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Abstract
Systems and software product line engineering is a way to engineer a portfolio of related products in an 
efficient manner, taking full advantage of the products’ similarities while respecting and managing their 
differences. Considering a portfolio as a single entity to be managed, as opposed to a multitude of separate 
products to be managed, brings enormous efficiencies in production and maintenance; these efficiencies are 
delivering order-of-magnitude improvements in engineering cost, time to market, staff productivity, product 
line scalability, and quality. This entry defines and explores the concepts central to systems and software 
product line engineering and five key characteristics that are central to its modern practice.

 INTRODUCTION

Systems and software product line engineering is a way to 
engineer a portfolio of related products in an efficient 
manner, taking full advantage of the products’ similarities 
while respecting and managing their differences. By 
“engineer,” we mean all of the activities involved in plan-
ning, producing, delivering, deploying, sustaining, and 
retiring products.

Considering a portfolio as a single entity to be man-
aged, as opposed to a multitude of separate products to be 
managed, brings enormous efficiencies in production and 
maintenance; these efficiencies are delivering order-of-
magnitude improvements in engineering cost, time to 
market, staff productivity, product line scalability, and 
quality.[1]

Hard goods factories have long had the ability to pro-
duce variations of the same basic product. Think of the 
size/color choice you can make for a pair of shoes, or the 
hundreds of options available on an automobile. Sys-
tems and software product line engineering applies this 
same concept to the engineering artifacts that are in 
 digital or “soft” form and that support a product—its 
requirements, designs, implementation, project plans, 
test cases, user documentation, and more, all of which 
need to be managed and produced in variants that match 
the product.

This entry defines and explores the concepts central 
to systems and software product line engineering. It 
describes the benefits that organizations employing it 
have enjoyed, which are substantial. It describes the 
software roots of the field, and talks about its evolution 
to its current form and the five key characteristics com-
prised by modern software and systems product line 
engineering.

What is Systems and Software 
Product Line Engineering?

Systems and software product line engineering, often 
abbreviated as product line engineering (PLE), refers to the 
disciplined engineering of a portfolio of related products 
using a common set of shared assets and a common means 
of production.

Products

The products in the portfolio are described by the proper-
ties they have in common with each other and the varia-
tions that set them apart. The products can comprise any 
combination of

 ● software,
 ● systems in which software runs, or
 ● non-software systems that have software-representable 

artifacts (such as engineering models or development 
plans) associated with them.

Throughout this entry, when we refer to a product, we 
usually mean not only the primary entity being built and 
delivered but also all of the artifacts that are produced along 
with it. Some of these support the engineering process (such 
as requirements, project plans, design modes, and test cases), 
while others are delivered alongside the thing being built 
(such as user manuals, shipping labels, and parts lists).

Assets

Assets are the “soft” artifacts associated with engineering 
life cycle of the products, the building blocks of the products 
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in the product line. Assets can be whatever artifacts are rep-
resentable with software and either compose a product or 
support the engineering process to create a product. These 
can include but are not limited to the following:[2]

 ● Requirements
 ● Design specifications
 ● Design models
 ● Source code
 ● Build files
 ● Test plans and test cases
 ● User documentation
 ● Repair manuals and installation guides
 ● Project budgets, schedules, and work plans
 ● Product calibration and configuration files
 ● Data models and parts lists

Assets in PLE are engineered to be shared across the 
product line. Assets are designed with built-in variation 
points, which are places in the asset that change depending 
on the product in which the asset is used. When a product 
is built, a statement of the product’s distinguishing charac-
teristics is applied to “exercise” these variation points 
(i.e., cause the change in the asset to occur to meet the needs 
of the product).[3] Variation points use variation mechanisms 
to impart product line diversity; these mechanisms include 
macros in code, substituting one variant of the artifact for 
another; runtime conditionals and configuration files; attri-
butes and filters; model and text transformations; feature 
mappings, parameterization, and many more.

Means of Production

The means of production is the mechanism that exercises 
the assets’ variation points to produce configured versions 
that together constitute the artifact set for one of the prod-
ucts in the product line.[4] Configuring the shared assets for 
each product in turn produces the entire set of products.

The means of production can be manual, but for product 
lines of any size or frequency of change, manual produc-
tion is impractical; some form of automation is required.

Low-end automation might be a programming lan-
guage’s macro processor combined with compiler flags 
and #ifdef statements to turn blocks of code on or off. 
However, this scheme scales poorly, may not trace well 
across different kinds of artifacts, and in fact may not work 
for, for example, requirements or design models. This leads 
to an ad hoc collection of techniques for expressing varia-
tion, each specialized to its own type of asset.

At the high end of the spectrum are special-purpose 
PLE tools that tie variation points to a central feature model 
for the entire product line and provide a set of mechanisms 
for defining and exercising the variation points in all kinds 
of assets. Examples of such tools include Gears,[5,6] 
pure::variants,[7] XVCL,[8] Dopler,[9] and more.

An analogy with factory-based manufacturing serves to 
illuminate the concepts.

Manufacturers have long used analogous engineering 
techniques to create a product line of similar products 
using a common factory that assembles and configures 
parts designed to be reused across the varying products in 
the product line. For example, automotive manufacturers 
can create thousands of unique variations of one car model 
using a single pool of parts carefully designed to be con-
figurable and factories specifically designed to configure 
and assemble those parts.

In PLE, the configurator is the factory and the assets 
represent the factory’s supply chain. A statement of the 
properties desired in the end product tells the configurator 
how to configure the assets.

The essence of PLE—for systems and software, as for 
manufacturing—is the focus on the single system rather 
than many products. The “system” in this case consists of 
the production line, which enables the rapid production of 
any variant of any of the assets for any of the products in 
the portfolio. An PLE production line consists of

 ● a collection of soft assets (i.e., assets that can be repre-
sented digitally) that are shared across the products,

 ● a set of specifications that define the products, and
 ● the configurator that applies a product specification 

to the assets in order to produce each product in the 
portfolio.

Once the production line is established, engineering 
assets and products are instantiated rather than manually 
created.

In Fig. 1, the “factory’s” supply chain is at the left, in 
the form of shared assets that are configurable because 
they include variation points that are expressed in terms of 
the features available in each of the products. A product 
specification at the top tells the configurator how to con-
figure the assets coming in from the left. The resulting 
products, assembled from the configured assets, emerge 
on the right.

PLE CONTRASTED WITH PRODUCT-CENTRIC 
DEVELOPMENT

PLE stands in contrast to classical product-centric develop-
ment, in which each individual product is developed and 
evolved independently from other products, or (at best) 
starts out as a cloned copy of a similar product that is then 
changed to suit the new product’s specific needs. Product-
centric development takes very little advantage of the com-
monalities among products in a portfolio after the initial 
clone operation. In particular, it derives very little benefit 
from commonality in a product’s sustainment or mainte-
nance phase, where data show that most products consume 
up to 90% of their project resources.
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To see how this form of reuse can lead to intractable com-
plexity, assume that a defect is found in Product B and the 
defect is traced to an ambiguous or incorrect requirement in 
Product B’s requirements. The Product B team fixes the error, 
redesigns as necessary, and then fixes the code and test cases 
before redeploying Product B. Product B is now healthy again.

But suppose that the defect in Product B’s requirements 
was “inherited” when the Product B team copied the 

Figure 2 shows a stylized view of a production shop in 
which N products are developed and maintained. In this 
simplified view, each product comprises requirements, 
design models, source code, and test cases. Each engineer 
in this shop works primarily on a single product. When a 
new product is launched, its project copies the most similar 
assets it can find and starts adapting them to meet the new 
product’s needs.

Fig. 1 PLE seen as a factory.

Fig. 2 Product-centric development and O(N2) complexity.
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hiring, acquiring better tools, improving processes, and the 
like, but these measures result in modest improvements at 
best and are ultimately ineffective against an engineering 
problem that is growing as the square of the number of 
products in the portfolio. In organizations where engineer-
ing capability is about to be (or has been) swamped by the 
engineering complexity of their portfolio, missed dead-
lines, decreasing quality, and lower employee morale are 
the norms.

Figure 1 alluded to PLE as a factory, and that analogy 
can be brought to bear to remedy the O(N2) problem of port-
folio management. In a manufacturing factory, a defective 
product would not be fixed by one-off repairs to the product 
itself. Rather, the factory, its supply chain, and the manufac-
turing process itself would be scoured to find the source of 
the defect.

So it is with PLE. Rather than fixing a defective prod-
uct, PLE engineers fix the shared asset(s) that need to be 
modified (perhaps by adding a new variation point) in 
order to produce the product correctly. Then, the configura-
tor is used to regenerate the product, as well as any other 
product affected by the changes in the shared assets.

Since regeneration has a low and fixed cost, it matters 
very little whether 2, 200, or 2000 products need to be 
regenerated. Thus, fixing a defect, making a systematic 
enhancement, or carrying out any other kind of portfolio-
wide change becomes an O(N) operation.

In Fig. 3 suppose the same defect in Product B occurs 
that we described earlier, and suppose the defect is traced 
to Product B’s requirements. Under the factory paradigm, 

requirements from Product A. Suppose further that the 
source code for Product N was copied from Product B’s 
(defective) source code, and the test cases for Product N 
were similarly “borrowed” from Product A’s (inadequate) 
test cases.

To really root out the defect from the entire portfolio, 
each of the N product teams should really confer with each 
of the other N – 1 product teams. These communication 
paths are shown in red in Fig. 2. This communication obli-
gation imposes an overhead that grows as the square of the 
number of products. So, in a relatively modest product line 
of 30 products, some 900 interproject communication paths 
should be activated. This complexity will quickly over-
whelm any engineering staff; in order to get their products 
out of the door on time and on budget, each product team 
will focus more on their product silo and less on taking 
advantage of the commonalities and interdependencies 
among the other products. The result is divergent product 
silos, low degrees of sharing, and high duplication of effort 
across the product silos to fix the same defect multiple times 
in multiple products, or to independently implement the 
same enhancements in different ways in different products.

PLE AND THE FACTORY PARADIGM

Clearly, product-centric development lacks the ability to 
scale. Productivity, product quality, or economies of pro-
duction will degrade as the portfolio grows larger. Organi-
zations can improve their engineering capabilities through 

Fig. 3 PLE and O(N) complexity.



Systems and Software Product Line Engineering 5

descriptively useful. We can identify the Baby Boomer, 
Gen-X, Gen-Y, Tween, and Millennium Generations. 
Fighter aircraft are generally thought to be in their fifth 
generation[17] and programming languages in their fourth or 
fifth (opinions vary).[18] Current standards for mobile 
broadband devices are labeled “4G.”

In the same spirit, we characterize some early and long-
standing approaches to product line engineering as fi rst 
generation. These include the following:

 ● Parnas’ seminal paper on product families in 1976[19] 
instilled the idea that similar programs could be treated 
as a family rather than as a separate and unrelated set. 
Parnas characterized software evolution as a tree of 
decision possibilities. Every design decision leads 
down a different path of the tree. The family of possible 
programs occupies the leaves of the tree. Making a 
change involves backtracking up the tree and choosing 
a different path downward, ending at a different leaf. 
Obviously, the less backtracking required, the easier the 
change. Parnas argued that, to accomplish this, we 
should make the most stable design decisions early, 
corresponding to nodes closer to the tree’s root, and the 
most volatile ones late.

 ● Domain analysis, exemplified by the feature-oriented 
domain analysis (FODA) method,[20] provided a way to 
express the commonality and variations found in a set 
of systems or products. FODA provided a useful defini-
tion of a feature, which is “A prominent or distinctive 
user-visible aspect, quality, or characteristic of a soft-
ware system or systems,” and this definition still serves 
well in the PLE world. FODA led the way to a wide 
variety of feature modeling languages, which allow 
domain modelers to express features and their allow-
able combinations.

 ● The software reuse movement[21,22] that came to fruition 
in the early 1990s emphasized code repositories. By 
and large, this movement exemplified opportunistic 
reuse (i.e., searching to see if a unit of software exists to 
fill a need as it arises), as opposed to planned reuse. Its 
primary contribution to PLE was to instill the notion 
that software systems might not (or should not) be built 
from scratch.

 ● The U.S. Department of Defense’s Advanced Research 
Projects Agency’s STARS (Software Technology for 
Adaptable, Reliable Systems) project turned its attention 
to software product line development in the early to mid-
1990s.[23] STARS instilled the dichotomy between domain 
engineering (the construction of reusable core assets) and 
application engineering (the selection, application, and 
augmentation of those assets to build products). Applica-
tion engineering is often said to include creating any 
assets used in a single product and promoting them to core 
assets only if subsequently used in more than one product.

 ● Generative programming[24] involves the use of domain-
specific languages in which to specify a product and a 

engineers work on shared assets (requirements, design, and 
so forth) that apply across the entire portfolio. And so the 
portfolio’s requirements engineers work to fix the defect in 
a way that not only fixes Product B but also applies across 
the whole product line. In other words, the defect is fixed 
on the left, and not in Product B’s “silo.” Then, Product B 
and any other affected products are regenerated using the 
product configurator.

DEMONSTRATED BENEFITS OF PLE

PLE is of interest because of remarkable efficiencies it has 
shown in the development process. The Software Engi-
neering Institute lists the following benefits associated 
with software product lines:[10]

 ● Large-scale productivity gains
 ● Decreased time to market
 ● Increased product quality
 ● Decreased product risk
 ● Increased market agility
 ● Increased customer satisfaction
 ● More efficient use of human resources
 ● Ability to affect mass customization
 ● Ability to maintain market presence
 ● Ability to sustain unprecedented growth

Numerous case studies of PLE have shown substantial 
measured improvements in time to market, cost, product 
quality, product line scalability, and developer product-
ivity, compared to product-centric development.[11,12,13,14] 
A few of the many published examples are as follows:

 ● The U.S. Army expects to save $584 million in devel-
opment costs by procuring a family of live training sys-
tems as a product line rather than a series of separate 
acquisitions.[15]

 ● Cummins, Inc., reports that as a result of building the 
software inside their engines using PLE, software proj-
ects that used to take a year now take about a week.[16]

 ● MarketMaker Software AG reported that PLE led to a 
2×–4× reduction in time to market and a reduction in 
maintenance costs of around 60%.[16]

 ● Hewlett-Packard reports that with a product line 
approach, they were able to build products 10 times as 
complex, with 1/4 of the staff, in 1/3 of the time, and 
with 1/25 of the number of bugs of earlier products.[16]

EARLY APPROACHES AND 
FIRST-GENERATION PLE

For products that embody software, PLE is an extension of 
software product line engineering.

“Generations” are hard to pin down precisely and do not 
have impermeable boundaries, but the concept can be 
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In 2GPLE, there is a marked contrast (or at least exten-
sion) to the four characteristics of first-generation product 
line engineering (1GPLE) outlined above:

1. Application engineering shrinks to almost nothing; 
products are produced through the use of high-end 
industrial strength automation that configures the 
shared assets appropriately for each product.

2. All artifacts, software and otherwise, are treated 
equally. As assets, they are endowed with variation 
points expressed using the same language constructs, 
for a consistent representation of the configurability 
available across all artifacts. This yields consistent and 
traceable variation management in artifacts across the 
full engineering life cycle.

3. Features have evolved from a general concept in 
domain analysis to a central role in variation manage-
ment. The variation points in an asset are defined by 
naming the features and feature combinations under 
which each configuration applies. Features become 
the lingua franca to express product differences in all 
phases of the life cycle.

4. A simplified CM policy strongly discriminates 
between managing shared assets and managing prod-
ucts. In fact, 2GPLE CM explicitly declines to manage 
product versions, but only shared asset versions.[2] New 
versions of products are defined (like any other prod-
uct) with a combination of features specific to it and 
produced by configuring the shared assets accordingly.

A fifth contrasting characteristic of 2GPLE delivers an 
essential capability for large-scale product lines that was 
stated as a possibility but never central to 1GPLE.

5. Feature models with encapsulating constructs to facili-
tate hierarchical product lines[33] and cooperative feature 
model development across organizational boundaries. 
This extends the architectural concept of a “system of 
systems” to support a “product line of product lines”.

We will cover each of the five characteristics of 2GPLE 
in depth, beginning with the importance of features.

Characteristic 1: Features as the Lingua Franca 
to Express Product Differences Across the 
Life cycle

A feature, to paraphrase Kang et al.[20], is a distinguishing 
characteristic of a product, usually visible to the customer 
or user of that product. An example is a function that one 
product can perform that others cannot.

The concept of “feature” allows a consistent abstraction 
to be employed when making choices from a whole product 
configuration all the way down to the deployment of soft-
ware components within a low-level subsystem in the 
architecture. A bill-of-features (analogous to a bill-of-mate-
rials, but defining a product in terms of its features rather 

generator to process a product description written in 
that language to turn out a product. In 1999, Weiss and 
Lai adopted this approach for a product line methodol-
ogy called FAST (Family-Oriented Abstraction, Speci-
fication, and Translation).[25]

 ● Case studies of successful software product lines began to 
emerge in the mid-1990s. These included STARS demon-
stration projects, but also included commercial successes 
(e.g., Brownsword and Clements[26]). These revealed that 
successful product lines required more than a technical 
approach, but also strong management and business acu-
men (e.g., Bergey et al.[27]). Movements began to coalesce 
to explore product lines from this more holistic approach: 
first in Europe as a series of Program Families work-
shops,[28] and then in the United States with the creation 
of the Product Line Practice research program at the 
 Software Engineering Institute[28] and its creation of the 
Software Product Line Conference (SPLC) series of 
international conferences (www.splc.net).[29]

A distillation of first-generation approaches includes 
the following:

1. A strong dichotomy between domain engineering and 
application engineering, or core asset development 
and product development. Application engineering is 
often said to include creating any assets used only in a 
single product and promoting them to core asset status 
only if subsequently used in more than one product. 
Application engineering includes the obligation to 
choose a production strategy—that is, a way to turn 
the shared assets into products.[30]

2. Explicit inclusion of non-software artifacts in the col-
lection of core assets, but an unmistakable emphasis on 
software (under the umbrella of an all-encompassing 
software architecture) as the principal kind of core asset.

3. Focus on features as the language to describe a product 
line’s domain and a way to discriminate products from 
each other in that domain.

4. Acknowledgment of configuration management as an 
essential practice under PLE, but without a strong dis-
tinction between core asset configuration management 
(CM) and product CM.

These approaches have yielded a rich legacy of product 
line success, as evidenced by a plethora of case studies. The 
newer approaches we describe below build on them.

SECOND-GENERATION PLE

Recently, a newer set of approaches has emerged that 
together have been referred to as second-generation prod-
uct line engineering (2GPLE).[31,32] This characterization 
represents seen-in-practice extensions—some minor, some 
fundamental—to the early paradigm that was centered 
mainly on core asset production and product derivation.
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sport package, and economy package” would be an enumer-
ation type since the choice is mutually exclusive.

Features can be nested (e.g., the optional feature 
“Moon roof” could come in two varieties: electric or man-
ual). The complete set of feature declarations forms a tree, 
outlining all of the decisions that are made to define a 
product.

Figure 4 shows a partial example of a feature model for 
a vehicle cruise control system.

 ● “Feature assertions” describe constraints and depen-
dencies among the feature declarations. Feature asser-
tions in Gears express REQUIRES or EXCLUDES 
relations. They express the constraint that a feature (or 
combination of features), if present, either requires or 
excludes the presence of another feature (or combina-
tion of features). For example, if we want to make sure 
that certain features are not available when we are 
selling our product in a certain region, we could 
express that constraint with an EXCLUDES assertion 
between the region feature and the features we want to 
restrict.

 ● “Feature profiles” are used to select and assign values 
to the feature declaration parameters for the purpose of 
instantiating a product. A feature profile is associated 
with a subsystem or a product and reflects the actual 
choices you make: Two door with sport package but no 
moon roof or four door with luxury package and moon 

than its parts) can be the communication vehicle between 
business, product marketing, and engineering units.

The product line literature is rife with feature modeling 
languages and constructs, but experience is showing a very 
small and simple set of feature modeling constructs suf-
fices for describing all of the necessary feature information 
for large and very complex product lines.[31]

For example, the following are the feature modeling 
constructs provided by Gears:[6]

 ● “Feature declarations” are parameters that express the 
diversity in the product line for a system or subsystem. 
Feature declarations are analogous to the choices that 
are available when you buy a new car: Two door or four 
door? Sport package, luxury package, or economy 
package? Moon roof? Feature declarations typically 
express the customer-visible diversity among the prod-
ucts in a product line.

Feature declarations have types. When a feature is cho-
sen for inclusion in a product, it must be given a value con-
sistent with its type. Table 1 shows the feature types 
supported by Gears.

Nodes that have children are of type enumeration, set, 
or record—the compound types. Leaf nodes are Booleans, 
integer, float, string, character, or atom—the simple types.

Continuing the example, the feature “Moon roof” would 
be type Boolean, since it is either in or out. “Luxury package, 

Table 1 Gears feature types

Boolean True, false Enumeration Select exactly one value from subordinate 
features.

Integer and float Signed or unsigned 
numeric value

Set Select zero or more value from subordinate 
features.

String Character string delimited by double 
quotes

Record Select all values from subordinate 
features.

Character Single character delimited by 
single quotes

Atom Named member/value of a set or 
enumeration.

Fig. 4 Example of a partial feature model in Gears. Note the feature types such as “Enumeration.”
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with attributes that differentiate feature variations in require-
ments. Further, the design team has adopted a Unified Mod-
eling Language (UML) tool and has embraced inheritance 
as the mechanism for managing PLE design variations. The 
development team is using a FODA feature model drawn in 
a graphical editor, plus #ifdefs, build flags, and CM 
branches to manage implementation variations. Finally, the 
test team has adopted clone and own of test plan sections, 
stored in appropriately named file system directories to 
manage their PLE test plan variations. Now imagine what 
would be needed to create a complete PLE lifecycle solu-
tion that integrates into a larger business process model. 
How do the requirements database attributes and tagged 
requirements relate and trace to the subtypes and super-
types in the design models? How do these attributes and 
supertypes relate and trace to the #ifdef flags, CM branches, 
FODA features, and test case clone directories? Trying to 
translate between the different representations and charac-
terizations of features and variations creates dissonance at 
the boundaries between stages in the life cycle.

To resolve this quagmire, a key aspect of 2GPLE is not 
just inclusion of non-software artifacts, but consistent and 
traceable treatment.

Figure 5 shows the classic V-model for systems and 
software engineering. Each phase is augmented by the 
addition of variation points (indicated by the gear symbol) 
to the artifacts native to that phase. A Bill-of-Features for a 
product corresponds to the feature selections within the 
feature profiles for that product. The yellow arrows illus-
trate that all of the variation points in all of the artifacts 
across the full life cycle are synchronously and consistently 
configured according to the single consolidated collection 
of feature selections in the Bill-of-Features.

roof. The values assigned in feature profiles must sat-
isfy the constraints and dependencies expressed by the 
assertions in the feature declarations. A feature profile 
cannot be used if any of its value assignments violates 
an assertion. Constructing a feature profile consists of 
“walking across” a tree of feature declarations and 
making the necessary choices: For each Boolean, 
choosing true or false; for each enumeration, choosing 
a value; for each set, choosing the members to include, 
etc. Feature profiles let us escape the deadly combina-
torial complexity of huge product spaces. Of the astro-
nomical variety available, the set of feature profiles 
clearly enumerates which (small) set of products is 
actually of interest.

Characteristic 2: Consistent Variation 
Management in Artifacts from Across 
the Full Life cycle

It has long been a stated tenet of product line practice that 
core assets include more than software. For example, the 
Software Engineering Institute’s Framework for Product 
Line Practice[30] states that “architecture, requirements 
specifications, testing-related artifacts, budgets, schedules, 
plans, and production infrastructure can all constitute core 
assets.” However, 2GPLE goes beyond just a statement of 
eligibility. It enforces consistent treatment of the artifacts’ 
variation points under the production infrastructure, so that 
a full set of demonstrably consistent supporting artifacts 
can be systematically generated for each product.

In contrast, imagine that a requirements engineering team 
has embraced a PLE requirements management technique 
based on tagging requirements in a requirements database 

Fig. 5 The V-model for system engineering, recast for product line engineering.
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Under the factory paradigm of Fig. 3, any defects are 
fixed in the shared assets, not the products. The affected 
products will then be regenerated.

Figure 6 is the conceptual roadmap satisfying require-
ment R2 under the 2GPLE CM approach. Figure 6 shows 
the following information:

 ● A number of shared PLE assets are arrayed down the 
left-hand side, from various lifecycle phases. Each 
asset (shown notionally in the figure as modules, pack-
ages, components, and test suites) undergoes evolution-
ary change; its evolutionary trajectory extends to the 
right. (For simplicity, although each individual asset is 
versioned, the chart does not show version numbers.)

 ● The bottom shows the products in the product line. (For 
simplicity, only three are shown.) Each product goes 
through various phases, such as alpha release, beta 
release, and public release.

 ● Across the top are several temporal contexts. A tempo-
ral context is a vector of assets and the version of each 
that was used to build a product.

For example, Fig. 6 shows that the Beta version of Product 
A is built using Temporal Context 5.7. To see what a temporal 
context comprises, follow its colored line (light blue for Tem-
poral Context 5.7) as it zigzags down through the core asset 
versions to see what versions of what core assets it touches. 
Figure 6 shows that Temporal Context 5.7 comprises

 ● the second version of Module 1;
 ● the second version of Module 2;
 ● the third version of Module 3;

Characteristic 3: CM that Maintains Assets, 
Not Products or Asset Instantiations

CM for a product line must satisfy (among others) the fol-
lowing two requirements:

 ● R1: Ensure that no product is created using assets that 
are temporally incompatible with each other or incor-
rect for use in any automatically configured product 
instance. This establishes and maintains the integrity of 
the products over time and throughout the engineering 
life cycle as the assets evolve from version to version.

 ● R2: Allow the rapid reconstruction of any product ver-
sion that may have been built using various versions of 
the PLE assets and development/operating environ-
ment. This capability is essential for rapid response to 
and remediation of any anomalies that arise in the field.

The most important aspect of CM in 2GPLE is that the 
full superset of available PLE assets (and not the individual 
products or systems) are managed under CM. A new ver-
sion of a product is not derived from a previous version of 
the same product, but from the shared superset of PLE 
assets themselves.

Previous approaches to CM for product lines have 
adopted a “multidimensional” approach,[30] claiming that 
CM for product lines requires CM for core assets and CM 
for products and also stating that “CM for product lines is 
therefore more complex than it is for single systems.”[34] In 
fact, a key tenet of 2GPLE is to reduce the complexity of 
product line CM to that for single products, and much less 
than that for a suite of separately managed products.[2]

Fig. 6 Temporal contexts in multi-baseline management.
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parent–child relationship for product lines that typically 
mirrors the  system–subsystem decomposition in the vehicle 
architecture. Product line features can be partitioned, encap-
sulated, and scoped within the primary subsystems that real-
ize the features. Features can also be shared among product 
lines by establishing an import relationship, which is crucial 
for establishing feature constraints and asset variation points 
among interrelated subsystems (e.g., a high-end flavor of 
cruise control that slows the car if there is traffic ahead 
requires a flavor of the braking system that supports braking 
via software command).

Characteristic 5: Industrial Strength Automation

The last ingredient in 2GPLE is a configurator like the one 
shown in Fig. 3, employed to maintain configurations and 
translate feature profiles into assets with their variation 
points exercised in prescribed ways.

Previous approaches from 1GPLE have always made 
allowances for automation, but large-scale PLE demands it. 
For one thing, the complexities of modern product lines are 
growing to astronomical proportions. For example, in a 
product line under way at General Motors, the feature space 
is so complex that the number of possible variations vastly 
exceeds the number of atoms in the visible universe (http://
en.wikipedia.org/wiki/Observable_universe).[31]

The tooling needs to be able to support the construction 
and management of feature models (including feature dec-
larations, assertions, and profiles), assets, and variation 
points; support hierarchical production lines; and represent 
the logic that maps from feature choices to asset instances. 
Further, it needs to either provide version control for the 
models and artifacts or (even better) work seamlessly on top 
of the user’s own choice of change management system.

A major requirement for the tooling is that it supports the 
specification and selection of variation in assets and arti-
facts from across the entire spectrum of the product life 
cycle. This means that the tool will have to support variation 
in, for example, DOORS requirements modules, Microsoft 
Word documents and Excel spreadsheets, build files for 
Make or Ant, Rhapsody UML models, and many more.

There are fundamentally three ways to achieve variation 
in an asset, depending on what you know about the digital 
representation of the associated artifact:

 ● The representation of the artifact is proprietary and 
closed, or editors for it are not available or are impracti-
cal. For example, if our products include a picture that 
is different from product to product, some of our arti-
facts may be GIF or JPG files. To achieve variation, the 
variation point can simply choose from a selection of 
alternative variants, using each one as is, as opposed to 
trying to change the picture by editing the image stored 
in a one-size-fits-all picture file.

 ● The representation of the artifact is “open,” so that you 
can change it using an available open market tool. For 

 ● the first version of Package 4;
 ● the third version of Package 5;
 ● the third version of Package 6; and so forth.

Where temporal context lines intersect, it means that 
two or more temporal contexts share the same version of an 
asset. For example, Temporal Contexts 3.0, 4.2, and 5.7 all 
use the first version of Package 4.

Characteristic 4: Product Lines Across 
Organizational Boundaries

Organizations, even small ones, often have separate divi-
sions at work to support their product line. Large organiza-
tions almost certainly do. These divisions may be 
geographically or organizationally isolated from each other. 
In this case, it is impractical to expect everyone to work on 
the same feature model, the same set of shared assets, and 
so forth. Certainly, having one global collection of feature 
declarations for an entire production line is impractical 
when features may number in hundreds or even thousands. 
Large feature sets engender intractable and incomprehen-
sible combinatorics. Subsystem engineers have no interest 
or need to see all of the feature diversity in other subsys-
tems. For example, engineers for an automotive transmis-
sion system do not need to see feature abstractions that 
capture the diversity in the entertainment or GPS navigation 
system. It makes no sense to comingle them.

It makes much more sense to modularize the feature 
model in a way that corresponds to the organizational struc-
ture of the enterprise. Although these structures can change 
over time,[33] they make an excellent starting point and let 
the organization begin to adopt PLE using familiar units.

For example, an automotive vehicle is composed from 
combinations of dozens of subsystems, all the way from 
the engine and transmission down to the subsystems that 
defog the mirrors and heat the driver’s seat. Each of these 
subsystems has features of its own, which allow a vehicle 
team to pick and choose in order to define a car. In this way, 
an automobile (like many complex systems in product 
lines) is more like a system of systems,[35] which is man-
aged as a product line of product lines.

Each of these units represents a domain, by which we 
mean a body of knowledge.[20] These pockets of deep 
knowledge are often part of the fabric of the company. In a 
2GPLE context, the specialized knowledge becomes 
knowledge about the feature variations that are possible, 
and the result is a number of product lines that each con-
tributes instances to the overall product. At every level, the 
same small and elegant set of concepts work to capture the 
inherent variation. This lets engineers work largely inde-
pendently within the confines of their own organizational 
units and domain expertise.

A hierarchical production line constitutes an architec-
ture-like construct, in that there are interfaces and relation-
ships among the nested product lines. There is the 
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cycle of each product (vertical axis), evolving the portfolio 
over time (horizontal axis), and managing the plurality of 
products (outward-pointing axis). To be a viable paradigm, 
2GPLE has to be able to handle each of these “dimen-
sions.” Here is how it does:

 ● The multiphase (vertical) axis of Fig. 7 deals with the 
usual product engineering lifecycle concerns, such as 
requirements engineering, architecture and design, 
implementation, and test, plus the traceability for inter-
dependency among the phases. The 2GPLE character-
istic of consistent variation management in artifacts 
from across the life cycle (See the section on “Charac-
teristic 2: Consistent Variation Management in Artifacts 
from across the Full Life Cycle.” ) supports product line 
diversity through variation points in all assets across the 
full life cycle.

 ● The multi-baseline axis of Fig. 7 deals with the usual 
temporal concerns of product engineering, such as ver-
sion, configuration, and change management. The 
2GPLE characteristic of CM that maintains assets and 
not products (see the section on Characteristic 3: CM 
that Maintains Assets, Not Products or Asset Instantia-
tions) supports asset evolution for all assets, without 
having to independently manage evolution of each of 
the products in a product line.

 ● The multi-product axis of Fig. 7, of course, deals 
directly with the PLE concerns not supported by con-
ventional product-centric engineering. The 2GPLE 
characteristics of features as the lingua franca of varia-
tion (See the section on “Characteristic 1: Features as 
the Lingua Franca to Express Product Differences 
across the Life Cycle.”), CM that maintains assets and 
not products (See the section on “Characteristic 3: CM 
That Maintains Assets, Not Products or Asset Instantia-
tions.”), product lines across organizational boundaries 
(See the section on “Characteristic 4: Product Lines 
across Organizational Boundaries.”), and industrial 

example, artifacts stored as simple text files may be 
transformed by simple word or line substitution. Arti-
facts that are Microsoft Word documents stored in 
Office Open XML format can be transformed by third-
party tools. In this case, the variation point operates by 
transforming a single variant, transforming it appropri-
ately for each product being built.

 ● The representation of the artifact is proprietary, but the 
owning organization offers a business relationship to 
allow your tool to edit their artifacts. Suppose your 
requirements are stored in DOORS, using hundreds and 
hundreds of DOORS requirements objects. The represen-
tation of those objects is proprietary, but using the strat-
egy in the first bullet is out of the question: Swapping in 
and out whole requirements documents that each differs 
by just a little bit is untenable. It would be much better to 
make an arrangement with the vendor (IBM Rational in 
this case) so that you can write a piece of software that 
can insert and operate on variation points throughout the 
DOORS representation of a body of requirements.

This adds another requirement to the product line engi-
neering automation engine that does not come immediately 
to mind: does its proprietor have the necessary business 
relationships to support variation in the third category? 
This property is essential for the property of 2GPLE we 
described earlier: support for variation in shared assets 
originating from across the entire life cycle.

First-generation approaches always discuss the need for 
automation; second-generation approaches require it. Fur-
ther, they do not just require technical proficiency from the 
tool but business proficiency from the tool’s proprietor.

HOW 2GPLE HANDLES TRADITIONAL 
PORTFOLIO ENGINEERING CONCERNS

Organizations building a portfolio of products have to deal 
with the concerns illustrated in Fig. 7: managing the life 

AQ1

Fig. 7 Synchronous concerns of 2GPLE.
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The bottom tier concentrates on incorporating the product 
configurator into the organization and beginning to use it to 
define a feature model and shared assets for the product line.

The middle tier concentrates on reengineering the prod-
uct assets into a collection of shared assets with variation 
points. In this tier, new roles specific to 2GPLE are defined 
and filled, roles that move the engineers away from product-
specific responsibilities, as in Fig. 2, and toward asset- 
specific but product-independent roles, as in Fig. 3.

The top tier allows the organization’s management to 
steer the portfolio in strategic directions by defining prod-
ucts with new features or new feature combinations to, for 
example, enter a new market where the organization’s abil-
ity to produce new products quickly and efficiently will 
give it competitive advantage.

The mastering of tiers need not be sequential; organiza-
tions can begin building capabilities in each tier together. 
Further, adoption can be incremental and need not happen 
all at once. Under a principle known as “incremental return 
on incremental investment,” each step toward complete 
adoption brings commensurate benefit. Incremental steps 
can include the following:

 ● Engineering variation points into some, but not all, 
shared assets right away. For instance, an organization 
might choose to convert its requirements base into 
shared asset form, but defer its source code, test cases, 
and other assets until later.

 ● Engineering variation points into the assets that support 
some products but not all. For example, an organization 
might choose to embed variation points into its product 
assets that support the most widely sold products in the 
portfolio.

 ● Engineering variation points into the assets to support a 
subsystem that is widely used across the portfolio.

strength automation (See the section on “Characteristic 5: 
Industrial Strength Automation.”) address feature-
based automation, consistent product evolution, intra-
organizational cooperation, and product line production, 
respectively.

ORGANIZATIONAL ADOPTION

Examination of Figs. 2 and 3 shows that 2GPLE involves 
different roles and responsibilities than traditional product-
centric development. For any technology that asks an orga-
nization to change the way it does business, organizational 
adoption (the processes and steps needed to introduce and 
successfully use the technology) becomes an issue.

A prerequisite for successful adoption is clear moti-
vation. Many organizations adopt product line engineer-
ing because they have encountered the “wall” where 
their engineering capability is swamped by the engineer-
ing complexity of their portfolio. For these organiza-
tions, changing the way of doing business is a matter of 
survival, which is highly motivating. Other organiza-
tions move to product line engineering for competitive 
advantage or to increase their bottom line. These organi-
zations are surviving, and here the improvement goals 
should be made explicit and socialized among the tech-
nical staff and management, so that everyone under-
stands the purpose of the disruption and can track its 
progress.

Much has been written about organizational adoption 
of product line engineering (e.g.,[30] “Launching and Insti-
tutionalizing”). Because of the industrial strength auto-
mation at the heart of 2GPLE, it comes with its own 
adoption model called the “3-Tier PLE Methodology” 
(Fig. 8).[5]

AQ2

Fig. 8 3-Tier Methodology for 2GPLE adoption.
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