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ABSTRACT Russula griseocarnosa, an ectomycorrhizal (ECM) fungus, is a15

species of precious wild edible mushrooms with very high market value in southern16

China. Its yield is affected by many factors including the tree species and17

environmental conditions such as soil microbiome, humidity. How the microbiome18

promotes the ECM fungus symbiosis with Fagaceae plants and19

sporocarp-producing has never been studied. In this study, we collected rhizosphere20

samples from Fujian province, the microbiota in the root and mycorrhizal21

rhizosphere were identified by Illumina MiSeq high-throughput sequencing. First,22

we compared three types of fungal communities: root tips infected with ECM23

Russula (type 1), tips with Russula sporocarp (type 2) and tips without ECM (type24

3). Our results showed that the fungal richness was negatively correlated with25

Russula. Russula, Tomentella and Lactarius were common in Fagaceae ECM roots.26

As to the mycorrhizal interactions, Boletus may be considered as an indicator27

species for sporocarp-producing Russula, and Acremonium, Cladophialophora were28

associated with Russula symbiosis. Second, we analyzed the fungal and bacterial29
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communities in rhizosphere soils from the corresponding to previously three types30

(type 1, 2, 3). Dacryobolus and Acidocella may be considered as an indicator31

species for sporocarp-producing Russula. Fungi Tomentella, Saitozyma,32

Elaphomyces and bacteria Acidicaldus, Bryobacter, Sorangium and Acidobacterium33

occurred more frequently in the ECM Russula rhizosphere. Furthermore, the34

indicators Elaphomyces, Tomentella, Sorangium had a positive correlation with35

Russula symbiosis by network analyses. Overall, our results suggest a relationship36

between micro-community and ECM Russula formation and Russula sporocarp,37

which may provide new strategies for improving Russula symbiosis rate and38

sporocarp production.39

KEYWORDS micro-Community, Russula, ectomycorrhizae, Fagaceae40

IMPORTANCE Russula (Russulaceae, Russulales, Agaricomycetes,41

Basidiomycota) species are ectomycorrhizal (ECM) fungi that form symbiotic42

associations with host roots. Approximately 750 Russula species have been reported43

in worldwide (1). Russula taxa showed high diversity, strong habitat preference and44

some preference for soil horizons (2)(Jo´zsef Geml 2010). Li M(3)(2010)identified45

that Russula emerge at least three divergent lineages based on the genetic diversity46

and geographic differentiation in southern China , and R. griseocarnosa belongs to47

one of the lineages. R. griseocarnosa is described from southern China, including48

Guangdong, Yunnan, and Fujian Provinces (4). R. griseocarnosa sporocarp,49

which is popularly commercially as food and medicine, is uncultivatable and50

collected from the natural habitat. To date, there is little knowledge about the51

controlled production of Russula and its micro-community.52

Several biotic factors affect ectomycorrhizal fungal communities: plant host species53

(5, 6) , plantation age (7), asymptomatic ectomycorrhiza endophytes (8),54

ectomycorrhizal propagules in the soil(9) and the traits of the dispersal propagules55

of ECM fungi (10). The common ectomycorrhizal Russula sp. was associated with56

seven host genera: Pleioblastus chino, Quercus serrata, Symplocos prunifolia, Ilex57

pedunculosa, Prunus jamasakura, Gamblea innovans, and Lyonia ovalifolia(11, 12).58

R. griseocarnosa grows in forests with Fagaceae in southern China (13). ECM59
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fungal communities strongly vary during long-term ecosystem development, even60

within the same hosts (14). Some Russula spp. was reported to be dominant61

colonizers of mature roots of pines (15)(Horton & Bruns, 2001) but did not62

colonize bioassay seedlings (16).‘Early stage’ and ‘late stage’ mycorrhizal fungi of63

birch appeared distinction (7)... Gebhardt also found that Ectomycorrhiza64

communities of Quercus rubra of different age performed specificity with low65

similarity between the chronosequence stands site (17) . Some fungal root66

endophytes prefer ECM formed by particular species of ectomycorrhizal fungi (8,67

18), potentially representing a second level of root endophyte selection. Dark68

septate endophytes are considered to be ubiquitous, colonizing mycorrhizal(19).69

ECM propagule communities in soil may diverge from those root-colonizing ECM70

communities and affect persistence of symbiotic relationship between mycorrhiza71

and available host roots by competitive networks(20). ECM propagules in soil are72

less frequent and diverse in early primary succession and become more frequent73

and diverse along forest development, due mainly to the accumulation of dormant74

spores of Rhizopogon spp. and sclerotia of Cenococcum spp(20). Simultaneously75

dispersal ability across ECM species correlated well with the composition of76

communities associated with host (21). Russula naturally propagate by77

short-distance spore dispersal rather than vegetative growth of dikaryophytic78

mycelia or long-distance spore dispersal(22). In all, the Russula ECM community79

may be affected by symbiotic structures and root endophytes in the roots,80

mycorrhizal extraradical mycelia, spores in the soil , as well as its dispersal ability.81

82

Mycorrhizal interactions are usually classified on the basis of the features of the83

symbiotic interfaces(23). The ECM community colonizing root tips was strongly84

structured by competitive interactions or ecological processes generating a similar85

spatial pattern, rather than neutral processes. The ECM Cortinarius sp. and86

Lactarius rufus competed for root tips(24). Both Cenococcum geophilum and87

Clavulina cinerea as mycorrhizas and as extramatrical mycelium (EMM) in a Pinus88

resinosa plantation showed a negative correlation(25). Hortal suggests that89
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interspecific competition between Lactarius deliciosus (inoculated fungi) and90

Rhizopogon roseolus (indigenous fungi) occurs in the root system for91

ectomycorrhiza formation in available roots, rather than in the extramatrical92

mycelium phase (26). However, associations among Suillus bovinus and93

Gomphidius roseus occur within ectomycorrhizal roots (27). There are also a94

number of notable examples of associations between sporocarps of different species,95

such as between Boletus parasiticus and S. citrinum, Asterophora parasitica and96

Lactarius, and between Claudopus parasiticus and Cantharellus cibarius (28),.97

However, mycorrhizal interaction studies of Russula are limited in the literature.98

99

Similar to the rhizosphere, mycorrhizosphere is the feet of fruiting bodies or the100

root of ectomycorrhizal fungi . Mycorrhizosphere may constitute a hot spot(29), in101

which microorganisms were affected(30-32).The mycosphere effect was prominent ,102

though previous studies have failed to demonstrate significant differences between103

bacterial communities associated with roots colonized by Suillus variegatus and T.104

submollis, Lactarius sp. and Tomentella sp.(33) or by C. geophilum and Russula sp.105

(34). It has also been established that mycorrhizal networks have different106

microbial communities compared with bulk soil by stimulating some families such107

as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae (35). Bacterial108

activity is stimulated by the provision of easily available nutrition such as109

carbonaceous compounds (30).The mycosphere effect might exert strong influences110

on the bacterial community of soil(36), in which bacterial activity is stimulated by111

trehalose, which is degraded by hyphosphere and derived from fungi (37, 38).112

Andersson(39)(2003)., who used phospholipid fatty acid profiles to characterize113

bacterial communities, has demonstrated that basidiomycete wood-decomposing114

fungi are able to influence bacterial community structure. Bacteria adapted to the115

mycospheres of three or more or just one fungal species was defined as specific116

selective bacterial(40). The specific members of the Sphingomonadaceae family117

selected were at the bases of the fruiting bodies of the ectomycorrhizal fungi118

Laccaria proxima and Russula exalbicans in comparison to the adjacent bulk soil,119
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major of which did not cluster with known bacteria from the database (36, 41). On120

the other hand, some mycorrhiza-associated bacteria have been shown to produce121

compounds that are antagonistic to plant pathogens (42). Meanwhile, “mycorrhiza122

helper bacteria” (MHB) appeared to positively influence the development and123

function of ectomycorrhiza (43), but the effects varied with different species124

combinations (44, 45). Ralstonia sp. and Bacillus subtilis can promote Suillus125

granulatus-infected Pinus thunbergii (34). Bacillus subtilis helped the growth of126

Cenococcum geophilum Fr and promoted Suillus granulatus infection (34) but127

inhibited Rhizopogon sp. infection (45). Apart from bacterial , ectomycorrhizal128

symbionts strong also selected ascomycete communities and other ECMs(31)129

(32).Högberg (2002)(46) demonstrated that the EMM is at least 30% of the130

microbial biomass in boreal forest soils. ECM fungi competed with saprotrophic131

fungi in soil by the EMM(47). Tuber rufum and some members of Boletales are132

typically restricted to productive truffle plots. On the other hand, Hebeloma,133

Laccaria and Russula species are mostly associated with unproductive truffle plots,134

Ectomycorrhizae belonging to Thelephoraceae are frequently found in mature135

truffle orchards but do not seem to affect sporocarp production (32). Ascomycetes136

associated with ectomycorrhizas: molecular diversity and ecology with particular137

reference to the Helotiales had been reported (48).However, the rhizosphere,138

mycosphere effect of Russula griseocarnosa has not been recorded in the literature.139

140

Regarding the relationship between the amount of soil EMM with ectomycorrhizae141

and sporocarps, different mycorrhizas have different conclusions . Zampieri et142

al.(2010)(49) showed that the mycelium of Tuber magnatum was more widespread143

than was inferred from the distribution of its fruiting bodies and ectomycorrhizae.144

Zhou et al. (2001) (50)demonstrated that the development of Suillus grevillei145

sporocarps is correlated with amount of EMM and ectomycorrhizae of S. grevillei146

in a narrow area. The Tuber melanosporum EMM biomass detected in the soil from147

the natural truffle ground was significantly greater than that of other plant orchards148

analyzed, and the lowest amount of T. melanosporum mycelium maintained a149
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sporocarp production in plant orchards (51). However, Some ECMs are consistent150

in ectomycorrhizae but inconsistent in sporocarps. De la Varga et al. (52)(2012)151

quantified B. edulis extraradical mycelium in a Scots pine forest and found a152

positive correlation between the amount of mycelia and the presence of Boletus153

edulis mycorrhizae, but not with the productivity of fruiting bodies. However, the154

relationship between the amount of Russula with ectomycorrhizae and sporocarps is155

scarce in the literature.156

The relation between the productivity of fruiting bodies and ECM symbiosis is still157

unclear. Some ectomycorrhizal species produce abundant ectomycorrhizal root tips158

but few or no fruiting bodies, while other ectomycorrhizal fungi form abundant159

fruiting bodies but a low number of ectomycorrhizal root tips. Guidot et al.160

(53)(2001) found a spatial congruence of above- and belowground distribution for161

H. cylindrosporum . However, De la Varga et al.(52) (2012) found that the presence162

of mycorrhizae of the B. edulis symbiotic rate was not consistent with the163

production of fruiting bodies. There are also Russula species difference between the164

above-ground Russula sporocarp and underground Russula mycorrhizal(2) .165

Geml(2010) (2)observed that 15 and 45 of the 50 Russula phylogroups species were166

found in sporocarp and soil clone sequences, respectively. Given the long delay167

between the establishment of the plantation and the formation of sporocarps, short-168

and medium-term control of the survival and persistence of fungal symbionts in169

plantations have to still be evaluated by the assessment of vegetative structures as170

the ectomycorrhizas or extraradical mycelium.171

Microbial community affected mycorrhizal fungal function (for example, symbiosis172

establishment capacity, sporocarp production), and the reciprocal effects are vice173

versa. The microorganisms associated with mycorrhizal fungi may either have174

positive or negative impacts on fungal spore germination, growth, nutrient175

acquisition and plant colonization (43, 54). Tuber indicum altered the176

ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles177

of the host tree Quercus aliena (55). Tuber borchii shapes the178

ectomycorrhizosphere microbial communities of Corylus avellana(56). Therefore,179
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we speculate that detecting the communities of Russula can tracked ECM180

persistence throughout the entire biological cycle, which will help to control181

ectomycorrhiza formation and sporocarp production. In this study, to understand the182

communities of the targeted Russula griseocarnosa and to find the possible183

indicator microbes of successful Russula griseocarnosa plantations, we identified184

the Russula ectomycorrhizal fungal communities inhabiting different life cycle185

stages based on MiSeq sequencing of ribosomal internal transcribed spacer (ITS)186

sequences of root DNA and mycosphere communities based on MiSeq sequencing187

of the 16S V3-V4 as well as ribosomal internal transcribed spacer (ITS) sequences188

of mycosphere soil DNA.189

190

This study is the first attempt to analyze ectomycorrhizal communities of Russula191

using MiSeq sequencing metagenomics DNA of Russula root and the Mycorrhizal192

rhizosphere soil in Russula at different stages. We think that Russula shapes the193

ectomycorrhizosphere microbial communities of Fagaceae (Quercus glauca and194

Castanopsis hainanensis.).195

196

RESULTS197

Comparing microbiomes among types of the ECM fungus Russula. ECM198

Russula was first identified by combining morph typing with Sanger sequencing199

DNA sequences . We analyzed internal transcribed spacer (ITS) rDNA sequences of200

ECM root tips and ECM rhizosphere soil samples using phylogenetic methods,201

operational taxonomic unit (OTU) delimitations and ordinations to compare species202

composition in various types of ECM Russula.203

In the ECM metagenome, we found a positive correlation between the204

concentration of Russula DNA and the presence of Russula mycorrhizae in the205

mycorrhizal rhizosphere and ECM root (Tab 1). To analyze whether distinctive206

communities are selected by Russula ectomycorrhizal fungi, the fungi of ECM root207

microbiomes were compared and divided into three types. Russula that could be208

detected by Sanger sequencing with a DNA concentration above 10% of total ECM209
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genomic DNA, as determined by MiSeq sequencing, were classified as type 1.210

Russula sporocarps that could be collected from the ground and the extended211

hyphae of which could be connected between roots of the host and sporocarp within212

50 cm, with Russula detected by Sanger sequencing, were classified as type 2.213

Russula that were not detected by Sanger sequencing or with a DNA concentration214

below 5% of the total ECM genomic DNA, as determined by MiSeq sequencing,215

were classified as type 3. Therefore, the samples of ECM tip and rhizosphere216

samplings were divided into three types: Russula-infected (type 1),217

sporocarp-producing Russula (type 2), and Russula-uninfected (type 3) (Tab 1).218

Relative Russula OUT abundance is significant difference in ECM Russula219

symbiosis root and in ECM Russula rhizosphere, respectively (Tab 1, Fig. 1A).Type220

2 is the most abundant, type 1 is the second, and type 3 is the least. Interestingly, in221

type 3, the amount of Russula in the soil is higher than in the root. This may222

indicate that in the natural growth area of Russula, there are a large number of223

Russula propagules in the soil.224

TABLE 1 Relative Russula OUT abundance in three types and Alpha diversity225

analysis of fungi and bacterial of three types of ECM Russula roots or Russula226

rhizosphere soil in natural Russula growth areas227

228
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1. mean±standard deviation ; type1has 4 repeats, type2 has 2 repeats and type3 has229
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2. Analysis of variance by one-way analysis of variance In each column: different231

words indicate differences, uppercase letters indicate extremely significant232

differences (P <0.01); and lowercase letters indicate significant differences (P233

<0.05)234

Fungal diversity analysis and analysis of indicator species associated with235

ECM Russula roots. In total, 1346 fungal operational taxonomic units (OTUs)236

were distinguished in roots. Among the three types, the Chao1 diversity index and237

Shannon diversity index decreased in sporocarp-producing Russula type (type 2)238
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and Russula-infected type (type 1) compared to the Russula-uninfected (type 3)239

(Tab 1). The result shows that species richness shifted in the composition of the240

ECM community associated with Russula.The fungal community composition and241

the abundance of the main fungi ( over 0.05% fungi in roots genome) were different242

in the three Russula types roots (Fig. 1A,Tab 1).The result shows that Russula is243

dominates in fruiting bodies (type 2) and infected samples(type 1) though Russula244

in three type samples.245

Based on the top 20 fungi of each sample, we first obtained the common species of246

three types after intersecting each type with the Venny mapping tool: 14 species247

were in type 2, 5 in type 2 and 3 in type 3 (Tab S1). Then, we intersected the248

common types of three types with the Venny mapping tool. At the genus level, the249

three types shared 3 common genera: Russula, Tomentella and Lactarius (Tab S2,250

Fig. 1B).These results showed that these are common fungi in Fagaceae ECM roots.251

Types 1 and 2 shared 2 common genera: Acremonium and Cladophialophora , in252

addition to the abovementioned three common ECM(Tab S2,Fig. 1B). Second, We253

take a collection of three types genera respectively, subsequently we intersected the254

collection of three types by the Venny mapping tool (Fig. 1C): 24 species in type 2,255

46 in type 1 and 41 in type 3, and 5 genera were exclusively in type 2 collection.256

We take the intersection of the unique collection (9 genera) and union (5 genera ) in257

type 2, and found only one species boletus (Fig. 1D , Tab. 2). Analyze fungi258

composition differences of three types roots by PCoA based on the top 20 fungal259

genera , we found that the control (type 3) belonged to quadrant IV, type 1 belonged260

to quadrant I or II, and type 2 belonged to quadrant III (Fig. 1F). The results show261

that the fungal community of sporocarp- producing Russula was completely262

different from that of Russula-uninfected . The Russula-infected type was in the263

transitional phase.We suggest the Russula infection contributed 31.3% and others264

elements host contributed 20.5% of the differences, respectively. Boletus was the265

only ECM with the emergence of Russula fruit bodies. In all, Boletus may be266

considered an indicator species in the Russula sporocarp-producing fungal267

community, and Acremonium and Cladophialophora may be considered indicator268
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species in Russula symbiosis fungal communities (Tab. 2). Analyze the different269

effects of ECM species by PCoA based on the top 20 fungal genera, we found270

Tomentella ,Xylogone ,and Lactarius belonged to I, II, while others belonged to271

quadrant III,V (Fig. 1E). The Russula infection contributed 55% and others272

elements contributed 24% of the differences, respectively. Combining these two273

factors, it shows Russula and Elaphomyces can be divided into one categories,274

while Xylogone can be divided into another category functionally. So we assume275

that Elaphomyces are benefit for Russula symbiosis while276

Tomentella ,Xylogone ,and Lactarius has the function of competing hosts.277
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Fig. 1 Diversity analysis of fungi of three318

types of Russula symbiosis roots in natural319

Russula growth areas320

A:The main fungi genus composition and321

abundance in type2 Russula symbiosis root322

and the corresponding genus are in the other323

two types324

B: The Venny mapping of the common genus325

of the top 20 fungi genus in three types326

Russula symbiosis root327

C: The Venny mapping of the collection genus of the top 20 fungi genus in three328
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types Russula symbiosis root329

D: The Venny mapping of the common genus and the collection genus of the top 20330

fungi genus in type2 Russula symbiosis root331

E : Analysis of ECM role difference of three types Russula symbiosis root on top 20332

fungi genus of ECM Russula by PCoA333

F :Analysis of composition difference of three types Russula symbiosis root on top334

20 fungi genus of ECM Russula by PCoA335

In Eand F: The scales of the horizontal and vertical axes are relative distances and336

have no practical significance. The contribution rate is the degree of interpretation,337

and the hypothetical factors can be evaluated and verified.338

In A,Eand F :In the sample name, the first letter M indicates mycorrhizal root ; first339

second F stands for fungi; the third letter different treatment :S indicates340

sporocarp(type2), E indicates ECM ectomycorrhizal(type1) , K indicates341

control(type3) respectively; the fourth number indicates the different biological342

repetitions of different treatment .343

344

Fungal diversity analysis and analysis of indicator species associated with345

ECM Russula rhizosphere soil. In total, 1829 fungal operational taxonomic units346

(OTUs) were distinguished in rhizosphere soil. Interactions with native347

ectomycorrhizal fungi present in the soil play a key role in the higher diversity of348

fungal taxa .Compared to type 1 and 3, the Chao1 diversity index decreased in349

types 2 ; while there were no significant differences between types 1 and 3 (Tab. 1).350

But, the Shannon diversity index showed no significant differences in three types351

(Tab. 1). The fungal community composition and352

A353

354

355

356

357

358
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F391

392

393

F394

Fig. 2 Diversity analysis of fungi of three types395

Russula mycorrhizal rhizosphere in natural Russula396

growth areas397

A:The top 20 fungi genus composition and398

abundance in type2 Russula symbiosis mycorrhizal399

rhizosphere and the corresponding genus are in the400

other two types in at Fujian,China401

In the sample name, the first letter S indicates402

mycorrhizal root soil ; first second F stands for403

fungi; the third letter different treatment :S indicates sporocarp, E indicates ECM404

ectomycorrhizal , K indicates control respectively; the fourth number indicates the405

different biological repetitions of different treatment .406

B: The Venny mapping of the common genus of the top 20 fungi genus in three407

types Russula symbiosis Mycorrhizal rhizosphere408

C: The Venny mapping of the collection genus of the top 20 fungi genus in three409

types Russula symbiosis Mycorrhizal rhizosphere410

D: The Venny mapping of the common genus and the collection genus of the top 20411

fungi genus in type2 Russula symbiosis Mycorrhizal rhizosphere412

E : Analysis of ECM role difference of three types Russula symbiosis mycorrhizal413

rhizosphere on top 20 fungi genus of ECM Russula by PCoA414

F :Analysis of composition difference of three types Russula symbiosis mycorrhizal415

rhizosphere on top 20 fungi genus of ECM Russula by PCoA416

In E and F: the scales of the horizontal and vertical axes are relative distances and417

have no practical significance. The contribution rate is the degree of interpretation,418
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and the hypothetical factors can be evaluated and verified.419

the abundance of the main fungi ( over 0.05% fungi in soil genome )were different420

in the three Russula types rhizosphere soil (Fig. 1A,Tab 1).Compared to the421

root ,The result shows that Russula is also dominates in fruiting bodies (type 2) and422

infected samples(type 1) though Russula in three type samples(Fig. 1A,Fig. 2A).423

However,compared to the root ,the genera variety increased (Fig. 1A,Fig. 2A).424

The community composition of the top 20 fungi in the three Russula rhizosphere425

soil types was analyzed (Tab. S2). We first obtained the common species of three426

types after intersecting each type using the Venny mapping tool: 12 species in type427

2, 7 species in type 1 and 7 species in type 3 (Fig. 2B). Then, we intersected the428

common types of the three types with the Venny mapping tool. At the genus level,429

the three types shared 4 common genera: Russula, Mortierella, Penicillium and430

Trichoderma; and Russula also had a large frequency in types 1 and 2 (Fig. 2B).431

This showed that 4 genera are common fungi in Fagaceae-dominant rhizosphere432

soil. Types 1 and 2 shared 3 common genera: Elaphomyces, Tomentella and433

Saitozyma ,in addition to the abovementioned 4 common genera(Fig. 2B). Second,434

we take a collection of three types genera respectively, subsequently intersected the435

collection of three types by the Venny mapping tool (Fig. 2C): 26 species in type 2,436

40 in type 1 and 36 in type 3; 4 genera were included exclusively in the type 2437

collection. We take the intersection of the unique collection (4 genera) and union (4438

genera ) in type 2, and found Dacryobolus unique belonged to type 2 (Fig. 2D, Tab.439

2). The top 20 fungal genera in the sporocarp-producing Russula root rhizosphere440

with types 3 or types 1 were compared. The result shows that Russula EMM is441

dominates in fruiting bodies (type 2) and infected samples (type 1) though Russula442

in three type samples. Elaphomyces also dominated in types 1 and 2, but nearly did443

not exist in the control, type 3 (Fig. 2D). In all, Dacryobolus may be considered an444

indicator species of sporocarp-producing Russula in the Russula rhizosphere.445

Elaphomyces, andTomentella may be considered indicator species for Russula446

symbiosis in the rhizosphere (Tab. 2). Analyze three types of fungi composition447

differences of top 20 genera by PCoA in Russula rhizosphere soil based on the top448
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20 fungal genera, we found that type 2 belonged to quadrant II and type 1 belonged449

to quadrants I, III and IV, while type 3 belonged to quadrants III and IV, down the450

horizontal axis (Fig. 2E). The host and Russula-infection contributed 29.3% and451

25.0%, respectively. Furthermore ,analyzing the different effects of fungi species by452

PCoA , we found Russula and Elaphomyces belonged to quadrant IV, Mortierella453

and Tomentella belonged to quadrant I, Trichoderma, Penicillium , Geminibasidium454

and Saitozyma belonged to quadrant II, while others belonged to quadrant III (Fig.455

2E). The Russula infection contributed 49.4% and others elements host contributed456

19.4% of the differences, respectively. Combining these two factors, we assume457

that Elaphomyces in soil are benefit for Russula symbiosis.458

459

Bacterial diversity analysis and analysis of indicator species associated with460

ECM Russula rhizosphere soil. In total, 1494 bacterial operational taxonomic461

units (OTUs) were distinguished in this study. Compared to type 3, the Chao1462

diversity index decreased in types 1 and 2 (Tab. 1). There were significant463

differences between type 3 and the other two types. However, there were no464

significant differences between types 1 and 2. The Shannon diversity index showed465

the same tendency as the Chao1 diversity index (Tab. 1). The bacterial community466

composition and the abundance of the main bacterial (the over 0.05% bacteria in467

soil genome ) were analyzed (Fig. 3A). About 40-60% of the species in the sample468

cannot be identified by Illumina MiSeq high-throughput sequencing and the469

remaining bacterial genera in the sporocarp-producing Russula root rhizosphere soil470

were showed for the three types (Fig. 3A). Compared to the fungi of the root and471

rhizosphere soil, the bacterial genera variety still increased (Fig. 1A, 2A, 3A).472

The community composition of the top 20 f bacteria in the three Russula473

rhizosphere soil types was analyzed (Tab. S3).We first obtained the common474

species of the three types after intersecting each type with the Venny mapping tool:475

18 species in type 2, 14 in type 1 and 12 in type 3 (Fig. 3B). Then, we intersected476

the common types of the three types with the Venny mapping tool. At the genus477

level, the three types shared 10 common genera: Acidibacter, Candidatus,478
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Rhizomicrobium, Acidothermus, Variibacter, Burkholderia, Roseiarcus,479

Bradyrhizobium, Candidatus and Granulicella. (Fig. 3B). This showed that 10480

genera are common bacteria in Fagaceae-dominant rhizosphere soil. Types 1 and 2481

shared 4 common genera: Bryobacter, Sorangium, Acidicaldus, and482

Acidobacterium ,,in addition to the abovementioned 10 common genera(Fig. 3B).483

Second, we obtained the collection of the various types: 20 species in type 2, 27 in484

type 1 and 26 in type 3 (Fig. 3C,Tab S3). Then, the unique genera were analyzed of485

the unique collection (4 genera) and union (3 genera ) in type 2 by the Venny486

mapping tool, and 2 genera Acidocella and Edaphobacter were found (Fig. 3D). In487

all, Acidocella ,Edaphobacter may be considered indicator species for488

sporocarp-producing Russula, and Bryobacter, Sorangium, Acidicaldus, and489

Acidobacterium can be considered indicator species for Russula symbiosis in the490

bacterial community (Tab. 2). By PCoA based on the top 20 fungal genera, we491

found that type 2 belonged to quadrant III , left of the vertical axis. Except for one492

sample, other samples of type 1 belonged to quadrants II or III, left of the vertical493

axis . Type 3 belonged to the right of the vertical axis (Fig. 3F). We assume that the494

Russula infection and host contributed 47.3% and 21.4%, respectively(Fig. 3F).495

Analyze the different effects of bacteria species by PCoA , we found Acidocella,496

Sorangium, Haliangium , Telmatospirillum , Edaphobacter , Acidobacterium ,497

Sphingomonas, Candidatus_Koribacter , Roseiarcus , Granulicella and Acidicaldus498

belonged to quadrant II, III , while the others belonged to quadrant I, IV (Fig. 3E).499

It shows 11 gengus in quadrant II, III can be divided into one categories by role. All500

indicator species for sporocarp-producing Russula or Russula symbiosis in the same501

categories but Bryobacter. We assume that the Russula infection contributed502

80.9% and others elements contributed 10.5% respectively. Combined with503

indicator species analysis, we assume that 11 bacterial gengus beneficial to the504

symbiosis of Russula.505

506

507

508
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Fig. 3 Diversity analysis of bacterial of three560

types Russula Mycorrhizal rhizosphere in561

natural Russula growth areas562

A: The top 20 bacterial genus composition563

and abundance in type2 Russula symbiosis564

mycorrhizal rhizosphere and the565

corresponding genus are in the other two566

types in natural Russula growth areas , Fujian,567

China568
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In the sample name, the first letter s indicates mycorrhizal root soil; first second b569

stands for bacteria; the third letter different treatment :S indicates sporocarp, E570

indicates ECM ectomycorrhizal , K indicates control respectively; the fourth571

number indicates the different biological repetitions of different treatment .572

B: The Venny mapping of the common genus of the top 20 bacterial genus in three573

types Russula symbiosis Mycorrhizal rhizosphere574

C: The Venny mapping of the collection genus of the top 20 bacterial genus in three575

types Russula symbiosis Mycorrhizal rhizosphere576

D: The Venny mapping of the common genus and the collection genus of the top577

20 bacterial genus in type2 Russula symbiosis Mycorrhizal rhizosphere578

E: Analysis of 20 bacterial genus role difference of three types Russula symbiosis579

mycorrhizal rhizosphere on top 20 bacterial genus of ECM Russula by PCoA580

F : Analysis of composition difference of three types Russula symbiosis581

mycorrhizal rhizosphere on top 20 bacterial genus of ECM Russula by PCoA582

In E and F:The scales of the horizontal and vertical axes are relative distances and583

have no practical significance. The contribution rate is the degree of interpretation,584

and the hypothetical factors can be evaluated and verified.585

586

Table 2 Indicator species of fungi and bacterial community of Russula587

Mycorrhizal based on the top 20 genus588

Common species in

three types

Common species in

type1

and type2, Excluding

those that are common to

all three types

species included

exclusively in Type

2,compareing to

collecting Type 1,3;

and belong to

Common in type2

Fungi of

ECM

Tomentella,

Lactarius, Russula

Acremonium,

Cladophialophora

Boletus

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.22.056713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056713
http://creativecommons.org/licenses/by-nc-nd/4.0/


Type2:Russula sporocarp producing; type1 :Russula –infected;589

type3 :Russula-no-infected; If one species is with one type and without the other590

type, then the species is assumed as the indicator of.the type based on the top 20591

genus.592

593

Interaction of fungi and bacteria with ECM Russula root and mycorrhizal594

rhizosphere595

By network net, we analyzed the interaction of the top 20 fungal OTUs of Russula596

rhizosphere soil and ECM Russula root, including 7 Russula OTUs( MSFH OTU_1,597

Russula

root

Fungi of

Russula

Mycorrhiz

al

rhizospher

e

Russula ,Mortierell

a, Penicillium

Trichoderma

Elaphomyces,

Tomentella

Dacryobolus

Bacterial

of Russula

Mycorrhiz

al

rhizospher

e

Acidibacter,

Acidothermus,

Candidatus_Soliba

cter,

Rhizomicrobium,

Variibacter,

Burkholderia-Para

burkholderia,Rosei

arcus,

Bradyrhizobium,

Candidatus_Koriba

cter, Granulicella

Bryobacter, Sorangium,

Acidicaldus,

Acidobacterium

Acidocella,

Edaphobacter
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MSFH OTU_3, MSFH OTU_4, MSFH OTU_16, MSFH OTU_21, MSFH OTU_24598

and SMFH OTU_1639) (Table S7), five indicator species(MSFH OTU_19599

Elaphomyces, MSFH OTU_9 Tomentella_sp, MSFH OTU_655 Tomentella_sp,600

MSFH OTU_6 Elaphomyces, and MSFH OTU_5 Tomentella_sp).601

Russula, which interacted with other species in positive ways, was the602

representative and contributed to the main ECM in the community. For example,603

the interaction result predicted that many fungi had a positive correlation with604

Russula (Fig.4A, Table S4), MSFH OTU_19 (Elaphomyces) and MSFH OTU_5605

(Tomentella_sp) with the Russula rosea; MSFH OTU_21, MSFH OTU_655606

(Tomentella_sp) and MSFH OTU_5 with Russula sp. In all, Elaphomyces_sp,607

Tomentella_sp have a positive correlation with Russula, combining the previous608

results that Elaphomyces and Tomentella were considered indicator species for609

Russula symbiosis in the Russula rhizosphere based on the top 20 genera (Tab. 2).610

Therefore, we further assume that the indicators Elaphomyces and Tomentella have611

a positive correlation with Russula symbiosis.that612

A B613

614

615

616

617

618

619

620

621

622

623

624

625

626

Fig. 4 Interaction of indicator species with the top 20 fungi and bacterial OTUs in627
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community of Russula mycorrhizal628

A: Interaction of fungi in Russula ECM root and Russula mycorrhizal rhizosphere629

B: Interaction of bacterial in Russula mycorrhizal rhizosphere630

In A and B: The size of the dots represents the abundance, the color of the dots631

represents the phylum (In A : Orange represents p__Ascomycota, blue represents632

p__Basidiomycota, gray represents p__Mortierellomycota; in B: gray represents633

p__Proteobacteria, Orange represents p__Acidobacteria, blue represents634

p__Actinobacteria), the thickness of the lines represents the magnitude of the635

correlation, and the red line indicates a positive correlation, the blue color indicates636

a negative correlation.637

Meanwhile, we analyzed the relationship of the top 20 bacterial OTUs in Russula638

rhizosphere soil by Network net. Only 15 bacterial OTUs were included in the639

network net (Fig. 4B, Table S5). Among the top 15 bacterial OTUs, there is 1 OTUs640

SBH OTU_70 Sorangium belonging to indicator species. The network net641

suggested that SBH OTU_70 was positive with SBH OTU_16 (Acidobacteriaceae),642

24(Caulobacteraceae), 27(Solibacteraceae), 69(Solibacteraceae). Another indicator643

species Acidobacterium was’t within network net . Therefore, we further assumed644

that Sorangium and other OTUs (Acidobacteriaceae, Caulobacteraceae,645

Solibacteraceae) have a positive correlation with Russula .646

DISCUSSION647

The complete exclusion of other species by any single species could be prevented648

by either fluctuation in the environment, by seasonal root production or by the649

presence of microbiome competitive networks, the situation in which no single650

species is competitively superior to all other species. So, we usually obtain 1 ECM651

species or 2 ECM species by Sanger sequencing of the root sample with652

basidiomycete-specific primers. The introduction of high-throughput sequencing653

techniques, metagenomics or environmental genomics has provided new654

information on ECM fungal communities by ‘barcodes’ of ITS regions in several655

biomes/ecosystems, e.g., truffle grounds (57) and ECM roots in the Svalbard(58).656

In this study, we found that Russula cannot successfully infect roots if the amount657
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of Russula in the mycorrhizal rhizosphere is less than 10% by MiSeq sequencing658

(Table 1, part data not shown). Although ECM fungi infection have been detected in659

nonproductive plots, the amount was not sufficient to shift from vegetative growth660

to fruit body. Russula can form a fruiting body, only when Russula infection could661

be detected by Sanger sequencing of ECM roots, contemporary the relative662

abundance of its DNA was greater than 60% by MiSeq sequencing. Compared to663

control, we found significantly more Russula DNA in Russula sporocarps664

rhizosphere soil or Russula symbiosis rhizosphere soil, above 15% amount of the665

metagenomics of rhizosphere soil. Zampieri et al.(2012) (49) detected significantly666

more T. melanosporum DNA in truffle productive plots of soil. Zhou et al. (2001)667

(50) also demonstrated that the development of S.grevillei sporocarps is correlated668

with that of extraradical mycelia, which are distributed in a narrow area. So , we669

suggest that to the type 2(sporocarps-producing) ,there is congruence of the above-670

sporocarps and belowground root or mycorrhizospheres soil DNA for Russula.671

However, interestingly, in type 3(uninfected), the amount of Russula in the soil is672

higher than in the root. This may indicate that in the natural growth area of Russula,673

there are a large number of Russula propagules in the soil. Whether the Russula674

propagules naturally in the soil of the natural growth area can colonize to the host675

or not depends on other factors.676

Fewer species were detected in Russula productive root than in nonproductive root,677

which is consistent with French truffle grounds. T. melanosporum grounds also678

have shown a reduced fungal biodiversity, a reduced presence of both ECM679

Basidiomycota (57). Truffle-colonization reduced the abundance of some fungal680

genera surrounding the host tree, such as Acremonium (55) . Russula fruiting body681

decreased the Chao richness bacterial index and Shannon diversity of bacterial682

index in rhizosphere soil. Simultaneously, Russula fruiting body decreased the683

Chao richness fungi index but no effect on Shannon diversity of fungi index in684

rhizosphere soil. Warmin (2009)(40) found bacteria adapted to the mycospheres of685

three or more or just one ECM fungal species was defined as specific selective686

bacterial. So, we suggest the diversity decreased phenomenon may be related with687
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the Russula sporocarp selection effect, especially to rhizosphere soil bacterial.688

Temperate forests are generally dominated by Fagaceae, and species in these plant689

families form mycorrhizae with various phylogenetic clades of ectomycorrhizal690

fungi(8, 11, 59). Members of the helotialean group have recently been identified as691

the dominant species in the roots of Fagaceae trees in the temperate and subtropical692

forests of Japan (60, 61). In our study, we found that 3 ECM, Russula, Tomentella,693

and Lactarius, are the main members in the natural Fagaceae (Quercus glauca and694

Castanopsis hainanensis)-dominant Russula ground in all the types. This result is695

consistent with the preference of Russula and Lactarius for the Fagaceae host. In696

Castanopsis-dominant forest in Japan (62), there are ECM fungi such as Amanita697

(Amanitaceae), Boletus (Boletaceae), Tylopilus (Boletaceae), Cortinarius698

(Cortinariaceae), Inocybe (Inocybaceae), Lactarius (Russulaceae), and Russula699

(Russulaceae). The dominant ECM lineages of Quercus liaotungensis were700

Tomentella, Thelephora, Cenococcum, Russula, Lactarius and Inocybe(63). The701

ectomycorrhizal Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus and702

Cenococcum were dominant in the Quercus serrate plot (11). R. vinosa grows in703

tropical and subtropical evergreen forests in southern China dominated by trees of704

Castanopsis spp., and R. griseocarnosa grows in forests with Fagaceae (13). Given705

commercially harvested truffles can establish ectomycorrhizal relationships with706

different woody host species, and many different combinations of truffle and host707

species mycorrhizal seedlings are produced in nurseries (64). Our study shows that708

Russula inoculation may establish satisfactory ectomycorrhizal relationships with709

two indigenous tree species, Quercus glauca and Castanopsis hainanensis.710

711

Healthy ECM can support a wide variety of organisms, including a diverse array of712

fungi other than the dominant ectomycorrhizal symbiont. Some pathogenic fungi,713

including Ilyonectria and Podospora, and other competitive mycorrhizal fungi,714

such as Hymenochaete, had significantly lower abundance in the T.715

borchii-inoculated root and Trechispora and Humicola, which were more abundant716

in the T. borchii-inoculated root. There are some notable examples of associations717
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among suilloid fungi and members of the Gomphidiaceae occur within718

ectomycorrhizal roots (27). Olsson considered Gomphidius roseus acted as a719

parasite of Suillus bovinus, the former never occurs without the latter(27) , Based720

on MiSeq sequencing analysis of the top 20 ectomycorrhizal fungi in Russula root,721

we found Acremonium; Cladophialophora are associated with ECM722

Russula-Fagaceae roots, and Boletus was in association with sporocarp-producing723

Russula. Meanwhile, based on the top 20 genera in Russula rhizosphere soil, we724

found that Elaphomyces, and Tomentella in association with Russula symbiosis;725

Dacryobolus were associated with sporocarp-producing Russula. The result will726

help to find and develop PGPF for Russula symbiosis or sporocarp-producing.727

728

Many studies have addressed the role of soil bacteria in establishing the symbiotic729

relationship between plants and mycorrhizal fungi (43, 65). We found differences in730

fungal genus among the three ECM Russula types in rhizosphere soil (Table S 3,731

Table 2).The interactions of bacteria with the dense hyphal network underneath732

fungal fruiting bodies have also been addressed (44, 66). Differences in bacterial733

communities associated with the mycorrhizospheres of Suillus bovinus- and734

Paxillus involutus-colonized plants were detected early (67, 68). Frey et735

al.(1997)(69) reported that specific Pseudomonas fluorescens prefer Laccaria736

laccata. P.fluorescens and Burkholderia terrae are exclusively found in the737

mycosphere soil of Laccaria proxima (30, 40). Boersma(2009)(36) found that the738

mycospheres of basidiomycetous fungi indeed exerted a universal selective effect739

on the Pseudomonas community (i.e., Pseudomonas poae, P. lini, P. umsongensis, P.740

corrugata, P. antarctica and Rahnella aquatilis); as well as species-specific741

selective (i.e. P. viridiflava and candidatus Xiphinematobacter americani). For the742

selection of the bacteria family Sphingomonadaceae by the mycorrhizal fungi L.743

proxima and R. exalbicans, the mycosphere effect was most prominent in the latter744

(36). The mycosphere-isolated bacterium Burkholderia terrae has been shown to745

protect its fungal host Lyophyllum sp. from several antifungal agents, such as746

metabolites produced by P. fluorescens, as well as from the antifungal agent747
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cycloheximide (70). Some studies have concentrated on mycorrhization helper748

bacteria (MHB) in facilitating mycorrhizal colonization of roots in forest nursery749

environments(43, 71). Rich in bacteria in the mycorrhizal roots, mycorrhizosphere750

soil and peridium of desert truffles may be used to increase the survival and751

mycorrhization in the desert truffle plant production system at a semi-industrial752

scale(72) . The associated bacteria of Truffle brûlés are Pseudomonas and753

Flavobacteriaceae (73). To achieve successful reforestation, PGPR and MHB were754

screened to improve the establishment of Lactarius deliciosus-Pinus sp.755

symbiosis(74). In our study, Acidocella , Bryobacter, Sorangium, Acidicaldus,756

Edaphobacter and Acidobacterium were indicator species for Russula symbiosis in757

the bacterial community. we also found ECM universal selective758

Sphingomonadaceae work with Russula species-specific selective759

Acidocella ,Sorangium, Acidicaldus, Edaphobacter and Acidobacterium in the soil760

bacterial community of Russula symbiosis (Fig. 3E).Further, by network analysis,761

Acidobacteriaceae, Sorangium and Acidobacteria had a positive correlation with762

Russula. There may be further instruction to provide a wide collection of these763

bacterial associates of Russula and to develop RussulaMHB or Fagaceae PGPR.764

765

Only a few edible ectomycorrhizal fungal species, such as black truffles or saffron766

milk caps, can be produced in manufactured orchards. To date, Russula fruit bodies767

are uncultivable. Five Russula were used to inoculate Shorea parvifolia seeding768

successfully (75) , and one Russula was used to inoculate Quercus garryana769

seeding successfully(76) . Our results will provide instruction to specifically isolate770

the fungi or beneficial rhizosphere microbes associated with ECM Russula from the771

root or mycorrhizal rhizosphere. Next , we will further need to isolate and culture772

the microbial communities of the Russula root or mycorrhizospheres soil in three773

types, which will supplement our research findings. The inoculation of these774

microbes can stimulate establishment and will help to enhance plant growth and775

promote a change in infected frequency.776

777
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Conclusion. The amount of Russula DNA is positively correlated with fruiting778

body and Russula mycorrhizae based on the metagenomics of Russula root and soil.779

Fewer fungi species were detected in Russula- infected and Russula sporocarp root.780

Fewer bacteria and fungi species were detected in Russula- infected and in Russula781

sporocarp rhizosphere soil. Boletus is considered as indicator species in782

Russula-Fagaceae root (Quercus glauca and Castanopsis hainanensis) for783

sporocarp-producing Russula. The Russula sporocarp rhizosphere fungi784

Dacryobolu and Russula sporocarp rhizosphere bacteria Acidocella is considered as785

indicator species for sporocarp-producing Russula. On the other hand, a number of786

taxa within Acremonium and Cladophialophora were identified in Fagaceae root in787

Russula symbiosis. The Russula mycorrhizal rhizosphere fungi Tomentella, and788

Elaphomyces and the Russula mycorrhizal rhizosphere bacteria Acidocella,789

Bryobacter, Sorangium and Acidobacterium occurred more frequently in790

association with the ECM genus Russula. Understanding the ectomycorrhizal791

fungal communities inhabiting natural Russula growth areas may give us clues792

about the dynamics of the targeted Russula and the possibility of identifying793

mycorrhizal fungal species that are good indicators of successful Russula794

semicultivation. This reseach may provide novel targeted strategies to improve the795

establishment of Russula-Fagaceae sp. symbiosis and improve Russula ascospore796

productivity and sustainability.797

MATERIALSAND METHODS798

Sampling . Our study was conducted in areas of Russula growth in Jianou, Fujian799

province, China, in which species of the genus Russula are well represented. The800

dominant trees of the areas are Quercus glauca and Castanopsis hainanensis. The801

herb layer is composed of Podophyllum peltatum, Panax stipuleanatus and802

Saxifraga stolonifera. Fine roots were excavated 2-3 m from the trunk of an adult803

Russula symbiotic tree(Fig. S1A). In addition, another type of fine roots that was804

clearly connected to Russula sporocarp by extraradical mycelia was collected(Fig.805

S1B,C). We collected three 15-30 cm fine-root segments (containing 100-200 root806

tips) at a depth of 20 cm (77) . Roots from a single tree were pooled into a single807
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plastic bag. More than 200 cm3 of rhizosphere soil was collected around the root808

samples for analyses. All root and soil samples were stored in a cooler containing809

several ice bags and transported to our laboratory within 24 h for subsequent810

analysis.811

DNA extraction, amplification, and sequencing. The collected root samples were812

washed carefully with tap water. Root tips were preserved in a plastic centrifuge813

tube at -20°C before DNA extraction. DNA samples were pulverized using liquid814

nitrogen. Total genomic DNA was extracted from ECM root tips using a modified815

cetyltrimethylammonium bromide method, which was modified according to Wang816

et al. (63)(2017). Total genomic DNA of corresponding rhizosphere soil was817

extracted using a Fast DNA SPIN Kit (MP Bio) for soil according to the kit818

operation steps.819

First, the entire range of fungal ITS sequences was amplified from roots using the820

ECM Basidiomycetes-specific high-coverage primer polymerase chain reaction821

(PCR) with the primer pair ITS-1F (CTTGGTCATTTAGACGAAGTAA) and822

ITS-4B (CAGGAGACTTGTACACGGTCCAG) (M. Gardes, 1993), and823

traditional Sanger sequencing was performed. The sequences were BLAST against824

the UNITE database/NCBI database (http://www.ncbi.nlm.nih. gov), and taxonomy825

was assigned to species or genera using sequence similarity criteria of ≥97% for826

species and 90–97% for genera. Furthermore, DNA of root tips identified as827

Russula and the corresponding Russula symbiosis rhizosphere soil were subjected828

to Illumina MiSeq high-throughput sequencing of ITS sequences to investigate their829

associated microbiomes, while DNA of root tips with no mycorrhiza was used as a830

control. The MiSeq sequences were edited, manually corrected in BioEdit 7.0.8 and831

clustered into species-level operational taxonomic units (OTUs) at 97% sequence832

similarity for species delimitation using PlutoF (http://unite.ut.ee) in UNITE(80). If833

no match was found in the PlutoF system, any resulting OTU assignments were834

individually checked by BLAST against the UNITE database/NCBI database835

(http://www.ncbi.nlm.nih. gov).836

To identify the fungi composition , we analyzed 18S ITS1-ITS4 DNA sequences of837
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ECM rhizosphere root and soil samples using phylogenetic methods, operational838

taxonomic unit (OTU) delimitations and ordinations to compare species839

composition in various types of ECM Russula. To identify the bacterial840

composition , we analyzed 16S V3-V4 DNA sequences of ECM rhizosphere soil841

samples using phylogenetic methods, operational taxonomic unit (OTU)842

delimitations and ordinations to compare species composition in various types of843

ECM Russula.844

Statistical analyses. Chao1 (species richness index) and Shannon (microbial845

diversity index) indices were analyzed by 97% OTU similarity. ECM fungal846

richness and the microbial diversity index of each Russula root tip and the847

corresponding rhizosphere soil of Russula symbiosis were calculated using the848

vegan package and compared by one-way ANOVA. PCoA analyses were based on849

any distance other than the Euclidean distance using abundance and850

presence-absence data of the top 20 genera in three types. Differences in851

community composition among Russula-infected samples were visualized by PCoA852

(79).853

Micro-Community diversity analysis and indicator species analysis. Taxonomic854

analyses were generated based on the community species abundance (each was855

above 0.05% of all reads) using Microsoft Excel . The mian fungal genus patterns856

were determined by taxonomic analysis at different ECM Russula mycorrhizal857

roots. The main fungal and bacterial genus patterns were also observed in the858

Russula mycorrhizal rhizosphere. To assess Russula preference, aspects indicator859

species analysis was carried out by comparing the top 20 genera of three types of860

root micro-communities. Indicator species of the community of the top 20 genera861

based on the species presence in the Russula sample and absence in the no-Russula862

sample were analyzed by Venny drawing tools863

(https://bioinfogp.cnb.csic.es/tools/venny/index.html).864

Network analyses. The relationships of Russula and other fungi in the Russula865

community were analyzed by Spearman correlation of the absolute top 20 most866

abundant in all the samples using the igraph, psych software package. Network nets867
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constructed on the interrelationship result with P>0.05 or |R|<0.4 were filtered. The868

relationships of bacteria in the Russula mycorrhizal rhizosphere were also analyzed869

by Spearman’s correlation.870
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la us lla la ella boscispora boscispora 

6 g__Lactariu

s 

g__Clitocy

bula 

g__Elaphom

yces 

g__Tomentell

a 

g__Elaphom

yces 

g__Trichoder

ma 

g__Rhodovero

naea 

g__Archaeor

hizomyces 

g__Penicilli

um 

7 g__Archaeor

hizomyces 

g__Sporide

smium 

g__Penicil

lium 

g__Rhodovero

naea 

g__Lactari

us 

g__Tomentell

a 

g__Myrmecrid

ium 

g__Cortinar

ius 

g__Saitozyma 

8 g__Mortiere

lla 

g__Lasiosp

haeria 

g__Clitocy

bula 

g__Trechispo

ra 

g__Penicil

lium 

g__Penicilli

um 

g__Trechispo

ra 

g__Corticiu

m 

g__Trichoder

ma 

9 g__Penicill

ium 

g__Mortier

ella 

g__Trichod

erma 

g__Acremoniu

m 

g__Saitozy

ma 

g__Sebacina g__Cladophia

lophora 

g__Mortiere

lla 

g__Clavulina 

10 g__Cladophi

alophora 

g__Inocybe g__Saitozy

ma 

g__Mortierel

la 

g__Umbelop

sis 

g__Lactarius g__Aspergill

us 

g__Saitozym

a 

g__Pseudopro

boscispora 

11 g__Cortinar

ius 

g__Saitozy

ma 

g__Bifigur

atus 

g__Microdoch

ium 

g__Sporide

smium 

g__Chloridiu

m 

g__Oidiodend

ron 

g__Microdoc

hium 

g__Bifigurat

us 

12 g__Saitozym

a 

g__Cladoph

ialophora 

g__Lactari

us 

g__Cookeina g__Geminib

asidium 

g__Amplistro

ma 

g__Trichoder

ma 

g__Sympodie

lla 

g__Sebacina 

13 g__Coralloi

diomyces 

g__Penicil

lium 

g__Cladoph

ialophora 

g__Cladophia

lophora 

g__Sebacin

a 

g__Fusarium g__Chloridiu

m 

g__Trichode

rma 

g__Talaromyc

es 

14 g__Rhodover

onaea 

g__Trichod

erma 

g__Chaetom

ium 

g__Trichoder

ma 

g__Lasiosp

haeria 

g__Microdoch

ium 

g__Chaetomiu

m 

g__Penicill

ium 

g__Clitopilu

s 

15 g__Dacryobo

lus 

g__Thanate

phorus 

g__Hypomyc

es 

g__Pseudopro

boscispora 

g__Inocybe g__Antrodiel

la 

g__Mortierel

la 

g__Chaetomi

um 

g__Chaetomiu

m 

16 g__Trichode

rma 

g__Microdo

chium 

g__Umbelop

sis 

g__Penicilli

um 

g__Bionect

ria 

g__Bifigurat

us 

g__Lactarius g__Cladophi

alophora 

g__Umbelopsi

s 

17 g__Acremoni

um 

g__Dacryob

olus 

g__Corallo

idiomyces 

g__Myrmecrid

ium 

g__Cladoph

ialophora 

g__Clitopilu

s 

g__Acremoniu

m 

g__Clitopil

us 

g__Sordaria 

18 g__Botryoba g__Acremon g__Xylogon g__Saitozyma g__Chlorid g__Sordaria g__Chaetosph g__Oidioden g__Oidiodend
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sidium ium e ium aeria dron ron 

19 g__Clitopil

us 

g__Chaetom

ium 

g__Sebacin

a 

g__Hydnum g__Chaetom

ium 

g__Nectria g__Fusarium g__Clavulin

opsis 

g__Cladophia

lophora 

20 g__Arachnop

eziza 

g__Talarom

yces 

g__Chaetos

phaeria 

g__Chaetomiu

m 

g__Staphyl

otrichum 

g__Acremoniu

m 

g__Amplistro

ma 

g__Xylogone g__Xylogone 
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 TYPE2 TYPE1 TYPE3 

sample name SBS1 SBS2 SBE1 SBE2 SBE3 SBE4 SBK1 SBK2 SBK3 

Total 

number of 

genus in 

Intersectio

n 

18 14 12 

Total 

number of 

genus in 

Collection 

20 27 26 

1 g__un

ident

ified 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

g__unidenti

fied 

2 g__Ac

idiba

cter 

g__Acidibac

ter 

g__Candidat

us_Solibact

er 

g__Acidibac

ter 

g__Candidat

us_Solibact

er 

g__Candidat

us_Solibact

er 

g__Candidat

us_Solibact

er 

g__Candidat

us_Solibact

er 

g__Rhodanob

acter 

3 g__Ca

ndida

tus_S

oliba

cter 

g__Acidothe

rmus 

g__Acidibac

ter 

g__Burkhold

eria-Parabu

rkholderia 

g__Variibac

ter 

g__Variibac

ter 

g__Variibac

ter 

g__Sorangiu

m 

g__Acidothe

rmus 

4 g__Rh

izomi

crobi

um 

g__Candidat

us_Solibact

er 

g__Rhizomic

robium 

g__Acidothe

rmus 

g__Burkhold

eria-Parabu

rkholderia 

g__Acidothe

rmus 

g__Bradyrhi

zobium 

g__Acidibac

ter 

g__Variibac

ter 
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5 g__Br

yobac

ter 

g__Rhizomic

robium 

g__Bryobact

er 

g__Candidat

us_Solibact

er 

g__Acidibac

ter 

g__Bradyrhi

zobium 

g__Acidibac

ter 

g__Acidothe

rmus 

g__Acidibac

ter 

6 g__Ac

idoth

ermus 

g__Bryobact

er 

g__Acidothe

rmus 

g__Bradyrhi

zobium 

g__Bradyrhi

zobium 

g__Bryobact

er 

g__Acidothe

rmus 

g__Bryobact

er 

g__Burkhold

eria-Parabu

rkholderia 

7 g__Va

riiba

cter 

g__Variibac

ter 

g__Variibac

ter 

g__Variibac

ter 

g__Rhizomic

robium 

g__Acidibac

ter 

g__Rhizomic

robium 

g__Rhizomic

robium 

g__Bradyrhi

zobium 

8 g__So

rangi

um 

g__Bradyrhi

zobium 

g__Sorangiu

m 

g__Bryobact

er 

g__Bryobact

er 

g__Burkhold

eria-Parabu

rkholderia 

g__Bryobact

er 

g__Variibac

ter 

g__Candidat

us_Solibact

er 

9 g__Ha

liang

ium 

g__Burkhold

eria-Parabu

rkholderia 

g__Candidat

us_Koribact

er 

g__Rhizomic

robium 

g__Acidothe

rmus 

g__Rhizomic

robium 

g__Sorangiu

m 

g__Burkhold

eria-Parabu

rkholderia 

g__Rhizomic

robium 

10 g__Bu

rkhol

deria

-Para

burkh

older

ia 

g__Roseiarc

us 

g__Granulic

ella 

g__Roseiarc

us 

g__H16 g__Candidat

us_Koribact

er 

g__Burkhold

eria-Parabu

rkholderia 

g__Granulic

ella 

g__Bryobact

er 

11 g__Ro

seiar

cus 

g__Sorangiu

m 

g__Burkhold

eria-Parabu

rkholderia 

g__Sorangiu

m 

g__Candidat

us_Xiphinem

atobacter 

g__Sorangiu

m 

g__Reyranel

la 

g__Mucilagi

nibacter 

g__Granulic

ella 

12 g__Sp g__Candidatu g__Roseiarcus g__Granulicell g__Acidobact g__Granulic g__H16 g__Candidat g__Candidat
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hingo

monas 

s_Koribacter a erium ella  us_Koribact

er 

us_Xiphinem

atobacter 

13 g__Br

adyrh

izobi

um 

g__Granulic

ella 

g__Acidobac

terium 

g__Candidat

us_Xiphinem

atobacter 

g__Sphingom

onas 

g__Roseiarc

us 

g__Roseiarc

us 

g__Bradyrhi

zobium 

g__Dyella 

14 g__Ca

ndida

tus_K

oriba

cter 

g__Telmatos

pirillum 

g__Bradyrhi

zobium 

g__Mycobact

erium 

g__Candidat

us_Koribact

er 

g__H16 g__Candidat

us_Koribact

er 

g__Roseiarc

us 

g__Candidat

us_Koribact

er 

15 g__Ac

idoce

lla 

g__Acidical

dus 

g__Haliangi

um 

g__Candidat

us_Koribact

er 

g__Granulic

ella 

g__Candidat

us_Xiphinem

atobacter 

g__Haliangi

um 

g__Acidobac

terium 

g__Acidical

dus 

16 g__Ac

idica

ldus 

g__Haliangi

um 

g__Mucilagi

nibacter 

g__Acidical

dus 

g__Sorangiu

m 

g__Haliangi

um 

g__Acidical

dus 

g__Haliangi

um 

g__Acidobac

terium 

17 g__Gr

anuli

cella 

g__Sphingom

onas 

g__Telmatos

pirillum 

g__Leptothr

ix 

g__Roseiarc

us 

g__Acidical

dus 

g__Granulic

ella 

g__Bdellovi

brio 

g__Sphingom

onas 

18 g__Te

lmato

spiri

llum 

g__Acidobac

terium 

g__Inquilin

us 

g__H16 g__Acidical

dus 

g__Luedeman

nella 

g__Rhizobiu

m 

g__Sphingom

onas 

g__Roseiarc

us 

19 g__Ed

aphob

g__Acidocel

la 

g__Bdellovi

brio 

g__Acidobac

terium 

g__Mycobact

erium 

g__Acidobac

terium 

g__Sphingom

onas 

g__H16 g__Mycobact

erium 
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acter 

20 g__Ac

idoba

cteri

um 

g__Bdellovi

brio 

g__Acidical

dus 

g__Haliangi

um 

g__Dyella g__Gemmatim

onas 

g__Candidat

us_Xiphinem

atobacter 

g__Dyella g__H16 
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S

F

K

1
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0.0 0.0 0.0 0.0 0.0 0.0 11.

0 
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.0 

0.0 28.0 16.

0 

0.0 10107

.0 

0.0 0.0 929.

0 

0.0 0.0 

S

F

K
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5.0 92.

0 

144

.0 

71.0 53.
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2.0 89.

0 

272
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3.0 0.0 436
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.0 
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S

F

E

1 

1.0 6.0 113

.0 

5.0 30.

0 

2.0 96.

0 

7.0 29.0 43.

0 

225.

0 

1.0 32.

0 

56.

0 

0.0 28.

0 

35.

0 

1734

.0 

236

.0 

10.

0 

S

F

E

2 

3.0 11.

0 

16.

0 

1.0 22.

0 

0.0 134

.0 

895

.0 

1.0 167

.0 

0.0 0.0 13.

0 

50.

0 

0.0 596

8.0 

2.0 468.

0 

833

.0 

56.

0 

S

F

E

3 

6.0 2.0 33.

0 

13.0 163

7.0 

4.0 67.

0 

40.

0 

13.0 22.

0 

0.0 0.0 442

.0 

269

4.0 

0.0 622

.0 

22.

0 

72.0 801

.0 

3.0 

S

F

E

4 

3164

.0 

3.0 18.

0 

3326.

0 

0.0 0.0 31.

0 

5.0 1.0 20.

0 

16.0 0.0 130

2.0 

2.0 0.0 366

.0 

130

.0 

36.0 284

.0 

8.0 

                     

S

F

S

1 

2.0 754

.0 

2.0 4.0 0.0 0.0 19.

0 
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1.0 

0.0 7.0 0.0 0.0 22.

0 

2.0 0.0 79.

0 

1.0 29.0 10.

0 

663

1.0 

S

F

S

2 

1.0 6.0 55.

0 

8.0 310

4.0 

1.0 100

.0 

7.0 13.0 12.

0 

2.0 0.0 50.

0 

480

6.0 

0.0 26.

0 

16.

0 

32.0 160

4.0 

3.0 
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M
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0 
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0 
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0 
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