1 Micro-community associated with ectomycorrhizal Russula symbiosis and

- 2 sporocarp-producing *Russula* in Fagaceae dominant nature areas in southern China
- 3 Wen Ying Yu<sup>a</sup>, Ming Hui Peng<sup>b</sup>, Jia Jia Wang<sup>a</sup>, Wen Yu Ye<sup>a</sup>, Zong Hua Wang<sup>b</sup>, Guo
- 4 Dong Lu<sup>b\*</sup>, Jian Dong Bao<sup>a\*</sup>
- 5 a Fujian Universities Key Laboratory of Plant- Microbe Interaction, College of Life
- 6 Science, Fujian Agriculture and Forestry University, Fuzhou, China
- 7 b State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,
- 8 College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou,
- 9 China
- 10

Address correspondence to Guo Dong Lu, gdlufafu@163.com, Jian Dong Bao,
baojd@fafu.edu.cn

- 13
- 14

15 ABSTRACT Russula griseocarnosa, an ectomycorrhizal (ECM) fungus, is a 16 species of precious wild edible mushrooms with very high market value in southern China. Its yield is affected by many factors including the tree species and 17 environmental conditions such as soil microbiome, humidity. How the microbiome 18 **ECM** symbiosis with 19 promotes the fungus Fagaceae plants and 20 sporocarp-producing has never been studied. In this study, we collected rhizosphere samples from Fujian province, the microbiota in the root and mycorrhizal 21 rhizosphere were identified by Illumina MiSeq high-throughput sequencing. First, 22 23 we compared three types of fungal communities: root tips infected with ECM 24 Russula (type 1), tips with Russula sporocarp (type 2) and tips without ECM (type 3). Our results showed that the fungal richness was negatively correlated with 25 Russula. Russula, Tomentella and Lactarius were common in Fagaceae ECM roots. 26 As to the mycorrhizal interactions, Boletus may be considered as an indicator 27 species for sporocarp-producing Russula, and Acremonium, Cladophialophora were 28 associated with Russula symbiosis. Second, we analyzed the fungal and bacterial 29

communities in rhizosphere soils from the corresponding to previously three types 30 (type 1, 2, 3). Dacryobolus and Acidocella may be considered as an indicator 31 32 species for sporocarp-producing *Russula*. Fungi Tomentella, Saitozyma, Elaphomyces and bacteria Acidicaldus, Bryobacter, Sorangium and Acidobacterium 33 occurred more frequently in the ECM Russula rhizosphere. Furthermore, the 34 indicators *Elaphomyces*, *Tomentella*, *Sorangium* had a positive correlation with 35 *Russula* symbiosis by network analyses. Overall, our results suggest a relationship 36 37 between micro-community and ECM Russula formation and Russula sporocarp, which may provide new strategies for improving Russula symbiosis rate and 38 39 sporocarp production.

40 KEYWORDS micro-Community, Russula, ectomycorrhizae, Fagaceae

41 **IMPORTANCE** Russula (Russulaceae, Russulales, Agaricomycetes, 42 Basidiomycota) species are ectomycorrhizal (ECM) fungi that form symbiotic associations with host roots. Approximately 750 Russula species have been reported 43 in worldwide (1). Russula taxa showed high diversity, strong habitat preference and 44 45 some preference for soil horizons (2)(Jo'zsef Geml 2010). Li M(3)(2010)identified that Russula emerge at least three divergent lineages based on the genetic diversity 46 and geographic differentiation in southern China, and R. griseocarnosa belongs to 47 one of the lineages. R. griseocarnosa is described from southern China, including 48 49 Guangdong, Yunnan, and Fujian Provinces (4). R. griseocarnosa sporocarp, which is popularly commercially as food and medicine, is uncultivatable and 50 51 collected from the natural habitat. To date, there is little knowledge about the 52 controlled production of Russula and its micro-community.

Several biotic factors affect ectomycorrhizal fungal communities: plant host species
(5, 6) , plantation age (7), asymptomatic ectomycorrhiza endophytes (8),
ectomycorrhizal propagules in the soil(9) and the traits of the dispersal propagules
of ECM fungi (10). The common ectomycorrhizal *Russula* sp. was associated with
seven host genera: *Pleioblastus chino*, *Quercus serrata*, *Symplocos prunifolia*, *Ilex pedunculosa*, *Prunus jamasakura*, *Gamblea innovans*, and *Lyonia ovalifolia*(11, 12). *R. griseocarnosa* grows in forests with Fagaceae in southern China (13). ECM

fungal communities strongly vary during long-term ecosystem development, even 60 within the same hosts (14). Some Russula spp. was reported to be dominant 61 colonizers of mature roots of pines (15)(Horton & Bruns, 2001) but did not 62 colonize bioassay seedlings (16). 'Early stage' and 'late stage' mycorrhizal fungi of 63 birch appeared distinction (7). Gebhardt also found that Ectomycorrhiza 64 communities of Quercus rubra of different age performed specificity with low 65 similarity between the chronosequence stands site (17). Some fungal root 66 67 endophytes prefer ECM formed by particular species of ectomycorrhizal fungi (8, 18), potentially representing a second level of root endophyte selection. Dark 68 septate endophytes are considered to be ubiquitous, colonizing mycorrhizal(19). 69 ECM propagule communities in soil may diverge from those root-colonizing ECM 70 71 communities and affect persistence of symbiotic relationship between mycorrhiza and available host roots by competitive networks(20). ECM propagules in soil are 72 less frequent and diverse in early primary succession and become more frequent 73 74 and diverse along forest development, due mainly to the accumulation of dormant 75 spores of *Rhizopogon* spp. and sclerotia of *Cenococcum* spp(20). Simultaneously dispersal ability across ECM species correlated well with the composition of 76 communities associated with host (21). Russula naturally propagate by 77 short-distance spore dispersal rather than vegetative growth of dikaryophytic 78 79 mycelia or long-distance spore dispersal(22). In all, the Russula ECM community may be affected by symbiotic structures and root endophytes in the roots, 80 mycorrhizal extraradical mycelia, spores in the soil, as well as its dispersal ability. 81

82

Mycorrhizal interactions are usually classified on the basis of the features of the symbiotic interfaces(23). The ECM community colonizing root tips was strongly structured by competitive interactions or ecological processes generating a similar spatial pattern, rather than neutral processes. The ECM *Cortinarius* sp. and *Lactarius rufus* competed for root tips(24). Both *Cenococcum geophilum* and *Clavulina cinerea* as mycorrhizas and as extramatrical mycelium (EMM) in a *Pinus resinosa* plantation showed a negative correlation(25). Hortal suggests that

interspecific competition between Lactarius deliciosus (inoculated fungi) and 90 91 Rhizopogon roseolus (indigenous fungi) occurs in the root system for ectomycorrhiza formation in available roots, rather than in the extramatrical 92 mycelium phase (26). However, associations among Suillus bovinus and 93 Gomphidius roseus occur within ectomycorrhizal roots (27). There are also a 94 number of notable examples of associations between sporocarps of different species, 95 such as between Boletus parasiticus and S. citrinum, Asterophora parasitica and 96 97 Lactarius, and between Claudopus parasiticus and Cantharellus cibarius (28),. 98 However, mycorrhizal interaction studies of *Russula* are limited in the literature.

99

Similar to the rhizosphere, mycorrhizosphere is the feet of fruiting bodies or the 100 101 root of ectomycorrhizal fungi. Mycorrhizosphere may constitute a hot spot(29), in which microorganisms were affected(30-32). The mycosphere effect was prominent, 102 103 though previous studies have failed to demonstrate significant differences between bacterial communities associated with roots colonized by *Suillus variegatus* and *T*. 104 105 submollis, Lactarius sp. and Tomentella sp.(33) or by C. geophilum and Russula sp. (34). It has also been established that mycorrhizal networks have different 106 107 microbial communities compared with bulk soil by stimulating some families such as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae (35). Bacterial 108 109 activity is stimulated by the provision of easily available nutrition such as 110 carbonaceous compounds (30). The mycosphere effect might exert strong influences on the bacterial community of soil(36), in which bacterial activity is stimulated by 111 trehalose, which is degraded by hyphosphere and derived from fungi (37, 38). 112 113 Andersson(39)(2003)., who used phospholipid fatty acid profiles to characterize bacterial communities, has demonstrated that basidiomycete wood-decomposing 114 fungi are able to influence bacterial community structure. Bacteria adapted to the 115 mycospheres of three or more or just one fungal species was defined as specific 116 selective bacterial(40). The specific members of the Sphingomonadaceae family 117 118 selected were at the bases of the fruiting bodies of the ectomycorrhizal fungi Laccaria proxima and Russula exalbicans in comparison to the adjacent bulk soil, 119

120 major of which did not cluster with known bacteria from the database (36, 41). On the other hand, some mycorrhiza-associated bacteria have been shown to produce 121 compounds that are antagonistic to plant pathogens (42). Meanwhile, "mycorrhiza 122 helper bacteria" (MHB) appeared to positively influence the development and 123 124 function of ectomycorrhiza (43), but the effects varied with different species combinations (44, 45). Ralstonia sp. and Bacillus subtilis can promote Suillus 125 granulatus-infected Pinus thunbergii (34). Bacillus subtilis helped the growth of 126 127 Cenococcum geophilum Fr and promoted Suillus granulatus infection (34) but inhibited Rhizopogon sp. infection (45). Apart from bacterial, ectomycorrhizal 128 symbionts strong also selected ascomycete communities and other ECMs(31) 129 (32).Högberg (2002)(46) demonstrated that the EMM is at least 30% of the 130 131 microbial biomass in boreal forest soils. ECM fungi competed with saprotrophic fungi in soil by the EMM(47). Tuber rufum and some members of Boletales are 132 typically restricted to productive truffle plots. On the other hand, Hebeloma, 133 134 *Laccaria* and *Russula* species are mostly associated with unproductive truffle plots. 135 Ectomycorrhizae belonging to Thelephoraceae are frequently found in mature truffle orchards but do not seem to affect sporocarp production (32). Ascomycetes 136 associated with ectomycorrhizas: molecular diversity and ecology with particular 137 reference to the Helotiales had been reported (48). However, the rhizosphere, 138 139 mycosphere effect of Russula griseocarnosa has not been recorded in the literature.

140

Regarding the relationship between the amount of soil EMM with ectomycorrhizae 141 and sporocarps, different mycorrhizas have different conclusions . Zampieri et 142 143 al.(2010)(49) showed that the mycelium of *Tuber magnatum* was more widespread than was inferred from the distribution of its fruiting bodies and ectomycorrhizae. 144 Zhou et al. (2001) (50)demonstrated that the development of Suillus grevillei 145 sporocarps is correlated with amount of EMM and ectomycorrhizae of *S. grevillei* 146 in a narrow area. The Tuber melanosporum EMM biomass detected in the soil from 147 148 the natural truffle ground was significantly greater than that of other plant orchards analyzed, and the lowest amount of T. melanosporum mycelium maintained a 149

150 sporocarp production in plant orchards (51). However, Some ECMs are consistent 151 in ectomycorrhizae but inconsistent in sporocarps. De la Varga et al. (52)(2012) 152 quantified *B. edulis* extraradical mycelium in a Scots pine forest and found a 153 positive correlation between the amount of mycelia and the presence of *Boletus* 154 *edulis* mycorrhizae, but not with the productivity of fruiting bodies. However, the 155 relationship between the amount of *Russula* with ectomycorrhizae and sporocarps is 156 scarce in the literature.

157 The relation between the productivity of fruiting bodies and ECM symbiosis is still unclear. Some ectomycorrhizal species produce abundant ectomycorrhizal root tips 158 but few or no fruiting bodies, while other ectomycorrhizal fungi form abundant 159 fruiting bodies but a low number of ectomycorrhizal root tips. Guidot et al. 160 161 (53)(2001) found a spatial congruence of above- and belowground distribution for H. cylindrosporum. However, De la Varga et al.(52) (2012) found that the presence 162 of mycorrhizae of the B. edulis symbiotic rate was not consistent with the 163 production of fruiting bodies. There are also *Russula* species difference between the 164 165 above-ground Russula sporocarp and underground Russula mycorrhizal(2). Geml(2010) (2) observed that 15 and 45 of the 50 Russula phylogroups species were 166 found in sporocarp and soil clone sequences, respectively. Given the long delay 167 between the establishment of the plantation and the formation of sporocarps, short-168 169 and medium-term control of the survival and persistence of fungal symbionts in plantations have to still be evaluated by the assessment of vegetative structures as 170 the ectomycorrhizas or extraradical mycelium. 171

Microbial community affected mycorrhizal fungal function (for example, symbiosis 172 173 establishment capacity, sporocarp production), and the reciprocal effects are vice versa. The microorganisms associated with mycorrhizal fungi may either have 174 positive or negative impacts on fungal spore germination, growth, nutrient 175 acquisition and plant colonization (43, 54). Tuber indicum altered the 176 ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles 177 178 host tree *Ouercus aliena* (55). Tuber borchii of the shapes the ectomycorrhizosphere microbial communities of Corylus avellana(56). Therefore, 179

180 we speculate that detecting the communities of Russula can tracked ECM persistence throughout the entire biological cycle, which will help to control 181 ectomycorrhiza formation and sporocarp production. In this study, to understand the 182 183 communities of the targeted Russula griseocarnosa and to find the possible 184 indicator microbes of successful Russula griseocarnosa plantations, we identified the Russula ectomycorrhizal fungal communities inhabiting different life cycle 185 stages based on MiSeq sequencing of ribosomal internal transcribed spacer (ITS) 186 187 sequences of root DNA and mycosphere communities based on MiSeq sequencing of the 16S V3-V4 as well as ribosomal internal transcribed spacer (ITS) sequences 188 of mycosphere soil DNA. 189

190

This study is the first attempt to analyze ectomycorrhizal communities of *Russula* using MiSeq sequencing metagenomics DNA of *Russula* root and the Mycorrhizal rhizosphere soil in *Russula* at different stages. We think that *Russula* shapes the ectomycorrhizosphere microbial communities of Fagaceae (*Quercus glauca* and *Castanopsis hainanensis.*).

196

#### 197 **RESULTS**

198 Comparing microbiomes among types of the ECM fungus Russula. ECM 199 *Russula* was first identified by combining morph typing with Sanger sequencing 200 DNA sequences . We analyzed internal transcribed spacer (ITS) rDNA sequences of 201 ECM root tips and ECM rhizosphere soil samples using phylogenetic methods, 202 operational taxonomic unit (OTU) delimitations and ordinations to compare species 203 composition in various types of ECM *Russula*.

In the ECM metagenome, we found a positive correlation between the concentration of *Russula* DNA and the presence of *Russula* mycorrhizae in the mycorrhizal rhizosphere and ECM root (Tab 1). To analyze whether distinctive communities are selected by *Russula* ectomycorrhizal fungi, the fungi of ECM root microbiomes were compared and divided into three types. *Russula* that could be detected by Sanger sequencing with a DNA concentration above 10% of total ECM 210 genomic DNA, as determined by MiSeq sequencing, were classified as type 1. 211 Russula sporocarps that could be collected from the ground and the extended hyphae of which could be connected between roots of the host and sporocarp within 212 213 50 cm, with *Russula* detected by Sanger sequencing, were classified as type 2. 214 Russula that were not detected by Sanger sequencing or with a DNA concentration below 5% of the total ECM genomic DNA, as determined by MiSeq sequencing, 215 were classified as type 3. Therefore, the samples of ECM tip and rhizosphere 216 divided into three 217 samplings were types: Russula-infected (type 1), sporocarp-producing Russula (type 2), and Russula-uninfected (type 3) (Tab 1). 218 Relative Russula OUT abundance is significant difference in ECM Russula 219 symbiosis root and in ECM Russula rhizosphere, respectively (Tab 1, Fig. 1A). Type 220 221 2 is the most abundant, type 1 is the second, and type 3 is the least. Interestingly, in type 3, the amount of *Russula* in the soil is higher than in the root. This may 222 indicate that in the natural growth area of Russula, there are a large number of 223 Russula propagules in the soil. 224

TABLE 1 Relative *Russula* OUT abundance in three types and Alpha diversity
 analysis of fungi and bacterial of three types of ECM *Russula* roots or *Russula* rhizosphere soil in natural *Russula* growth areas

228

| Туре | Relat | Chao1r   | Shan   | Relati | Chao   | Shan   | Chao   | Shann |
|------|-------|----------|--------|--------|--------|--------|--------|-------|
|      | ive   | ichness  | non of | ve     | 1      | non of | 1      | on of |
|      | Russ  | of       | Fungi  | Russu  | richn  | Fungi  | richn  | Bacte |
|      | ula   | Fungi    | Com    | la     | ess of | Com    | ess of | rial  |
|      | OUT   | Comm     | munit  | OUT    | Fungi  | munit  | Bacte  | Com   |
|      | abun  | unity of | y of   | abun   | Com    | y of   | rial   | munit |
|      | danc  | ECM      | ECM    | dance  | munit  | ECM    | Com    | y of  |
|      | e (%) | Russul   | Russu  | (%)    | y of   | Russu  | munit  | ECM   |
|      | in    | a root1  | la     | in     | ECM    | la     | y of   | Russu |
|      | ECM   |          | root   | ECM    | Russu  | rhizos | ECM    | la    |

|            | Russ          |         |               | Russu  | la         | phere         | Russu       | Rhizo         |
|------------|---------------|---------|---------------|--------|------------|---------------|-------------|---------------|
|            | ula           |         |               | la     | rhizos     |               | la          | spher         |
|            | root          |         |               | rhizos | phere      |               | rhizos      | e             |
|            |               |         |               | phere  |            |               | phere       |               |
| Russula    | 28.74         | 663.12± | <b>4.04</b> ± | 20.22  | 901.3      | <b>4.52</b> ± | 1010.       | 7.54±         |
| infected   | ±             |         |               | ±      | <b>8</b> ± |               | <b>28</b> ± |               |
| (type1)    |               | 171.655 | 1.007         |        |            | 0.53a         |             | 0.10b         |
|            | 19.31         | b       | b             | 4.59B  | 32.30      |               | 17.29       |               |
|            | ${f B}^{1,2}$ |         |               |        | a          |               | b           |               |
| Russula    | 66.66         | 170.44± | <b>2.20</b> ± | 39.23  | 756.8      | <b>4.56</b> ± | 945.8       | <b>7.49</b> ± |
| sporocarp  | ±             | 24.68c  | 0.19          | ±      | <b>7</b> ± |               | 1±          |               |
| producing  |               |         | c             |        |            | 0.99a         |             | 0.049         |
| (type2)    | 12.92         |         |               | 7.58C  | 52.18      |               | 25.08       | b             |
|            | С             |         |               |        | b          |               | b           |               |
| Russula-n  | 1.44±         | 782.20± | 4.55±         | 5.61±  | 874.1      | <b>4.47</b> ± | 1099.       | <b>7.94</b> ± |
| o-infected |               |         |               |        | 9±         |               | 52±         | 0.13a         |
| (type3)    | 1.02          | 102.345 | 0.921         | 1.71A  |            | 0.95a         |             |               |
|            | A             | a       | a             |        | 41.16      |               | 13.14       |               |
|            |               |         |               |        | a          |               | a           |               |

1. mean±standard deviation ; type1has 4 repeats, type2 has 2 repeats and type3 has
3 repeats.

2. Analysis of variance by one-way analysis of variance In each column: different 23. words indicate differences, uppercase letters indicate extremely significant 23. differences (P <0.01); and lowercase letters indicate significant differences (P 23. <0.05)

Fungal diversity analysis and analysis of indicator species associated with ECM *Russula* roots. In total, 1346 fungal operational taxonomic units (OTUs) were distinguished in roots. Among the three types, the Chao1 diversity index and Shannon diversity index decreased in sporocarp-producing *Russula* type (type 2) and *Russula*-infected type (type 1) compared to the *Russula*-uninfected (type 3) (Tab 1). The result shows that species richness shifted in the composition of the ECM community associated with *Russula*. The fungal community composition and the abundance of the main fungi ( over 0.05% fungi in roots genome) were different in the three *Russula* types roots (Fig. 1A, Tab 1). The result shows that *Russula* is dominates in fruiting bodies (type 2) and infected samples(type 1) though *Russula* in three type samples.

246 Based on the top 20 fungi of each sample, we first obtained the common species of three types after intersecting each type with the Venny mapping tool: 14 species 247 were in type 2, 5 in type 2 and 3 in type 3 (Tab S1). Then, we intersected the 248 common types of three types with the Venny mapping tool. At the genus level, the 249 250 three types shared 3 common genera: Russula, Tomentella and Lactarius (Tab S2, Fig. 1B). These results showed that these are common fungi in Fagaceae ECM roots. 251 Types 1 and 2 shared 2 common genera: Acremonium and Cladophialophora, in 252 253 addition to the abovementioned three common ECM(Tab S2,Fig. 1B). Second, We 254 take a collection of three types genera respectively, subsequently we intersected the collection of three types by the Venny mapping tool (Fig. 1C): 24 species in type 2, 255 46 in type 1 and 41 in type 3, and 5 genera were exclusively in type 2 collection. 256 We take the intersection of the unique collection (9 genera) and union (5 genera) in 257 type 2, and found only one species boletus (Fig. 1D, Tab. 2). Analyze fungi 258 259 composition differences of three types roots by PCoA based on the top 20 fungal 260 genera, we found that the control (type 3) belonged to quadrant IV, type 1 belonged to quadrant I or II, and type 2 belonged to quadrant III (Fig. 1F). The results show 261 262 that the fungal community of sporocarp- producing Russula was completely different from that of Russula-uninfected . The Russula-infected type was in the 263 transitional phase. We suggest the Russula infection contributed 31.3% and others 264 elements host contributed 20.5% of the differences, respectively. Boletus was the 265 only ECM with the emergence of Russula fruit bodies. In all, Boletus may be 266 considered an indicator species in the Russula sporocarp-producing fungal 267 community, and Acremonium and Cladophialophora may be considered indicator 268

species in Russula symbiosis fungal communities (Tab. 2). Analyze the different 269 270 effects of ECM species by PCoA based on the top 20 fungal genera, we found Tomentella , Xylogone , and Lactarius belonged to I, II, while others belonged to 271 quadrant III,V (Fig. 1E). The Russula infection contributed 55% and others 272 273 elements contributed 24% of the differences, respectively. Combining these two factors, it shows Russula and Elaphomyces can be divided into one categories, 274 while *Xylogone* can be divided into another category functionally. So we assume 275 276 that Elaphomyces are benefit for Russula symbiosis while Tomentella, Xvlogone, and Lactarius has the function of competing hosts. 277





Fig. 1 Diversity analysis of fungi of three types of *Russula* symbiosis roots in natural Russula growth areas

A:The main fungi genus composition and abundance in type2 *Russula* symbiosis root and the corresponding genus are in the other two types

B: The Venny mapping of the common genus of the top 20 fungi genus in three types

327 Russula symbiosis root



- 329 types Russula symbiosis root
- 330 D: The Venny mapping of the common genus and the collection genus of the top 20
- 331 fungi genus in type2 Russula symbiosis root
- 332 E : Analysis of ECM role difference of three types Russula symbiosis root on top 20
- 333 fungi genus of ECM Russula by PCoA
- 334 F : Analysis of composition difference of three types Russula symbiosis root on top
- 335 20 fungi genus of ECM Russula by PCoA
- In Eand F: The scales of the horizontal and vertical axes are relative distances andhave no practical significance. The contribution rate is the degree of interpretation,

and the hypothetical factors can be evaluated and verified.

- In A,Eand F :In the sample name, the first letter M indicates mycorrhizal root ; first second F stands for fungi; the third letter different treatment :S indicates sporocarp(type2), E indicates ECM ectomycorrhizal(type1) , K indicates control(type3) respectively; the fourth number indicates the different biological repetitions of different treatment .
- 344

Fungal diversity analysis and analysis of indicator species associated with 345 ECM Russula rhizosphere soil. In total, 1829 fungal operational taxonomic units 346 (OTUs) were distinguished in rhizosphere soil. Interactions with native 347 ectomycorrhizal fungi present in the soil play a key role in the higher diversity of 348 fungal taxa .Compared to type 1 and 3, the Chao1 diversity index decreased in 349 types 2; while there were no significant differences between types 1 and 3 (Tab. 1). 350 But, the Shannon diversity index showed no significant differences in three types 351 352 (Tab. 1). The fungal community composition and





- ...





F



Fig. 2 Diversity analysis of fungi of three types *Russula* mycorrhizal rhizosphere in natural *Russula* growth areas

A:The top 20 fungi genus composition and abundance in type2 *Russula* symbiosis mycorrhizal rhizosphere and the corresponding genus are in the other two types in at Fujian,China

In the sample name, the first letter S indicates mycorrhizal root soil ; first second F stands for

fungi; the third letter different treatment :S indicates sporocarp, E indicates ECM
ectomycorrhizal , K indicates control respectively; the fourth number indicates the
different biological repetitions of different treatment .

B: The Venny mapping of the common genus of the top 20 fungi genus in three
types *Russula* symbiosis Mycorrhizal rhizosphere

409 C: The Venny mapping of the collection genus of the top 20 fungi genus in three

410 types *Russula* symbiosis Mycorrhizal rhizosphere

411 D: The Venny mapping of the common genus and the collection genus of the top 20

412 fungi genus in type2 Russula symbiosis Mycorrhizal rhizosphere

413 E : Analysis of ECM role difference of three types Russula symbiosis mycorrhizal

- 414 rhizosphere on top 20 fungi genus of ECM Russula by PCoA
- 415 F :Analysis of composition difference of three types Russula symbiosis mycorrhizal

416 rhizosphere on top 20 fungi genus of ECM Russula by PCoA

417 In E and F: the scales of the horizontal and vertical axes are relative distances and

418 have no practical significance. The contribution rate is the degree of interpretation,

419 and the hypothetical factors can be evaluated and verified.

the abundance of the main fungi ( over 0.05% fungi in soil genome )were different
in the three *Russula* types rhizosphere soil (Fig. 1A,Tab 1).Compared to the
root ,The result shows that *Russula* is also dominates in fruiting bodies (type 2) and
infected samples(type 1) though *Russula* in three type samples(Fig. 1A,Fig. 2A).
However,compared to the root ,the genera variety increased (Fig. 1A,Fig. 2A).

The community composition of the top 20 fungi in the three Russula rhizosphere 425 426 soil types was analyzed (Tab. S2). We first obtained the common species of three 427 types after intersecting each type using the Venny mapping tool: 12 species in type 2, 7 species in type 1 and 7 species in type 3 (Fig. 2B). Then, we intersected the 428 common types of the three types with the Venny mapping tool. At the genus level, 429 430 the three types shared 4 common genera: Russula, Mortierella, Penicillium and Trichoderma; and Russula also had a large frequency in types 1 and 2 (Fig. 2B). 431 This showed that 4 genera are common fungi in Fagaceae-dominant rhizosphere 432 soil. Types 1 and 2 shared 3 common genera: Elaphomyces, Tomentella and 433 434 Saitozyma, in addition to the abovementioned 4 common genera(Fig. 2B). Second, we take a collection of three types genera respectively, subsequently intersected the 435 436 collection of three types by the Venny mapping tool (Fig. 2C): 26 species in type 2, 40 in type 1 and 36 in type 3; 4 genera were included exclusively in the type 2 437 collection. We take the intersection of the unique collection (4 genera) and union (4 438 genera) in type 2, and found *Dacryobolus* unique belonged to type 2 (Fig. 2D, Tab. 439 2). The top 20 fungal genera in the sporocarp-producing Russula root rhizosphere 440 with types 3 or types 1 were compared. The result shows that Russula EMM is 441 442 dominates in fruiting bodies (type 2) and infected samples (type 1) though Russula 443 in three type samples. *Elaphomyces* also dominated in types 1 and 2, but nearly did not exist in the control, type 3 (Fig. 2D). In all, Dacryobolus may be considered an 444 indicator species of sporocarp-producing Russula in the Russula rhizosphere. 445 Elaphomyces, and Tomentella may be considered indicator species for Russula 446 symbiosis in the rhizosphere (Tab. 2). Analyze three types of fungi composition 447 differences of top 20 genera by PCoA in Russula rhizosphere soil based on the top 448

449 20 fungal genera, we found that type 2 belonged to quadrant II and type 1 belonged 450 to quadrants I, III and IV, while type 3 belonged to quadrants III and IV, down the horizontal axis (Fig. 2E). The host and Russula-infection contributed 29.3% and 451 452 25.0%, respectively. Furthermore analyzing the different effects of fungi species by 453 PCoA, we found Russula and Elaphomyces belonged to quadrant IV, Mortierella and Tomentella belonged to quadrant I, Trichoderma, Penicillium, Geminibasidium 454 455 and Saitozyma belonged to quadrant II, while others belonged to quadrant III (Fig. 456 2E). The Russula infection contributed 49.4% and others elements host contributed 457 19.4% of the differences, respectively. Combining these two factors, we assume that *Elaphomyces* in soil are benefit for *Russula* symbiosis. 458

459

460 Bacterial diversity analysis and analysis of indicator species associated with ECM Russula rhizosphere soil. In total, 1494 bacterial operational taxonomic 461 units (OTUs) were distinguished in this study. Compared to type 3, the Chao1 462 diversity index decreased in types 1 and 2 (Tab. 1). There were significant 463 464 differences between type 3 and the other two types. However, there were no significant differences between types 1 and 2. The Shannon diversity index showed 465 the same tendency as the Chao1 diversity index (Tab. 1). The bacterial community 466 composition and the abundance of the main bacterial (the over 0.05% bacteria in 467 soil genome ) were analyzed (Fig. 3A). About 40-60% of the species in the sample 468 cannot be identified by Illumina MiSeq high-throughput sequencing and the 469 remaining bacterial genera in the sporocarp-producing *Russula* root rhizosphere soil 470 were showed for the three types (Fig. 3A). Compared to the fungi of the root and 471 472 rhizosphere soil, the bacterial genera variety still increased (Fig. 1A, 2A, 3A).

The community composition of the top 20 f bacteria in the three *Russula* rhizosphere soil types was analyzed (Tab. S3).We first obtained the common species of the three types after intersecting each type with the Venny mapping tool: 18 species in type 2, 14 in type 1 and 12 in type 3 (Fig. 3B). Then, we intersected the common types of the three types with the Venny mapping tool. At the genus level, the three types shared 10 common genera: *Acidibacter, Candidatus*, 479 Acidothermus, Variibacter, Burkholderia. Rhizomicrobium, Roseiarcus. Bradyrhizobium, Candidatus and Granulicella. (Fig. 3B). This showed that 10 480 genera are common bacteria in Fagaceae-dominant rhizosphere soil. Types 1 and 2 481 482 genera: Bryobacter, Sorangium, shared 4 common Acidicaldus, and 483 Acidobacterium , in addition to the abovementioned 10 common genera(Fig. 3B). Second, we obtained the collection of the various types: 20 species in type 2, 27 in 484 type 1 and 26 in type 3 (Fig. 3C, Tab S3). Then, the unique genera were analyzed of 485 486 the unique collection (4 genera) and union (3 genera) in type 2 by the Venny mapping tool, and 2 genera Acidocella and Edaphobacter were found (Fig. 3D). In 487 all, Acidocella ,Edaphobacter may be considered indicator species for 488 sporocarp-producing Russula, and Bryobacter, Sorangium, Acidicaldus, and 489 490 Acidobacterium can be considered indicator species for Russula symbiosis in the bacterial community (Tab. 2). By PCoA based on the top 20 fungal genera, we 491 found that type 2 belonged to quadrant III, left of the vertical axis. Except for one 492 sample, other samples of type 1 belonged to quadrants II or III, left of the vertical 493 494 axis. Type 3 belonged to the right of the vertical axis (Fig. 3F). We assume that the Russula infection and host contributed 47.3% and 21.4%, respectively(Fig. 3F). 495 Analyze the different effects of bacteria species by PCoA, we found Acidocella, 496 Sorangium, Haliangium, Telmatospirillum, Edaphobacter, Acidobacterium, 497 Sphingomonas, Candidatus\_Koribacter, Roseiarcus, Granulicella and Acidicaldus 498 belonged to quadrant II, III, while the others belonged to quadrant I, IV (Fig. 3E). 499 It shows 11 gengus in quadrant II, III can be divided into one categories by role. All 500 indicator species for sporocarp-producing Russula or Russula symbiosis in the same 501 502 categories but Bryobacter. We assume that the Russula infection contributed 80.9% and others elements contributed 10.5% respectively. Combined with 503 indicator species analysis, we assume that 11 bacterial gengus beneficial to the 504 symbiosis of Russula. 505

- 506
- 507
- 508







Fig. 3 Diversity analysis of bacterial of three types *Russula* Mycorrhizal rhizosphere in natural *Russula* growth areas

A: The top 20 bacterial genus composition and abundance in type2 *Russula* symbiosis mycorrhizal rhizosphere and the corresponding genus are in the other two types in natural *Russula* growth areas , Fujian, China 569 In the sample name, the first letter s indicates mycorrhizal root soil; first second b

570 stands for bacteria; the third letter different treatment :S indicates sporocarp, E

571 indicates ECM ectomycorrhizal, K indicates control respectively; the fourth

572 number indicates the different biological repetitions of different treatment .

573 B: The Venny mapping of the common genus of the top 20 bacterial genus in three

- 574 types *Russula* symbiosis Mycorrhizal rhizosphere
- 575 C: The Venny mapping of the collection genus of the top 20 bacterial genus in three
- 576 types *Russula* symbiosis Mycorrhizal rhizosphere
- 577 D: The Venny mapping of the common genus and the collection genus of the top
- 578 20 bacterial genus in type2 Russula symbiosis Mycorrhizal rhizosphere
- E: Analysis of 20 bacterial genus role difference of three types Russula symbiosis
- 580 mycorrhizal rhizosphere on top 20 bacterial genus of ECM Russula by PCoA

581 F : Analysis of composition difference of three types Russula symbiosis

- 582 mycorrhizal rhizosphere on top 20 bacterial genus of ECM *Russula* by PCoA
- 583 In E and F:The scales of the horizontal and vertical axes are relative distances and
- have no practical significance. The contribution rate is the degree of interpretation,
- and the hypothetical factors can be evaluated and verified.
- 586

587 Table 2 Indicator species of fungi and bacterial community of Russula
588 Mycorrhizal based on the top 20 genus

|          | Common species in  | Common species in        | species included     |
|----------|--------------------|--------------------------|----------------------|
|          | three types        | type1                    | exclusively in Type  |
|          |                    | and type2, Excluding     | 2, compareing to     |
|          |                    | those that are common to | collecting Type 1,3; |
|          |                    | all three types          | and belong to        |
|          |                    |                          | Common in type2      |
| Fungi of | Tomentella,        | Acremonium,              | Boletus              |
| ECM      | Lactarius, Russula | Cladophialophora         |                      |

| Russula    |                     |                        |              |
|------------|---------------------|------------------------|--------------|
| root       |                     |                        |              |
| Fungi of   | Russula ,Mortierell | Elaphomyces,           | Dacryobolus  |
| Russula    | a, Penicillium      | Tomentella             |              |
| Mycorrhiz  | Trichoderma         |                        |              |
| al         |                     |                        |              |
| rhizospher |                     |                        |              |
| e          |                     |                        |              |
| Bacterial  | Acidibacter,        | Bryobacter, Sorangium, | Acidocella,  |
| of Russula | Acidothermus,       | Acidicaldus,           | Edaphobacter |
| Mycorrhiz  | Candidatus_Soliba   | Acidobacterium         |              |
| al         | cter,               |                        |              |
| rhizospher | Rhizomicrobium,     |                        |              |
| e          | Variibacter,        |                        |              |
|            | Burkholderia-Para   |                        |              |
|            | burkholderia,Rosei  |                        |              |
|            | arcus,              |                        |              |
|            | Bradyrhizobium,     |                        |              |
|            | Candidatus_Koriba   |                        |              |
|            | cter, Granulicella  |                        |              |

589 Type2:Russula sporocarp producing; type1 :Russula –infected; 590 type3 :Russula-no-infected; If one species is with one type and without the other 591 type, then the species is assumed as the indicator of the type based on the top 20 592 genus.

593

```
594 Interaction of fungi and bacteria with ECM Russula root and mycorrhizal
595 rhizosphere
```

596 By network net, we analyzed the interaction of the top 20 fungal OTUs of *Russula* 

597 rhizosphere soil and ECM *Russula* root, including 7 Russula OTUs( MSFH OTU\_1,

598 MSFH OTU 3, MSFH OTU 4, MSFH OTU 16, MSFH OTU 21, MSFH OTU 24

599 and SMFH OTU\_1639) (Table S7), five indicator species(MSFH OTU\_19

600 Elaphomyces, MSFH OTU\_9 Tomentella\_sp, MSFH OTU\_655 Tomentella\_sp,

601 MSFH OTU\_6 *Elaphomyces*, and MSFH OTU\_5 *Tomentella\_sp*).

602 Russula, which interacted with other species in positive ways, was the representative and contributed to the main ECM in the community. For example, 603 the interaction result predicted that many fungi had a positive correlation with 604 605 Russula (Fig.4A, Table S4), MSFH OTU 19 (Elaphomyces) and MSFH OTU 5 (Tomentella sp) with the Russula rosea; MSFH OTU 21, MSFH OTU 655 606 (Tomentella sp) and MSFH OTU 5 with Russula sp. In all, Elaphomyces sp, 607 Tomentella sp have a positive correlation with Russula, combining the previous 608 results that Elaphomyces and Tomentella were considered indicator species for 609 Russula symbiosis in the Russula rhizosphere based on the top 20 genera (Tab. 2). 610 Therefore, we further assume that the indicators *Elaphomyces* and *Tomentella* have 611 a positive correlation with Russula symbiosis.that 612





628 community of *Russula* mycorrhizal

629 A: Interaction of fungi in *Russula* ECM root and *Russula* mycorrhizal rhizosphere

630 B: Interaction of bacterial in Russula mycorrhizal rhizosphere

In A and B: The size of the dots represents the abundance, the color of the dots 631 represents the phylum (In A : Orange represents p Ascomycota, blue represents 632 p Basidiomycota, gray represents p Mortierellomycota; in B: gray 633 represents p Proteobacteria, Orange represents blue 634 p Acidobacteria, represents 635 p Actinobacteria), the thickness of the lines represents the magnitude of the correlation, and the red line indicates a positive correlation, the blue color indicates 636 a negative correlation. 637

Meanwhile, we analyzed the relationship of the top 20 bacterial OTUs in Russula 638 639 rhizosphere soil by Network net. Only 15 bacterial OTUs were included in the network net (Fig. 4B, Table S5). Among the top 15 bacterial OTUs, there is 1 OTUs 640 SBH OTU 70 Sorangium belonging to indicator species. The network net 641 suggested that SBH OTU 70 was positive with SBH OTU 16 (Acidobacteriaceae), 642 643 24(Caulobacteraceae), 27(Solibacteraceae), 69(Solibacteraceae). Another indicator species Acidobacterium was't within network net . Therefore, we further assumed 644 645 Sorangium and other OTUs (Acidobacteriaceae, Caulobacteraceae, that Solibacteraceae) have a positive correlation with Russula. 646

## 647 **DISCUSSION**

The complete exclusion of other species by any single species could be prevented 648 by either fluctuation in the environment, by seasonal root production or by the 649 presence of microbiome competitive networks, the situation in which no single 650 651 species is competitively superior to all other species. So, we usually obtain 1 ECM species or 2 ECM species by Sanger sequencing of the root sample with 652 basidiomycete-specific primers. The introduction of high-throughput sequencing 653 techniques, metagenomics or environmental genomics has provided new 654 information on ECM fungal communities by 'barcodes' of ITS regions in several 655 656 biomes/ecosystems, e.g., truffle grounds (57) and ECM roots in the Svalbard(58). In this study, we found that *Russula* cannot successfully infect roots if the amount 657

of Russula in the mycorrhizal rhizosphere is less than 10% by MiSeq sequencing 658 659 (Table 1, part data not shown). Although ECM fungi infection have been detected in nonproductive plots, the amount was not sufficient to shift from vegetative growth 660 661 to fruit body. Russula can form a fruiting body, only when Russula infection could 662 be detected by Sanger sequencing of ECM roots, contemporary the relative abundance of its DNA was greater than 60% by MiSeq sequencing. Compared to 663 control, we found significantly more Russula DNA in Russula sporocarps 664 665 rhizosphere soil or Russula symbiosis rhizosphere soil, above 15% amount of the metagenomics of rhizosphere soil. Zampieri et al.(2012) (49) detected significantly 666 more T. melanosporum DNA in truffle productive plots of soil. Zhou et al. (2001) 667 (50) also demonstrated that the development of S. grevillei sporocarps is correlated 668 with that of extraradical mycelia, which are distributed in a narrow area. So, we 669 suggest that to the type 2(sporocarps-producing), there is congruence of the above-670 sporocarps and belowground root or mycorrhizospheres soil DNA for Russula. 671 However, interestingly, in type 3(uninfected), the amount of *Russula* in the soil is 672 673 higher than in the root. This may indicate that in the natural growth area of *Russula*, there are a large number of Russula propagules in the soil. Whether the Russula 674 675 propagules naturally in the soil of the natural growth area can colonize to the host or not depends on other factors. 676

Fewer species were detected in Russula productive root than in nonproductive root, 677 which is consistent with French truffle grounds. T. melanosporum grounds also 678 have shown a reduced fungal biodiversity, a reduced presence of both ECM 679 Basidiomycota (57). Truffle-colonization reduced the abundance of some fungal 680 681 genera surrounding the host tree, such as Acremonium (55). Russula fruiting body decreased the Chao richness bacterial index and Shannon diversity of bacterial 682 index in rhizosphere soil. Simultaneously, Russula fruiting body decreased the 683 Chao richness fungi index but no effect on Shannon diversity of fungi index in 684 rhizosphere soil. Warmin (2009)(40) found bacteria adapted to the mycospheres of 685 686 three or more or just one ECM fungal species was defined as specific selective bacterial. So, we suggest the diversity decreased phenomenon may be related with 687

688 the *Russula* sporocarp selection effect, especially to rhizosphere soil bacterial.

689 Temperate forests are generally dominated by Fagaceae, and species in these plant families form mycorrhizae with various phylogenetic clades of ectomycorrhizal 690 fungi(8, 11, 59). Members of the *helotialean* group have recently been identified as 691 692 the dominant species in the roots of Fagaceae trees in the temperate and subtropical forests of Japan (60, 61). In our study, we found that 3 ECM, Russula, Tomentella, 693 694 and Lactarius, are the main members in the natural Fagaceae (Quercus glauca and 695 Castanopsis hainanensis)-dominant Russula ground in all the types. This result is consistent with the preference of Russula and Lactarius for the Fagaceae host. In 696 Castanopsis-dominant forest in Japan (62), there are ECM fungi such as Amanita 697 (Boletaceae), 698 (Amanitaceae), *Boletus* Tylopilus (Boletaceae), Cortinarius 699 (Cortinariaceae), Inocybe (Inocybaceae), Lactarius (Russulaceae), and Russula (Russulaceae). The dominant ECM lineages of Quercus liaotungensis were 700 701 Tomentella, Thelephora, Cenococcum, Russula, Lactarius and Inocybe(63). The 702 ectomycorrhizal Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus and 703 Cenococcum were dominant in the Quercus serrate plot (11). R. vinosa grows in tropical and subtropical evergreen forests in southern China dominated by trees of 704 705 Castanopsis spp., and R. griseocarnosa grows in forests with Fagaceae (13). Given commercially harvested truffles can establish ectomycorrhizal relationships with 706 707 different woody host species, and many different combinations of truffle and host species mycorrhizal seedlings are produced in nurseries (64). Our study shows that 708 709 *Russula* inoculation may establish satisfactory ectomycorrhizal relationships with 710 two indigenous tree species, Quercus glauca and Castanopsis hainanensis.

711

Healthy ECM can support a wide variety of organisms, including a diverse array of fungi other than the dominant ectomycorrhizal symbiont. Some pathogenic fungi, including *Ilyonectria* and *Podospora*, and other competitive mycorrhizal fungi, such as *Hymenochaete*, had significantly lower abundance in the *T. borchii*-inoculated root and *Trechispora* and *Humicola*, which were more abundant in the *T. borchii*-inoculated root. There are some notable examples of associations

718 among suilloid fungi and members of the Gomphidiaceae occur within 719 ectomycorrhizal roots (27). Olsson considered Gomphidius roseus acted as a parasite of Suillus bovinus, the former never occurs without the latter(27), Based 720 721 on MiSeq sequencing analysis of the top 20 ectomycorrhizal fungi in *Russula* root, associated 722 found *Acremonium*; Cladophialophora we are with ECM 723 *Russula*-Fagaceae roots, and *Boletus* was in association with sporocarp-producing Russula. Meanwhile, based on the top 20 genera in Russula rhizosphere soil, we 724 725 found that *Elaphomyces*, and *Tomentella* in association with *Russula* symbiosis; Dacryobolus were associated with sporocarp-producing Russula. The result will 726 help to find and develop PGPF for Russula symbiosis or sporocarp-producing. 727

728

729 Many studies have addressed the role of soil bacteria in establishing the symbiotic relationship between plants and mycorrhizal fungi (43, 65). We found differences in 730 fungal genus among the three ECM Russula types in rhizosphere soil (Table S 3, 731 732 Table 2). The interactions of bacteria with the dense hyphal network underneath 733 fungal fruiting bodies have also been addressed (44, 66). Differences in bacterial communities associated with the mycorrhizospheres of Suillus bovinus- and 734 735 Paxillus involutus-colonized plants were detected early (67, 68). Frey et al.(1997)(69) reported that specific Pseudomonas fluorescens prefer Laccaria 736 737 laccata. P.fluorescens and Burkholderia terrae are exclusively found in the mycosphere soil of Laccaria proxima (30, 40). Boersma(2009)(36) found that the 738 mycospheres of basidiomycetous fungi indeed exerted a universal selective effect 739 on the Pseudomonas community (i.e., Pseudomonas poae, P. lini, P. umsongensis, P. 740 741 corrugata, P. antarctica and Rahnella aquatilis); as well as species-specific selective (i.e. P. viridiflava and candidatus Xiphinematobacter americani). For the 742 selection of the bacteria family Sphingomonadaceae by the mycorrhizal fungi L. 743 proxima and R. exalbicans, the mycosphere effect was most prominent in the latter 744 (36). The mycosphere-isolated bacterium Burkholderia terrae has been shown to 745 746 protect its fungal host Lyophyllum sp. from several antifungal agents, such as metabolites produced by P. fluorescens, as well as from the antifungal agent 747

cycloheximide (70). Some studies have concentrated on mycorrhization helper 748 749 bacteria (MHB) in facilitating mycorrhizal colonization of roots in forest nursery environments(43, 71). Rich in bacteria in the mycorrhizal roots, mycorrhizosphere 750 751 soil and peridium of desert truffles may be used to increase the survival and 752 mycorrhization in the desert truffle plant production system at a semi-industrial scale(72). The associated bacteria of Truffle brûlés are Pseudomonas and 753 Flavobacteriaceae (73). To achieve successful reforestation, PGPR and MHB were 754 755 screened to improve the establishment of Lactarius deliciosus-Pinus sp. symbiosis(74). In our study, Acidocella, Bryobacter, Sorangium, Acidicaldus, 756 Edaphobacter and Acidobacterium were indicator species for Russula symbiosis in 757 ECM 758 the bacterial community. we also found universal selective 759 Sphingomonadaceae with Russula species-specific work selective Acidocella, Sorangium, Acidicaldus, Edaphobacter and Acidobacterium in the soil 760 bacterial community of Russula symbiosis (Fig. 3E).Further, by network analysis, 761 Acidobacteriaceae, Sorangium and Acidobacteria had a positive correlation with 762 763 Russula. There may be further instruction to provide a wide collection of these bacterial associates of Russula and to develop Russula MHB or Fagaceae PGPR. 764

765

Only a few edible ectomycorrhizal fungal species, such as black truffles or saffron 766 767 milk caps, can be produced in manufactured orchards. To date, Russula fruit bodies are uncultivable. Five Russula were used to inoculate Shorea parvifolia seeding 768 successfully (75), and one Russula was used to inoculate Quercus garryana 769 seeding successfully(76). Our results will provide instruction to specifically isolate 770 771 the fungi or beneficial rhizosphere microbes associated with ECM Russula from the root or mycorrhizal rhizosphere. Next, we will further need to isolate and culture 772 the microbial communities of the Russula root or mycorrhizospheres soil in three 773 types, which will supplement our research findings. The inoculation of these 774 microbes can stimulate establishment and will help to enhance plant growth and 775 776 promote a change in infected frequency.

777

778 Conclusion. The amount of Russula DNA is positively correlated with fruiting 779 body and Russula mycorrhizae based on the metagenomics of Russula root and soil. Fewer fungi species were detected in Russula- infected and Russula sporocarp root. 780 781 Fewer bacteria and fungi species were detected in *Russula*- infected and in *Russula* 782 sporocarp rhizosphere soil. Boletus is considered as indicator species in Russula-Fagaceae root (Quercus glauca and Castanopsis hainanensis) for 783 sporocarp-producing Russula. The Russula 784 sporocarp rhizosphere fungi 785 Dacryobolu and Russula sporocarp rhizosphere bacteria Acidocella is considered as indicator species for sporocarp-producing *Russula*. On the other hand, a number of 786 taxa within Acremonium and Cladophialophora were identified in Fagaceae root in 787 Russula symbiosis. The Russula mycorrhizal rhizosphere fungi Tomentella, and 788 789 Elaphomyces and the Russula mycorrhizal rhizosphere bacteria Acidocella, Bryobacter, Sorangium and Acidobacterium occurred more frequently in 790 791 association with the ECM genus Russula. Understanding the ectomycorrhizal fungal communities inhabiting natural Russula growth areas may give us clues 792 793 about the dynamics of the targeted Russula and the possibility of identifying mycorrhizal fungal species that are good indicators of successful Russula 794 795 semicultivation. This research may provide novel targeted strategies to improve the establishment of Russula-Fagaceae sp. symbiosis and improve Russula ascospore 796 797 productivity and sustainability.

## 798 MATERIALS AND METHODS

799 **Sampling**. Our study was conducted in areas of *Russula* growth in Jianou, Fujian province, China, in which species of the genus Russula are well represented. The 800 801 dominant trees of the areas are *Quercus glauca* and *Castanopsis hainanensis*. The herb layer is composed of Podophyllum peltatum, Panax stipuleanatus and 802 Saxifraga stolonifera. Fine roots were excavated 2-3 m from the trunk of an adult 803 Russula symbiotic tree(Fig. S1A). In addition, another type of fine roots that was 804 clearly connected to Russula sporocarp by extraradical mycelia was collected(Fig. 805 806 S1B,C). We collected three 15-30 cm fine-root segments (containing 100-200 root tips) at a depth of 20 cm (77). Roots from a single tree were pooled into a single 807

plastic bag. More than 200 cm<sup>3</sup> of rhizosphere soil was collected around the root
samples for analyses. All root and soil samples were stored in a cooler containing
several ice bags and transported to our laboratory within 24 h for subsequent
analysis.

812 DNA extraction, amplification, and sequencing. The collected root samples were washed carefully with tap water. Root tips were preserved in a plastic centrifuge 813 tube at -20°C before DNA extraction. DNA samples were pulverized using liquid 814 815 nitrogen. Total genomic DNA was extracted from ECM root tips using a modified cetyltrimethylammonium bromide method, which was modified according to Wang 816 et al. (63)(2017). Total genomic DNA of corresponding rhizosphere soil was 817 extracted using a Fast DNA SPIN Kit (MP Bio) for soil according to the kit 818 819 operation steps.

First, the entire range of fungal ITS sequences was amplified from roots using the 820 ECM Basidiomycetes-specific high-coverage primer polymerase chain reaction 821 (PCR) with the primer pair ITS-1F (CTTGGTCATTTAGACGAAGTAA) and 822 823 ITS-4B (CAGGAGACTTGTACACGGTCCAG) (M. Gardes, 1993), and traditional Sanger sequencing was performed. The sequences were BLAST against 824 the UNITE database/NCBI database (http://www.ncbi.nlm.nih. gov), and taxonomy 825 was assigned to species or genera using sequence similarity criteria of  $\geq 97\%$  for 826 827 species and 90-97% for genera. Furthermore, DNA of root tips identified as Russula and the corresponding Russula symbiosis rhizosphere soil were subjected 828 to Illumina MiSeq high-throughput sequencing of ITS sequences to investigate their 829 associated microbiomes, while DNA of root tips with no mycorrhiza was used as a 830 831 control. The MiSeq sequences were edited, manually corrected in BioEdit 7.0.8 and clustered into species-level operational taxonomic units (OTUs) at 97% sequence 832 similarity for species delimitation using PlutoF (http://unite.ut.ee) in UNITE(80). If 833 no match was found in the PlutoF system, any resulting OTU assignments were 834 individually checked by BLAST against the UNITE database/NCBI database 835 (http://www.ncbi.nlm.nih. gov). 836

To identify the fungi composition, we analyzed 18S ITS1-ITS4 DNA sequences of

ECM rhizosphere root and soil samples using phylogenetic methods, operational taxonomic unit (OTU) delimitations and ordinations to compare species composition in various types of ECM *Russula*. To identify the bacterial composition , we analyzed 16S V3-V4 DNA sequences of ECM rhizosphere soil samples using phylogenetic methods, operational taxonomic unit (OTU) delimitations and ordinations to compare species composition in various types of ECM *Russula*.

845 Statistical analyses. Chaol (species richness index) and Shannon (microbial diversity index) indices were analyzed by 97% OTU similarity. ECM fungal 846 richness and the microbial diversity index of each Russula root tip and the 847 corresponding rhizosphere soil of Russula symbiosis were calculated using the 848 849 vegan package and compared by one-way ANOVA. PCoA analyses were based on any distance other than the Euclidean distance using abundance and 850 presence-absence data of the top 20 genera in three types. Differences in 851 852 community composition among Russula-infected samples were visualized by PCoA 853 (79).

Micro-Community diversity analysis and indicator species analysis. Taxonomic 854 855 analyses were generated based on the community species abundance (each was above 0.05% of all reads) using Microsoft Excel. The mian fungal genus patterns 856 857 were determined by taxonomic analysis at different ECM Russula mycorrhizal roots. The main fungal and bacterial genus patterns were also observed in the 858 Russula mycorrhizal rhizosphere. To assess Russula preference, aspects indicator 859 species analysis was carried out by comparing the top 20 genera of three types of 860 861 root micro-communities. Indicator species of the community of the top 20 genera based on the species presence in the Russula sample and absence in the no-Russula 862 863 sample were analyzed by Venny drawing tools (https://bioinfogp.cnb.csic.es/tools/venny/index.html). 864

865 Network analyses. The relationships of *Russula* and other fungi in the *Russula* community were analyzed by Spearman correlation of the absolute top 20 most abundant in all the samples using the igraph, psych software package. Network nets

- 868 constructed on the interrelationship result with P>0.05 or |R| < 0.4 were filtered. The
- 869 relationships of bacteria in the *Russula* mycorrhizal rhizosphere were also analyzed
- 870 by Spearman's correlation.

#### 871 SUPPLEMENTAL MATERIAL

- 872 Supplemental material for this article may be found at
- 873 **SUPPLEMENTAL FILE 1,** TIFF file, 0.48 MB.
- 874 **SUPPLEMENTAL FILE 1,** PDF file, 0.22 MB.
- 875 **SUPPLEMENTAL FILE 1,** PDF file, 0.22 MB.
- 876 **SUPPLEMENTAL FILE 1,** PDF file, 0.22 MB.
- 877 **SUPPLEMENTAL FILE 1,** PDF file, 0.17 MB.
- 878 **SUPPLEMENTAL FILE 1,** PDF file, 0.13 MB.
- 879 ACKNOWLEDGMENTS
- 880 This work was supported by Guiding Program for Science and Technology
- B81 Department of fujian Province (2017N0005).

### 882 **REFERENCES**

- 883
- 884
- Kirk PM CP, Minter DW, Stalpers JA . 2008. Dictionary of the fungi. CAB
   International, Wallingford.
- Geml J, Laursen GA, Herriott IC, McFarland JM, Booth MG, Lennon N,
   Chad Nusbaum H, Lee Taylor D. 2010. Phylogenetic and ecological
   analyses of soil and sporocarp DNA sequences reveal high diversity and
   strong habitat partitioning in the boreal ectomycorrhizal genus Russula
   (Russulales; Basidiomycota). New Phytol 187:494-507.
- Li M, Liang J, Li Y, Feng B, Yang ZL, James TY, Xu J. 2010. Genetic
  diversity of Dahongjun, the commercially important "Big Red Mushroom"
  from southern China. PLoS One 5:e10684.
- 4. J.Z Ying, X.L.MAO , Q.M. MA, Y.C. ZONG & H.A. WEN. 1987. Icones of
  medicinal fungi from China. Science Press, Beijing.
- 5. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U.

898 2008. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet
899 sclerophyll forest as revealed by DNA barcoding and taxon-specific primers.
900 New Phytol 180:479-90.

- 901 6. van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B,
- 902 Benham S, Carroll C, Cools N, De Vos B, Dietrich HP, Eichhorn J,
- 903 Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P,
- 904 Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P,
- Rautio P, Schaub M, Schröck HW, Seidling W, Šrámek V, Thimonier A,
  Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner
- P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI. 2018. Environment and host
  as large-scale controls of ectomycorrhizal fungi. Nature 558:243-248.
- 909 7. Deacon JW, Donaldson SJ, Last FT. 1983. Sequences and interactions of
  910 mycorrhizal fungi on birch. Plant & Soil 71:257-262.
- 8. Toju H, Yamamoto S, Sato H, Tanabe AS. 2013. Sharing of diverse
  mycorrhizal and root-endophytic fungi among plant species in an
  oak-dominated cool-temperate forest. PLoS One 8:e78248.
- 914 9. Miyamoto Y, Nara K. 2016. Soil propagule banks of ectomycorrhizal fungi
  915 share many common species along an elevation gradient. Mycorrhiza
  916 26:189-97.
- 917 10. Sugiyama Y, Murata M, Kanetani S, Nara K. 2019. Towards the
  918 conservation of ectomycorrhizal fungi on endangered trees: native fungal
  919 species on Pinus amamiana are rarely conserved in trees planted ex situ.
  920 Mycorrhiza 29:195-205.
- 11. Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K. 2013.
  Community composition of root-associated fungi in a Quercus-dominated
  temperate forest: "codominance" of mycorrhizal and root-endophytic fungi.
  Ecol Evol 3:1281-93.
- 12. Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K. 2007. Does
  ectomycorrhizal fungal community structure vary along a Japanese black
  pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient?

928 New Phytol 173:322-34.

- Wang XH, Yang ZL, Li YC, Knudsen H, Liu PG. 2009. Russula
  griseocarnosa sp nov (Russulaceae, Russulales), a commercially important
  edible mushroom in tropical China: mycorrhiza, phylogenetic position, and
  taxonomy. Nova Hedwigia 88:269-282.
- Albornoz FE, Teste FP, Lambers H, Bunce M, Murray DC, White NE,
  Laliberte E. 2016. Changes in ectomycorrhizal fungal community
  composition and declining diversity along a 2-million-year soil
  chronosequence. Mol Ecol 25:4919-29.
- Horton TR, Bruns TD. 2001. The molecular revolution in ectomycorrhizal
  ecology: peeking into the black-box. Mol Ecol 10:1855-71.
- 16. Taylor DL, Bruns TD. 1999. Community structure of ectomycorrhizal fungi
  in a Pinus muricata forest: minimal overlap between the mature forest and
  resistant propagule communities. Mol Ecol 8:1837-50.
- 942 17. Gebhardt S, Neubert K, Wollecke J, Munzenberger B, Huttl RF. 2007.
  943 Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age
  944 in the Lusatian lignite mining district, East Germany. Mycorrhiza
  945 17:279-290.
- Yamamoto S, Sato H, Tanabe AS, Hidaka A, Kadowaki K, Toju H. 2014.
  Spatial segregation and aggregation of ectomycorrhizal and root-endophytic
  fungi in the seedlings of two Quercus species. PLoS One 9:e96363.
- Mandyam K, and A. Jumpponen. 2005. Seeking the elusive function of the
  root-colonising dark septate endophytic fungi. Studies in Mycology
  53:173-189.
- 952 20. Huang J, Nara K, Zong K, Lian C. 2015. Soil propagule banks of
  953 ectomycorrhizal fungi along forest development stages after mining. Microb
  954 Ecol 69:768-77.
- Peay KG, Schubert MG, Nguyen NH, Bruns TD. 2012. Measuring
  ectomycorrhizal fungal dispersal: macroecological patterns driven by
  microscopic propagules. Mol Ecol 21:4122-36.

- 22. Liang Y, Guo LD, Ma KP. 2004. Genetic structure of a population of the
  ectomycorrhizal fungus Russula vinosa in subtropical woodlands in
  southwest China. Mycorrhiza 14:235-40.
- 961 23. Smith SE, and Read, D. J. 2008. Mycorrhizal Symbiosis. London: Academic
  962 3rd Edn.
- 963 24. Genney DR, Anderson IC, Alexander IJ. 2006. Fine-scale distribution of
  964 pine ectomycorrhizas and their extramatrical mycelium. New Phytol
  965 170:381-90.
- Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N. 2005. Evidence of species
  interactions within an ectomycorrhizal fungal community. New Phytol 165:305-16.
- 969 26. Hortal S, Pera J, Parladé J. 2008. Tracking mycorrhizas and extraradical
  970 mycelium of the edible fungus Lactarius deliciosus under field competition
  971 with Rhizopogon spp. Mycorrhiza 18:69-77.
- 972 27. Olsson PA MB, Mahmood S, Erland S. 2000. Molecular and anatomical
  973 evidence for a three-way association between Pinus sylvestris and the
  974 ectomycorrhizal fungi Suillus bovinus and Gomphidius roseus. Mycological
  975 Research 104:1372-1378.
- 976 28. Bessette AE BA, Fischer DW. 1997. Mushrooms of northeastern North
  977 America. Syracuse. NY, USA: Syracuse University Press.
- 978 29. Hodge A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS
  979 Microbiol Ecol 32:91-96.
- Warmink JA, van Elsas JD. 2008. Selection of bacterial populations in the
  mycosphere of Laccaria proxima: is type III secretion involved? ISME J
  2:887-900.
- 31. Izumi H, Finlay RD. 2011. Ectomycorrhizal roots select distinctive bacterial
  and ascomycete communities in Swedish subarctic forests. Environ
  Microbiol 13:819-30.
- 986 32. De Miguel AM, Agueda B, Sanchez S, Parlade J. 2014. Ectomycorrhizal
  987 fungus diversity and community structure with natural and cultivated truffle

hosts: applying lessons learned to future truffle culture. Mycorrhiza 24Suppl 1:S5-18.

- Burke DJ, Dunham SM, Kretzer AM. 2008. Molecular analysis of bacterial
  communities associated with the roots of Douglas fir (Pseudotsuga
  menziesii) colonized by different ectomycorrhizal fungi. FEMS Microbiol
  Ecol 65:299-309.
- 34. Kataoka R, Futai K. 2008. A new mycorrhizal helper
  bacterium,Ralstoniaspecies, in the ectomycorrhizal symbiosis betweenPinus
  thunbergiiandSuillus granulatus. Biology & Fertility of Soils 45:315-320.
- 997 35. Pent M, Hiltunen M, Poldmaa K, Furneaux B, Hildebrand F, Johannesson H,
  998 Ryberg M, Bahram M. 2018. Host genetic variation strongly influences the
  999 microbiome structure and function in fungal fruiting-bodies. Environ
  1000 Microbiol 20:1641-1650.
- Boersma FG, Warmink JA, Andreote FA, van Elsas JD. 2009. Selection of
  Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans
  fruiting bodies. Appl Environ Microbiol 75:1979-89.
- 1004 37. Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal
  1005 world: impact of fungi on soil bacterial niche development. FEMS
  1006 Microbiol Rev 29:795-811.
- Johansson JF, Paul LR, Finlay RD. 2004. Microbial interactions in the
  mycorrhizosphere and their significance for sustainable agriculture. FEMS
  Microbiol Ecol 48:1-13.
- Andersson BE, Lundstedt S, Tornberg K, Schnurer Y, Oberg LG, Mattiasson
  B. 2003. Incomplete degradation of polycyclic aromatic hydrocarbons in
  soil inoculated with wood-rotting fungi and their effect on the indigenous
  soil bacteria. Environ Toxicol Chem 22:1238-43.
- Warmink JA, Nazir R, van Elsas JD. 2009. Universal and species-specific
  bacterial 'fungiphiles' in the mycospheres of different basidiomycetous fungi.
  Environ Microbiol 11:300-12.
- 1017 41. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P. 2007.

1018 Effect of the mycorrhizosphere on the genotypic and metabolic diversity of

- the bacterial communities involved in mineral weathering in a forest soil.Appl Environ Microbiol 73:3019-27.
- 1021 42. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP. 2006.
  1022 Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is
  1023 produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505.
  1024 Appl Environ Microbiol 72:3550-7.
- 1025 43. Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria
  1026 revisited. New Phytol 176:22-36.
- 1027 44. Bending GD, Poole EJ, Whipps JM, Read DJ. 2002. Characterisation of
  1028 bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects
  1029 on root-fungus interactions and plant growth. FEMS Microbiol Ecol
  1030 39:219-27.
- Kataoka R, Taniguchi T, Futai K. 2009. Fungal selectivity of two
  mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus
  thunbergii. World Journal of Microbiology & Biotechnology 25:1815-1819.
- Hã¶Gberg MN, Hã¶Gberg P. 2002. Extramatrical ectomycorrhizal
  mycelium contributes one-third of microbial biomass and produces, together
  with associated roots, half the dissolved organic carbon in a forest soil. New
  Phytologist 154:791-795.
- Björn L, Jan S, Roger F. 2001. Effects of resource availability on mycelial
  interactions and 32P transfer between a saprotrophic and an ectomycorrhizal
  fungus in soil microcosms. Fems Microbiology Ecology:1.
- 1041 48. Tedersoo L, Partel K, Jairus T, Gates G, Poldmaa K, Tamm H. 2009.
  1042 Ascomycetes associated with ectomycorrhizas: molecular diversity and
  1043 ecology with particular reference to the Helotiales. Environ Microbiol
  1044 11:3166-78.
- 1045 49. Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A. 2010. Soil analysis
  1046 reveals the presence of an extended mycelial network in a Tuber magnatum
  1047 truffle-ground. FEMS Microbiol Ecol 71:43-9.

- 1048 50. Zhou Z, Miwa M, Matsuda Y, Hogetsu T. 2001. Spatial Distribution of the
  1049 Subterranean Mycelia and Ectomycorrhizae ofSuillus grevilleiGenets.
  1050 Journal of Plant Research 114:179-185.
- 1051 51. Parlade J, De la Varga H, De Miguel AM, Saez R, Pera J. 2013.
  1052 Quantification of extraradical mycelium of Tuber melanosporum in soils
  1053 from truffle orchards in northern Spain. Mycorrhiza 23:99-106.
- 1054 52. De la Varga H, Agueda B, Martinez-Pena F, Parlade J, Pera J. 2012.
  1055 Quantification of extraradical soil mycelium and ectomycorrhizas of
  1056 Boletus edulis in a Scots pine forest with variable sporocarp productivity.
  1057 Mycorrhiza 22:59-68.
- 1058 53. Guidot A, Debaud JC, Marmeisse R. 2001. Correspondence between genet
  1059 diversity and spatial distribution of above- and below-ground populations of
  1060 the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol
  1061 10:1121-31.
- 1062 54. Bonfante P, Anca IA. 2009. Plants, mycorrhizal fungi, and bacteria: a
  1063 network of interactions. Annu Rev Microbiol 63:363-83.
- Li Q, Yan L, Ye L, Zhou J, Zhang B, Peng W, Zhang X, Li X. 2018. Chinese
  Black Truffle (Tuber indicum) Alters the Ectomycorrhizosphere and
  Endoectomycosphere Microbiome and Metabolic Profiles of the Host Tree
  Quercus aliena. Front Microbiol 9:2202.
- 1068 56. Li X, Zhang X, Yang M, Yan L, Kang Z, Xiao Y, Tang P, Ye L, Zhang B,
  1069 Zou J, Liu C. 2019. Tuber borchii Shapes the Ectomycorrhizosphere
  1070 Microbial Communities of Corylus avellana. Mycobiology 47:180-190.
- 1071 57. Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P. 2011.
- 1072 ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in
  1073 truffle grounds. Mycologia 103:1184-93.
- 1074 58. Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Hoiland K,
  1075 Eidesen PB. 2014. Arctic root-associated fungal community composition
  1076 reflects environmental filtering. Mol Ecol 23:649-59.
- 1077 59. Jumpponen A, Jones KL, David Mattox J, Yaege C. 2010. Massively

parallel 454-sequencing of fungal communities in Quercus spp.
ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol
Ecol 19 Suppl 1:41-53.

- 1081 60. Toju H, Sato H, Tanabe AS. 2014. Diversity and spatial structure of 1082 belowground plant-fungal symbiosis in a mixed subtropical forest of 1083 ectomycorrhizal and arbuscular mycorrhizal plants. PLoS One 9:e86566.
- 1084 61. Nakamura N, Tanaka E, Tanaka C, Takeuchi-Kaneko Y. 2018. Localization
  1085 of helotialean fungi on ectomycorrhizae of Castanopsis cuspidata visualized
  1086 by in situ hybridization. Mycorrhiza 28:17-28.
- Sato H, Morimoto S, Hattori T. 2012. A thirty-year survey reveals that
  ecosystem function of fungi predicts phenology of mushroom fruiting. PLoS
  One 7:e49777.
- Wang X, Liu J, Long D, Han Q, Huang J. 2017. The ectomycorrhizal fungal
  communities associated with Quercus liaotungensis in different habitats
  across northern China. Mycorrhiza 27:441-449.
- 1093 64. Benucci GM, Bonito G, Baciarelli Falini L, Bencivenga M. 2012.
  1094 Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle
  1095 species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza
  1096 22:383-92.
- 1097 65. Vivas A, Barea JM, Azcón R. 2005. Interactive effect of Brevibacillus brevis
  1098 and Glomus mosseae, both isolated from Cd contaminated soil, on plant
  1099 growth, physiological mycorrhizal fungal characteristics and soil enzymatic
  1100 activities in Cd polluted soil. Environ Pollut 134:257-66.
- 1101 66. Rangel-Castro JI, Levenfors JJ, Danell E. 2002. Physiological and genetic
  1102 characterization of fluorescent Pseudomonas associated with Cantharellus
  1103 cibarius. Can J Microbiol 48:739-48.
- 1104 67. Timonen S, Hurek T. 2006. Characterization of culturable bacterial
  1105 populations associating with Pinus sylvestris--Suillus bovinus
  1106 mycorrhizospheres. Can J Microbiol 52:769-78.
- 1107 68. Marupakula S, Mahmood S, Finlay RD. 2016. Analysis of single root tip

microbiomes suggests that distinctive bacterial communities are selected by
Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ
Microbiol 18:1470-83.

- Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T. 1997. Metabolic and
  Genotypic Fingerprinting of Fluorescent Pseudomonads Associated with the
  Douglas Fir-Laccaria bicolor Mycorrhizosphere. Appl Environ Microbiol
  63:1852-60.
- 1115 70. Nazir R, Tazetdinova DI, van Elsas JD. 2014. Burkholderia terrae BS001
  1116 migrates proficiently with diverse fungal hosts through soil and provides
  1117 protection from antifungal agents. Front Microbiol 5:598.
- 1118 71. Labbé JL, Weston DJ, Dunkirk N, Pelletier DA, Tuskan GA. 2014. Newly
  1119 identified helper bacteria stimulate ectomycorrhizal formation in Populus.
  1120 Front Plant Sci 5:579.
- 1121 72. Navarro-Ródenas A, Berna LM, Lozano-Carrillo C, Andrino A, Morte A.
  2016. Beneficial native bacteria improve survival and mycorrhization of
  desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza
  26:769-79.
- 1125 73. Mello A, Ding GC, Piceno YM, Napoli C, Tom LM, DeSantis TZ, Andersen
  1126 GL, Smalla K, Bonfante P. 2013. Truffle brules have an impact on the
  1127 diversity of soil bacterial communities. PLoS One 8:e61945.
- 1128 74. Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ,
  1129 Ramos B. 2005. Screening for putative PGPR to improve establishment of
  1130 the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol 50:82-9.
- 1131 75. Ingleby K, Munro RC, Noor M, Mason PA, Clearwater MJ. 1998.
  1132 Ectomycorrhizal populations and growth of Shorea parvifolia
  1133 (Dipterocarpaceae) seedlings regenerating under three different forest
  1134 canopies following logging. Forest Ecology & Management 111:0-179.
- 1135 76. Southworth D, Carrington EM, Frank JL, Gould P, Harrington CA, Devine
  1136 WD. 2009. Mycorrhizas on nursery and field seedlings of Quercus garryana.
  1137 Mycorrhiza 19:149-158.

- Kubisch P, Hertel D, Leuschner C. 2015. Do ectomycorrhizal and arbuscular
  mycorrhizal temperate tree species systematically differ in root order-related
  fine root morphology and biomass? Front Plant Sci 6:64.
- Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram
  M, Bechem E, Chuyong G, Koljalg U. 2010. 454 Pyrosequencing and
  Sanger sequencing of tropical mycorrhizal fungi provide similar results but
  reveal substantial methodological biases. New Phytol 188:291-301.
- 1145 79. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW. 2012.
  1146 Comparison of the levels of bacterial diversity in freshwater, intertidal
  1147 wetland, and marine sediments by using millions of illumina tags. Appl
  1148 Environ Microbiol 78:8264-71.
- 1149

1150

| Туре          | Relativ                         | Chao1ric     | Shanno     | Relative | Chao1    | Shanno    | Chao1          | Shannon   |
|---------------|---------------------------------|--------------|------------|----------|----------|-----------|----------------|-----------|
|               | e                               | hness of     | n of       | Russula  | richness | n of      | richness       | of        |
|               | Russul                          | Fungi        | Fungi      | OUT      | of Fungi | Fungi     | of             | Bacteria  |
|               | a OUT                           | Communi      | Commu      | abunda   | Commu    | Commu     | Bacteria       | 1         |
|               | abunda                          | ty of        | nity of    | nce (%)  | nity of  | nity of   | 1              | Commu     |
|               | nce                             | ECM          | ECM        | in ECM   | ECM      | ECM       | Commu          | nity of   |
|               | (%) in                          | Russula      | Russula    | Russula  | Russula  | Russula   | nity of        | ECM       |
|               | ECM                             | root1        | root       | rhizosp  | rhizosp  | rhizosp   | ECM            | Russula   |
|               | Russul                          |              |            | here     | here     | here      | Russula        | Rhizosp   |
|               | a root                          |              |            |          |          |           | rhizosp        | here      |
|               |                                 |              |            |          |          |           | here           |           |
| Russula –     | 28.74                           | 663.12 $\pm$ | $4.04\pm$  | 20.22    | 901.38   | $4.52\pm$ | 1010.28        | $7.54\pm$ |
| infected      | $\pm$                           |              |            | ±        | $\pm$    | 0.53a     | $\pm$          | 0.10b     |
| (type1)       |                                 | 171.655b     | 1.007b     | 4.59B    | 32.30a   |           |                |           |
|               | <b>19.31B</b><br><sub>1,2</sub> |              |            |          |          |           | 17.29b         |           |
| Russula       | 66.66                           | $170.44 \pm$ | $2.20 \pm$ | 39.23    | 756.87   | 4.56±     | 945.81         | 7.49±     |
| sporocarp     | +                               | 24.68c       | 0.19 c     | +        | +        | 0.99a     | +              | 0.049b    |
| producing     |                                 |              |            | 7.58C    |          |           |                |           |
| (type2)       | 12.92C                          |              |            |          | 52.18b   |           | 25.08b         |           |
| Russula-no-in | $1.44\pm$                       | 782.20 $\pm$ | 4.55±      | 5.61±    | 874.19   | $4.47\pm$ | 1099.52        | 7.94±     |
| fected        | 1.02A                           |              | 0.921a     | 1.71A    | ±        | 0.95a     | ±              | 0.13a     |
| (type3)       |                                 | 102.345a     |            |          | 41.16a   |           | <b>13.14</b> a |           |

|                                                       | Common species in three types                                                                                                                                                              | Common species<br>in type1<br>and type2,<br>Excluding those<br>that are common<br>to all three types | species<br>included<br>exclusively in<br>Type<br>2,compareing<br>to collecting<br>Type 1,3; and<br>belong to<br>Common in<br>type2 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Fungi of<br>ECM<br>Russula root                       | Tomentella, Lactarius, Russula                                                                                                                                                             | Acremonium,<br>Cladophialophora                                                                      | Boletus                                                                                                                            |
| Fungi of<br>Russula<br>Mycorrhizal<br>rhizosphere     | Russula ,Mortierella, Penicillium<br>Trichoderma                                                                                                                                           | Elaphomyces,<br>Tomentella,                                                                          | Dacryobolus                                                                                                                        |
| Bacterial of<br>Russula<br>Mycorrhizal<br>rhizosphere | Acidibacter,Acidothermus,Candidatus_Solibacter,Rhizomicrobium,Variibacter,Burkholderia-Paraburkholderia,Roseiarcus,Bradyrhizobium,Candidatus_Koribacter,GranulicellaCandidatus_Koribacter, | Bryobacter,<br>Sorangium,<br>Acidicaldus,<br>Acidobacterium                                          | Acidocella                                                                                                                         |

|        | τv        | DE0       | TVDF1      |           |             |              | TVDE2     |             |              |
|--------|-----------|-----------|------------|-----------|-------------|--------------|-----------|-------------|--------------|
|        |           |           |            | MDDO      | VDD0        |              |           | VDVO        |              |
| sample | MFS1"     | MFS2      | MFEI       | MFE2      | MFE3        | MFE4         | MFK1      | MFK2        | MFK3         |
| name   | _         |           |            |           |             |              |           |             |              |
| Total  | 15        |           | 6          |           |             |              | 4         |             |              |
| numb   |           |           |            |           |             |              |           |             |              |
| er of  |           |           |            |           |             |              |           |             |              |
| genus  |           |           |            |           |             |              |           |             |              |
| in     |           |           |            |           |             |              |           |             |              |
| Inters |           |           |            |           |             |              |           |             |              |
| ection |           |           |            |           |             |              |           |             |              |
| Total  | 94        |           | 16         |           |             |              | 41        |             |              |
| iotai  | 24        |           | 40         |           |             |              |           |             |              |
| amun   |           |           |            |           |             |              |           |             |              |
| er of  |           |           |            |           |             |              |           |             |              |
| genus  |           |           |            |           |             |              |           |             |              |
| in     |           |           |            |           |             |              |           |             |              |
| Collec |           |           |            |           |             |              |           |             |              |
| tion   |           |           |            |           |             |              |           |             |              |
| 1      | gRussula  | gRussula  | gRussula   | gunident  | gunidenti   | gRussula     | gTomente  | gunidentif  | gunidentifi  |
|        |           |           |            | ified     | fied        |              | 11a       | ied         | ed           |
| 2      | gTomente  | gTomente  | gMicroidi  | gRussula  | gRussula    | gunidentifi  | gunident  | gTomentell  | gTrechispor  |
|        | lla       | lla       | um         |           |             | ed           | ified     | a           | a            |
| 3      | g Boletus | g unident | g Cladophi | g Elaphom | g Sebacina  | g Elaphomyce | g Sporide | g Lactarius | g Tomentella |
| _      | 0         | ified     | alophora   | vces      | 0           | S            | smium     | 0           | 0            |
| 4      | g unident | g Lactari | g unidenti | g Hydnum  | g Hemilecc  | g Pseudonroh | g Lactari | σ Russula   | g Pseudonroh |
| I      | ified     |           | fied       | 8iny unum | inum        | occispora    |           | 8nubbulu    | oscispora    |
| E      | a Lootori | a Polotus | g Cutogram | a Cliter  | r Flopherer |              |           | a Dhigodorm |              |
| 5      | gLactari  | gBoletus  | gUytospor  | gUI1tocy  | gElapnomy   | glomentella  | gKussula  | gKnizoderm  | gAylogone    |

|    | us        |           | a          | bula      | ces        |             |           | ea          |             |
|----|-----------|-----------|------------|-----------|------------|-------------|-----------|-------------|-------------|
| 6  | gHymenos  | gHymenos  | gCortinar  | gTomente  | gTrechisp  | gCladophial | gTalarom  | gPhialea    | gSebacina   |
|    | cyphus    | cyphus    | ius        | lla       | ora        | ophora      | yces      |             |             |
| 7  | gClitocy  | gCortina  | g_Archaeor | g_Lauriom | gPsathyre  | g_Lactarius | gSebacin  | gTrichoder  | g_Lactarius |
|    | bula      | rius      | hizomyces  | yces      | 11a        |             | a         | ma          |             |
| 8  | gXylogon  | gAcremon  | gPhellinu  | g_Cladoph | g_Lactariu | gMortierell | g_Cladoph | g_Cladophia | gTalaromyce |
|    | е         | ium       | S          | ialophora | S          | a           | ialophora | lophora     | S           |
| 9  | gAcremon  | gPhellod  | gMortiere  | gMyriost  | gTomentel  | gFusarium   | gPenicil  | gThozetell  | gCalvatia   |
|    | ium       | on        | lla        | oma       | la         |             | lium      | a           |             |
| 10 | g_Cladoph | gXylogon  | gPenicill  | gPhellod  | gLasiosph  | gAcremonium | gDeconic  | gRhodovero  | gCephalothe |
|    | ialophora | е         | ium        | on        | aeria      |             | а         | naea        | ca          |
| 11 | gCortina  | g_Cladoph | gAcremoni  | gXylogon  | gXylogone  | gRasamsonia | gCoprine  | gChaetosph  | gLysurus    |
|    | rius      | ialophora | um         | е         |            | _           | llus      | aeria       |             |
| 12 | g_Elaphom | gClitocy  | gLactariu  | gRhodove  | gMortiere  | gSordaria   | gTrichod  | gGliocepha  | gHemileccin |
|    | yces      | bula      | S          | ronaea    | 11a        |             | erma      | lotrichum   | um          |
| 13 | gPhellod  | gThozete  | gRhodover  | gAcremon  | g_Cladophi | gSporidesmi | gInocybe  | gChalara    | gPezoloma   |
|    | on        | lla       | onaea      | ium       | alophora   | um          |           |             |             |
| 14 | gThozete  | gElaphom  | gFusarium  | gCortina  | gOidioden  | gHyaloscyph | gMortier  | gMortierel  | gCytospora  |
|    | 11a       | yces      |            | rius      | dron       | а           | ella      | la          |             |
| 15 | gChaetos  | gKazachs  | gCryptosp  | gOidiode  | gHydnum    | gNectria    | gCercoph  | gOidiodend  | gRussula    |
|    | phaeria   | tania     | oriopsis   | ndron     |            |             | ora       | ron         |             |
| 16 | gPenicil  | gIssatch  | gRhizoder  | gLactari  | gOperculo  | gTrichoderm | gXylogon  | gChloridiu  | g0idiodendr |
|    | lium      | enkia     | mea        | us        | myces      | a           | е         | m           | on          |
| 17 | gPhialea  | gPhialea  | gDactylel  | gClavuli  | gTrichode  | gClathrus   | gClathru  | gCortinari  | gThozetella |
|    |           |           | lina       | na        | rma        |             | S         | us          |             |
| 18 | gInocybe  | gChaetos  | gMyrmecri  | gRhizode  | gAcremoni  | gAntrodiell | gDendroc  | gHymenoscy  | gGenolevuri |

|    |          | phaeria  | dium      | rmea     | um        | a           | lathra   | phus       | a           |
|----|----------|----------|-----------|----------|-----------|-------------|----------|------------|-------------|
| 19 | gColleto | gThielav | gXylogone | gSebacin | gClitopil | gColletotri | gFusariu | gSporidesm | gPenicilliu |
|    | trichum  | ia       |           | а        | us        | chum        | m        | ium        | m           |
| 20 | gMyrmecr | gRhodove | gTomentel | gOpercul | gPezoloma | gTalaromyce | gElaphom | gCalonectr | gChaetomium |
|    | idium    | ronaea   | la        | omyces   |           | S           | yces     | ia         |             |

|              | TYP        | E2        | TYPE1     |             |           |             | ТҮРЕЗ       |            |             |
|--------------|------------|-----------|-----------|-------------|-----------|-------------|-------------|------------|-------------|
| sample       | SFS1       | SFS2      | SFE1      | SFE2        | SFE3      | SFE4        | SFK1        | SFK2       | SFK3        |
| name         |            |           |           |             |           |             |             |            |             |
| Total        | 12         |           | 7         |             |           |             | 7           |            |             |
| numb         |            |           |           |             |           |             |             |            |             |
| er of        |            |           |           |             |           |             |             |            |             |
| genus        |            |           |           |             |           |             |             |            |             |
| in           |            |           |           |             |           |             |             |            |             |
| Inters       |            |           |           |             |           |             |             |            |             |
| ection       |            |           |           |             |           |             |             |            |             |
| Total        | 26         |           | 40        |             |           |             | 36          |            |             |
| numb         |            |           |           |             |           |             |             |            |             |
| er of        |            |           |           |             |           |             |             |            |             |
| genus        |            |           |           |             |           |             |             |            |             |
| in<br>Collec |            |           |           |             |           |             |             |            |             |
| tion         |            |           |           |             |           |             |             |            |             |
| 1            | g Russula  | g Russula | g Mortier | g Flanhomyc | g Russula | g Russula   | g Archaeorh | g unidenti | g unidentif |
| 1            | <u>5</u>   | SRubburu  | ella      | es          | SRubburu  | <u>S</u>    | izomyces    | fied       | ied         |
| 2            | g Elaphomy | g Elaphom | g unident | g Russula   | g unident | g Elaphomyc | g Penicilli | g Tomentel | g Mortierel |
| _            | ces        | vces      | ified     | 0           | ified     | es          | um          | la         | la          |
| 3            | g unidenti | g unident | g Russula | g unidentif | g Trichod | g Mortierel | g unidentif | g Rhodover | g Geminibas |
|              | fied       | ified     |           | ied         | erma      | 1a          | ied         | onaea      | idium       |
| 4            | gClitocyb  | gTomente  | gGeminib  | gArchaeorh  | gTomente  | gunidentif  | gRussula    | gLactariu  | gTomentell  |
|              | ula        | 11a       | asidium   | izomyces    | 11a       | ied         |             | S          | а           |
| 5            | g Tomentel | g Lactari | g Tomente | g Clitocybu | g Mortier | g Pseudopro | g Pseudopro | g Russula  | g Russula   |

|    | la         | us        | 11a       | la          | ella      | boscispora | boscispora |           |             |
|----|------------|-----------|-----------|-------------|-----------|------------|------------|-----------|-------------|
| 6  | g_Lactariu | gClitocy  | gElaphom  | gTomentell  | gElaphom  | gTrichoder | gRhodovero | gArchaeor | gPenicilli  |
|    | S          | bula      | yces      | a           | yces      | ma         | naea       | hizomyces | um          |
| 7  | g_Archaeor | gSporide  | gPenicil  | gRhodovero  | gLactari  | gTomentell | gMyrmecrid | gCortinar | gSaitozyma  |
|    | hizomyces  | smium     | lium      | naea        | us        | a          | ium        | ius       |             |
| 8  | gMortiere  | g_Lasiosp | gClitocy  | gTrechispo  | gPenicil  | gPenicilli | gTrechispo | gCorticiu | gTrichoder  |
|    | lla        | haeria    | bula      | ra          | lium      | um         | ra         | m         | ma          |
| 9  | gPenicill  | gMortier  | gTrichod  | gAcremoniu  | gSaitozy  | gSebacina  | gCladophia | gMortiere | g_Clavulina |
|    | ium        | ella      | erma      | m           | ma        |            | lophora    | lla       |             |
| 10 | g_Cladophi | gInocybe  | gSaitozy  | gMortierel  | gUmbelop  | gLactarius | gAspergill | gSaitozym | gPseudopro  |
|    | alophora   |           | ma        | la          | sis       |            | us         | а         | boscispora  |
| 11 | gCortinar  | gSaitozy  | gBifigur  | gMicrodoch  | gSporide  | gChloridiu | gOidiodend | gMicrodoc | gBifigurat  |
|    | ius        | ma        | atus      | ium         | smium     | m          | ron        | hium      | us          |
| 12 | gSaitozym  | g_Cladoph | g_Lactari | gCookeina   | gGeminib  | gAmplistro | gTrichoder | gSympodie | gSebacina   |
|    | a          | ialophora | us        |             | asidium   | ma         | ma         | lla       |             |
| 13 | gCoralloi  | gPenicil  | g_Cladoph | g_Cladophia | gSebacin  | gFusarium  | gChloridiu | gTrichode | gTalaromyc  |
|    | diomyces   | lium      | ialophora | lophora     | а         |            | m          | rma       | es          |
| 14 | gRhodover  | gTrichod  | gChaetom  | gTrichoder  | gLasiosp  | gMicrodoch | gChaetomiu | gPenicill | gClitopilu  |
|    | onaea      | erma      | ium       | ma          | haeria    | ium        | m          | ium       | S           |
| 15 | gDacryobo  | gThanate  | gHypomyc  | gPseudopro  | gInocybe  | gAntrodiel | gMortierel | gChaetomi | gChaetomiu  |
|    | lus        | phorus    | es        | boscispora  |           | la         | la         | um        | m           |
| 16 | gTrichode  | gMicrodo  | gUmbelop  | gPenicilli  | gBionect  | gBifigurat | gLactarius | gCladophi | gUmbelopsi  |
|    | rma        | chium     | sis       | um          | ria       | us         |            | alophora  | S           |
| 17 | gAcremoni  | gDacryob  | gCorallo  | gMyrmecrid  | g_Cladoph | gClitopilu | gAcremoniu | gClitopil | gSordaria   |
|    | um         | olus      | idiomyces | ium         | ialophora | S          | m          | us        |             |
| 18 | gBotryoba  | gAcremon  | gXylogon  | gSaitozyma  | gChlorid  | gSordaria  | gChaetosph | g0idioden | gOidiodend  |

|    | sidium    | ium      | е        |            | ium      |            | aeria      | dron      | ron         |
|----|-----------|----------|----------|------------|----------|------------|------------|-----------|-------------|
| 19 | gClitopil | gChaetom | gSebacin | gHydnum    | gChaetom | gNectria   | gFusarium  | gClavulin | g_Cladophia |
|    | us        | ium      | a        |            | ium      |            |            | opsis     | lophora     |
| 20 | gArachnop | gTalarom | gChaetos | gChaetomiu | gStaphyl | gAcremoniu | gAmplistro | gXylogone | gXylogone   |
|    | eziza     | yces     | phaeria  | m          | otrichum | m          | ma         |           |             |

|             |       | TYPE2       | TYPE1       |             |             |             | TYPE3       |             |           |
|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
| sample name | SBS1  | SBS2        | SBE1        | SBE2        | SBE3        | SBE4        | SBK1        | SBK2        | SBK3      |
| Total       | 18    |             | 14          |             |             |             | 12          |             |           |
| number of   |       |             |             |             |             |             |             |             |           |
| genus in    |       |             |             |             |             |             |             |             |           |
| Intersectio |       |             |             |             |             |             |             |             |           |
| n           |       |             |             |             |             |             |             |             |           |
| Total       | 20    |             | 27          |             |             |             | 26          |             |           |
| number of   |       |             |             |             |             |             |             |             |           |
| genus in    |       |             |             |             |             |             |             |             |           |
| Collection  |       |             |             |             |             |             |             |             |           |
| 1           | gun   | gunidenti   | gunidenti |
|             | ident | fied        | fied      |
|             | ified |             |             |             |             |             |             |             |           |
| 2           | gAc   | gAcidibac   | gCandidat   | gAcidibac   | gCandidat   | gCandidat   | gCandidat   | gCandidat   | gRhodanob |
|             | idiba | ter         | us_Solibact | ter         | us_Solibact | us_Solibact | us_Solibact | us_Solibact | acter     |
|             | cter  |             | er          |             | er          | er          | er          | er          |           |
| 3           | gCa   | gAcidothe   | gAcidibac   | gBurkhold   | gVariibac   | gVariibac   | gVariibac   | gSorangiu   | gAcidothe |
|             | ndida | rmus        | ter         | eria-Parabu | ter         | ter         | ter         | m           | rmus      |
|             | tus_S |             |             | rkholderia  |             |             |             |             |           |
|             | oliba |             |             |             |             |             |             |             |           |
|             | cter  | ~           |             |             |             |             |             |             |           |
| 4           | gRh   | g_Candidat  | gRhizomic   | gAcidothe   | gBurkhold   | gAcidothe   | gBradyrhi   | gAcidibac   | gVariibac |
|             | izomi | us_Solibact | robium      | rmus        | eria-Parabu | rmus        | zobium      | ter         | ter       |
|             | crobi | er          |             |             | rkholderia  |             |             |             |           |
|             | um    |             |             |             |             |             |             |             |           |

| 5  | gBr   | gRhizomic   | gBryobact   | gCandidat    | gAcidibac   | gBradyrhi   | gAcidibac   | gAcidothe   | gAcidibac   |
|----|-------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
|    | yobac | robium      | er          | us_Solibact  | ter         | zobium      | ter         | rmus        | ter         |
|    | ter   |             |             | er           |             |             |             |             |             |
| 6  | gAc   | gBryobact   | gAcidothe   | gBradyrhi    | gBradyrhi   | gBryobact   | gAcidothe   | gBryobact   | gBurkhold   |
|    | idoth | er          | rmus        | zobium       | zobium      | er          | rmus        | er          | eria-Parabu |
|    | ermus |             |             |              |             |             |             |             | rkholderia  |
| 7  | gVa   | gVariibac   | gVariibac   | gVariibac    | gRhizomic   | gAcidibac   | gRhizomic   | gRhizomic   | gBradyrhi   |
|    | riiba | ter         | ter         | ter          | robium      | ter         | robium      | robium      | zobium      |
|    | cter  |             |             |              |             |             |             |             |             |
| 8  | gSo   | gBradyrhi   | gSorangiu   | gBryobact    | gBryobact   | gBurkhold   | gBryobact   | gVariibac   | gCandidat   |
|    | rangi | zobium      | m           | er           | er          | eria-Parabu | er          | ter         | us_Solibact |
|    | um    |             |             |              |             | rkholderia  |             |             | er          |
| 9  | gHa   | gBurkhold   | gCandidat   | gRhizomic    | gAcidothe   | gRhizomic   | gSorangiu   | gBurkhold   | gRhizomic   |
|    | liang | eria-Parabu | us_Koribact | robium       | rmus        | robium      | m           | eria-Parabu | robium      |
|    | ium   | rkholderia  | er          |              |             |             |             | rkholderia  |             |
| 10 | gBu   | gRoseiarc   | gGranulic   | gRoseiarc    | gH16        | gCandidat   | gBurkhold   | gGranulic   | gBryobact   |
|    | rkhol | us          | ella        | us           |             | us_Koribact | eria-Parabu | ella        | er          |
|    | deria |             |             |              |             | er          | rkholderia  |             |             |
|    | -Para |             |             |              |             |             |             |             |             |
|    | burkh |             |             |              |             |             |             |             |             |
|    | older |             |             |              |             |             |             |             |             |
|    | ia    |             |             |              |             |             |             |             |             |
| 11 | gRo   | gSorangiu   | gBurkhold   | gSorangiu    | gCandidat   | gSorangiu   | gReyranel   | gMucilagi   | gGranulic   |
|    | seiar | m           | eria-Parabu | m            | us_Xiphinem | m           | la          | nibacter    | ella        |
|    | cus   |             | rkholderia  |              | atobacter   |             |             |             |             |
| 12 | gSp   | gCandidatu  | gRoseiarcus | gGranulicell | gAcidobact  | gGranulic   | gH16        | gCandidat   | gCandidat   |

|    | hingo | s_Koribacter |           | а           | erium       | ella        |             | us_Koribact | us_Xiphinem |
|----|-------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | monas |              |           |             |             |             |             | er          | atobacter   |
| 13 | gBr   | gGranulic    | gAcidobac | gCandidat   | gSphingom   | gRoseiarc   | gRoseiarc   | gBradyrhi   | gDyella     |
|    | adyrh | ella         | terium    | us_Xiphinem | onas        | us          | us          | zobium      |             |
|    | izobi |              |           | atobacter   |             |             |             |             |             |
|    | um    |              |           |             |             |             |             |             |             |
| 14 | g_Ca  | gTelmatos    | gBradyrhi | gMycobact   | gCandidat   | gH16        | gCandidat   | gRoseiarc   | gCandidat   |
|    | ndida | pirillum     | zobium    | erium       | us_Koribact |             | us_Koribact | us          | us_Koribact |
|    | tus_K |              |           |             | er          |             | er          |             | er          |
|    | oriba |              |           |             |             |             |             |             |             |
|    | cter  |              |           |             |             |             |             |             |             |
| 15 | gAc   | gAcidical    | gHaliangi | gCandidat   | gGranulic   | gCandidat   | gHaliangi   | gAcidobac   | gAcidical   |
|    | idoce | dus          | um        | us_Koribact | ella        | us_Xiphinem | um          | terium      | dus         |
|    | 11a   |              |           | er          |             | atobacter   |             |             |             |
| 16 | gAc   | gHaliangi    | gMucilagi | gAcidical   | gSorangiu   | gHaliangi   | gAcidical   | gHaliangi   | gAcidobac   |
|    | idica | um           | nibacter  | dus         | m           | um          | dus         | um          | terium      |
|    | 1dus  |              |           |             |             |             |             |             |             |
| 17 | gGr   | gSphingom    | gTelmatos | gLeptothr   | gRoseiarc   | gAcidical   | gGranulic   | gBdellovi   | gSphingom   |
|    | anuli | onas         | pirillum  | ix          | us          | dus         | ella        | brio        | onas        |
|    | cella |              |           |             |             |             |             |             |             |
| 18 | gTe   | gAcidobac    | gInquilin | gH16        | gAcidical   | gLuedeman   | gRhizobiu   | gSphingom   | gRoseiarc   |
|    | lmato | terium       | us        |             | dus         | nella       | m           | onas        | us          |
|    | spiri |              |           |             |             |             |             |             |             |
|    | 11um  |              |           |             |             |             |             |             |             |
| 19 | gEd   | gAcidocel    | gBdellovi | gAcidobac   | gMycobact   | gAcidobac   | gSphingom   | gH16        | gMycobact   |
|    | aphob | la           | brio      | terium      | erium       | terium      | onas        |             | erium       |

|    | acter                       |                   |                  |                 |         |                   |                                       |         |       |
|----|-----------------------------|-------------------|------------------|-----------------|---------|-------------------|---------------------------------------|---------|-------|
| 20 | gAc<br>idoba<br>cteri<br>um | gBdellovi<br>brio | gAcidical<br>dus | gHaliangi<br>um | gDyella | gGemmatim<br>onas | gCandidat<br>us_Xiphinem<br>atobacter | gDyella | g_H16 |

| G<br>r<br>o<br>u<br>p | MSF<br>OTU_<br>19                             | MSF<br>OTU<br>_9                   | MSF<br>0TU<br>_65<br>5             | MSF<br>OTU_2<br>4                    | MSF<br>OTU<br>_16           | MSF<br>OTU<br>_18                   | MSF<br>OTU<br>_17                  | MSF<br>OTU<br>_23            | MSFO<br>TU_4<br>3                       | MSF<br>0TU<br>_16<br>39     | MSF<br>OTU_<br>11                       | MSF<br>OTU_7                           | MSF<br>OTU<br>_14            | MSF<br>OTU<br>_21           | MSFOT<br>U_2                            | MSF<br>OTU<br>_6             | MSF<br>OTU<br>_4            | MSF<br>OTU_<br>3                 | MSF<br>OTU<br>_5                   | MSF<br>OTU<br>_1                   |
|-----------------------|-----------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------|-------------------------------------|------------------------------------|------------------------------|-----------------------------------------|-----------------------------|-----------------------------------------|----------------------------------------|------------------------------|-----------------------------|-----------------------------------------|------------------------------|-----------------------------|----------------------------------|------------------------------------|------------------------------------|
|                       | s_E<br>laph<br>omyc<br>es_s<br>p <sup>1</sup> | s<br>Tom<br>ent<br>ell<br>a_s<br>p | s<br>Tom<br>ent<br>ell<br>a_s<br>p | sRu<br>ssula<br>_cyan<br>oxant<br>ha | s<br>Rus<br>sul<br>a_s<br>p | s<br>Tre<br>chi<br>spo<br>ra_<br>sp | s<br>Hel<br>oti<br>ale<br>s_s<br>p | g<br>Cli<br>toc<br>ybu<br>la | sS<br>orda<br>riom<br>ycet<br>es_s<br>p | s<br>Rus<br>sul<br>a_s<br>p | oC<br>haet<br>osph<br>aeri<br>ales<br>; | sMi<br>croid<br>ium_p<br>hylla<br>nthi | g<br>Mor<br>tie<br>rel<br>la | s<br>Rus<br>sul<br>a_s<br>p | fAr<br>chaeo<br>rhizo<br>mycet<br>aceae | g<br>Ela<br>pho<br>myc<br>es | s<br>Rus<br>sul<br>a_s<br>p | sR<br>ussu<br>la_o<br>dora<br>ta | s<br>Tom<br>ent<br>e11<br>a_s<br>p | s<br>Rus<br>sul<br>a_r<br>ose<br>a |
| S<br>F<br>K<br>1<br>2 | 0.0                                           | 0.0                                | 0.0                                | 0.0                                  | 0.0                         | 0.0                                 | 11.<br>0                           | 0.0                          | 0.0                                     | 486<br>. 0                  | 0.0                                     | 28.0                                   | 16.<br>0                     | 0.0                         | 10107<br>. 0                            | 0.0                          | 0.0                         | 929.<br>0                        | 0.0                                | 0.0                                |
| S<br>F<br>K<br>2      | 5. 0                                          | 92.<br>0                           | 144<br>. 0                         | 71.0                                 | 53.<br>0                    | 2.0                                 | 89.<br>0                           | 272<br>. 0                   | 30. 0                                   | 21.<br>0                    | 3.0                                     | 0.0                                    | 436<br>2.0                   | 94.<br>0                    | 0.0                                     | 102<br>. 0                   | 29.<br>0                    | 47.0                             | 246<br>. 0                         | 659<br>. 0                         |
| S<br>F<br>K<br>3      | 0.0                                           | 5.0                                | 138<br>7. 0                        | 1181.<br>0                           | 25.<br>0                    | 3.0                                 | 47.<br>0                           | 3.0                          | 192.<br>0                               | 14.<br>0                    | 0.0                                     | 0.0                                    | 867<br>. 0                   | 48.<br>0                    | 0.0                                     | 19.<br>0                     | 14.<br>0                    | 23.0                             | 98.<br>0                           | 4.0                                |

| S<br>F<br>E<br>1 | 1.0         | 6.0        | 113<br>. 0 | 5.0        | 30.<br>0    | 2.0 | 96.<br>0   | 7.0         | 29.0  | 43.<br>0   | 225.<br>0 | 1.0 | 32.<br>0   | 56.<br>0    | 0.0 | 28.<br>0    | 35.<br>0   | 1734<br>. 0 | 236<br>. 0 | 10.<br>0   |
|------------------|-------------|------------|------------|------------|-------------|-----|------------|-------------|-------|------------|-----------|-----|------------|-------------|-----|-------------|------------|-------------|------------|------------|
| S<br>F<br>E<br>2 | 3.0         | 11.<br>0   | 16.<br>0   | 1.0        | 22.<br>0    | 0.0 | 134<br>. 0 | 895<br>. 0  | 1.0   | 167<br>. 0 | 0.0       | 0.0 | 13.<br>0   | 50.<br>0    | 0.0 | 596<br>8. 0 | 2.0        | 468.<br>0   | 833<br>. 0 | 56.<br>0   |
| S<br>F<br>E<br>3 | 6.0         | 2.0        | 33.<br>0   | 13.0       | 163<br>7. 0 | 4.0 | 67.<br>0   | 40.<br>0    | 13.0  | 22.<br>0   | 0.0       | 0.0 | 442<br>. 0 | 269<br>4. 0 | 0.0 | 622<br>. 0  | 22.<br>0   | 72.0        | 801<br>.0  | 3.0        |
| S<br>F<br>E<br>4 | 3164<br>. 0 | 3.0        | 18.<br>0   | 3326.<br>0 | 0.0         | 0.0 | 31.<br>0   | 5.0         | 1.0   | 20.<br>0   | 16.0      | 0.0 | 130<br>2.0 | 2.0         | 0.0 | 366<br>. 0  | 130<br>. 0 | 36.0        | 284<br>.0  | 8.0        |
| S<br>F<br>S<br>1 | 2.0         | 754<br>. 0 | 2.0        | 4.0        | 0.0         | 0.0 | 19.<br>0   | 297<br>1. 0 | 0.0   | 7.0        | 0.0       | 0.0 | 22.<br>0   | 2.0         | 0.0 | 79.<br>0    | 1.0        | 29.0        | 10.<br>0   | 663<br>1.0 |
| S<br>F<br>S<br>2 | 1.0         | 6.0        | 55.<br>0   | 8.0        | 310<br>4. 0 | 1.0 | 100<br>. 0 | 7.0         | 13. 0 | 12.<br>0   | 2.0       | 0.0 | 50.<br>0   | 480<br>6. 0 | 0.0 | 26.<br>0    | 16.<br>0   | 32.0        | 160<br>4.0 | 3.0        |

| M<br>F<br>K<br>1 | 1.0  | 7.0 | 16.<br>0    | 8.0   | 90.<br>0 | 4.0        | 138<br>2. 0 | 16.<br>0   | 14.0        | 8.0         | 0.0        | 0.0        | 48.<br>0 | 115<br>. 0 | 0.0  | 36.<br>0    | 11.<br>0   | 21.0        | 100<br>91.<br>0 | 4.0      |
|------------------|------|-----|-------------|-------|----------|------------|-------------|------------|-------------|-------------|------------|------------|----------|------------|------|-------------|------------|-------------|-----------------|----------|
| M<br>F<br>K<br>2 | 13.0 | 1.0 | 178<br>2. 0 | 23. 0 | 0.0      | 0.0        | 238<br>. 0  | 39.<br>0   | 2.0         | 2.0         | 5116<br>.0 | 3.0        | 53.<br>0 | 2.0        | 0.0  | 4.0         | 61.<br>0   | 20.0        | 32.<br>0        | 6.0      |
| M<br>F<br>K<br>3 | 0.0  | 1.0 | 885<br>. 0  | 136.0 | 0.0      | 474<br>0.0 | 8.0         | 12.<br>0   | 3231<br>. 0 | 0.0         | 0.0        | 14.0       | 10.<br>0 | 0.0        | 0.0  | 0.0         | 2.0        | 0.0         | 2.0             | 4.0      |
| M<br>F<br>E<br>1 | 0.0  | 0.0 | 0.0         | 0.0   | 0.0      | 0.0        | 98.<br>0    | 0.0        | 0.0         | 355<br>1. 0 | 0.0        | 6136.<br>0 | 58.<br>0 | 0.0        | 48.0 | 0.0         | 0.0        | 6651<br>. 0 | 1.0             | 0.0      |
| M<br>F<br>E<br>2 | 1.0  | 2.0 | 10.<br>0    | 1.0   | 3.0      | 8.0        | 102<br>4. 0 | 741<br>. 0 | 42.0        | 713<br>. 0  | 0.0        | 22.0       | 9.0      | 3.0        | 0.0  | 374<br>0. 0 | 32.<br>0   | 2773<br>. 0 | 630<br>. 0      | 68.<br>0 |
| M<br>F<br>E<br>3 | 2.0  | 0.0 | 14.<br>0    | 5.0   | 32.<br>0 | 398<br>. 0 | 762<br>. 0  | 36.<br>0   | 1697<br>. 0 | 104<br>. 0  | 2.0        | 9.0        | 89.<br>0 | 52.<br>0   | 0.0  | 482<br>. 0  | 217<br>7.0 | 366.<br>0   | 175<br>. 0      | 4.0      |
| M                | 990. | 21. | 7.0         | 58.0  | 4.0      | 0.0        | 105         | 17.        | 3.0         | 109         | 33.0       | 1.0        | 140      | 2.0        | 0.0  | 128         | 957        | 196.        | 236             | 11.      |

| F<br>E<br>4      | 0   | 0           |     |     |     |     | 2.0      | 0          |     | .0  |     |     | .0  |     |     | .0  | 2.0 | 0   | . 0 | 0               |
|------------------|-----|-------------|-----|-----|-----|-----|----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|
|                  |     |             |     |     |     |     |          |            |     |     |     |     |     |     |     |     |     |     |     |                 |
| M<br>F<br>S<br>1 | 0.0 | 145<br>3. 0 | 0.0 | 0.0 | 0.0 | 2.0 | 10.<br>0 | 116<br>. 0 | 0.0 | 0.0 | 0.0 | 6.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 134<br>31.<br>0 |
| M<br>F<br>S<br>2 | 0.0 | 193<br>4. 0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.<br>0 | 82.<br>0   | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 126<br>58.<br>0 |

| G | SB  | SB  | SB | SB  | SB  | SB       | SB  | SB     | SB  | SB  | SB     | SB  | SB  | SB    | SBO | SB   | SB  | SBOT | SB       | SBOT        |
|---|-----|-----|----|-----|-----|----------|-----|--------|-----|-----|--------|-----|-----|-------|-----|------|-----|------|----------|-------------|
| r | ΟT  | OTU | 0T | OTU | OTU | OTU      | OTU | 0TU_35 | OTU | OTU | 0TU_41 | OTU | OTU | 0TU_1 | TU_ | OTU_ | OTU | U_16 | 0T       | U_1         |
| 0 | U_  | _69 | U_ | _64 | _27 | _12      | _28 |        | _11 | _3  |        | _24 | _25 | 0     | 4   | 18   | _6  |      | U_       |             |
| u | 30  |     | 70 |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      | 5        |             |
| p |     |     |    |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      |          |             |
|   | g_  | f   | g_ | g   | f   | 0        | p   | fXan   | p   | p   | fXan   | f   | 0   | fRh   | p   | fA   | g   | fA   | g_       | f_A         |
|   | _R  | Sol | _S | Aci | Sol | Rho      | Aci | thomon | Aci | Aci | thomon | Cau | Rho | izobi | Aci | cido | Bra | cido | _V       | cido        |
|   | os  | iba | or | dot | iba | dos      | dob | adales | dob | dob | adales | lob | dos | ales_ | dob | bact | dyr | bact | ar<br>•• | bact        |
|   | e1  | cte | an | her | cte | p1r      | act | _Incer | act | act | _Incer | act | p1r | Incer | act | eria | h1Z | eria | 11       | eria        |
|   | ar. | rac | g1 | mus | rac | 111      | eri | tae_se | eri | eri | tae_se | era | 111 | tae_S | eri | ceae | 001 | ceae | ba       | ceae        |
|   | cu  | eae | um |     | eae | are      | a   | uis    | a   | a   | uis    | cea | are | eurs  | a   | -    | um  |      | or       | _           |
| S | 51  | 165 | 25 | 315 |     | 3<br>239 | 157 | 487 0  | 158 | 231 | 186_0  | 450 | 547 | 428 0 | 391 | 496  | 117 | 769  | 10       | 567         |
| B | 6.  | .0  | 20 | .0  | .0  | .0       | .0  | 101.0  | .0  | .0  | 100.0  | .0  | .0  | 120.0 | .0  | 0    | 1.0 | 0    | 73       | 0           |
| K | 0   |     | 0  | • • | • • | •••      | • • |        | • • | • • |        | • • | • • |       | • • | 0    |     | Ū    | .0       | 0           |
| 1 |     |     |    |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      |          |             |
| 2 |     |     |    |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      |          |             |
| S | 17  | 226 | 79 | 181 | 399 | 90.      | 275 | 278.0  | 123 | 642 | 397.0  | 278 | 273 | 448.0 | 441 | 618. | 272 | 1358 | 66       | 1375        |
| В | 5.  | .0  | 7. | .0  | .0  | 0        | .0  |        | .0  | .0  |        | .0  | .0  |       | .0  | 0    | .0  | .0   | 2.       | . 0         |
| K | 0   |     | 0  |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      | 0        |             |
| 2 |     |     |    |     |     |          |     |        |     |     |        | _   |     |       | _   |      |     |      |          |             |
| S | 18  | 57. | 50 | 380 | 141 | 640      | 51. | 302.0  | 58. | 333 | 27.0   | 124 | 647 | 137.0 | 96. | 283. | 668 | 430. | 10       | 230.        |
| В | 2.  | 0   | .0 | .0  | .0  | .0       | 0   |        | 0   | .0  |        | .0  | .0  |       | 0   | 0    | .0  | 0    | 52       | 0           |
| K | 0   |     |    |     |     |          |     |        |     |     |        |     |     |       |     |      |     |      | . 0      |             |
| 3 | 14  |     | 10 | 077 | 000 | 0.04     | 107 | 007 0  | 017 | 101 | 177 0  | 010 | 071 | 010 0 | 100 | 170  | 000 | 004  | 14       | <b>FF</b> 1 |
| S | 14  | 75. | 16 | 277 | 200 | 364      | 187 | 207.0  | 617 | 161 | 477.0  | 219 | 371 | 212.0 | 138 | 172. | 996 | 304. | 14       | 551.        |

| B<br>E<br>1      | 9.<br>0       | 0          | 3.<br>0       | .0         | . 0        | . 0        | . 0        |        | . 0        | . 0        |        | . 0        | . 0        |        | . 0        | 0           | . 0        | 0         | 54<br>.0        | 0           |
|------------------|---------------|------------|---------------|------------|------------|------------|------------|--------|------------|------------|--------|------------|------------|--------|------------|-------------|------------|-----------|-----------------|-------------|
| S<br>B<br>E<br>2 | 16<br>3.<br>0 | 357<br>. 0 | 20<br>1.<br>0 | 144<br>. 0 | 303<br>. 0 | 58.<br>0   | 180<br>. 0 | 204. 0 | 168<br>. 0 | 377<br>. 0 | 283. 0 | 520<br>. 0 | 52.<br>0   | 537.0  | 807<br>. 0 | 1202<br>. 0 | 274<br>. 0 | 794.<br>0 | 46<br>5.<br>0   | 2770<br>. 0 |
| S<br>B<br>E<br>3 | 14<br>8.<br>0 | 49.<br>0   | 66<br>. 0     | 119<br>. 0 | 127<br>. 0 | 229<br>. 0 | 729<br>. 0 | 136. 0 | 427<br>. 0 | 363<br>. 0 | 288.0  | 135<br>. 0 | 572<br>.0  | 114.0  | 360<br>. 0 | 313.<br>0   | 662<br>. 0 | 630.<br>0 | 97<br>1.<br>0   | 739.<br>0   |
| S<br>B<br>E<br>4 | 26<br>2.<br>0 | 121<br>.0  | 16<br>1.<br>0 | 263<br>. 0 | 127<br>. 0 | 341<br>.0  | 274<br>.0  | 152. 0 | 674<br>.0  | 310<br>. 0 | 206. 0 | 198<br>.0  | 321<br>.0  | 183. 0 | 439<br>. 0 | 381.<br>0   | 815<br>. 0 | 917.<br>0 | 10<br>75<br>. 0 | 907.<br>0   |
| S<br>B<br>S<br>1 | 12<br>9.<br>0 | 723<br>.0  | 18<br>2.<br>0 | 163<br>. 0 | 249<br>.0  | 26.<br>0   | 72.<br>0   | 321.0  | 61.<br>0   | 110<br>. 0 | 572.0  | 423<br>.0  | 35.<br>0   | 473.0  | 501<br>. 0 | 1341<br>. 0 | 185<br>. 0 | 468.<br>0 | 54<br>4.<br>0   | 2126<br>.0  |
| S<br>B<br>S<br>2 | 26<br>4.<br>0 | 222<br>. 0 | 16<br>4.<br>0 | 204<br>. 0 | 204<br>. 0 | 147<br>. 0 | 217<br>.0  | 279.0  | 146<br>. 0 | 98.<br>0   | 384.0  | 562<br>.0  | 170<br>. 0 | 464.0  | 620<br>. 0 | 842.<br>0   | 629<br>. 0 | 790.<br>0 | 74<br>0.<br>0   | 1124<br>. 0 |





Ε





PCA1 (49.4%)





# A Ectomycorrhizal Russula B Extramatrical mycelium of Russula



## Russula and extramatrical mycelium of Russula

С

