (1980). Type: Panama, Veraguas, Cerro Tute. Lao \& Gentry 531 (MO!, image seen).

Tresanthera condamineoides is found nested within Rustia. The two genera have primarily been distinguished by the position and number of pores of the anthers. An inclusion of Tresanthera in Rustia is supported by this study, and consequently, we propose the reduction of the former to synonymy.
Rustia Klotzsch in Hayne, Getreue Darstell. Gew. 14: t. 14, 15 (1846). Type: Rustia formosa (Cham. \& Schltdl.) Klotzsch.

Tresanthera H. Karst., Fl. Columb. 1:37 (1859). Type: Tresanthera condamineoides H. Karst.

Shrubs to trees. Leaves lanceolate, elliptic-ovate, with pellucid glands. Stipules interpetiolar, free at base, entire, narrowly triangular to lanceolate, caducous. Inflorescence terminal, paniculate or thyrsoid. Flowers protandrous. Calyx cupular, truncate or with small lobes. Corolla tubular or campanulate, thin to fleshy, lobes valvate to valvate-reduplicate in bud. Anthers poricidal, opening by one lateral pore, or two apical pores. Ovary 2-locular, with numerous horizontally inserted ovules. Fruit a loculicidal capsule. Seeds minute, polymorphic, reticulate, not clearly winged.
Rustia condamineoides (H. Karst.) Kainul. \& B. Bremer, comb. nov. Basionym: Tresanthera condamineoides H. Karst., Fl. Columb. 1: 37 (1859). Type: Venezuela, Aragua, Puerto Cabello, Cumbre de Valencia. Karsten s.n. (W; F!, fragment, image seen).

LITERATURE CITED

Aiello, A. 1979. A reexamination of Portlandia (Rubiaceae) and associated taxa. Journal of the Arnold Arboretum 60: 38-123.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
Alejandro, G. D., S. G. Razafimandimbison, and S. Liede-Schumann. 2005. Polyphyly of Mussaenda inferred from ITS and trnT-F data and its implication for generic limits in Mussaendeae (Rubiaceae). American Journal of Botany 92: 544-557.
Andersson, L. 1994. Tribes Calycophylleae, Cinchoneae, and Hillieae (Rubiaceae). In G. Harling and L. Andersson [eds.], Flora of Ecuador, vol. 50, 1-112. Botanical Institute, Göteborg University, Göteborg, Sweden.
Andersson, L. 1995. Tribes and genera of the Cinchoneae complex (Rubiaceae). Annals of the Missouri Botanical Garden 82: 409-427.
Andersson, L., and A. Antonelli. 2005. Phylogeny of the tribe Cinchoneae (Rubiaceae), its position in Cinchonoideae, and description of a new genus, Ciliosemina. Taxon 54: 17-28.
Andersson, L., and C. Persson. 1991. Circumscription of the tribe Cinchoneae (Rubiaceae)—A cladistic approach. Plant Systematics and Evolution 178: 65-94.
Andersson, L., and J. H. E. Rova. 1999. The rps16 intron and the phylogeny of the Rubioideae (Rubiaceae). Plant Systematics and Evolution 214: 161-186.
Andersson, L., and J. H. E. Rova. 2004. Rubiaceae-Hippotideae. In G. Harling and L. Andersson [eds.], Flora of Ecuador, vol. 74, 1-46. Botanical Institute, Göteborg University, Göteborg, Sweden.
Andreasen, K., B. G. Baldwin, and B. Bremer. 1999. Phylogenetic utility of the nuclear rDNA ITS region in subfamily Ixoroideae (Rubiaceae): Comparisons with cpDNA rbcL sequence data. Plant Systematics and Evolution 217: 119-135.
Backlund, M., B. Oxelman, and B. Bremer. 2000. Phylogenetic relationships within the Gentianales based on $n d h F$ and $r b c L$ sequences, with particular reference to the Loganiaceae. American Journal of Botany 87: 1029-1043.
Bawa, K. S. 1975. Dioecism in tropical forest trees. Evolution 29: 167-179.
Bremekamp, C. E. B. 1966. Remarks on the position, the delimitation and the subdivision of the Rubiaceae. Acta Botanica Neerlandica 15: 1-33.
BREMER, B. 1987. The sister group of the Paleotropical tribe Argostemmateae: A redefined Neotropical tribe Hamelieae (Rubiaceae, Rubioideae). Cladistics 3: 35-51.
Bremer, B. 2009. A review of molecular phylogenetic studies of Rubiaceae. Annals of the Missouri Botanical Garden 96: 4-26.
Bremer, B., K. Bremer, N. Heidari, P. Erixon, R. G. Olmstead, A. Anderberg, M. Källersjö, and E. Barkhordarian. 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molecular Phylogenetics and Evolution 24: 274-301.
Bremer, B., and T. Eriksson. 2009. Time tree of Rubiaceae: Phylogeny and dating the family, subfamilies, and tribes. International Journal of Plant Sciences 170: 766-793.
Bremer, B., R. K. Jansen, B. Oxelman, M. Backlund, H. Lantz, and K. J. Kim. 1999. More characters or more taxa for a robust phy-logeny-Case study from the coffee family (Rubiaceae). Systematic Biology 48: 413-435.
Burger, W., and C. M. Taylor. 1993. Flora costaricensis. Rubiaceae. Fieldiana, Botany, New Series 33: 1-333.
Burkill, I. H. 1900. Dolicholobium acuminatum. Hooker's Icones Plantarum 27, pl. 2630.
Classen-Bockhoff, R. 1996. A survey of flower-like inflorescences in the Rubiaceae. Opera Botanica Belgica 7: 329-367.
Cornejo, X. 2006. Two new species of Pentagonia (RubiaceaeHippotideae) from Ecuador and Peru. Harvard Papers in Botany 11: 19-24.

CronQuist, A. 1981. An integrated system of classification of flowering plants. Columbia Press, New York New York, USA.
Darwin, S. P. 1977. Genus Mastixiodendron (Rubiaceae). Journal of the Arnold Arboretum 58: 349-381.
Delprete, P. G. 1996a. Evaluation of the tribes Chiococceae, Condamineeae and Catesbaeeae (Rubiaceae) based on morphological characters. Opera Botanica Belgica 7: 165-192.
Delprete, P. G. 1996b. Notes on calycophyllous Rubiaceae. Part I. Morphological comparisons of the genera Chimarrhis, Bathysa, and Calycophyllum, with new combinations and a new species, Chimarrhis gentryana. Brittonia 48: 35-44.
Delprete, P. G. 1996c. Systematics, typification, distribution, and reproductive biology of Pinckneya bracteata (Rubiaceae). Plant Systematics and Evolution 201: 243-261.
Delprete, P. G. 1997. Notes on calycophyllous Rubiaceae. Part II. Morphological comparison of the genera Bathysa and Schizocalyx. Brittonia 49: 480-486.
Delprete, P. G. 1999. Rondeletieae (Rubiaceae), part 1, Flora neotropica. Monograph 77. New York Botanical Garden, Bronx, New York, USA.
Delprete, P. G., and R. Cortés-B. 2004. A phylogenetic study of the tribe Sipaneeae (Rubiaceae, Ixoroideae), using trnL-F and ITS sequence data. Taxon 53: 347-356.
Dwyer, J. D. 1980. Part IX. Family 179. Rubiaceae—Part 1; R. E. Woodson Jr. and R. W. Schery [eds.], Flora of Panama. Annals of the Missouri Botanical Garden 67: 1-256.
Endress, M. E., B. Sennblad, S. Nilsson, L. Civeyrel, M. W. Chase, S. Huysmans, E. Grafstroem, and B. Bremer. 1996. A phylogenetic analysis of Apocynaceae s. str. and some related taxa in Gentianales. A multidiciplinary approach. Opera Botanica Belgica 7: 59-102.
Fay, M. F., B. Bremer, G. T. Prance, M. van der Bank, D. Bridson, and M. W. Chase. 2000. Plastid $r b c L$ sequence data show Dialypetalanthus to be a member of Rubiaceae. Kew Bulletin 55: 853-864.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 38: 783-791.
García Kirkbride, M. C. 1981. Duas novas tribos de Rubiaceae neotropicais. Revista Brasileira de Botânica 4: 119-123.
Gentry, A. H. 1993. A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa. Conservation International, Washington, D.C., USA.
Germano-Filho, P. 1999. Estudos taxonômicos do gênero Bathysa C. Presl (Rubiaceae, Rondeletieae), no Brasil. Rodriguésia 50: 49-75.
Govaerts, R., L. Andersson, E. Robbrecht, D. Bridson, A. P. Davis, I. Schanzer, and B. Sonké. 2010. World checklist of Rubiaceae. Board of Trustees of the Royal Botanic Gardens, Kew. UK. Website http://www.kew.org/wcsp/ [accessed 18 February 2010].
Guindon, S., and T. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696-704.
Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hooker, J. D. 1870. Bothriospora corymbosa. Hooker's Icones Plantarum 11, pl. 1069.
Hooker, J. D. 1871. Phitopis multiflora. Hooker's Icones Plantarum 11, pl. 1093.
Hooker, J. D. 1873. Rubiaceae. In G. Bentham and J. D. Hooker [eds.], Genera plantarum, vol. 2, 7-151. Lovell Reeve, Williams \& Norgate, London, UK.
Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
Hutchinson, J. 1973. The families of flowering plants: arranged according to a new system based on their probable phylogeny, 3rd ed. Oxford University Press, London, UK.
Jansen, M. E., and C. E. Ridsdale. 1983. A revision of the genus Dolicholobium (Rubiaceae). Blumea 29: 251-311.

Kainulainen, K., A. Mouly, A. Khodabandeh, and B. Bremer. 2009. Molecular phylogenetic analysis of the tribe Alberteae (Rubiaceae), with description of a new genus, Razafimandimbisonia. Taxon 58: 757-768.
Karsten, H. 1887. Bentham-Hooker's "Genera Plantarum" und florae colombiae specimina selecta revidirt. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 8: 337-376.
Kuhlmann, J. G. 1925. Contribuição para o conhecimento de algumas plantas novas, contendo tambem um trabalho de critica e novas combinações. Archivos do Jardim Botânico do Rio de Janeiro 4: 347-365.
Lakner, C., and F. RonQuist. 2008. Splitsmb v.0.1.1 [computer program]. Website http://sourceforge.net/projects/splitsmb.
Lantz, H., and B. Bremer. 2004. Phylogeny inferred from morphology and DNA data: Characterizing well-supported groups in Vanguerieae (Rubiaceae). Botanical Journal of the Linnean Society 146: 257-283.
Maddison, W. P., and D. R. Maddison. 2010. Mesquite: A modular system for evolutionary analysis, version 2.72 [computer program]. Website http://mesquiteproject.org.
Merrill, E. D., and L. M. Perry. 1945. Plantae Papuanae Archboldianae, XVI. Journal of the Arnold Arboretum 26: 231-266.

Mouly, A., S. G. Razafimandimbison, J. Florence, J. Jérémie, and B. Bremer. 2009. Paraphyly of Ixora and new tribal delimitation of Ixoreae (Rubiaceae): Inference from combined chloroplast (rps16, $r b c L$ and trnT-F) sequence data. Annals of the Missouri Botanical Garden 96: 146-160.
Novotny, V., Y. Basset, S. E. Miller, G. D. Weiblen, B. Bremer, L. Cizek, and P. Drozd. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841-844.
Nylander, J. A. A. 2004. MrAIC.pl [computer program]. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. Website http://www.abc.se/~nylander/.
Oliver, D. 1889. Emmenopterys henryi. Hooker's Icones Plantarum 19, pl. 1823.
Oliver, D. 1895. Mussaendopsis beccariana. Hooker's Icones Plantarum 24, pl. 2388.
Oxelman, B., M. Backlund, and B. Bremer. 1999. Relationships of the Buddlejaceae s.l. investigated using parsimony jackknife and branch support analysis of chloroplast $n d h F$ and $r b c L$ sequence data. Systematic Botany 24: 164-182.
Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to the trees of Peru. David Hunt, Sherborne, UK.
Persson, C. 2000. Phylogeny of the neotropical Alibertia group (Rubiaceae), with emphasis on the genus Alibertia, inferred from ITS and 5S ribosomal DNA sequences. American Journal of Botany 87: 1018-1028.
Piesschaert, F., E. Robbrecht, and E. Smets. 1997. Dialypetalanthus fuscescens Kuhlm (Dialypetalanthaceae): The problematic taxonomic position of an Amazonian endemic. Annals of the Missouri Botanical Garden 84: 201-223.
Puff, C., AND A. Igersheim. 1994. The character states of Mussaendopsis Baill. (Rubiaceae-Coptosapelteae). Flora 189: 161-178.
Razafimandimbison, S. G., and B. Bremer. 2001. Tribal delimitation of Naucleae (Cinchonoideae, Rubiaceae): Inference from molecular and morphological data. Systematics and Geography of Plants 71: 515-538.
Razafimandimbison, S. G., and B. Bremer. 2002. Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, rbcL, and trnT-F) and morphological data. American Journal of Botany 89: 1027-1041.
Rizzini, C. T., and P. Occhioni. 1949. Dialypetalanthaceae. Lilloa 17: 243-288.
Robbrecht, E. 1988. Tropical woody Rubiaceae. Opera Botanica Belgica 1: 1-272.
Ronquist, F., and J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatic 19: 1572-1574.

Rova, J. H. E. 1999. The Rondeletieae-Condamineeae-Sipaneeae complex (Rubiaceae). Ph.D. dissertation, Göteborg University, Göteborg, Sweden.
Rova, J. H. E., and L. Andersson. 1995. A reevaluation of the tribes Hippotideae and Tammsieae (Rubiaceae). Nordic Journal of Botany 15: 269-284.
Rova, J. H. E., P. G. Delprete, L. Andersson, and V. A. Albert. 2002. A $\operatorname{trn} L-F$ cpDNA sequence study of the Condamineeae-RondeletieaeSipaneeae complex with implications on the phylogeny of the Rubiaceae. American Journal of Botany 89: 145-159.
Rydin, C., K. Kainulainen, S. Razafimandimbison, J. Smedmark, and B. Bremer. 2009. Deep divergences in the coffee family and the systematic position of Acranthera. Plant Systematics and Evolution 278: 101-123.
Samson, N., M. G. Bausher, S.-B. Lee, R. K. Jansen, and H. Daniell. 2007. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: Organization and implications for biotechnology and phylogenetic relationships among angiosperms. Plant Biotechnology Journal 5: 339-353.
Schumann, K. 1888. Über einige verkannte oder wenig gekannte Geschlechter der Rubiaceen Südamerikas. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie 10: 302-363.
Schumann, K. 1889. Rubiaceae, trib. XX-IX. In C. F. P. von Martius, A. G. Eichler, and I. Urban [eds.], Flora brasiliensis, vol. 6, 125-466. Fleischer, Leipzig, Germany.
Schumann, K. 1891. Rubiaceae. In A. Engler and K. Prantl [eds.], Die natürlichen Pflanzenfamilien, vol. 4, part 4, 1-156. Engelmann, Leipzig, Germany.
Schumann, K. 1897. Rubiaceae. In A. Engler and K. Prantl [eds.], Die natürlichen Pflanzenfamilien, Nachträge zum II-IV, 309-316. Engelmann, Leipzig, Germany.
Schumann, K., and K. Krause. 1908. Dolichodelphys. Verhandlungen des Botanischen Vereins für die Provinz Brandenburg und die Angrenzenden Länder 50: 102-104.
Schumann, K., and K. Lauterbach. 1901. Die Flora der Deutschen Schutzgebiete in der Südsee. Gebrüder Borntraeger, Leipzig, Germany.
Staden, R. 1996. The Staden sequence analysis package. Molecular Biotechnology 5: 233-241.
Standley, P. C. 1930. The Rubiaceae of Colombia. Publications of the Field Museum of Natural History, Botanical Series 7: 1-176.
Standley, P. C. 1931. Studies of American plants. V. Publications of the Field Museum of Natural History, Botanical series 8: 293-398.
Standley, P. C. 1932. Holtonia, a new genus of trees of the family Rubiaceae. Tropical Woods 30: 37.
Standley, P. C. 1936. Rubiaceae. In J. F. Macbride [ed.], Flora of Peru. Botany series, vol. 13, part 6. Field Museum of Natural History, Chicago, Illinois, USA.
Steyermark, J. A. 1963. Dioicodendron, a new genus of Rubiaceae. Boletín de la Sociedad Venezolana de Ciencias Naturales 25: 23-28.
Steyermark, J. A. 1972. Botany of the Guayana Highlands-Part IX. Memoirs of the New York Botanical Garden 23: 227-832.
Steyermark, J. A. 1974. Rubiaceae. In T. Lasser [ed.], Flora de Venezuela, vol. 9, parts 1-3, 1-2070. Fondo Editorial Acta Cientifica Venezolana, Caracas, Venezuela.
Steyermark, J. A., and J.H. Kirkbride. 1975. The genus Wittmackanthus (Rubiaceae). Annals of the Missouri Botanical Garden 62: 504-509.
Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland, Massachusetts, USA.
TAYLOR, C. M. 2001. Rubiacearum americanarum magna hama pars IV: New taxa and combinations in Elaeagia and Warszewiczia (Rondeletieae) from Mexico, Central America, and Colombia. Novon 11: 274-279.
Taylor, C. M. 2002. Rubiacearum americanarum magna hama pars XI: A new species of Alseis (Calycophylleae) from Central America and notes on the morphology of this neotropical genus. Novon 12: 571-574.
Taylor, C. M., and B. E. Hammel. 1993. Notes on Elaeagia myriantha, comb. nov. (Rubiaceae). Novon 3: 490-491.

Taylor, C. M., J. A. Steyermark, P. G. Delprete, A. Vicentini, R. Cortés, D. Zappi, C. B. Costa, and E. A. Araujo. 2004. Rubiaceae. In J. A. Steyermark, P. E. Berry, K. Yatskievych, and B. K. Holst [eds.], Flora of the Venezuelan Guayana, vol. 8, 497-848. Missouri Botanical Garden Press, St. Louis, Missouri, USA.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W : Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

Verdcourt, B. 1958. Remarks on the classification of the Rubiaceae. Bulletin du Jardin Botanique de l'État à Bruxelles 28: 209-281.
Weddell, H. A. 1854. Schizocalyx. Notice sur quelques Rubiacées de l'Amérique tropicale. Annales des Sciences Naturelles, Botanique, série 4, tome 1: 73-74.
Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Molecular Biology and Evolution 14: 717-724.
 originate from anleren specimen than 10.10

Species	Voucher	ITS	matK	ndhF	rps16	trnH-psbA	trnS-G	trnT-L-F
Alseis floribunda Schott	Cordeiro \& Hatschbach 13/11/85 (GB)	FJ984954*	FJ905330*	FJ871944*	FJ884629*	FJ860148*	FJ948294*	FJ948363*
Alseis lugonis L. Andersson	Bremer et al., 3353 (QCA,QCNE, UPS)	FJ984955*	FJ905331*	AJ23628321	FJ884630*	FJ860149*	FJ948295*	FJ948364*
Alseis peruviana Standl.	Pennington \& Daza 16730 (MOL)	FJ984956*	FJ905332*	-	FJ884631*	FJ860150*	FJ948296*	FJ948365*
Bathysa australis (A. St.-Hil.) K. Schum.	Antonelli \& Andersson 315 (GB)	FJ984957*	-	-				
Bathysa bracteosa (Wedd.) Delprete	Persson \& Nordenhäll 481 (S)	FJ984958*	FJ905333*	-	FJ884632*	FJ860151*	FJ948297*	FJ948366*
Bathysa cf. cuspidata (A. St.-Hil.) Hook. f. ex K. Schum	Antonelli \& Andersson 295 (GB)	FJ984959*	FJ905334*	-	FJ884633*	FJ860152*	FJ948298*	FJ948367*
Bathysa gymnocarpa K. Schum	Brade 11266 (S)	FJ984960*	-	FJ871945*	FJ884634*	FJ860153*	FJ948299*	FJ948368*
Bathysa obovata K. Schum. ex Standl.	Persson \& Gustafsson 240 (S)	FJ984961*	FJ905335*		FJ884635*	FJ860154*	FJ948300*	FJ948369*
Bathysa peruviana K. Krause	Asplund 13298 (UPS)	FJ984962*	FJ905336*	FJ871946*	FJ884636*	FJ860155*	FJ948301*	FJ948370*
Bathysa stipulata (Vell.) C. Presl	Pirani \& Bremer 4901 (SPF)	FJ984963*	FJ905337*	FJ871947*	FJ884637*	FJ860156*	FJ948302*	FJ948371*
Bathysa veraguensis Dwyer	Rova et al., 2396 (GB)	FJ984964*	FJ905338*		AF24291422	FJ860157*	FJ948303*	FJ948372*,
Bothriospora corymbosa Hook. f.	Mori et al., 9191 (S)	FJ984965*	FJ905339*	FJ871948*	FJ884638*	FJ860158*	FJ948304*	FJ948373*
Calycophyllum candidissimum (Vahl) DC.	Sanders 1805 (FTG)	FJ984966*, 12	FJ905340*,12	AJ236285 ${ }^{21}$	FM204712 ${ }^{23}$	-	FM204756 ${ }^{23}$	AJ847398
Calycophyllum megistocaulum (K. Krause) C. M. Taylor	Persson \& Gustafsson 254 (GB)	FJ985007*	FJ905387*	FJ871969*	FJ884676*	FJ860207*	FJ948349*	FJ948418*
Calycophyllum multiflorum Griseb.	Krapovickas 37468 (C)	FJ984967*	FJ905341*		FJ884639*	FJ860159*	FJ948305*	FJ948374*
Calycophyllum spruceanum (Benth.) Hook. f. ex K. Schum	Persson \& Gustafsson 317 (GB)	FJ984968*	FJ905342*	-	FJ884640*	FJ860160*	FJ948306*	FJ948375*
Capirona decorticans Spruce	Knudsen \& Tallsten 115 (S)	FJ984969*, 13	FJ905343*	$\underline{\text { AJ236286 }}{ }^{14}$	FJ884641*	FJ860161*	FJ948307*	FJ948376*
Chimarrhis cymosa Jacq.	Degelius 25.5.1958 (GB)		-		FJ884642*	FJ860162*	FJ948308*	FJ948377*
Chimarrhis hookeri K. Schum.	Delprete \& Verduga 6421 (UPS)	FJ984970*	FJ905344*	AJ23628921	FJ884643*	FJ860163*	FJ948309*	FJ948378*
Chimarrhis microcarpa Standl.	de Bruijn 1646 (S)	FJ984971*	FJ905345*	FJ871949*	FJ884644*	FJ860164*	FJ948310*	FJ948379*
Chimarrhis turbinata DC.	Rova et al., 2021 (GB)	FJ984972*	FJ905346*		AF24292322	FJ860165*	FJ948311*	FJ948380*,2
Condaminea corymbosa (Ruiz \& Pav.) DC.	Pennington \& Daza 17436 (MOL)	FJ984973*	FJ905347*	FJ871950*	FJ884645*	FJ860166*	FJ948312*	FJ948381*
Dialypetalanthus fuscescens Kuhlm.	Dubs \& Egewarth 2318 (S)	FJ984974*	FJ905348*	FJ871951*	FJ884646*	FJ860167*	FJ948313*	FJ948382*
Dioicodendron dioicum (K. Schum. \& Krause) Steyerm.	Zarucchi \& Echeverry 4780 (MO)	FJ984975*	FJ905349*	FJ871952*	FJ884647*	FJ860168*	FJ948314*	FJ948383*
Dolichodelphys chlorocrater K. Schum. \& K. Krause	Philipson et al., 1567 (COL)	FJ984976*	FJ905350*	-	FJ884648*	FJ860169*		FJ948384*
Dolicholobium macgregorii Horne ex Baker	Rova \& Gustavsson 2427 (GB)	FJ984977*	FJ905351*	-	AF24293722	FJ860170*	FJ948315*	FJ948385*
Dolicholobium oblongifolium A. Gray	Rova \& Gustavsson 2449 (GB)	FJ984978*	FJ905352*	FJ884688*	AF24293822	FJ860171*	FJ948316*	FJ948386*
Dolicholobium oxylobum K. Schum. \& Lauterb.	Drozd \& Molem s.n. 1998-11-13	FJ984979*	FJ905353*	-	AJ320076 ${ }^{25}$	FJ860172*	FJ948317*	FJ948387*
Elaeagia auriculata Hemsl.	Santamaría S-989 (GB)	FJ984980*	FJ905354*	FJ871953*	FJ884649*	FJ860173*	FJ948318*	FJ948388*
Elaeagia mariae Wedd.	Persson 502 (GB)	FJ984981*	FJ905355*	-	FJ884650*	FJ860174*	FJ948319*	FJ948389*
Elaeagia myriantha (Standl.) C. M. Taylor \& Hammel	Skutch 4047 (S)	FJ984982*	FJ905356*	FJ884689*	AF24293922	FJ860175*	FJ948320*	FJ948390*
Elaeagia cf. myriantha (Standl.) C. M. Taylor \& Hammel	Delprete \& Verduga 6405 (UPS)	-	FJ905359*	-	FJ884653*	FJ860178*	FJ948323*	FJ948392*
Elaeagia obovata Rusby	Persson 495 (GB)	FJ984983*	FJ905357*	-	FJ884651*	FJ860176*	FJ948321*	FJ948391*
Elaeagia utilis (Goudot) Wedd.	Jaramillo \& Zak 8162 (S)	FJ984984*	FJ905358*	FJ871954*	FJ884652*	FJ860177*	FJ948322*	
Emmenopterys henryi Oliv.	Robbrecht s.n. (UPS)	FJ984985*	FJ905360*	AJ23629421	FM204719 ${ }^{23}$	FJ860179*	FM204762 ${ }^{23}$	FM207125 ${ }^{23}$
Ferdinandusa chlorantha (Wedd.) Standl.	Persson 520 (GB)	FJ984986*	FJ905361*	FJ871955*	FJ884654*	FJ860180*	FJ948324*	FJ948393*
Ferdinandusa elliptica (Pohl) Pohl	Persson \& Gustafsson 269 (GB)	FJ984988*	FJ905363*	-	FJ884656*	FJ860182*	FJ948326*	FJ948395*
Ferdinandusa cf. loretensis Standl.	Persson et al., 627 (GB)	FJ984987*	FJ905362*	-	FJ884655*	FJ860181*	FJ948325*	FJ948394*
Ferdinandusa speciosa Pohl	Malme 2442 (UPS)	FJ984989*	-	EU145412 ${ }^{26}$	FJ884657*	FJ860183*	FJ948327*	EU14553426
Hippotis brevipes Spruce ex K. Schum.	Ståhl 1812 (GB)	FJ984990*	FJ905364*	-	FJ884658*	FJ860184*	FJ948328*	FJ948396*
Hippotis triflora Ruiz \& Pav.	Ståhl 2660 (GB)	FJ984991*	FJ905365*	FJ871956*	FJ884659*	FJ860185*	FJ948329*	FJ948397*
Macbrideina peruviana Standl.	Persson \& Grández 710 (GB)	FJ984992*	FJ905366*	FJ871957*	FJ884660*	FJ860186*	FJ948330*	FJ948398*
Macrocnemum jamaicensis L.	McDowell 4664 (DUKE)	FJ984993*	FJ905367*	-	FJ884661*	FJ860187*	-	FJ948399*
Macrocnemum roseum (Ruiz \& Pav.) Wedd.	Andersson et al., 2086 (GB)	FJ984994*	FJ905368*	FJ871958*	AF24297722	FJ860188*	FJ948331*	FJ948400*
Mastixiodendron flavidum (Seem.) A. C. Sm.	Rova \& Gustavsson 2429 (GB)	FJ984995*	FJ905369*	FJ871959*	AF24297922	FJ860189*	FJ948332*	FJ948401*
Mastixiodendron pilosum A. C. Sm.	Smith 6781 (S)	-	FJ905370*	-	FJ884662*	FJ860190*	FJ948333*	FJ948402*
Mussaendopsis beccariana Baill.	Puff 990606-2/1 (WU)	FJ984996*	FJ905371*	FJ871960*	FJ884663*	FJ860191*	FJ948334*	FJ948403*, 3
Parachimarrhis breviloba Ducke	Rimachi Y. 10501 (MO)	FJ984997*	FJ905372*	FJ871961*	FJ884664*	FJ860192*	FJ948335*	FJ948404*,4
Pentagonia amazonica (Ducke) L. Andersson \& Rova	Andersson \& Nilsson 2488 (GB)	FJ984998*	FJ905373*	-	FJ884665*	FJ860193*	FJ948336*	FJ948405*
Pentagonia macrophylla Benth.	McDade 595A (DUKE)	FJ984999*	FJ905374*	AJ23630321	FM20472723	FJ860194*	FM204773 ${ }^{23}$	FM207134 ${ }^{23}$
Phitopis multiflora Hook. f.	Persson \& Grández 697 (GB)	FJ985000*	FJ905375*	FJ871962*	FJ884666*	FJ860195*	FJ948337*	FJ948406*
Picardaea cubensis (Griseb.) Britton ex Urb.	Ekman 6754 (S)	FJ985001*	FJ905376*	FJ871963*	FJ884667*	-	FJ948338*	FJ948407*
Pinckneya bracteata (Bartram) Raf.	Massey s.n. 15F	FJ985002*	FJ905377*	AJ130839	FJ884668*	FJ860196*	FJ94833	FJ948408*

Appendix 1. Continued

Species	Voucher	ITS	matK	$n d h F$	rps16	trnH-psbA	trnS-G	trnT-L-F
Pogonopus exsertus (Oerst.) Oerst.	Dwyer 15265 (MO)	-	-	-	FJ884669*	FJ860197*	FJ948340*	FJ948409*
Pogonopus speciosus (Jacq.) K. Schum.	Meier \& Walter-Weisbeck 2548 (GB)	-	FJ905378*	FJ871964*	FJ884670*	FJ860198*	FJ948341*	FJ948410*
Pogonopus tubulosus (DC.) K. Schum.	Novara et al., 8939 (S)	FJ985003*	FJ905379*	FJ871965*	AF242996 ${ }^{22}$	FJ860199*	FJ948342*	FJ948411*,5
Rustia alba Delprete	Delprete \& Verduga 6414 (UPS)	-	FJ905380*	-	FJ884671*	FJ860200*	FJ948343*	FJ948412*
Rustia bilsana Delprete	Clarke 2979 (GB)	-	FJ905381*	FJ871966*	FJ884672*	FJ860201*	FJ948344*	FJ948413*
Rustia formosa Delprete	Kirkbride 5431 (NY)	-	FJ905382*	FJ871967*	FJ884673*	FJ860202*	FJ948345*	FJ948414*
Rustia cf. occidentalis (Benth.) Hemsl.	Tuberquia et al., 495 (GB)	FJ985004*	FJ905383*	FJ871968*	FJ884674*	FJ860203*	FJ948346*	FJ948415*
Rustia rubra Standl. ex D. A. Simpson	Ståhl 2800 (GB)	FJ985005*	FJ905384*	-	AF24301722	FJ860204*	FJ948347*	FJ948416*,6
Rustia thibaudioides (H. Karst.) Delprete	Delprete 6378 (UPS)	FJ985006*	FJ905385*	AJ236310 ${ }^{21}$	FM204731 ${ }^{23}$	FJ860205*	FM20477723	FM207138 ${ }^{23}$
Rustia viridiflora Delprete	Ståhl 1822 (GB)	-	FJ905386*	-	FJ884675*	FJ860206*	FJ948348*	FJ948417*
Simira cordifolia (Hook. f.) Steyerm.	Bremer et al., 3361 (UPS)	FJ985008*	FJ905388*	FJ871970*	FJ884677*	FJ860208*	FJ948350*	FJ948419*
Simira corumbensis (Standl.) Steyerm.	Malme 2733 (UPS)	FJ985009*	FJ905389*	-	-	FJ860209*	-	FJ948420*
Simira glaziovii (K. Schum.) Steyerm.	Andersson et al., 37060 (UPS)	FJ985010*	FJ905390*	-	-	FJ860210*	-	FJ948421*
Simira lancifolia (Lundell) E. Martínez \& Borhidi	Lundell \& Contreras 19909 (S)	FJ985011*	FJ905391*	-	FJ884678*	FJ860211*	FJ948351*	FJ948422*
Simira maxonii (Standl.) Steyerm.	Santamaría S-949 (GB)	FJ985012*	FJ905392*	-	FJ884679*	FJ860212*	FJ948352*	FJ948423*
Sommera arborescens Schltdl.	Salomón Maya 2925 (BR)	-	FJ905393*	-	-	FJ860213*	-	FJ948424*
Sommera donnell-smithii Standl.	Rova \& Sundbaum 2407 (GB)	FJ985013*	FJ905394*	-	AF243025 ${ }^{22}$	FJ860214*	FJ948353*	FJ948425*
Sommera grandis (Bartl. ex DC.) Standl.	Skutch 2422 (S)	FJ985014*	FJ905395*	FJ871971*	FJ884680*	FJ860215*	FJ948354*	FJ948426*
Tammsia anomala H. Karst.	Meier 11709 (MO)	-	FJ905396*	-	FJ884681*	-	-	-
Tresanthera condamineoides H. Karst.	Webster et al., 9805 (S)	FJ985015*	FJ905397*	FJ871972*	FJ884682*	FJ860216*	FJ948355*	FJ948427*
Warszewiczia coccinea (Vahl) Klotzsch	Delprete 6437 (UPS)	AJ846884 ${ }^{24}$	FJ905398*	-	FJ884683*	FJ860217*	FJ948356*	AJ84739724
Warszewiczia cordata Spruce ex K. Schum.	Woytkowski 5416 (S)	FJ985016*	-	AJ236314 ${ }^{21}$	FJ884684*	FJ860218*	-	FJ968793*
Wittmackanthus stanleyanus (R. H. Schomb.) Kuntze	Uribe 6648 (MO)	$\underline{\text { FJ985017* }}$	FJ905399*	FJ871973*	FJ884685*	FJ860219*	FJ948357*	FJ948428*
Alberta magna E. Mey.		FM20467723	-	AJ236282 ${ }^{21}$	FM204702 ${ }^{23}$	AM93938923	FM204742 ${ }^{23}$	FM20711023
Cephalanthus occidentalis L.		-	AY538377 ${ }^{27}$	AJ236288 ${ }^{21}$	AF004033 ${ }^{28}$	-	-	AJ346955 ${ }^{29}$
Cinchona pubescens Vahl.		-	Z70197 ${ }^{30}$	AJ235843 ${ }^{31}$	FM204714 ${ }^{23}$	-	FM204758 ${ }^{23}$	AJ346963 ${ }^{29}$
Coffea arabica L.		AJ224846 ${ }^{32}$	EF044213 ${ }^{33}$					
Crossopteryx febrifuga (Afzel. ex G. Don) Benth.	Bremer 3097 (UPS)	FM204690 ${ }^{23}$	FJ905329*	AM949851 ${ }^{23}$	FM20471723	AM939406 ${ }^{23}$	FM204760 ${ }^{23}$	FM207123 ${ }^{23}$
Cubanola domingensis (Britton) Aiello		-	AY538386 ${ }^{27}$	AM117345 ${ }^{34}$	FM20471823	-	FM204761 ${ }^{23}$	FM207124 ${ }^{23}$
Dendrosipanea spigelioides Ducke	Prance et al., 16199 (MO,NY,S)	$\underline{\text { AY555121 }}^{35}$	FJ905324*	FJ871943*	FJ884627*	-	FJ948291*	FJ948360*
Guettarda speciosa L.	Persson 141 (GB)	-	$\underline{\text { AY538389 }}^{27}$	FJ871942*	AF242964 ${ }^{22}$	-	FJ948289*	FJ948358*,7
Luculia gratissima (Wall.) Sweet		-	AJ429325 ${ }^{36}$	AJ011987 ${ }^{37}$	AJ431036 ${ }^{36}$	-	FM204765 ${ }^{23}$	AJ430911 ${ }^{36}$
Mussaenda erythrophylla Schumach. \& Thonn.	Gillis 10838 (FTG)	AJ224823 ${ }^{32}$	FJ905326*	AJ130836 ${ }^{21}$	FJ884628*	-	FJ948292*	AJ620116 ${ }^{38}$
Posoqueria latifolia (Rudge) Roem. \& Schult.	SU-C-88.10 Bergius Bot. Garden	AJ224828 ${ }^{32}$	FJ905325*	AM949855 ${ }^{23}$	FM204728 ${ }^{23}$	-	FM204774 ${ }^{23}$	FM207135 ${ }^{23}$
Rondeletia odorata Jacq.	Bremer \& Andreasen 3504 (UPS)	-	-	AJ235845 ${ }^{31}$	AF243010 ${ }^{22}$	-	FJ948290*	FJ948359*, 8
Sabicea aspera Aubl.	Andersson et al., 1941 (GB)	-	AY538420 ${ }^{27}$	EU145416 ${ }^{26}$	AF004079 ${ }^{28}$	-	FJ948293*	FJ948362*,9
Scyphiphora hydrophyllacea CF. Gaertn.	Bremer et al., 99 (S)	-	FJ905327*	AJ236311 ${ }^{21}$	EU817450 ${ }^{39}$	-	FM204779 ${ }^{23}$	EU817475 ${ }^{39}$
Sipanea biflora (L. f.) Cham. \& Schltdl.		-	AY538421 ${ }^{27}$	EU145413 ${ }^{26}$	AF004085 ${ }^{28}$	-	FM204780 ${ }^{23}$	FM207141 ${ }^{10,23}$
Steenisia pleurocarpa (Airy Shaw) Bakh. f.	Puff BF 990619-1/4 (WU)	-	FJ905328*	-	FM204735 ${ }^{23}$	-	FM204781 ${ }^{23}$	FM207142 ${ }^{23}$

 AF15263140; 6 , combined with AF15263040; 7, combined with AF15272540; 8, combined with AF15274140; 9, combined with AY538475 ${ }^{27} ; 10$, combined with AF152675 ${ }^{40}$

 (2009); 40, Rova et al. (2002).

[^0]: ${ }^{1}$ Manuscript received 4 March 2010; revision accepted 4 October 2010.
 The authors thank T. McDowell, T. D. Pennington, and J. H. E. Rova who have contributed material for this study and the curators of the herbaria BR, GB, K, MO, NY, S, and UPS for providing images, loans, and/or access to collections. They also thank A. Khodabandeh for laboratory assistance; M. Englund, P. O. Karis, and S. G. Razafimandimbison for helpful advice; M. Simmons, C. M. Taylor, and two anonymous reviewers for helpful comments on the manuscript; C. Gustafsson, C. Puff, T. Robins, J. H. E. Rova, and Arboretum Kalmthout, who kindly let them use their photographs; and C. M. Taylor for sharing unpublished information on Emmenopterys. The Knut and Alice Wallenberg Foundation and the Swedish Research Council provided financial support to B.B.

 6 Author for correspondence (e-mail: kent.kainulainen@botan.su.se)

