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. Abstract

> Community-level data, the type generated by an increasing number of metabarcoding studies, is often
3 graphed as stacked bar charts or pie graphs that use color to represent taxa. These graph types do not
4 convey the hierarchical structure of taxonomic classifications and are limited by the use of color for cat-
s egories. As an alternative, we developed metacoder, an R package for easily parsing, manipulating, and
s graphing publication-ready plots of hierarchical data. Metacoder includes a dynamic and flexible function
7 that can parse most text-based formats that contain taxonomic classifications, taxon names, taxon identi-
s fiers, or sequence identifiers. Metacoder can then subset, sample, and order this parsed data using a set of
o intuitive functions that take into account the hierarchical nature of the data. Finally, an extremely flexible
10 plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree
u  format by mapping statistics to the color and size of tree nodes and edges. Metacoder also allows exploration
12 of barcode primer bias by integrating functions to run digital PCR. Although it has been designed for data
13 from metabarcoding research, metacoder can easily be applied to any data that has a hierarchical component
1 such as gene ontology or geographic location data. Our package complements currently available tools for

15 community analysis and is provided open source with an extensive online user manual.
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+ 1 Introduction

19 Metabarcoding is revolutionizing our understanding of complex ecosystems by circumventing the traditional
2 limits of microbial diversity assessment, which include the need and bias of culturability, the effects of cryptic
xn  diversity, and the reliance on expert identification. Metabarcoding is a technique for determining community
» composition that typically involves extracting environmental DNA, amplifying a gene shared by a taxonomic
;s group of interest using PCR, sequencing the amplicons, and comparing the sequences to reference databases
2 [1]. Tt has been used extensively to explore communities inhabiting diverse environments, including oceans

s [2], plants [3], animals [4], humans [5], and soil [6].

»% The complex community data produced by metabarcoding is challenging conventional graphing techniques.
7 Most often, bar charts, stacked bar charts, or pie graphs are employed that use color to represent a small
;s number of taxa at the same rank (e.g. phylum, class, etc). This reliance on color for categorical information
2 limits the number of taxa that can be effectively displayed, so most published figures only show results at
w a coarse taxonomic rank (e.g. class) or for only the most abundant taxa. These graphing techniques do
a1 not convey the hierarchical nature of taxonomic classifications, potentially obscuring patterns in unexplored
3 taxonomic ranks that might be more biologically important. More recently, tree-based visualizations are
13 becoming available as exemplified by the python-based MetaPhlAn and the corresponding graphing software

s GraPhlAn [7]. This tool allows visualization of high-quality circular representations of taxonomic trees.

35 Here, we introduce the R package metacoder that is specifically designed to address some of these problems
3% in metabarcoding-based community ecology, focusing on parsing and manipulation of hierarchical data and
7 community visualization in R. Metacoder provides a visualization that we call “heat trees” which quantita-
i tively depicts statistics associated with taxa, such as abundance, using the color and size of nodes and edges in
3 a taxonomic tree. These heat trees are useful for evaluating taxonomic coverage, barcode bias, or displaying

« differences in taxon abundance between communities. To import and manipulate data, metacoder provides
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a a means of extracting and parsing taxonomic information from text-based formats (e.g. reference database
2 FASTA headers) and an intuitive set of functions for subsetting, sampling, and rearranging taxonomic data.
1 Metacoder also allows exploration of barcode primer bias by integrating digital PCR. All this functionality
w is made intuitive and user-friendly while still allowing extensive customization and flexibility. Metacoder
s can be applied to any data that can be organized hierarchically such as gene ontology or geographic loca-
s tion. Metacoder is an open source project available on CRAN and is provided with comprehensive online

« documentation including examples.

»« 2 Design and Implementation

s The R package metacoder provides a set of novel tools designed to parse, manipulate, and visualize community
so diversity data in a tree format using any taxonomic classification (Figure 1). Figure 1 illustrates the ease of
s use and flexibility of metacoder. It shows an example analysis extracting taxonomy from the 16S Ribosomal
2 Database Project (RDP) training set for mothur [8], filtering and sampling the data by both taxon and
53 sequence characteristics, running digital PCR, and graphing the proportion of sequences amplified for each

s taxon. Table 1 provides an overview of the core functions available in metacoder.

55 Fig. 1. Metacoder has an intuitive and easy to use syntax. The code in this example analysis parses
s the taxonomic data associated with sequences from the Ribosomal Database Project [9] 16S training set,
sz filters and subsamples the data by sequence and taxon characteristics, conducts digital PCR, and displays
ss  the results as a heat tree. All functions in bold are from the metacoder package. Note how columns and
s functions in the taxmap object (green box) can be referenced within functions as if they were independent

e variables.

a 2.1 The taxmap data object

e To store the taxonomic hierarchy and associated observations (e.g. sequences) we developed a new data object
63 class called taxmap. The taxmap class is designed to be as flexible and easily manipulated as possible. The
e only assumption made about the users data is that it can be represented as a set of observations assigned
65 to a hierarchy; the hierarchy and the observations do not need to be biological. The class contains two
e tables in which user data is stored: a taxonomic hierarchy stored as an edge list of unique IDs and a set
o of observations mapped to that hierarchy (Figure 1). Users can add, remove, or reorder both columns and

s rows in either taxmap table using convenient functions included in the package (Table 1). For each table,
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e there is also a list of functions stored with the class that each create a temporary column with the same
7o name when referenced by one of the manipulation or plotting functions. These are useful for attributes that
n must be updated when the data is subset or otherwise modified, such as the number of observations for each
= taxon (see “n-obs” in Figure 1). If this kind of derived information was stored in a static column, the user
7 would have to update the column each time the data set is subset, potentially leading to mistakes if this is
7 not done. There are many of these column-generating functions included by default, but the user can easily
7 add their own by adding a function that takes a taxmap object. The names of columns or column-generating
7 functions in either table of a taxmap object can be referenced as if they were independent variables in most
7 metacoder functions in the style of popular R packages like ggplot2 and dplyr. This makes the code much

s easler to read and write.

» 2.2 Universal parsing and retrieval of taxonomic information

s Metacoder provides a way to extract taxonomic information from text-based formats so it can be manipu-
a1 lated within R. One of the most inefficient steps in bioinformatics can be loading and parsing data into a
& standardized form that is usable for computational analysis. Many databases have unique taxonomy formats
e with differing types of taxonomic information. The structure and nomenclature of the taxonomy used can
s be unique to the database or reference another database such as GenBank [10]. Rather than creating a
s parser for each data format, metacoder provides a single function to parse any format definable by regular
s expressions that contains taxonomic information (Figure 1). This makes it easier to use multiple data sources

ez with the same downstream analysis.

s The extract_taxonomy function can parse hierarchical classifications or retrieve classifications from online
s databases using taxon names, taxon IDs, or Genbank sequence IDs. The user supplies a regular expression
o with capture groups (parentheses) and a corresponding key to define what parts of the input can provide
o classification information. The extract_taxonomy function has been used successfully to parse several major
» database formats including Genbank [10], UNITE [11], Protist Ribosomal Reference Database (PR2) [12],
s Greengenes [13], Silva [14], and, as illustrated in figure 1, the RDP [9]. Examples for each database are

u provided in the user manuals [15].
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Table 1: Primary functions found in metacoder.

Function

Description

extract_taxonomy

Parses taxonomic data from arbitrary text and returns a taxmap
object containing a table with rows corresponding to inputs (i.e.
observations) and a table with rows corresponding to taxa.

Makes tree-based plots of data stored in taxmap objects. Color,

* heat.tree size, and labels of tree components can be mapped to arbitrary
data. The output is a ggplot2 object.
e primersearch Executes the EMBOSS program primersearch on sequence data
P stored in a taxmap object. Results are parsed, added to the input
taxmap object and returned.
Modify or add columns of taxon or observation data in taxmap
e mutate_taxa .
objects. mutate_* adds columns and transmute_* returns only
e mutate_obs
new columns.
e transmute_taxa
e transmute_obs

select_taxa

e select_obs

Subset columns of taxon or observation data in taxmap objects.

e filter_taxa
e filter_obs

Subset rows of taxon or observation data in taxmap objects based
on arbitrary conditions. Hierarchical relationships among taxa
and mappings between taxa and observations are taken into ac-
count.

e arrange_taxa

arrange_obs

Order rows of taxon or observation data in taxmap objects.

sample_n_taxa
sample_n_obs
sample_frac_taxa
sample_frac_obs

Randomly subsample rows of taxon or observation data in taxmap
objects. Weights can be applied that take into account the tax-
onomic hierarchy and associated observations. Hierarchical rela-
tionships among taxa and mappings between taxa and observa-
tions are taken into account.

subtaxa
supertaxa
observations
roots

Returns the indices of rows in taxon or observation data in taxmap
objects. Used to map taxa to related taxa and observations.
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s 2.3 Intuitive manipulation of taxonomic data

s Metacoder makes it easy to subset and sample large data sets composed of thousands of observations (e.g. se-
o quences) assigned to thousands of taxa, while taking into account hierarchical relationships. This allows for
s exploration and analysis of manageable subsets of a large data set. Taxonomies are inherently hierarchical,
9 making them difficult to subset and sample intuitively compared with typical tabular data. In addition
w0 to the taxonomy itself, there is usually also data assigned to taxa in the taxonomy, which we refer to as
1w “observations”. Subsetting either the taxonomy or the associated observations, depending on the goal, might
102 require subsetting both to keep them in sync. For example, if a set of taxa are removed or left out of a
103 random subsample, should the subtaxa and associated observations also be removed, left as is, or reassigned
14 to a supertaxon? If observations are removed, should the taxa they were assigned to also be removed? The

105 functions provided by metacoder gives the user control over these details and simplifies their implementation.

ws  Metacoder allows users to intuitively and efficiently subset complex hierarchical data sets using a cohesive
w7 set of functions inspired by the popular dplyr data-manipulation philosophy. Dplyr is an R package for
s providing a conceptually consistent set of operations for manipulating tabular information [16]. Whereas
o dplyr functions each act on a single table, metacoder’s analogous functions act on both the taxon and
1o observation tables in a taxmap object (Table 1). For each major dplyr function there are two analogous
w1 metacoder functions: one that manipulates the taxon table and one that manipulates the observations table.
12 The functions take into account the relationship between the two tables and can modify both depending
u3  on parameterization, allowing for operations on taxa to affect their corresponding observations and vice
us  versa. They also take into account the hierarchical nature of the taxon table. For example, the metacoder
us  functions filter_taxa and filter_obs are based on the dplyr function filter and are used to remove rows
ue in the taxon and observation tables corresponding to some criterion. Unlike simply applying a filter to these
ur  tables directly, these functions allow the subtaxa, supertaxa, and/or observations of taxa passing the filter
us  to be preserved or discarded, making it easy to subset the data in diverse ways (Figure 1). There are also
uo functions for ordering rows (arrange_taxa, arrange_obs), subsetting columns (select_taxa, select_obs),

10 and adding columns (mutate_taxa, mutate_obs).

11 Metacoder also provides functions for random sampling of taxa and corresponding observations. The function
122 taxonomic_sample is used to randomly sub-sample items such that all taxa of one or more given ranks have
123 some specified number of observations representing them. Taxa with too few sequences are excluded and

124 taxa with too many are randomly subsampled. Whole taxa can also be sampled based on the number of
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sub-taxa they have. Alternatively, there are dplyr analogues called sample n_taxa and sample_n_obs, which
can sample some number of taxa or observations. In both functions, weights can be assigned to taxa or
observations, influencing how likely each is to be sampled. For example, the probability of sampling a given
observation can be determined by a taxon characteristic, such as the number of observations assigned to
that taxon, or it could be determined by an observation characteristic, like sequence length. Similar to
the filter_* functions, there are parameters controlling whether selected taxa’s subtaxa, supertaxa, or

observations are included or not in the sample (Figure 1).

2.4 Heat tree plotting of taxonomic data

Visualizing the massive data sets being generated by modern sequencing of complex ecosystems is typically
done using traditional stacked barcharts or pie graphs, but these ignore the hierarchical nature of taxonomic
classifications and their reliance on colors for categories limits the number of taxa that can be distinguished
(Figure 2). Generic trees can convey a taxonomic hierarchy, but displaying how statistics are distributed
throughout the tree, including internal taxa, is difficult. Metacoder provides a function that plots up to
4 statistics on a tree with quantitative legends by automatically mapping any set of numbers to the color
and width of nodes and edges. The size and content of edge and node labels can also be mapped to custom
values. These publication-quality graphs provide a method for visualizing community data that is richer than
is currently possible with stacked bar charts. Although there are other R packages that can plot variables on
trees, like phyloseq [17], these have been designed for phylogenetic rather than taxonomic trees and therefore

optimized for plotting information on the tips of the tree and not on internal nodes.

Fig. 2. Heat trees allow for a better understanding of community structure than stacked bar
charts. The stacked bar chart on the left represents the abundance of organisms in two samples from the
Human Microbiome Project [5]. The same data are displayed as heat trees on the right. In the heat trees,
size and color of nodes and edges are correlated with the abundance of organisms in each community. Both
visualizations show communities dominated by firmicutes, but the heat trees reveal that the two samples

share no families within firmicutes and are thus much more different than suggested by the stacked bar chart.

The function heat_tree creates a tree utilizing color and size to display taxon statistics (e.g., sequence
abundance) for many taxa and ranks in one intuitive graph (Figure 2). Taxa are represented as nodes and
both color and size are used to represent any statistic associated with taxa, such as abundance. Although the

heat_tree function has many options to customize the appearance of the graph, it is designed to minimize
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the amount of user-defined parameters necessary to create an effective visualization. The size range of
graph elements is optimized for each graph to minimize overlap and maximize size range. Raw statistics are
automatically translated to size and color and a legend is added to display the relationship. Unlike most
other plotting functions in R, the plot looks the same regardless of output size, allowing the graph to be
saved at any size or used in complex, composite figures without changing parameters. These characteristics
allow heat_tree to be used effectively in pipelines and with minimal parameterization since a small set of
parameters displays diverse taxonomy data. The output of the heat_tree function is a ggplot2 object, making
it compatible with many existing R tools. Another novel feature of heat trees is the automatic plotting of
multiple trees when there are multiple “roots” to the hierarchy. This can happen when, for example, there
are “Bacteria” and “Eukaryota” taxa without a unifying “Life” taxon, or when coarse taxonomic ranks are

removed to aid in the visualization of large data sets (Figure 3).

Fig. 3. Heat trees display up to four metrics in a taxonomic context and can plot multiple
trees per graph. Most graph components, such as the size and color of text, nodes, and edges, can be
automatically mapped to arbitrary numbers, allowing for a quantitative representation of multiple statistics
simultaneously. This graph depicts the uncertainty of OTU classifications from the TARA global oceans
survey [2]. Each node represents a taxon used to classify OTUs and the edges determine where it fits in
the overall taxonomic hierarchy. Node diameter is proportional to the number of OTUs classified as that
taxon and edge width is proportional to the number of reads. Color represents the percent of OTUs assigned
to each taxon that are somewhat similar to their closest reference sequence (>90% sequence identity). a.
Metazoan diversity in detail. b. All taxonomic diversity found. Note that multiple trees are automatically

created and arranged when there are multiple roots to the taxonomy.

3 Results

3.1 Heat trees allow quantitative visualization of community diversity data

We developed heat trees to allow visualization of community data in a taxonomic context by mapping any
statistic to the color or size of tree components. Here, we reanalyzed data set 5 from the TARA oceans
eukaryotic plankton diversity study to visualize the similarity between OTUs observed in the data set and
their closest match to a sequence in a reference database [2]. The TARA ocean expedition analyzed DNA

extracted from ocean water throughout the world. Even though a custom reference database was made using
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curated 18S sequences spanning all known eukaryotic diversity, many of the OTUs observed had no close
match. Figure 3 shows a heat tree that illustrates the proportion of OTUs that were well characterized in
each taxon (at least 90% identical to a reference sequence). Color indicates the percentage of OTUs that
are well characterized, node width indicates the number of OTUs assigned to each taxon, and edge width
indicates the number of reads. Taxa with ambiguous names and those with less than 200 reads have been
filtered out for clarity. This figure illustrates one of the principal advantages of heat trees, as it reveals many
clades in the tree that contain only red lineages, which indicate that the entire taxonomic group is poorly
represented in the reference sequence database. Of particular interest are those clades with predominantly
red lineages that also have relatively large nodes, such as Harpacticoida (in Copepoda on the right). These
represent taxonomic groups that were found to have high amounts of diversity in the oceans, but for which
we have a paucity of genomic information. Investigators interested in improving the genomic resolution of
the biosphere can thus use these approaches to rapidly assess which taxa should be prioritized for focused
investigations. Note that a large portion of the taxa shown in red, yellow or orange have many OTUs with

a poor match to the reference taxonomic hierarchy.

3.2 Flexible parsing allows for similar use of diverse data

Metabarcoding studies often rely on techniques or data that may introduce bias into an investigation. For
example, the specific set of PCR primers used to amplify genomic DNA and the taxonomic annotation
database can both have an effect on the study results. A quick and inexpensive way to estimate biases
caused by primers is to use digital PCR, which simulates PCR success using alignments between reference
sequences and primers. Metacoder can be used to explore different databases or primer combinations to
assess these effects since it supplies functions to parse divserse data sources, conduct digital PCR, and plot
the results. Figure 4 shows a series of heat tree comparisons that were produced using a common 16S
rRNA metabarcoding primer set [18] and digital PCR against the full-length 16S sequences found in three
taxonomic annotation databases: Greengenes [13], RDP [9], and SILVA [14]. These heat trees reveal subsets
of the full taxonomies for these three databases that poorly amplify by digital PCR using the selected
primers. As a result, they indicate which lineages within each of the taxonomies may be challenging to
detect in a metabarcoding study that uses these primers. Importantly, different sets of primers likely amplify
different sets of taxa, so investigators interested in specific lineages can use this approach in conjunction with
various primer sets to identify those that maximize the likelihood of discovery and reduce wasted sequencing

resources on non-target organisms. However, these heat maps do not indicate whether one database is
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necessarily preferable over another, as they differ in the structure of their taxonomies, as well as the number
and phylogenetic diversity of their reference sequences. For example, most of the bacterial clades that do
not amplify well in the SILVA lineages are unnamed lineages that are not found in the other databases,

indicating that they warrant further exploration.

Fig. 4. Flexible parsing and digital PCR allows for comparisons of primers and databases.
Shown is a comparison of digital PCR results for three 16S reference databases. The plots on the left display
abundance of all bacterial 16S sequences. Plots on the right display all taxa with subtaxa not entirely
amplified by digital PCR using universal 16S primers [19]. Node color and size display the proportion and

number of sequences not amplified respectively.

3.3 Heat trees can show pairwise comparisons of communities across treatments

One challenge in metabarcoding studies is visually determining how specific sub-sets of samples vary in
their taxonomic composition. Unlike most other graphing software in R, metacoder produces graphs that
look the same at any output size or aspect ratio, allowing heat trees to be easily integrated into larger
composite figures without changing the code for individual subplots. Using color to depict the difference in
read or OTU abundance between two treatments can result in particularly effective visualizations, especially
when the presence of color is made dependent on a statistical test. To examine more than two treatments
at once, a matrix of these kind of heat trees can be combined with a labeled “guide” tree. Figure 5 shows
application of this idea to human microbiome data showing pairwise differences between body sites. Coloring
indicates significant differences between the median proportion of reads for samples from different body sites
as determined using a Wilcox rank-sum test followed by a Benjamini-Hochberg (FDR) correction for multiple
testing. The intensity of the color is relative to the log-2 ratio of difference in median proportions. Brown
taxa indicate an enrichment in body sites listed on the top of the graph and green is the opposite. While the
original study [5] showed abundance plots, our visualization provides the taxonomic context. For example,
Haemophilus, Streptococcus, and Prevotella spp. are enriched in saliva (brown) relative to stool where
Bacteroides is enriched (green). We also see that in the Lachnospiraceae clade several genera shown in both
green and brown taxa are differentially abundant. These observations are consistent with known differences
in the human-associated microbiome across body sites, but heat trees uniquely provide an integrated view

of how all levels of a taxonomy vary for all pairs of body sites.

Fig. 5. Scale-independent appearance facilitates complex, composite figures. All graph compo-

10
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nents, including text, have the same relative sizes independent of output size, unlike most graphical packages
in R, making it easier to create composite figures entirely within R. This graph uses 16S metabarcoding data
from the human microbiome project study. The gray tree on the lower left functions as a key for the smaller
unlabeled trees. The color of each taxon represents the log-2 ratio of median proportions of reads observed at
each body site. Only significant differences are colored, determined using a Wilcox rank-sum test followed by
a Benjamini-Hochberg (FDR) correction for multiple comparisons. For example, Haemophilus, Streptococcus,

Prevotella are enriched in saliva (brown) relative to stool where Bacteroides is enriched (green).

3.4 Other applications

The taxmap data object defined in metacoder can be used for any data that can be classified by a hierarchy.
Figure 6, for example, shows an analysis of votes cast in the 2016 US Democratic party national primaries
organized by geography. The heat tree reveals distinct patterns such as a sweep by Clinton in the South and
a split on the West coast, with California predominantly voting for Clinton while Washington and Oregon
predominantly voted for Sanders. Another potential application is displaying the results of gene expression
studies by associating differential expression with gene ontology (GO) annotations. Figure 7 shows the
results of a RNA-seq study on the effect of glucocorticoids on smooth muscle tissue [20]. All biological
processes influenced by at least one gene with a significant change in expression are plotted. The authors
of the study find that genes involved in immune response are influenced by the glucocorticoid treatment.
Viewing these results in a heat tree shows not only the specific immune process affected (the branch on the
middle right), but also the more general phenomena they constitute; regulation of high level phenomena,
like immune system function, can be explained by specific processes like “leukocyte chemotaxis” and these
specific processes are put into the context of the phenomena they contribute to. This is more informative
than simply reporting the results for a single level of the GO annotation hierarchy or discussing the effects

of genes one at a time.

Fig. 6. Metacoder can be used with any type of data that can be organized hierarchi-
cally. This plot shows the results of the 2016 Democratic primary election organized by region, divi-
sion, state, and county. The regions and divisions are those defined by the United States census bureau.
Color corresponds to the difference in the percentage of votes for candidates Hillary Clinton (green) and
Bernie Sanders (brown). Size corresponds to the total number of votes cast. Data was downloaded from

https://www.kaggle.com/benhamner/2016-us-election/.
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Fig. 7. Another alternate use example: vizualizing gene expression data in a GO hierarchy.
The gene ontology for all differentially expressed genes in a study on the effect of a glucocorticoid on airway
smooth muscle tissue [20]. Color indicates the sign and intensity of averaged changes in gene expression and

the size indicates the number of genes classified by a given gene ontology term.

4 Availability and Future Directions

The R package metacoder is an open-source project under the MIT License. Stable releases of metacoder are

available on CRAN while recent improvements can be downloaded from github (https://github.com/grunwaldlab/metacoder).

A manual with documentation and examples is provided [15]. This manual also provides the code to repro-

duce all figures included in this manuscript.

We are currently continuing development of metacoder. We welcome contributions and feedback from the
community. We want to make metacoder functions and classes compatible with those from other bioinfor-
matic R packages such as phyloseq, ape, seqinr, and tazize. We might integrate more options for digital PCR
and barcode gap analysis, perhaps using ecoPCR or the R packages PrimerMiner and Spider. We are also

considering adding additional visualization functions.
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Data Structures

ggplot2 object

W

Functions

extract_taxonomy

# Load package
library(metacoder)

# Parse taxonomic data from sequence headers

data <- extract_taxonomy(seqs, regex = "“(.x)\\t(.*)",
key = c(id = "obs_info", "class"),
class_sep = ";")

Manipulation / Analysis

filter_obs(nchar(sequence) > 1000) %>%
filter_taxa(name == "Bacteria", subtaxa = TRUE) %>%
sample_n_obs (5000, taxon_weight = 1 / n_obs) %>%
sample_n_taxa (1000, supertaxa = TRUE) %>/
primersearch(forward = "CTCCTACGGGAGGCAGCAG",
reverse = "GAATTACCGCGGCKGCTG",
mismatch = 10) %>%
filter_taxa(prop_amplified < 0.9, supertaxa = TRUE)

heat_tree

# Plot results of in silico PCR

heat_tree(; <1, node_size = n_obs, node_label = name,
node_color = prop_amplified,
node_color_range = c("red", "yellow", "cyan"))

# Filter, subsample, and run in silico PCR
pcr <- filter_taxa(data, n_obs > 1) %>%
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