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KEY POINTS

� Novel imaging techniques, such as 3D ultrasound and diffusion tensor MRI, have revealed
the unique myoarchitecture of the external anal sphincter and puborectalis muscle, which
is relevant from the point of view of understanding their precise function and preventing
obstetric/surgical damage to these muscles.

� Studies show that the external anal sphincter and puborectalis muscle operate at the short
sarcomere length, which has important implications for designing novel surgical ap-
proaches to treat anal incontinence.

� High-resolution manometry, high-definition manometry, and functional luminal imaging
probe are important newmodalities to assess the strength of the anal sphincter. However,
3D ultrasound imaging and diffusion tensor imaging can assess the integrity of anal
sphincter muscles with much greater certainty than the traditional imaging modalities.
INTRODUCTION

Fecal incontinence (FI) is defined as the recurrent uncontrolled passage of fecal ma-
terial for at least 3 months or more. Anal incontinence, however, includes difficulty
in controlling passage of fecal material and gas. A recent study1 investigated FI symp-
toms using a mobile app “MyGiHealth” and found that 14% (one in seven) of the peo-
ple reported FI symptoms in the past, and 33% in the past 7 days. FI is age-related and
more prevalent among individuals with inflammatory bowel disease, celiac disease, ir-
ritable bowel syndrome, and diabetes. The cause of FI is multifactorial; stool consis-
tency, rectal reservoir function, and anal sphincter function play important roles.2,3

However, consensus is that the anal sphincter function is the most important player
in the development of FI symptoms.4,5 Recent studies that used a novel functional
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Mittal & Tuttle2
luminal imaging probe (FLIP) to assess anal sphincter function found that in most sub-
jects referred to the tertiary care centers, anal canal distensibility is higher in patients
with FI as compared with control subjects.6,7 Even though the prevalence of FI is re-
ported to be the same in men and women, severe FI symptoms are more often
observed in women as compared with men. One of the reasons for this is most likely
related to the susceptibility of women to the anal sphincter and pelvic floor muscles
during vaginal childbirth. Some 20% to 35% of women develop damage to the
external anal sphincter (EAS) and puborectalis muscle (PRM) during vaginal child-
birth.8,9 A review of literature reveals that 80% of patients in the clinical trials for the
treatment of FI are women.10–12 Why there is a delay of two to three decades or
more between the timing of obstetric trauma (childbearing years of 20s and 30s)
and development of symptoms later in life is not known. The previously mentioned ob-
servations suggest that the anal sphincter or anal closure mechanism is the major
continence mechanism. However, FI symptoms can clearly occur in women who
have never given vaginal birth, albeit infrequently, reminding care providers that fac-
tors other than the anal sphincter complex muscles must be relevant to the genesis
of FI. Advances in imaging (ultrasound [US] and MRI), and function measurement tools
have improved our understanding of the anal sphincter complex. The focus of this re-
view is to provide the reader with up-to-date information on the anal sphincter com-
plex and pelvic floor anatomy and function. Three distinct anatomic structures, the
internal anal sphincter (IAS), EAS, and PRM, the last one being a part of the pelvic floor
or levator ani muscle, contribute to the anal closure/sphincter mechanism.

INTERNAL ANAL SPHINCTER

The circular muscle layer of the rectum extends caudally into the anal canal to become
the IAS (Fig. 1). The circular muscles in the sphincter region are thicker than those of
the rectum with discrete septa in between the muscle bundles.13,14 The longitudinal
Fig. 1. This schematic shows external anal sphincter to be made up of subcutaneous, super-
ficial, and deep parts. The deep external anal sphincter is actually the puborectalis muscle.
(Modified from Netter F. Atlas of Human Anatomy. In: Kelly P, ed. 3rd edition ed. Teteboro,
New Jersey: Icon Learning system 2003:Plates 361 & 364; with permission)
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Anorectal Anatomy and Function 3
muscles of the rectum extend into the anal canal and end up as thin septa that pene-
trate into the circular muscle layer of IAS, PRM, EAS, and perianal fat.15 The longitu-
dinal muscle of the anal canal is also known as the conjoined tendon (muscle) because
the skeletal muscles of the pelvic floor may also contribute to its formation. However,
the longitudinal muscle of the rectum is the major contributor to the longitudinal mus-
cles of anal canal. The intersphincteric plane between the longitudinal muscle and EAS
is important to surgeons; it is used to separate the anal canal from EAS and adjacent
structures during abdominoperineal resection for rectal cancer. The function of the
longitudinal muscle in anal sphincter function and dysfunction is not known.14 The
IAS is a major contributor to the resting or baseline anal sphincter/closure pressure,
contributing greater than 50% to 70% of resting pressure as measured using manom-
etry. The IAS tone is myogenic in origin, a unique property of the IAS smooth muscle
cells, as compared with the adjacent muscle of the rectum. Isolated muscle strips of
the IAS in a muscle-bath, devoid of endocrine and neural influences, can maintain
tonic contraction.16 Studies show that the source of calcium, crucial for muscle
contraction, is extracellular in the phasic (eg, rectal muscle) but intracellular in the tonic
muscle of the IAS.17 There is a difference in the intracellular messenger RhoA/ROCK
pathway in the phasic (rectal) versus tonic (IAS) muscles.18 The critical intracellular
step in contraction of the smooth muscle is phosphorylation of the myosin light chain
through a kinase (MLCK). The MLCK is dephosphorylated by myosin light chain phos-
phatase (MLCP), which results in muscle relaxation. The critical difference between
phasic and tonic muscle is that the RhoA/ROCK machinery is more active in a tonic
muscle, such as the IAS. The activation of RhoA/ROCK by intracellular calcium (also
known as calcium sensitization) leads to inhibition of MLCP resulting in sustained
elevation of phosphorylated MLC, which induces sustained tonic contraction. The
known extracellular signals that activate RhoA/ROCK are the products of renin-
angiotensin system (angiotensin II) and arachidonic acid pathway (thromboxane A2

and prostaglandin F2a).
19 Platelet activating factor, a product of inflammation, is a ma-

jor cause of low LES tone17 and could be relevant for the IAS tone. There is also evi-
dence that the interstitial cells of Cajal, present in the IAS and other smooth muscle
sphincters, play a significant role in the genesis of IAS tone.20
Neural Control of Internal Anal Sphincter

The autonomic nerves, sympathetic (spinal nerves) and parasympathetic (pelvic
nerves), supply the IAS.21,22 Sympathetic fibers originate from the lower thoracic
ganglia to form the superior hypogastric plexus. Parasympathetic fibers originate
from the second, third, and fourth sacral nerves and form the inferior hypogastric
plexus, which in turn gives rise to superior, middle, and inferior rectal nerves that ulti-
mately supply the rectum and anal canal. These nerves are thought to synapse with
the myenteric plexus of rectum. Sympathetic nerves mediate IAS contraction through
the stimulation of a-adrenergic receptors,23 and relaxation through b1, b2, and b3
adrenergic receptors.24,25 Studies show predominance of low-affinity b3 receptors
in the IAS. Stimulation of parasympathetic or pelvic nerves causes relaxation of the
IAS through nitric oxide–containing neurons located in the myenteric plexus of the
rectum.16,26 There are no myenteric neurons in the IAS itself; however, it is richly inner-
vated by the processes of myenteric inhibitory neurons located in the rectum. Besides
nitric oxide, vasoactive intestinal peptide, carbon monoxide, and ATP are inhibitory
neurotransmitters that likely play limited roles in the IAS relaxation.27 Degeneration
of myenteric neurons results in impaired IAS relaxation, a hallmark of the Hirschsprung
disease.
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EXTERNAL ANAL SPHINCTER

The anatomy of EAS has been a subject of significant debate for long time. Santorini
(1769)28 described the EAS to be composed of three separate muscles bundles: (1)
subcutaneous, (2) superficial, and (3) deep. In many schematics published in the liter-
ature, including the one by Netter (see Fig. 1), the EAS is also made of three compo-
nents. A close inspection of these schematics, however, reveals that the PRM is
missing from these drawings. It is possible that even though not labeled as such,
the PRM is part of the levator ani muscle complex. Shafik29 described that the EAS
consisted of three loops, with PRM located cranial to them. The subcutaneous portion
of the EAS sits caudal to the IAS and the superficial portion surrounds the distal IAS.
Several investigators have argued that only the subcutaneous and superficial muscle
bundles constitute the EAS. Histologic study by Fritsch and coworkers30 and MRI
study of Hussain and coworkers31 found that the EAS is composed of only the subcu-
taneous and superficial portions. Based on three-dimensional (3D) US imaging, we
found that the deep part of the EAS is likely to be the PRM because it is shaped like
a “U.” It does not surround the anal canal in circumferential fashion.32

Another intriguing aspect of the EAS anatomy, based on published literature, is that
it is attached to the perineal body at the ventral end.33,34 The perineal body is a midline
fibrotendinous structure to which, besides EAS, several other muscles of perineum (ie,
superficial and deep transverse perinea, and bulbospongiosus) are also attached.
These perineal muscles along with the EAS are referred to as the superficial muscles
of the perineum. Recent studies show that the perineal body is not the site of insertion
of superficial muscles of the perineum; instead, it is the site of crossing of the super-
ficial muscles of the perineum.35,36 The EAS muscles from the right and left side cross
over to the other side in the midline structure of perineal body to continue as trans-
verse perinea and bulbospongiosus muscles (Fig. 2).35 The superficial transverse
perinea muscle may not have definitive attachment to the bone; fibers seem to merge
into septa of ischiorectal fat. However, the two bulbospongiosus muscles are attached
to the pubic rami close to the symphysis pubis. Posterior to the anal canal, the EAS
continues as anococcygeal raphe. Micro computed tomography imaging and histo-
logic study show that the muscle fibers of the EAS, from right and left side, decussate
at the posterior end of anal canal and then continue as anococcygeal raphe, which is
attached to the tip of coccyx (anococcygeal raphe) (Figs. 3 and 4). Contrary to pub-
lished literature, it may be that the EAS is not a donut-shaped ring of circular muscles
fibers; instead, it has a unique myoarchitecture with crossing of muscle fibers in the
midline at the ventral and dorsal ends of the anal canal with attachments to the pubic
rami at the ventral end and coccyx at the dorsal end. In that regard, the EAS is no
different from other skeletal muscles in the body that originate from a bone (fixed
end) and are inserted into a bone (mobile end). In the case of EAS, its origin is from
the pubic rami (fixed end) and insertion is into the coccyx (mobile end). Dynamic
MRI studies show that the coccyx moves 8 to 10 mm in the ventral and cranial direc-
tion with the contraction of EAS and pelvic floor muscles.37 Magnetic resonance diffu-
sion tensor imaging (MR-DTI) is a novel technique to determine the myoarchitecture at
a mesoscale level (in between histology or microscopic and macroscopic)38,39 and the
EAS is visualized by MR-DTI.35 Future studies are needed to determine if MR-DTI is a
better imaging technique to assess the anatomic integrity of the EAS than the current
gold standard US imaging.
The unique morphology of the EAS has many implications for clinicians. Endoanal

US imaging is the current gold standard to assess damage to the EAS muscle. It as-
sumes an annular morphology of the EAS, which is not the case, and hence US
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Fig. 2. (A) Pelvic floor muscles seen in the sagittal section of pelvis. (B) Pelvic floor muscles as
seen from the perineal surface. (Adapted from Raizada V, Mittal RK. Pelvic floor anatomy
and applied physiology. Gastroenterol Clin North Am. 2008;37(3):493-vii. https://doi.org/
10.1016/j.gtc.2008.06.003; with permission)
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imaging cannot provide complete information on the structural integrity of EAS in pa-
tients with FI. Lateral episiotomy that sections through the bulbospongiosus and
transverse perinea muscle is not a sphincter-sparing operation. Sphincteroplasty for
the surgical repair of EAS muscle restores a circular shape to the EAS. However, if
it is not an annular muscle to begin with, sphincteroplasty cannot be an effective
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Fig. 3. Morphology of external anal sphincter: a “purse string,” not a donut structure. (From
MittalRK, BhargavaV, SheeanG, LedgerwoodM,SinhaS. Purse-stringmorphologyof external
anal sphincter revealed by novel imaging techniques. Am J Physiol Gastrointest Liver Physiol.
2014;306(6):G505-G514. https://doi.org/10.1152/ajpgi.00338.2013; with permission)
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surgical procedure to restore EAS function. Long-term studies indeed show that the
sphincteroplasty is not an effective operation for the treatment of FI.40

Neural Control of External Anal Sphincter

The muscle fibers of EAS are composed of fast and slow twitch types, which allow it to
maintain sustained tonic contraction at rest and allow it to contract rapidly with volun-
tary squeeze. Motor neurons in Onuf nucleus (located in the sacral spinal cord) inner-
vate EASmuscle through the inferior rectal branches of right and left pudendal nerves.

PUBORECTALIS AND DEEP PELVIC FLOOR MUSCLES (LEVATOR ANI)

According to Sappey (1869), “the levator-ani is one of those muscles that has been
studied the most, and at the same time about which we know the least.”33,41 Sappey
alsomentioned that the “The doctrine of continuity of fibers between two or moremus-
cles of independent actions has been applied to the levator-ani at various scientific
epochs, and this ancient error, renewed without ceasing, has singularly contributed
Fig. 4. Frontal and sagittal view of EAS with its attachment to the bony pelvis.
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Anorectal Anatomy and Function 7
to complicate its study.” It is interesting that even in 2021, the nomenclature of various
pelvic floor muscles, precise anatomy, neural innervation, and functions of the levator
ani/pelvic diaphragm are still being debated. Holl (1897)42 suggested that some of
the pubococcygeus muscle fibers, instead of inserting into the coccyx, loop around
the rectum, and to these fibers he gave the name “puborectalis” or “sphincter recti.”
Prior depictions of the pelvic floor only show pubococcygeus, iliococcygeus, and
ischiococcygeusasdeeppelvic floor or levator animuscles (seeFig. 2).Whetherpubor-
ectalis and pubococcygeus are two separatemuscles is not clear but clearly the pubor-
ectalis is located caudal to the iliococcygeusmuscle. In the obstetrics/gynecology and
urogynecology literature many authors use the term pubovisceral muscle,43 for what is
referred to as puborectalis by others. Irrespective of the previously mentioned contro-
versies, puborectalis is a U-shaped muscle with ventral attachment to the two pubic
rami. Dorsally, muscles from the two sides loop around the anorectum and possibly
attach to the coccyx. From a functional point of view, puborectalis has unique function;
it is responsible for the formation of the “anorectal angle,” best seen on a midsagittal
image of the pelvis during barium or MR defecography (Fig. 5). With contraction and
relaxation of the PRM, the anorectal angle becomes more acute and obtuse, respec-
tively. During defecation, the anorectal angle becomes obtuse and in patients with FI,
with damage to the PRM the anorectal angle stays obtuse and does not change signif-
icantly with squeeze.
3D-US imaging of the pelvic floor provides better understanding of the morphology

and function of PRM. The entire U-shaped PRM is visualized exquisitely by 3D-US im-
aging (Fig. 6); it forms the inferior margin of pelvic floor hiatus through which the ure-
thra and anal canal emerge from the pelvis to the exterior in males, and in females, the
urethra, vagina, and anal canal. Contraction of PRM reduces the size of pelvic floor hi-
atus and it also lifts the anal canal ventrally, thus compressing three orifices (ie, anal
Fig. 5. MRI of the midsagittal of pelvis at rest and contraction: note the change in anorectal
angle with contraction.
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Fig. 6. Pelvic floor hiatus imaged by 3D-ultrasound transducer. Note the U-shaped puborec-
talis muscle at rest and during contraction. Note reduction in the dimensions of hiatus with
contraction. Dorsoventral dimension of the hiatus becomes smaller during contraction re-
sulting in compression of all the structures against the back of symphysis pubis.

Mittal & Tuttle8
canal, vagina, and urethra) against each other and in turn against the back of pubic
symphysis. This results in dorsoventral closure of the vagina. Existence of a vaginal
high-pressure zone related to the pelvic floor muscle is well known. Characteristics
of the vaginal high-pressure zone have been described in detail in recent years using
many different types of pressure measurement techniques, such as infusion manom-
etry (side hole and sleeve sensor technique),44,45 3D-US imaging,46 high-definition
manometry (Fig. 7),47 and most recently by FLIP (Fig. 8).48 These studies prove that
the vaginal high-pressure zone is related to PRM contraction, which has important
clinical implications in that the PRM function may be easily assessed by recording
vaginal pressure. Traditional measurements of the anorectal angle to assess PRM
function require imaging studies, such as MRI and barium defecography, and are
somewhat subjective. However, vaginal pressure measurement is a simple technique
that can provide objective and quantitative assessment of PRM function. One can use
3D manometry and FLIP to record the vaginal high-pressure zone accurately. In pa-
tients with FI, not only anal pressures, but vaginal pressures are lower as compared
with control subjects suggesting that the PRM function is impaired in significant
numbers of patients with FI (Fig. 9).49 Recent studies have identified weakness of
the vaginal high-pressure zone using FLIP.50,51 The PRM contraction, in addition to
increasing anal and vaginal pressure, also increases urethral pressure.52 Thus, it is
highly likely that the PRM is also important in the urethral continence mechanism;
further studies are needed to validate the previously mentioned hypothesis.
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Fig. 7. High-definition manometry of vaginal anal high-pressure zone. (Top) Cylindrical and
two-dimensional surface plot of pressure profile at rest and with voluntary squeeze. (Bot-
tom) Vaginal pressure profile as seen with high-resolution manometry (at rest and voluntary
contraction). (From Raizada V, Bhargava V, Jung SA, et al. Dynamic assessment of the vaginal
high-pressure zone using high-definition manometry, 3-dimensional ultrasound, and mag-
netic resonance imaging of the pelvic floor muscles. Am J Obstet Gynecol.
2010;203(2):172.e1-172.e1728. https://doi.org/10.1016/j.ajog.2010.02.028; with permission)
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Neural Innervation of the Puborectalis Muscle

Branches from the sacral nerve roots, S2, S3, and S4 innervate the pelvic floor mus-
cles. The three deep pelvic floor muscles, pubococcygeus, iliococcygeus, and ischio-
coccygeus (also known as coccygeus) are innervated by branches from S2, S3, and
S4 that enter these muscles from their abdominal surface. However, the EAS and
other superficial muscles of the perineum are innervated by pudendal nerve branches.
There is considerable controversy whether pudendal nerves innervate the PRMs. An
electrophysiologic study by Percy and colleagues53 found that electrical stimulation
of the pudendal nerve did not activate PRM. It is possible that in their study the elec-
trodes were not precisely located in the puborectalis portion of the levator ani muscle.
The authors of this review believe that the PRM is the middle layer of pelvic floor
musculature,45 and similar to EAS, PRM is innervated by the pudendal nerve (from
the perineal/inferior surface of pelvic floor muscle). Conversely, deep pelvic floor mus-
cles (pubococcygeus, iliococcygeus, and coccygeus) are innervated by direct
branches of the sacral nerve roots S3 and S4 from the superior (abdominal) surface
of the pelvic floor. The clinical significance of this is that pudendal nerve damage
may cause dysfunction of the puborectalis and EAS (both constrictor muscles), which
in turn may cause FI.

Relationship Between Anatomy and Function of the Levator Ani

The name levator ani implies an elevator of anus. Pelvic floor muscles have two impor-
tant functions: physical support or actual floor to the pelvic viscera; and constrictor
function to the anal canal, urethra, and vagina. These two functions may be distinct
and related to different components of the pelvic floor musculature. The pubococcy-
geus, iliococcygeus, and ischiococcygeus likely provide the physical support or act as
“floor” for the pelvic/abdominal organs. However, PRM provides the constrictor
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Fig. 8. (A–D) Anal and vaginal high-pressure zone visualized with FLIP at various balloon vol-
umes of the FLIP bag. Note the hourglass shape of the anal and vaginal high-pressure
zone.(FromTuttle LJ, ZifanA, SunC, Swartz J, RoalkvamS,MittalRK.Measuring length-tension
function of the anal sphincters and puborectalis muscle using the functional luminal imaging
probe. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G781-G787. https://doi.org/10.
1152/ajpgi.00414.2017; with permission)
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function for anal canal, vagina, and urethra. The urethra and anal canal have two con-
strictors or sphincters of their own. In the case of the anal canal these are the IAS
(smooth muscle) and EAS (skeletal muscle), and in the case of the urethra they are
the smooth muscle sphincter located at the bladder neck (internal urethral sphincter,
also known as lissosphincter) and rhabdosphincter (external urethral sphincter). The
PRM is the third constrictor or sphincter of the anal canal and urethra. The vagina,
however, has only one constrictor mechanism, which is caused by the puborectalis
portion of pelvic floor muscles. The PRM is relevant to multiple subspecialties: gastro-
enterology, colorectal surgery, urology, urogynecology, radiology, and neurology.
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Fig. 9. Anal (A) and vaginal pressure (B) at rest (diamonds) and voluntary squeeze (triangles)
in control subjects (filled symbols) and patients with FI (open symbols). Note an increase in
pressure with probe size increase and with squeeze. Pressures are significantly lower in pa-
tients compared with control subjects at rest and squeeze. C, control subjects. (From Kim YS,
Weinstein M, Raizada V, et al. Anatomical disruption and length-tension dysfunction of anal
sphincter complex muscles in women with fecal incontinence. Dis Colon Rectum.
2013;56(11):1282-1289. https://doi.org/10.1097/DCR.0b013e3182a18e87; with permission)
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LENGTH-TENSION FUNCTION OF THE EXTERNAL ANAL SPHINCTER AND
PUBORECTALIS MUSCLES

The basic unit of all muscles is the sarcomere, which is made of actin and myosin fil-
aments. The sarcomere length is a major determinant of the force that any muscle
generates during its maximal contraction. The length-tension relationship, best known
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as Starling curve in the context of myocardium, is well described.54 It is a bell-shape
curve, that is, muscle tension increases with increase in muscle length to a certain
length and then it decreases. The degree of overlap between actin and myosin fila-
ments determines the force generated by the sarcomere.55 At optimal length there
is maximum overlap between the actin and myosin filaments. The length at which a
muscle/sarcomere operates in vivo (operational length) and the length at which it gen-
erates maximal tension (optimal length) are different. Myocardium under physiologic
conditions operates at a short sarcomere length and when stretched it increases
the force of contraction. Different muscles in the body operate at different operational
lengths. Studies show that like myocardium, the EAS and PRM also operate at a short
sarcomere length.56–58 Studies of the rabbit EAS reveal that the optimal sarcomere
length of EAS is approximately 20% larger than its operational length. In humans,
the EAS and PRM when stretched (eg, by placing probes of increasing diameters in
the anal and vaginal canals) generate greater tension.57,58 Hence, the anal and vaginal
pressures increase with an increase in the diameter of the manometry probe used to
record pressure. Like normal healthy subjects, in patients with FI who have damaged
EAS and PRM, these muscles operate at the suboptimal length even though the slope
of the length-tension curve is steeper in normal subjects compared with patients with
damaged muscle.49 The clinical significance of knowing the length-tension relation-
ship is that it may be possible to change/adjust the sarcomere length to gain muscle
function. Plication of the EAS muscle in rabbits led to an increase in the sarcomere
length and increase in anal closure pressure that were sustained for 6 months (the
duration of the study) (Fig. 10).59 Whether plication of the EAS and PRM can improve
anal closure function and FI in humans requires study.
ASSESSING THE ANATOMY OF ANAL CLOSURE MECHANISMS

The current gold standard to assess anatomic integrity of the anal closure mechanism
is endoanal US. The endoanal US probe is approximately 15 mm in diameter, and it is
placed in the lumen of the anal canal. The previously mentioned methodology has
been in use since the early 1990s. Using mechanical US transducers, one can image
the entire length of the anal canal and using computer software can display the anal
canal anatomy in 3D; many studies have proven the previously mentioned modality
as reliable.60–62 However, the limitations of endoluminal US technique are: (1) the
US probe is large in size (15 mm) and may not be tolerated well by subjects; (2)
anal distention caused by US probe causes artifactual thinning of the muscles; (3)
the caudal-most portion of EAS, located below the IAS, is not well visualized; (4) peri-
neal body, an important part of the EAS, is not seen; and (5) anal canal descends
caudally more in the ventral than in dorsal direction, and hence one has to be careful
in the interpretation of axial US images in the dorsal part of anal canal. US images
show that in most patients, damage to the IAS and EAS is located between 11- and
2-o’clock positions of anal canal (12 o’clock being the ventral midline location), the
location of the perineal body. The latter is an extremely important location, the site
of crossing of muscle fibers from the two sides of EAS. Transperineal, also known
as translabial, 3D-US imaging is an important technique to visualize muscles of the
anal sphincter complex.60,61,63,64 In this technique, the US transducer is placed on
the perineum and one can capture a US volume of pixels that is visualized off-line us-
ing computer software. The transperineal/translabial US technique is patient friendly
because it does not require insertion of a US probe into the anal canal and US imaging
quality is excellent. One can see the caudal parts of the anal canal, EAS, and perineal
body well in these US images (Fig. 11). For imaging of the anal canal, the US
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Fig. 10. Effect of EAS plication on the anal canal pressure in rabbit. Note an increase in pres-
sure following plication length of 20% of the EAS circumference. Also note that the increase
in anal canal pressure following plication is sustained for 24 weeks. (FromMittal RK, Sheean
G, Padda BS, Rajasekaran MR. Length tension function of puborectalis muscle: implications
for the treatment of fecal incontinence and pelvic floor disorders. J Neurogastroenterol Mo-
til. 2014;20(4):539-546. https://doi.org/10.5056/jnm14033; with permission)
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transducer is directed in the dorsal direction. However, to visualize the pelvic floor hi-
atus and PRM the US transducer is directed toward the head end of the subject. Using
the previously mentioned technique, one can capture the images of anal canal and
pelvic floor hiatus in real time during contraction and therefore study dynamic changes
in the pelvic floor hiatus during anal sphincter squeeze and Valsalva maneuver.
Another US imaging technique that can provide useful information on the integrity of
anal sphincter muscle is high-frequency US imaging65; it allows one to visualize indi-
vidual muscle fascicles inside the body of the EAS (Figs. 12 and 13). A recent study
demonstrated crossing of muscle fascicles of EAS in the perineal body in normal sub-
jects, and damage to the myoarchitecture of EAS using high-frequency US imaging.66

MRI of the pelvic floor and anal sphincter muscles has been successfully performed
by several investigators.35,36,39,67,68 The coils to capture MRIs are usually placed on
the abdomen of subjects; however, endoanal and endovaginal coils (probes) have
also been used to capture pelvic floor, IAS, and EAS images. One can visualize the
EAS much better in MRI than US images. However, the IAS is better visualized in
the US images. MR defecography is a dynamic study to assess the defecatory pro-
cess and stool evacuation. It is used to identify pelvic floor dyssynergia, rectocele,
and other anatomic abnormalities that may occur during the defecation process.
MRI during defecography is usually performed in the supine position; however,
open MRI magnets to perform defecography in the seated position are available at
a few centers. MR-DTI to study the myoarchitecture of anal sphincter and pelvic floor
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Fig. 11. US images of the anal sphincter muscles obtained with transperineal 3D-US trans-
ducer. Axial slices 1 mm apart from caudal (1) to cranial (25) end of the anal canal. Dark
(black) ringlike structure is IAS. EAS is located outside the IAS.

Fig. 12. (A–D) High-frequency US images of the anal canal with the hockey stick–shaped US
transducer placed at different locations inside and outside the anal canal. EAS, external anal
sphincter; IAS, internal anal; sphincter; LM, longitudinal muscle. (From Ledgerwood-Lee
M, Zifan A, Kunkel D, Sah R, Mittal R.K. High-frequency ultrasound imaging of the anal
sphincter muscles in normal subjects and patients with fecal incontinence. Neurogastroen-
terol Motil. 2019 Apr; 31(4): e13537.)
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Fig. 13. Sagittal and axial images of the perineal body obtained using high-frequency ultra-
sound transducer. Top two rows are from four different normal subjects and bottom two
rows are from four different patients with FI. Note individual muscle fascicles in the perineal
body in normal subjects and loss of muscle fascicles in patients with FI. Orange arrows show
the outline of the perineal body. Blue arrows show the muscle fascicles inside the perineal
body. (From Ledgerwood-Lee M, Zifan A, Kunkel D, Sah R, Mittal R.K. High-frequency ultra-
sound imaging of the anal sphincter muscles in normal subjects and patients with fecal in-
continence. Neurogastroenterol Motil. 2019 Apr; 31(4): e13537.)
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muscles is currently a research tool. It provides information on the myoarchitecture.
We have successfully visualized crossing of muscle fibers of the EAS in the perineal
body (Fig. 14).35,36

Functional Assessment of the Anal Closure Mechanism

Schuster balloon, infusion manometry, and solid-state sensors to assess the function
of the anal closure mechanism have been replaced by high-resolution manometry,
and high-resolution manometry is currently considered the gold standard of clinical
anorectal testing.69 There are many advantages of high-resolution manometry over
the old pressure measurement techniques; the sensors have high fidelity (faster
response rates) and there is no concern with regards to the relative movement be-
tween pressure transducers and anal canal structures during various maneuvers
used in anorectal motility testing. Furthermore, the display (color topography) is reader
friendly. High-definition anorectal manometry is another system70 that provides infor-
mation on the asymmetry of anal sphincter pressure profile (Fig. 15).71–73 The high-
definition anorectal manometry probe is larger than the high-resolution anorectal
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Fig. 14. (A–D) Magnetic resonance diffusion tensor image of the external anal sphincter and
other muscles of perineum. EAS, external anal sphincter; TP, transverse perinea; PB, perineal
body. (From Zifan, A., Reisert, M., Sinha, S. et al. Connectivity of the Superficial Muscles of
the Human Perineum: A Diffusion Tensor Imaging-Based Global Tractography Study. Sci Rep
8, 17867 (2018). https://doi.org/10.1038/s41598-018-36099-4; with permission)
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manometry probe (10 mm vs 4.5 mm). The anal canal pressure recorded by high-
definition anorectal manometry is higher than high-resolution anorectal manometry
because of the length-tension principle described previously. One of the promises
of high-definition anorectal manometry was that it may be able to detect locations
of damage in the EAS and IAS has not borne out in studies. FLIP is the “latest kid
on the block” to assess the anal closure functions. It provides information on the
anal canal distensibility as a measure of the strength of anal closure mechanism.6,7

The anal canal distensibility is greater in patients with FI as compared with control sub-
jects. One study reported high sensitivity and specificity to diagnose FI based on the
anal canal distensibility at rest; squeeze values were not necessarily better than rest
values in discriminating normal subjects from patients. Distending the anal canal
with FLIP brings back the length-tension principle of anal sphincter muscle in the
equation (Figs. 16–18).48,50,51 Vaginal manometry has also been used to assess the
PRM function in normal control subjects and patients with FI.49–51 The vaginal high-
pressure zone shows significant circumferential asymmetry, because the force
responsible for the genesis of vaginal high-pressure zone is directed in the dorsoven-
tral direction (ie, lift of the anal canal by PRM contraction in the ventral direction). The
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Fig. 15. High-definition manometry of the anal high-pressure zone. (Top) Cylindrical and
two-dimensional surface plot of pressure profile at rest and with voluntary squeeze. (Bot-
tom) Pressure profile of the anal canal seen with high-resolution manometry at rest and
contraction.

Fig. 16. (A–F) Anal and vaginal high-pressure zone tensionmeasured using FLIP, at rest and at
maximal voluntary contraction. Note the increase in the tension with increase in the FLIP bag
volume, which represents the length-tension property of the anal sphincter and puborectalis
muscle. (From Kim YS, Weinstein M, Raizada V, et al. Anatomical disruption and length-
tension dysfunction of anal sphincter complex muscles in women with fecal incontinence.
Dis Colon Rectum. 2013;56(11):1282-1289. https://doi.org/10.1097/DCR.0b013e3182a18e87;
with permission)
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Fig. 17. Anal (A) and vaginal (B) length-tension loops in normal subjects (black) and patients
with FI (red) at different bag volumes of the FLIP. Note the shift of loops to the right and
upward with increase in FLIP bag volumes. In patients the loops are shifted to the right.
P-CSA, pressure-cross sectional area. (From Tuttle LJ, Zifan A, Sun C, Swartz J, Roalkvam S,
Mittal RK. Measuring length-tension function of the anal sphincters and puborectalis muscle
using the functional luminal imaging probe. Am J Physiol Gastrointest Liver Physiol.
2018;315(5):G781-G787. https://doi.org/10.1152/ajpgi.00414.2017; with permission).

Fig. 18. (A–F) Length-tension analysis of the anal sphincter and puborectalis muscle shown
in the form of loops. These data are obtained from the FLIP. Each loop represents a contrac-
tion cycle and shows changes in muscle tension as a function of the length of muscle over
time. Loops move to the right and upward with the increase in FLIP bag volume. In the pa-
tients, loop is shifted to the right as compared with normal subjects. P-CSA, pressure-cross
sectional area. (From Tuttle LJ, Zifan A, Sun C, Swartz J, Roalkvam S, Mittal RK. Measuring
length-tension function of the anal sphincters and puborectalis muscle using the functional
luminal imaging probe. Am J Physiol Gastrointest Liver Physiol. 2018;315(5):G781-G787.
https://doi.org/10.1152/ajpgi.00414.2017; with permission).
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vaginal pressures are higher in the dorsoventral as compared with lateral direction.
The ventral or anterior pressure are highest in the vaginal high-pressure zone.

SUMMARY

Muscles in general are straightforward in their function; they only shorten and lengthen
with contraction and relaxation, respectively. It is the architecture, or the arrangement
of the muscle fascicles inside the body of the muscle that determines the physical
function of muscle in vivo. Flexion and extension at the elbow are achieved by simple
arrangement of muscle fibers organized in a linear direction from the origin (shoulder)
to the insertion (elbow). However, muscle fibers of EAS, placed in the configuration of
figure-of-eight, can cause circumferential closure of the anal canal. Future studies
need to focus on the architecture of muscle fibers of pelvic floor muscles to better un-
derstand their function.
Pelvic floor disorders are many and are generally lumped together. However, they

are broadly classified into disorders of pelvic floor support (prolapse, descending peri-
neal syndrome) and constrictor function (urinary and FI). Furthermore, these disorders
may be further divided into dysfunctions of pelvic floor contraction (FI and urinary in-
continence) and relaxation (constipation and urinary retention). As a clearer picture of
the anatomy and function of pelvic floor muscles emerges, it is likely that different
components of the pelvic floor muscles will be implicated in different pelvic floor dis-
orders. With such a functional classification, it may be possible to identify specific tar-
gets and more effective therapeutic strategies to treat various pelvic floor disorders. A
better understanding of the correct anatomy of anal sphincter and pelvic floor muscles
is crucial for the understanding of precise function. Most importantly, prevention of
damage or surgical restoration of the sphincter and other pelvic floor muscles’ func-
tion requires understanding of their correct anatomy.

CLINICS CARE POINTS

� Correct understanding of the muscle architecture is essential in defining the function of
muscle, preventing damage and restoring function of the muscle. Anatomy of the anal
sphincter and pelvic floor muscles has been an area of controversy.

� Novel imaging technique has revealed unique myoarchitecture of the pelvic floor and anal
sphincter muscles.

� High resolution anal manometry, 3D high definition anal manometry and functional luminal
imaging probe are important new tools to measure anal sphincter function.

� Length-tension principle, well described for the cardiac muscle is also applicable to the anal
sphincter muscle and using this principle, it may be possible to devise novel strategies to treat
anal/fecal incontinence.
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