| 1              | An analysis of Species Conservation Action Plans in Guinea                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------|
| 2              | $\label{eq:charlotte} CHARLOTTE\ COUCH^1 \cdot DENISE\ MOLMOU^2 \cdot SÉKOU\ MAGASSOUBA^2 \cdot SAÏDOU$            |
| 3              | DOUMBOUYA <sup>3</sup> · MAMADOU DIAWARA <sup>4</sup> · MUHAMMAD YAYA DIALLO <sup>4</sup> ·                        |
| 4              | SÉKOU MOUSSA KEITA <sup>5</sup> · FALAYE KONÉ <sup>3</sup> · MAHAMADOU CELLOU DIALLO <sup>6</sup> ·                |
| 5              | SÉKOU KOUROUMA <sup>3</sup> · MAMADOU BELLA DIALLO <sup>3</sup> · MAMADY SAYBA                                     |
| 6              | KEITA <sup>3</sup> · ABOUBACAR OULARE <sup>3</sup> · IAIN DARBYSHIRE <sup>1</sup> · EIMEAR NIC                     |
| 7              | LUGHADHA <sup>1</sup> $\cdot$ XANDER VAN DER BURGT <sup>1</sup> $\cdot$ ISABEL LARRIDON <sup>1,7</sup> $\cdot$ and |
| 8              | MARTIN CHEEK <sup>1</sup>                                                                                          |
| 9              |                                                                                                                    |
| 10             | <sup>1</sup> Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.                                            |
| 11             | <sup>2</sup> Herbier National de Guinée, Université Gamal Abdel Nasser de Conakry, Guinea                          |
| 12             | <sup>3</sup> Ministre de l'Environnement, Eaux et Forêts, République de Guinée, Conakry, Guinea                    |
| 13             | <sup>4</sup> Guinée Ecologie, Dixinn, Conakry, Guinea                                                              |
| 14             | <sup>5</sup> Centre d'Etudes de Recherche en Environnement (CERE), Université Gamal Abdel Nasser                   |
| 15             | de Conakry, Guinea                                                                                                 |
| 16             | <sup>6</sup> Protection et Gestion de l'Environnement (PEG) (Environmental NGO), Conakry, Guinea.                  |
| 17             | <sup>7</sup> Ghent University, Department of Biology, Systematic and Evolutionary Botany Lab, K.L.                 |
| 18             | Ledeganckstraat 35, 9000 Gent, Belgium                                                                             |
| 19             |                                                                                                                    |
| 20             | CHARLOTTE COUCH (Corresponding Author) Royal Botanic Gardens, Kew, Richmond,                                       |
| 21             | Surrey, TW9 3AE, UK. <u>c.couch@kew.org.</u> ORCID: 0000-0002-5707-9253                                            |
| 22<br>23<br>24 | Isabel Larridon ORCID: 0000-0003-0285-722X<br>Martin Cheek ORCID: 0000-0003-4343-3124                              |

## 26 Abstract

| 27 | To achieve conservation success, we need to support the recovery of threatened species. Yet,    |
|----|-------------------------------------------------------------------------------------------------|
| 28 | <5% of plant species listed as threatened on the IUCN Red List have Species Conservation        |
| 29 | Action Plans (CAPs). If we are to move from a Red List to a Green List for threatened plant     |
| 30 | species, CAPs need to be devised and implemented. Guinea is one of the most botanically         |
| 31 | diverse countries in West Africa. Recent research found that nearly 4000 vascular plants        |
| 32 | occur in Guinea, a 30% increase from previous estimates. 273 of these plant species are now     |
| 33 | assessed as threatened with global extinction. There is increasing pressure on the              |
| 34 | environment from the extractive industry and a growing population. In parallel with             |
| 35 | implementation of an Important Plant Area programme in Guinea, CAPs were developed for          |
| 36 | 20 threatened plant species. These plans elaborate conservation efforts needed first to         |
| 37 | safeguard threatened species both in situ and ex situ and then to support their recovery. We    |
| 38 | document the approach used to assemble the Species Conservation Action Plans, and we            |
| 39 | discuss the importance of having up to date field information, IUCN Red List assessments,       |
| 40 | and use of a collaborative approach. The need for these plans is increasingly important with    |
| 41 | recent calculations suggesting a third of African plants are threatened with extinction. This   |
| 42 | paper outlines initial detailed plant conservation planning in Guinea and offers a template for |
| 43 | conservation practitioners in other tropical African countries to follow.                       |
|    |                                                                                                 |

44

45 Key words: Important Plant Areas, IUCN Red List, Species Conservation Action Plans,
46 Guinea, threatened species.

#### 47 Introduction

48 The goal of conservationists is to protect globally threatened species and achieve success 49 through species recovery, eventually recording this on the Green List (Akcakaya et al. 2018). 50 Yet, of the 15,774 threatened plant species treated on the global Red List, only 753 (4.78 %) 51 are reported to have Species Conservation Action Plans (CAPs) in place (IUCN 2019). To 52 help address this massive deficit, we offer an approach to developing CAPs for threatened 53 plant species which has succeeded in Guinea (West Africa), as a template for conservation 54 practitioners in other Tropical African countries. 55 Guinea is one of the most botanically diverse countries in West Africa. It has nearly 56 4000 vascular plant species (G. Gosline et al. unpubl. data), a significant increase from the c. 57 3000 listed in the Flore (Angiospermes) de la République de Guinée by Lisowski (2009). 58 This increase reflects an extensive searches over the last five years to inventory the flora of 59 Guinea through the digitisation and georeferencing of historical herbarium records 60 (Magassouba et al. 2014, GBIF 2019) complemented by targeted field expeditions to 61 understudied areas of Guinea by the National Herbarium of Guinea (HNG) and the Royal 62 Botanic Gardens, Kew (RBGK) (Cheek et al. 2018a). As a result of efforts to find additional 63 localities for rare species, we determined at least one likely extinction (Inversodicraea 64 pygmaea G.Taylor) due to a hydroelectric dam (Cheek 2018c). A total of 74 published 65 endemic species have been recorded for Guinea, all of which are threatened (G. Gosline et al. 66 unpubl. data, Rokni 2017, 2018, Larridon 2018). Recent estimates of endemism for Guinea 67 ranged from 2.6% (Lisowski, based on a species list) to 4.7% (Sosef et al. 2017 inferred from 68 the RAINBIO dataset. The number of endemic species is set to increase with recent 69 discoveries; several descriptions of new species to science are in progress. The comparatively 70 high plant diversity in Guinea is in part due to the highland areas found in the central and 71 eastern parts of the country. The central Fouta Djallon highlands have many endemic plant

| 72 | species found in a variety of habitats such as sandstone cliffs, sandstone and lateritic bowal  |
|----|-------------------------------------------------------------------------------------------------|
| 73 | (treeless hardpan), and submontane forest (Couch et al. 2019a). However, over past centuries    |
| 74 | this area has undergone a dramatic change with the expansion of cattle ranging and              |
| 75 | development of agricultural systems. The submontane forest has become extremely degraded        |
| 76 | and intact submontane forest has practically disappeared over all of the Fouta Djallon. A       |
| 77 | recent three year project to identify Tropical Important Plant Areas in Guinea (Couch et al.    |
| 78 | 2019a) showed that of 35 threatened species not seen for 60 years or more, and not              |
| 79 | rediscovered during the project, 25 are globally endemic to Guinea and the majority occur in    |
| 80 | the Fouta Djallon. The Fouta Djallon historically shared some species with the mountain         |
| 81 | chains of Simandou and Nimba in eastern Guinea, such as Habenaria jaegeri Summerh. and          |
| 82 | Kotschya lutea (Portères) Hepper. Both species are likely to be locally extinct in the Fouta    |
| 83 | Djallon, as they have not been seen despite targeted searches there for 57 and 82 years         |
| 84 | respectively.                                                                                   |
| 85 | The Tropical Important Plant Areas (TIPAs) of Guinea project recently identified nine           |
| 86 | threatened habitats and 22 TIPAs (Couch et al. 2019a, Couch et al, 2017). TIPAs are assessed    |
| 87 | using three criteria: the presence of (1) Threatened species, (2) Botanical richness (including |

88 socio-economic species), and (3) Threatened habitats (Darbyshire et al. 2017). Each TIPA 89 assessment also documents past, present and future threats as well as the current protection 90 given to the proposed TIPA site. A variety of threats imperil the flora of Guinea, not least 91 from the mining sector. Guinea is one of the leading exporters of bauxite, producing 95% of 92 African bauxite and 15% of the global share, based on tonnes exported (Alcircle, 2018). It 93 also has considerable reserves of iron ore, gold and diamonds, with smaller reserves of other 94 minerals including nickel, copper, cobalt, manganese and uranium (Guinean Ministry of 95 Mines and Geology, 2016). However, for many of the habitats, in particular the lowland 96 evergreen forest and submontane forest (including gallery forest), the main threats are the

| 97  | unsustainable slash and burn agricultural practices and the cutting of wood for charcoal. A      |
|-----|--------------------------------------------------------------------------------------------------|
| 98  | study by Sayer et al. (1992) documented that 96% of original forest had already disappeared      |
| 99  | from Guinea. In the bowal areas, the main threats are from cattle-ranging and linked             |
| 100 | management practices causing increases in fire frequency, and from housing development.          |
| 101 | New large-scale projects, for example in the mining sector and for hydroelectric                 |
| 102 | power, require companies to carry out detailed Social and Environmental Impact                   |
| 103 | Assessments (SEIAs). These studies should highlight threatened plant species in their            |
| 104 | concessions. Until now, only 7% of all plant species have been assessed globally for the         |
| 105 | IUCN Red List (Bachman et al. 2019), including c. 5% of the Guinean flora, making it             |
| 106 | difficult for environmentalists to demonstrate that protection or mitigation is needed. A        |
| 107 | GBIF-BID funded project (reference number AF2015-0042-NAC) entitled 'Towards a Red               |
| 108 | Data Book for Guinea' in collaboration with the Darwin Initiative funded TIPAs project           |
| 109 | (Darwin Project 23-002), has assessed c. 200 plant species from Guinea (using the IUCN           |
| 110 | 2012 guidelines). This is a considerable achievement. However, the review and publishing         |
| 111 | process of IUCN Red List assessments are time-consuming. These delays were accentuated           |
| 112 | because until recently there was no IUCN specialist group available to review most West          |
| 113 | African plant assessments. In June 2019, the West Africa Plant Red List Authority                |
| 114 | (WAPRLA) was accepted by the IUCN Species Survival Commission. It is expected that the           |
| 115 | new RLA will reduce the delays in publication of IUCN Red List assessments of West               |
| 116 | African plants and will also unite plant conservation efforts and promote red listing across the |
| 117 | West African region. A preliminary list of threatened plant species for Guinea was published     |
| 118 | in PeerJ Preprints in 2017, and updated over the course of the projects described above          |
| 119 | (Couch et al. 2019b) to keep conservation practitioners up to date ahead of the publication of   |
| 120 | a full plant Red Data Book for Guinea 2020. This will also feed into updating the                |
| 121 | Monographie Nationale (Guinea's National Biodiversity Management Action Plan) which              |

has not been revised since 1997. As part of the red listing process, ongoing and required
conservation actions are recorded. However, these are high level actions with little or no
detail generally given.

125 As part of the GBIF-BID 'Towards a Red Data Book for Guinea' project, and as a 126 first step towards detailed plant conservation planning in Guinea, individual Species 127 Conservation Action Plans were developed for 20 plant species assessed as Critically 128 Endangered (CR), Endangered (EN) or Vulnerable (VU). These plans document the 129 conservation efforts needed to safeguard each of these threatened species both *in situ* and *ex* 130 situ. 131 In this paper, we outline the approach used to assemble the Species Conservation 132 Action Plans, and we discuss the importance of having up to date species field information 133 and IUCN Red List assessments. We also discuss the advantages of a collaborative approach 134 and outline the next stages for implementing these species action plans on the ground in 135 Guinea.

136

#### 137 Materials and Methods

138 Several points need to be considered before a Species Conservation Action Plan can be

139 written. Firstly, who should be involved in this process? To address this and the assessment

140 of the Tropical Important Plant Areas, a joint working group on TIPAs and Conservation

141 Action Plans (CAPs) was formed in May 2018. The working group consists of

142 representatives from the National Herbarium of Guinea (HNG), the Royal Botanic Gardens,

143 Kew, UK (RBGK), the Guinean Ministry of Environment, Water and Forests (MEEF), the

144 National Parks and Reserves office (MEEF-OGuiPAR), the Centre for Biological

145 Observations and Monitoring (MEEF-COSIE), environmental NGOs Guinée Ecologie (GE)

146 and Protection et Gestion de l'Environnement (PEG), the Centre for Environmental Research

147 Studies at the Université Gamal Abdel Nasser de Conakry (UGANC-CERE), and the Seredou 148 Herbarium (Institut de Recherche Agronomique de Guinée (IRAG) acronym SERG). This 149 was the first time that these organisations had united to support the prioritisation of 150 threatened plant conservation in Guinea. The working language of the group is French. The working group meets every 2 months and conducts business over email inbetween meetings, 151 152 discusses and agrees what should be included in the CAPs and which designated members are 153 to be charged with collating the information and writing the plans. 154 The protocol for preparing the conservation action plans was developed and approved 155 by the working group (available on the National Herbarium of Guinea website) and was 156 based in part on the Conservation Action Planning Handbook by The Nature Conservancy 157 (TNC 2007). The format and style of the Conservation Action Plans drew upon previously 158 drafted species recovery plans for non-Guinean taxa (e.g. JNCC UK priority species pages 159 2010a, 2010b, Panjabi et al. 2011) together with constent from conservation actions 160 identified in the IUCN Red List process. 161 A shortlist was drawn up by the HNG and RBGK members of the group from the preliminary 162 list of threatened species of Guinea (Couch et al. 2019b). Twenty species were chosen that 163 meet the following selection criteria: 1) listed as CR, EN or VU in the preliminary checklist, 164 2) have a published or reviewed IUCN Red List assessment, 3) cover a range of life forms, 165 and 4) are found over a range of threatened habitats. The decision to prepare CAPs only for 166 species with formal IUCN assessments was made in part because there is more information 167 available for these species, but also because their assessed conservation status was unlikely to 168 change in the near future. With species that have yet to be formally assessed or reviewed 169 there is the risk that the IUCN Red List status may change. The species chosen included a 170 mixture of life forms i.e. trees, shrubs, lianas and herbs (Table 1).

171 With the protocol drafted and the short list of species agreed, two members of the group took 172 the lead on collating species information and drafting the plans. All members of the group 173 contributed to review and refinement of the plans. This work took place over a period of 9 174 months and involved an estimated 152 person working days. 175 The first part of each CAP sets out the context for each species. It is imperative that 176 each species is properly researched and clearly circumscribed based on sound taxonomy. This 177 is especially necessary since any existing documentation, particularly in Guinea, is often out 178 of date. Until recently, there was little published on the Guinean flora. The *Flore* 179 (Angiospermes) de la Guinée by Lisowski, was published posthumously in 2009, with 180 taxonomy not updated since Lisowski submitted it for publication in 2000. As a result, many 181 names in Lisowski's *Flore de la Guinée* are out of date (Cheek et al. 2015), and since its 182 publication about 20 newly discovered species (e.g. Cheek & Haba 2016, Cheek et al. 2018b) 183 and many new range extensions have been recorded in Guinea. Where a recently discovered 184 species was chosen for a CAP, the protologue (original scientific publication) has been used 185 as the source for the taxonomic information. Names have been checked against the African 186 Plant Database (2019), the International Plant Names Index (2019) and Plants of the World 187 Online (2019). Descriptions of the plant species were taken from either Lisowski (2009), the 188 Flora of West Tropical Africa (Keay & Hepper 1954-72) or the protologue. Details about the 189 ecology, phenology and habitat where known, have also been documented. 190 The working group decided that each CAP should include as much information as is 191 available for the species including i) past and present collection data, this information has 192 largely been collated from herbarium specimen label data and species accounts in the works 193 cited above. If the species is known to be used by people, these uses are also documented; ii) 194 geographical distribution, particularly within Guinea to focus conservation efforts and, iii) 195 where known, the number of indviduals in the population. Specimen-based distribution maps

| 196 | for each species have been produced based on records collected for the Red Listing              |
|-----|-------------------------------------------------------------------------------------------------|
| 197 | programme, examples can be seen in Fig. 1. Distribution maps were made using ArcGIS Pro         |
| 198 | software with simple XY coordinates uploaded and mapped onto a world basemap.                   |
| 199 | Information on threats both past and present, direct and indirect, is listed. This              |
| 200 | information was gathered partly through literature but also during recent fieldwork. As part of |
| 201 | the Darwin Initiative funded project on Tropical Important Plant Areas in Guinea 2016-2019,     |
| 202 | over 20 field expeditions were carried out targeting rare species and priority threatened       |
| 203 | habitats. These field expeditions were invaluable to gather current information on rare         |
| 204 | species, their distribution and uses, and on the current threats.                               |
| 205 | The second part of the CAP document sets out a summary plan for the management                  |
| 206 | and conservation of the species based on current knowledge. The first section, of the second    |
| 207 | part, details all known research or suggests what research is required. In situ and ex situ     |
| 208 | conservation actions are then proposed for the protection of the species.                       |
| 209 | In situ conservation actions detail any protected areas in which the species is currently       |
| 210 | found, and whether the species is found within any of the newly designated Tropical             |
| 211 | Important Plant Areas (Couch et al. 2019a). The total size of the population and details of the |
| 212 | sites where the species is found are recorded so that these data can be presented to the local  |
| 213 | authorities and ultimately support the legal protection of the sites and species. The CAP also  |
| 214 | emphasises that this documentation process must always be undertaken with support from          |
| 215 | local communities especially when a species (sub)population occurs within a community           |
| 216 | forest or sacred forest or in an area outlined for housing development, e.g. as is the case for |
| 217 | Vernonia djalonensis A.Chev. Without community support, conservation efforts will have          |
| 218 | little long-term effect on the survival of species on the ground.                               |
| 219 | Ex situ conservation actions focus on the propagation of the species outside its range,         |
| 220 | seed collection and banking where applicable, and the potential for translocation to another    |

protected area or botanical garden. The results of any experiments previously completed are also documented. Each CAP also recommends sensitization of the local population to the importance of plant species conservation and to the protection of the national plant heritage of Guinea.

225

#### 226 **Results**

227 Of the twenty CAPs produced (see Online Resources 1-20), 11 are for species endemic to

228 Guinea; this represents 15% of the total 74 published endemic plant species of Guinea. The

threats to the CAP species vary. All species have one or more associated threats. Fig. 2 shows

the percentage of species per threat type. The threats affecting most CAP species are

uncontrolled fires (75%), mining or quarrying (60%) and infrastructure / urbanisation (50%).

Two of the species are directly threatened by pollution and all of the woody species (9) are

threatened by deforestation or clearance of habitat through slash and burn agriculture, which

is also a threat to 40% of the CAP species overall.

235 Nine of the twenty CAP species are found in a current protected area and all of the

species are found within one or more of the newly designated TIPAs (Couch et al. 2019a).

237 However, these protected areas either lack management plans or have management plans

which are outdated. Within these management plans, specific species conservation actions,

especially for plants, are usually absent.

Eight of the CAP species have seed collections made and banked at the Simfer base in the Simandou mountains or Herbier National de Guinee, and the Millenium Seed Bank at RBGK, UK, though none have reached the recommended seed banking target threshold of 10,000 seeds (Way & Gold 2014). Some seed collections are small because there are few known individuals or individuals do not produce many seeds each season. Some species have large seeds, expected to be recalcitrant, i.e. they are unsuitable for conventional seed banking,

246 the seeds dying when dried. *Talbotiella cheekii* Burgt is one such species (Burgt et al, 2018). 247 Some Rubiaceae species are also known to be recalcitrant so *Tarenna hutchinsonii* Bremek. 248 and *Keetia susu* Cheek may also prove to be unsuitable for conventional seed banking, but as 249 yet they remain untested. 250 For the majority of the CAP species no propagation information is available and so 251 experimentation will be required to fill this knowledge gap. However, for a quarter of the 252 species propagation protocols are available, due to their association with a mining project. 253 These protocols were researched at RBGK using a variety of methods, e.g. micropropagation 254 for Habenaria jaegeri (Cheek 2017), and cuttings for Tarenna hutchinsonii (Cheek et al 255 2015) and Marsdenia exellii C.Norman (Cheek 2013). 256 Currently, only five of the 20 species have been identified as suitable for potential 257 reintroduction. Two transplant experiments have already been carried out with *Eriosema* 258 triformum Burgt. Transplantation of tubers, from the Simandou mountains to Mt Béro in May 259 2012, was unsuccessful as the tubers were mostly eaten by squirrels and rock hyrax, and 260 ultimately, all died (Cheek et al, 2017). Translocation of *Eriosema triformum* seed to the Mts 261 Nimba Strict Nature Reserve and also to Mt Tibe was attempted in April 2019. Results of 262 these transplants are to be evaluated in 2020 (X. van der Burgt, pers. comm.). Rhizomes of 263 Stylochaeton pilosus Bogner were successfully translocated in 2013 (C. Couch, pers. obs.). 264 Discussion 265

The BID-GBIF funded project "Towards a Red Data book for Guinea" and the Darwin Initiative funded project identifying "Tropical Important Plant Areas of Guinea" have the attracted attention of both national and international audiences to the threatened and unique plant species of Guinea. The Species Conservation Action Plans resulting from these projects are the first to be written for threatened plant species in Guinea and are a result of the

| 271 | collaboration between the HNG, RBGK, Guinean government departments and NGOs                 |
|-----|----------------------------------------------------------------------------------------------|
| 272 | focussed on plant conservation. The partnerships and expertise on plant conservation built   |
| 273 | during these projects did not previously exist. Conservation of endemic and near-endemic     |
| 274 | plant species had not been on the national agenda. In contrast, the conservation of large    |
| 275 | mammals such as the chimpanzee have had high levels of attention (Sugiyama & Soumah          |
| 276 | 1988, Brugière et al. 2005, Fleury-Brugière & Brugière 2010, Humle et al. 2011). Following   |
| 277 | the conclusion of the Darwin and GBIF-BID projects in March 2019, the working group has      |
| 278 | continued to collaborate to address, review and update 1) Guinea's CITES list and 2) the     |
| 279 | second edition of the Guinean National Biodiversity Action Plan. The collaboration has       |
| 280 | gained support from all sectors concerned with plant conservation and together with the      |
| 281 | recently identified Tropical Important Plant Areas (Couch et al. 2019a), it is pushing plant |
| 282 | conservation in Guinea further up the national agenda. To the best of our knowledge this is  |
| 283 | the first time that a programme of plant conservation action plans for globally threatened   |
| 284 | plant species has been devised and acted upon in a West African country.                     |
| 285 | The 20 Species Conservation Action Plans have highlighted the importance of fieldwork to     |
| 286 | provide up to date information on the target species. IUCN Red List assessments can be       |
| 287 | written based on literature and herbarium records, but knowing the current status of a       |
| 288 | population and the real threats that they face is invaluable when writing a CAP. The CAPs    |
| 289 | draw on fieldwork undertaken over the past 10 years, largely by HNG and RBGK.                |
| 290 | Implementation of these plans will need further action. One of the plans, for Vernonia       |
| 291 | djalonensis (Online Resource 19), was the basis of a successful funding bid to the           |
| 292 | Mohammed bin Zayed Species Conservation Fund and is being used to guide on-the-ground        |
| 293 | conservation actions for this species, which was recently elected as the national flower of  |
| 294 | Guinea (Couch 2018). We have engaged with the local authorities and local plant nurseries to |
|     |                                                                                              |

295 protect and propagate this species. In early 2020, we are planning to engage with students and 296 youth groups.

| 297 | There is a growing need for documentation on the plants of Guinea, not only because there       |
|-----|-------------------------------------------------------------------------------------------------|
| 298 | has been so little published, but also because much of the documentation is out of date. The    |
| 299 | need for national scale CAPs for individual priority species is ever more important as original |
| 300 | habitat is lost due to human activities. One in five of the world's plant species were reported |
| 301 | as threatened (RBG Kew 2016), and Stévart et al. (2019) infer that one in three African plant   |
| 302 | species are at risk of extinction. With 96% loss of original forest reported in 1992 (Sayer et  |
| 303 | al. 1992), many of Guinea's most threatened plant species need tailored CAPs if they are not    |
| 304 | to follow Inversodicraea pygmaea into global extinction.                                        |
| 305 | Guinea has over 270 threatened species of which 74 are endemic. Given the person                |
| 306 | hours required to write 20 CAPs for threatened species, some endemic species might be more      |
| 307 | effectively treated by local area action plans, for example based on the 22 identified TIPAs,   |
| 308 | provided they adequately cover the species encompassed (Monteiro et al. 2018). Broader          |
| 309 | action plans for example a comprehensive action plan that treats all Guinean threatened tree    |
| 310 | species might be more effective than individual CAPs. This would reduce the timeframe           |
| 311 | needed to develop conservation action plans enabling efficient implementation.                  |
| 312 | Increased development in Guinea is resulting in an increase in environmentally damaging         |
| 313 | projects e.g. mining, hydroelectric dams and quarrying. However, development does not have      |
| 314 | to mean wholesale destruction of the environment and global extinction of species. Good         |
| 315 | management based on solid data and analysis can lead to much better industry practices.         |
| 316 | Guinea's mining projects are implicated in the conservation of the plant species found in their |
| 317 | concessions, but they do not always make this data available. There is a vital need to have up  |
| 318 | to date information freely available for those assessing the environmental impact of such       |
| 319 | projects and the possible mitigation that can be achieved. Most of the existing conservation    |

| 320 | efforts in Guinea are focussed on mammals, birds, ecosystem services, commercial trade or      |
|-----|------------------------------------------------------------------------------------------------|
| 321 | large-scale landscape protection e.g. trans-boundary areas such as the Nimba Mountains         |
| 322 | (STEWARD 2008, Nganje et al. 2014, Brugière & Kormos 2008, Brugière 2012, Brugière et          |
| 323 | al. 2005, Correia et al. 2010, Samoura et al. 2007). TIPAs aside, most of the currently        |
| 324 | protected areas in Guinea do not overlap with concentrations of threatened plant species       |
| 325 | (Couch et al. 2019a). The majority of the Classified Forests (CF) were designated for forestry |
| 326 | services, are not protected within the National Parks and Reserves network, and are            |
| 327 | considered as unprotected by the Guinea Government. In those few cases where a CF is           |
| 328 | considered protected, it will have a second designation e.g. 'Reserve Intégrale' or National   |
| 329 | Park. Where management plans are in place for protected areas, these do not include            |
| 330 | protection of individual threatened plant species or their specific habitats for example the   |
| 331 | 1995-2014 Management plan for the forest of Ziama (PROGERFOR, 1994).                           |
| 332 | The 20 species CAPs will be used to target plant conservation and funding, not just in         |
| 333 | protected areas. They also have the potential to form the basis of conservation planning and   |
| 334 | mitigation strategies for the extractive industries in those cases where project footprints    |
| 335 | intersect with those of the threatened plant species. With 20 species CAPs written of 273      |
| 336 | threatened species in Guinea, this is merely the beginning. On the ground implementation of    |
| 337 | the 20 CAPs will assist in updating and modifying the CAP protocol to make it a useful and     |
| 338 | relevant tool in future conservation planning in Guinea.                                       |
| 339 |                                                                                                |
| 340 | Author Contributions                                                                           |

341 Writing and compilation of supplementary materials: CC and DM; Contribution and revision

of CAPs: all members of the working group; Revision of content and supplementary

343 materials: XvdB, IL, MC, EL. Writing of BID funding proposal: ID, MC.

344

# 345 Acknowledgements

| 346        | This work was funded through a grant from Global Biodiversity Information Facility (GBIF)                  |
|------------|------------------------------------------------------------------------------------------------------------|
| 347        | Biodiversity Information for Development (BID) programme. Isabel Larridon is supported by                  |
| 348        | the B.A. Krukoff Fund for the Study of African Botany. The authors would like to thank all                 |
| 349        | those involved with field work in Guinea over the past 10 years who have gathered data,                    |
| 350        | notably Pépé Haba, Gbamon Konomou, Pierre Haba, Fatoumata Fofana Madé, Almamy                              |
| 351        | Diallo, Natalie Konig, Oliver Hooper and Abdoulaye Baldé. Nagnouma Conde, Tokpa Seny                       |
| 352        | Dore, Albert Guilavogui, Boubacar Sow, and Saba Rokni. We also thank Royal Botanic                         |
| 353        | Gardens Kew volunteers Margaret Joachim and Rosemary Lomer who georeferenced                               |
| 354        | herbarium specimens for the GBIF-BID and Darwin Initiative Tropical Important Plant Areas                  |
| 355        | Guinea projects. Our thanks also to Catia Canteiro and Emma Williams for their work on                     |
| 356        | writing IUCN Red List assessments for Guinean plant species. This work has been enabled                    |
| 357        | by the Memorandum of Understanding between RBG Kew and National Herbier de Guinee                          |
| 358        | since 2008.                                                                                                |
| 359        |                                                                                                            |
| 360        | Conflicts of interest                                                                                      |
| 361        | None.                                                                                                      |
| 362        |                                                                                                            |
| 363        | Ethical standards                                                                                          |
| 364        | This research was carried out in accordance with the Oryx code of conduct.                                 |
| 365        |                                                                                                            |
|            |                                                                                                            |
| 366        | References                                                                                                 |
| 366<br>367 | <b>References</b><br>Akcakaya H.R., et al. (2018) Quantifying species recovery and conservation success to |
|            |                                                                                                            |
| 367        | Akcakaya H.R., et al. (2018) Quantifying species recovery and conservation success to                      |

| 370 Af | ican Plant | Database | (version | 3.4.0 | ) (2019) | . Conse | ervatoire et | Jardin | botaniques | de la | ı Vil | ile |
|--------|------------|----------|----------|-------|----------|---------|--------------|--------|------------|-------|-------|-----|
|--------|------------|----------|----------|-------|----------|---------|--------------|--------|------------|-------|-------|-----|

- de Genève and South African National Biodiversity Institute, Pretoria.
- 372 <u>http://www.ville-ge.ch/musinfo/bd/cjb/africa/</u>. Accessed 20 August 2019
- 373 Alcircle (2019) <u>https://www.alcircle.com/news/bauxite-export-by-guinea-estimated-to-grow-</u>
- 374 <u>13-yoy-in-2019-china-to-remain-the-top-importer-44444</u>
- 375 Bachman SP, Field R, Reader T, Raimondo D, Donaldson J, Schatz GE, Nic Lughadha E
- 376 (2019) Progress, challenges and opportunities for Red Listing. Biol Conserv 43:45–55
- 377 Brugière D (2012) Identifying priority areas for the conservation of antelopes in the Republic
- of Guinea, West Africa, using the complementarity approach. Oryx: 46 pp. 253-259
- 379 Brugière D, Kormos R (2008) Review of the protected area network in Guinea,
- 380 West Africa, and recommendations for new sites for biodiversity conservation.
- 381 Biodivers Conserv 18: 847. https://doi.org/10.1007/s10531-008-9508-z
- Brugière D, Dia M, Diakité S. et al. (2005) Large- and medium-sized ungulates in the Haut
   Niger National Park, Republic of Guinea: Population changes 1997–2002. Oryx
- 384 39:50-55
- Burgt XM van der, Molmou D, Diallo A. et al. (2018) *Talbotiella cheekii* (Leguminosae:
  Detarioideae), a new tree species from Guinea. Kew Bull 73:26
- 387 Cheek, M. (2013). *Marsdenia exellii*. The IUCN Red List of Threatened Species 2013:

388 e.T21480972A21481025. http://dx.doi.org/10.2305/IUCN.UK.2013-

- 389 1.RLTS.T21480972A21481025.en. Downloaded on 03 December 2019.
- 390 Cheek M. (2017). *Habenaria jaegeri*. The IUCN Red List of Threatened Species 2017:
- e.T15368405A15368408. http://dx.doi.org/10.2305/IUCN.UK.2017-
- 392 2.RLTS.T15368405A15368408.en. Downloaded on 03 December 2019.

- 393 Cheek M (2018c) *Inversodicraea pygmaea*. The IUCN Red List of Threatened Species 2018:
- e.T98569037A100439967. http://dx.doi.org/10.2305/IUCN.UK.2018-
- 395 1.RLTS.T98569037A100439967.en. Accessed 21 October 2019
- 396 Cheek M, Haba PM (2016) *Inversodicraea* Engl. resurrected and *I. pepehabai* sp. nov.
- 397 (Podostemaceae), a submontane forest species from the Republic of Guinea. Kew Bull
  398 71:55
- 399 Cheek M, Poveda LL, Molmou D (2015) *Tarenna hutchinsonii* (Rubiaceae) redelimited, and
- 400 *T. agnata* described from W. Africa. Kew Bull 70:12
- Cheek M, van der Burgt X. & Rokni S. (2017). *Eriosema triformum*. The IUCN Red List of
  Threatened Species 2017: e.T15368367A15368370.
- 403 http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15368367A15368370.en.
- 404 Downloaded on 03 December 2019.
- 405 Cheek M, Magassouba S, Howes MR. et al. (2018a) Kindia (Pavetteae, Rubiaceae), a new
- 406 cliff-dwelling genus with chemically profiled colleter exudate from Mt Gangan,
- 407 Republic of Guinea. PeerJ 6:e4666
- 408 Cheek M, Magassouba S, Molmou D. et al. (2018b) A key to the species of *Keetia*
- 409 (Rubiaceae Vanguerieae) in West Africa, with three new, threatened species from
- 410 Guinea and Ivory Coast. Kew Bull 73:56
- 411 Correia M, Diabaté M, Beavogui P. et al. (2010) Conserving forest tree diversity in Guinée
- 412 Forestière (Guinea, West Africa): the role of coffee-based agroforests. Biodivers
- 413 Conserv 19: 1725. <u>https://doi.org/10.1007/s10531-010-9800-6</u>
- 414 Couch CA (2018) Guinea: The Campaign for a National Flower. <u>https://www.kew.org/read-</u>
- 415 <u>and-watch/guinea-the-campaign-national-flower</u> Accessed 20 August 2019
- 416 Couch C, Cheek M, Haba P. et al. (2019a) Threatened Habitats and Tropical Important Plant
- 417 Areas of Guinea, West Africa. Solopress, UK.

| 418 | Couch C, Magassouba S, Molmou D, et al. (2017) Tropical Important Plant Areas-A case      |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 419 | study from Guinea. European Conference of Tropical Ecology: 388.                          |  |  |  |  |  |  |
| 420 | Couch C, Magassouba S, Rokni S. et al. (2019b) Threatened plants species of Guinea-       |  |  |  |  |  |  |
| 421 | Conakry: A preliminary checklist. PeerJ Preprints 5:e3451v4.                              |  |  |  |  |  |  |
| 422 | Darbyshire I, Anderson S, Asatryan A, Byfield A, Cheek M, Clubbe C, Ghrabi Z, Harris T,   |  |  |  |  |  |  |
| 423 | Heatubun CD, Kalema J, Magassouba S, McCarthy B, Milliken W, de Montmollin B,             |  |  |  |  |  |  |
| 424 | Nic Lughadha E, Onana J-M, Saïdou D, Sârbu A, Shrestha K, Radford EA (2017)               |  |  |  |  |  |  |
| 425 | Important Plant Areas: revised selection criteria for a global approach to plant          |  |  |  |  |  |  |
| 426 | conservation. Biodivers Conserv 26:1767–1800                                              |  |  |  |  |  |  |
| 427 | Fleury-Brugière MC, Brugière D (2010) High Population Density of Pan troglodytes verus in |  |  |  |  |  |  |
| 428 | the Haut Niger National Park, Republic of Guinea: Implications for Local and              |  |  |  |  |  |  |
| 429 | Regional Conservation. Int J Primatol 31:383–392                                          |  |  |  |  |  |  |
| 430 | GBIF (2019) Global Biodiversity Information Facility.                                     |  |  |  |  |  |  |
| 431 | https://www.gbif.org/publisher/751cb816-53a6-46e6-9e37-6ac2c43f10fd Accessed 21           |  |  |  |  |  |  |
| 432 | October 2019                                                                              |  |  |  |  |  |  |
| 433 | Guinean Ministry of Mines and Geology (2016) https://mines.gov.gn/en/resources/bauxite/   |  |  |  |  |  |  |
| 434 | Accessed 21 October 2019                                                                  |  |  |  |  |  |  |
| 435 | Herbier National de Guinée (2019) Protocole des PACs.                                     |  |  |  |  |  |  |
| 436 | http://www.herbierguinee.org/documents-du-projet-bid.html. Accessed December              |  |  |  |  |  |  |
| 437 | 2019.                                                                                     |  |  |  |  |  |  |
| 438 | Humle T, Colin C, Laurans M, Raballand E (2011) Group Release of Sanctuary Chimpanzees    |  |  |  |  |  |  |
| 439 | (Pan troglodytes) in the Haut Niger National Park, Guinea, West Africa: Ranging           |  |  |  |  |  |  |
| 440 | Patterns and Lessons So Far. Int J Primatol 32: 456–473                                   |  |  |  |  |  |  |
| 441 | International Plant Names Index (2019). Published online. Board of Trustees of the Royal  |  |  |  |  |  |  |
| 442 | Botanic Gardens, Kew. https://www.ipni.org/. Accessed 20 August 2019                      |  |  |  |  |  |  |

- 443 IUCN (2019) The IUCN Red List of Threatened Species. Version 2019-3.
- 444 http://www.iucnredlist.org. Downloaded on 10 December 2019.
- 445 JNCC UK priority species pages: Aceras anthropophorum (L.) W.T. Aiton Version 2 updated
- 446 on 15 December 2010 (a). <u>http://archive.jncc.gov.uk/\_speciespages/2470.pdf</u>.
- 447 Accessed 1 May 2018
- 448 JNCC UK priority species pages: Astragalus alpinus L. Version 2 updated on 15 December
- 449 2010 (b). <u>http://archive.jncc.gov.uk/\_speciespages/2068.pdf</u> Accessed May 2018
- 450 Keay RWJ, Hepper N (Eds) 1954–1972. Flora of West Tropical Africa. Royal Botanic
- 451 Gardens Kew. Crown Agents, London
- 452 Larridon, I. 2018. *Pitcairnia feliciana*. The IUCN Red List of Threatened Species 2018:
- 453 e.T87753965A87753976. http://dx.doi.org/10.2305/IUCN.UK.2018-
- 454 <u>z1.RLTS.T87753965A87753976.en.</u>
- Lisowski, S. (2009) Flore (Angiospermes) de la République de Guinée. Scripta Botanica
- 456 Belgica Vol. 41.
- 457 Magassouba S, Camara B, Guilavogui K. et al. (2014) Hunting Threatened taxa of Guinea.
- Abstracts of the XXth AETFAT Congress, South Africa, 2014. Scripta Bot Belg
  52:255
- Monteiro L. et al. (2018) Conservation priorities for the threatened flora of mountaintop
  grasslands in Brazil. Flora 238: 234–243.
- 462 Nganje M, Lebbie A, Sambollah R. et al (2014). Mid-Term Performance Evaluation of the
- 463 Sustainable and Thriving Environments for West Africa Regional Development
- 464 (STEWARD III) Project. DOI:10.13140/RG.2.1.1243.6966.
- Panjabi S, Neely B, Lyon P (2011) Rare Plant Conservation Action Plan: Big Gypsum Valley
  and Dry Creek Basin, Colorado. Unpublished report prepared by The Nature

- 467 Conservancy and the Colorado Natural Heritage Program for the National Fish and
- 468 Wildlife Foundation. 25 pp. Accessed May 2018
- 469 Plants of the World Online (2019) Published online. Board of Trustees of the Royal Botanic
- 470 Gardens, Kew. <u>http://www.plantsoftheworldonline.org/</u> Accessed 20 August 2019
- 471 PROGERFOR (1994) Plan d'Aménagement de la Forêt de Ziama 1995-2014. Groupement
- 472 ingénieur conseil CIRAD-forêt Deutsche Forst Consult.
- 473 RBG Kew (2016) The State of the Worlds Plants Report 2016. Royal Botanic Gardens
  474 Kew.
- 475 Rokni S (2017) *Anisotes guineensis*. The IUCN Red List of Threatened Species 2017:
- 476 e.T85719057A85719060. http://dx.doi.org/10.2305/IUCN.UK.2017-
- 477 <u>2.RLTS.T85719057A85719060.en</u>
- 478 Rokni S (2018) *Vernonia djalonensis*. The IUCN Red List of Threatened Species 2018:
- 479 e.T87753868A87753873. http://dx.doi.org/10.2305/IUCN.UK.2018-
- 480 <u>1.RLTS.T87753868A87753873.en.</u>
- 481 Samoura K, Bouvier AL & Waaub, JP. (2007) Strategic environmental assessment for
- 482 planning mangrove ecosystems in Guinea. Know Techn Pol. 19: 77.
- 483 <u>https://doi.org/10.1007/BF02914892</u>
- 484 Sayer JA, Harcourt CS, Collins NM (1992) The Conservation Atlas of Tropical Forests:
- 485 Africa. IUCN and Simon and Schuster, Cambridge, UK
- 486 Sosef MS, Dauby G, Blach-Overgaard A. et al. (2017) Exploring the floristic diversity of
- 487 tropical Africa. BMC Biol 15:15.
- 488 Stévart T, Dauby G, Lowry II PP. et al. (2019) A third of the tropical African flora is
- 489 potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).
- 490 STEWARD (2008) Sustainable and Thriving Environment for West African Regional
- 491 Development Program. An Assessment of Environmental Threats and Transboundary

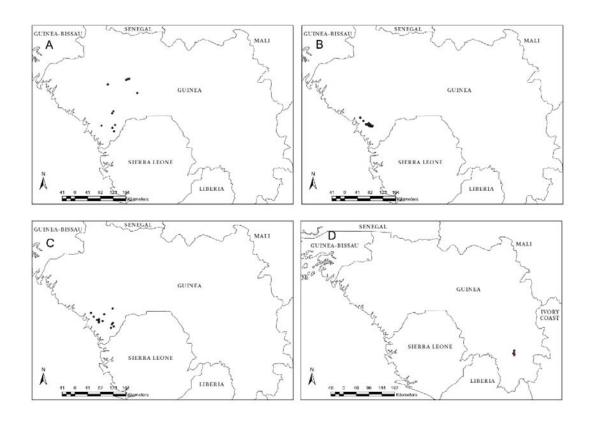
- 492 Development Opportunities in the Upper Guinean Forest Region. USAID and US
- 493 Forest Service. Retrieved from <u>www.land-links.org</u>.
- 494 Sugiyama Y, Soumah AG (1988) Preliminary survey of the distribution and population of

495 chimpanzees in the Republic of Guinea. Primates 29:569–574

- 496 TNC, 2007. Conservation Action Planning Handbook: Developing Strategies, Taking Action
- 497 and Measuring Success at Any Scale. The Nature Conservancy, Arlington, VA.
- 498 Way M, Gold K (2014) Assessing a population for seed collection. Millennium Seed Bank
- 499 Partnership Technical Information Sheet 02.
- 500 http://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/02-Assessing-
- 501 population.pdf Accessed September 2019

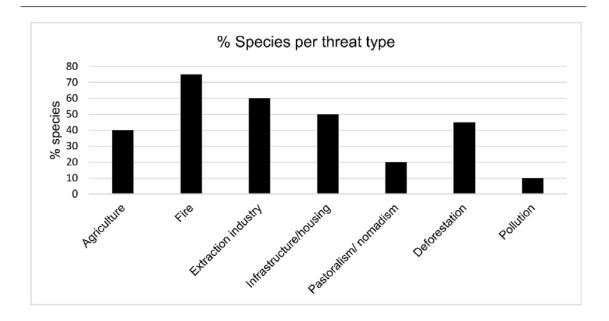
# Tables

| Family                     | Species                                                         | IUCN status | Growth form |
|----------------------------|-----------------------------------------------------------------|-------------|-------------|
| Acanthaceae                | Anisotes guineensis Lindau                                      | EN          | Shrub       |
| Apocynaceae                | Marsdenia exellii C.Norman                                      | EN          | Liana       |
| Apocynaceae                | Xysmalobium samoritourei Goyder                                 | EN          | Herb        |
| Araceae                    | Stylochaeton pilosus Bogner                                     | EN          | Herb        |
| Asteraceae                 | Vernonia djalonensis A.Chev.                                    | CR          | Herb        |
| Bromeliaceae               | Pitcairnia feliciana (A.Chev.) Harms & Mildbr.                  | CR          | Herb        |
| Cyperaceae                 | Scleria guineensis J.Raynal                                     | CR          | Herb        |
| Ebenaceae                  | Diospyros feliciana Letouzey & F.White                          | EN          | Tree        |
| Euphorbiaceae              | Acalypha guineensis J.K.Morton & G.A.Levin                      | VU          | Herb        |
| Lamiaceae                  | Plectranthus linearifolius (J.K.Morton) B.J.Pollard & A.J.Paton | EN          | Herb        |
| Leguminosae-Detarioideae   | Talbotiella cheekii Burgt                                       | EN          | Tree        |
| Leguminosae-Papilionoideae | Pterocarpus erinaceus (DC.) Polhill & Wiens                     | EN          | Tree        |
| Leguminosae-Papilionoideae | Eriosema triformum Burgt                                        | CR          | Herb        |


Table 1. List of species chosen for Conservation Action Plans. IUCN status: CR = Critically Endangered, EN = Endangered, VU = Vulnerable.

| Melastomataceae       | Cailliella praerupticola JacqFél.                       | EN       | Shrub      |
|-----------------------|---------------------------------------------------------|----------|------------|
| Orchidaceae           | Habenaria jaegeri Summerh.                              | EN       | Herb       |
| Podostemaceae         | Inversodicraea pepehabai Cheek                          | EN       | Herb       |
| Rubiaceae             | Keetia susu Cheek                                       | EN       | Shrub/Tree |
| Rubiaceae             | Tarenna hutchinsonii Bremek.                            | CR       | Shrub/Tree |
| Rutaceae              | Vepris felicis Breteler                                 | CR       | Shrub      |
| Sapotaceae            | Tieghemella heckelii (A.Chev.) Pierre ex Dubard         | EN       | Tree       |
| Rubiaceae<br>Rutaceae | Tarenna hutchinsonii Bremek.<br>Vepris felicis Breteler | CR<br>CR | Shrub/Tree |

# **Figure legends**


Fig. 1 Species distribution maps for four endemic Guinean species. A Anisotes guineensis, B

Talbotiella cheekii, C Diospyros feliciana, and D Eriosema triformum.



# Fig. 2 Graph showing the percentage of the 20 Conservation Action Plan species per threat

type.



## **Supplementary files**

## Conservation Action Plans for 20 threatened Guinean plant species can be found

## following the links below:

- CAP 1. Acalypha guineensis J.K.Morton & G.A.Levin DOI: 10.13140/RG.2.2.34363.36648
- CAP 2. Anisotes guineensis Lindau DOI: 10.13140/RG.2.2.25974.75845
- CAP 3. Cailliella praerupticola Jacq.-Fél. DOI: 10.13140/RG.2.2.34363.36648
- CAP 4. Diospyros feliciana Letouzey & F.White DOI: 10.13140/RG.2.2.15824.87047
- CAP 5. Eriosema triformum Burgt DOI: 10.13140/RG.2.2.35957.5296
- CAP 6. Habenaria jaegeri Summerh. DOI: 10.13140/RG.2.2.11630.56644
- CAP 7. Inversodicraea pepehabai Cheek DOI: 10.13140/RG.2.2.25052.33925
- CAP 8. Keetia susu Cheek DOI: 10.13140/RG.2.2.18341.45280
- CAP 9. Marsdenia exellii C.Norman DOI: 10.13140/RG.2.2.28407.78244
- CAP 10. Pitcairnia feliciana (A.Chev.) Harms & Mildbr.
- DOI: <u>10.13140/RG.2.2.21696.89609</u>
- CAP 11. Plectranthus linearifolius (J.K.Morton) B.J.Pollard & A.J.Paton
- DOI: 10.13140/RG.2.2.35118.66880
- CAP 12. Pterocarpus erinaceus (DC.) Polhill & Wiens DOI: <u>10.13140/RG.2.2.30085.50401</u>
- CAP 13. Scleria guineensis J.Raynal DOI: 10.13140/RG.2.2.23374.61767
- CAP 14. Stylochaeton pilosus Bogner DOI: <u>10.13140/RG.2.2.36796.39049</u>
- CAP 15. Talbotiella cheekii Burgt DOI: 10.13140/RG.2.2.30164.14728
- CAP 16. Tarenna hutchinsonii Bremek. DOI: 10.13140/RG.2.2.20097.81766
- CAP 17. Tieghemella heckelii (A.Chev.) Pierre ex Dubard
- DOI: <u>10.13140/RG.2.2.33519.59047</u>
- CAP 18. Vepris felicis Breteler DOI: <u>10.13140/RG.2.2.18420.09606</u>
- CAP 19. Vernonia djalonensis A.Chev. DOI: 10.13140/RG.2.2.15064.65289

CAP 20. Xysmalobium samoritourei Goyder DOI: 10.13140/RG.2.2.28486.42561