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Orchid conservation assessment

Abstract
IUCN Red List assessments are essential for prioritizing conservation needs but are resource-
intensive and therefore only available for a fraction of global species richness. Tropical plant
species are particularly under-represented on the IUCN Red List. Automated conservation
assessments based on digitally available geographic occurrence records can be a rapid alter-
native, but it is unclear how reliable these assessments are. Here, we present automated
conservation assessments for 13,910 species of the diverse and globally distributed Orchid
family (Orchidaceae), based on a novel method using a deep neural network (IUC-NN), most
of which (13,049) were previously unassessed by the IUCN Red List. We identified 4,342
(31.2 % of the evaluated orchid species) as Possibly Threatened with extinction (equivalent to
the IUCN categories CR, EN, or VU) and point to Madagascar, East Africa, south-east Asia,
and several oceanic islands as priority areas for orchid conservation. Furthermore, the Orchid
family provides a model, to test the sensitivity of automated assessment methods to issues
with data availability, data quality and geographic sampling bias. IUC-NN identified threat-
ened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias
compared to the IUCN Red List, and was robust against low data availability and geographic
errors in the input data. Overall, our results demonstrate that automated assessments have
an important role to play in achieving goals of identifying the species that are at greatest
risk of extinction.

Keywords Biodiversity, Data quality, IUCN Red list, IUC-NN, Machine learning, Orchi-
daceae, Sampling bias
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Introduction
Prioritizing the use of conservation resources is essential to counter the current global
biodiversity crisis (Possingham et al. 2002; Rodrigues et al. 2006). The International Union
for the Conservation of Nature (IUCN) global Red List (RL) is the most widely used scheme
to evaluate species’ risk of extinction and is based on rigorous criteria and the best available
scientific information (Rodrigues et al. 2006; Newton 2008; Pfab et al. 2011). The IUCN
RL scores species’ population size, range size, population trends (decline or increase), and
threats for a standardized assessment into extinction risk categories (Collen et al. 2016; IUCN
Standards and Petitions Subcommittee 2017). Due to the rigor of the IUCN RL, they require
intensive data, expertise and time (Roberts et al. 2016), and as a result, only a fraction of
species are red-listed for many taxa (e.g., plants) and geographic areas (i.e., the tropics).
For example, less than 20% of flowering plant species are IUCN red-listed (www.iucn.org;
Troudet et al. 2017; Bachman et al. 2018).

The Orchidaceae is a diverse, globally important plant family with a high need for conservation
assessment and prioritization (Swarts & Dixon 2017; Fay 2018). There are approximately
29,000 orchid species (Givnish et al. 2016) on all continents except Antarctica with a variety of
life forms, from terrestrial to epiphytic (Cribb et al. 2003; Givnish et al. 2016). Many orchid
species are local endemics and their distributions are constrained by edaphic environments
and by their relationships with mycorrhizal fungi and specialist pollinators (McCormick
& Jacquemyn 2014; Gaskett & Gallagher 2018). Orchids are economically important in
horticulture and in the floral, pharmaceutical, and food industries (Subedi et al. 2013;
Hinsley et al. 2018) and many species face immediate threats by land conversion and illegal
harvesting (Hinsley et al. 2017; Fay 2018). Their global trade is so problematic that the
Convention on Intentional Trade in Endangered Species of Wild Fauna and Flora (CITES)
lists all orchid species with accepted names (Hinsley & Roberts 2018). Thus, there is an
urgent need for identifying the most endangered species to prioritize in situ protection and
ex situ conservation programs.

The need to prioritize species given limited data has triggered the development of methods
for fast, automated conservation assessments (AA), based on digitally available species
distribution data (for example from www.gbif.org). Two distinct classes of methods are
available: 1) index-based methods that calculate multiple indices characterizing a species
range size and use thresholds provided under IUCN Criterion B to classify species into IUCN
RL categories. Multiple index-based methods exist (Bachman et al. 2011; Schmidt et al.
2017; Cardoso 2017; Dauby et al. 2017) and they can be used either to support the IUCN
RL assessment process, or with additional assumption on habitat destruction and threat, to
stand-alone as preliminary assessments (Schmidt et al. 2017; Cosiaux et al. 2018; Zizka et

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.145557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145557
http://creativecommons.org/licenses/by-nc/4.0/


Orchid conservation assessment

al. 2020c). 2) prediction-based methods that use existing IUCN RL assessments together
with species traits to predict the conservation status of unevaluated or Data Deficient species
(Bland et al. 2015; Pelletier et al. 2018; González-del-Pliego et al. 2019; Lughadha et al.
2019), including the use of machine learning algorithms. Prediction-based methods may use
the same indices on species’ ranges as index-based methods, but also incorporate additional
traits such as climatic niche, biomes, human footprint index, geographic region, or traits
related to species morphology or physiology (Bland et al. 2015; Di Marco & Santini 2015).

While existing AA methods can separate threatened (IUCN RL categories Critically En-
dangered, Endangered, and Vulnerable) from non-threatened (Near Threatened and Least
Concern) species with an accuracy between 80 and 95% in animals (Bland et al. 2015),
a recent study suggests lower performance for Orchids, with an accuracy of 51-84% in a
taxonomically and geographically limited sample of 116 species from New-Guinea, (Lughadha
et al. 2019). A known issue with index-based AA, their dependency on data availability cause
them to overestimate the extinction risk of species with few occurrence records available
(Rivers et al. 2011). However, the dependency on data availability, remains untested for
prediction-based methods. Furthermore, it is currently unknown how robust AA are to
erroneous geographic input data and geographic sampling bias (Walker et al. 2020).

Here, we present AA for 13,910 Orchid species (47.3% of all known species) based on digitally
available occurrence data and test the sensitivity of the results to method choice, data
availability, errors in the geographic input data and sampling bias. Specifically, we address
three questions:

1) How threatened are Orchids and where are the global centers of extinction risk for
Orchid species? Based on the IUCN RL, we expect ~30% of orchids to be identified as
Possibly Threatened (www.iucn.org; Lughadha et al. 2019).

2) How accurate are different AA methods? Based on the existing smaller-scale studies
we expect an accuracy between 60-90% (Lughadha et al. 2019) and a susceptibility to
over-estimate the threat status of narrow-ranged species.

3) How robust are AA to limitations with data availability, variable data quality and
geographic sampling biases? Digitally available species occurrence records are often
biased towards certain geographic regions (Meyer et al. 2016; Zizka et al. 2020a) and
contain erroneous or very imprecise coordinates (Zizka et al. 2019, 2020b). Therefore,
we expect a bias of AA towards well-sampled geographic areas and life forms, and an
increase in accuracy with geographic cleaning.
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Methods

Orchid extinction risk

To address question 1 we used the taxonomy of the World Checklist of Selected Plant
Families (WCSP 2019), and obtained native records of Orchid species on August 26, 2019, at
the Global Biodiversity Information Facility (www.gbif.org, 2019). We then obtained full
IUCN assessments from www.iucn.org in August 2019 and standardized them into the five
most relevant threat categories: Critically Endangered (CR), Endangered (EN ), Vulnerable
(VU ), Near Threatened (NT ), and Least Concern (LC ), excluding species assessed under
Red List versions older than 3.1, and species assessed as Data Deficient (DD).

We implemented a deep neural network algorithm (Goodfellow et al. 2016)—IUC-NN—in
the Python (v. 3.7) program ruNNer (https://github.com/dsilvestro/ruNNer) using
the TensorFlow (https://www.tensorflow.org) library to predict the conservation status of
unassessed Orchid species. We based the predictions on four groups of features, derivable from
digitally available occurrence records: geographic (mean latitude and longitude, longitudinal
and latitudinal range, extent of occurrence (EOO), area of occupancy (AOO), number of
locations (sensu IUCN) and occurrence records), climatic (the mean of 19 bioclim variables,
Karger et al. 2017), biome (presence in 14 biomes; Olson et al. 2001) and anthropogenic (the
mean human footprint index, Wildlife Conservation Society - WCS & International Earth
Science Information Network - CIESIN - Columbia University 2005).

We trained IUC-NN on all species with an IUCN RL assessment and occurrence records
available. Prior to the training, we randomly split the dataset into a training set (90% of
the entries) and a test set (10%). To carry out the training we further split the training
dataset in 80% of the entries for training and 20% for validation. As the size of the dataset
was comparatively small, we performed cross-validation by shifting the validation set five
times to quantify the average validation cross-entropy loss and accuracy. We then used the
neural network yielding the lowest cross-entropy loss across a range of models with different
numbers of hidden layers and subsets of features to predict the conservation status of all
Orchid species at two levels: binary (Possibly Threatened vs. Not Threatened) and detailed
(CR, EN, VU, NT, and LC ). See Supplementary Material S1 for details on the network
architecture and training. We combined the IUC-NN assessments with distribution data from
WCSP, to show the number and proportion of Possibly Threatened species and of evaluated
species per geographic region (TDWG-level 3).

Since different habitats warrant different conservation approaches, we also summarized the
number of orchid species and the fraction of threatened species in major biomes of the world.
We classified species into biomes using the ‘speciesgeocodeR’ v. 2.0-10 package (Töpel et al.
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2017) if at least five percent of a species’ records occurred in this biome.

The accuracy of AA

To address question 2, we performed AA with three index-based methods: ConR v.1.2.2
(Dauby et al. 2017), speciesgeocodeR v.2.0-10 (Schmidt et al. 2017; Töpel et al. 2017)
and rCAT v.0.1.5 (Moat 2017) for all species with an IUCN RL status and occurrence
records available. ConR, speciesgeocodeR and rCAT calculate EOO and AOO based on
geographic occurrences and use thresholds of IUCN Criterion B to classify species into IUCN
RL categories. Additionally, ConR calculates the number of locations at which a species
occurs. We then compared the accuracy of all four AA methods on both the binary and
detailed levels with the existing IUCN RL as standard. We provide full error matrices for
both levels of assessment. For the binary assessment, we also calculated the fraction of false
positives (non-threatened species classified as Possibly Threatened by AA) and false negatives
(threatened species classified as Not Threatened by AA). See Supplementary Material S1 for
details on the index-based AA. Because the IUCN RL is biased both geographically and
taxonomically (www.iucn.org), we repeated the accuracy tests of ConR with four additional
reference datasets: (1) a random sub sample of IUCN RL (the “Sampled Red List index”,
SRLI, Royal Botanic Gardens 2010); (2) species IUCN RL assessed after 2008 (IUCN2008),
(3) species with at least 15 occurrence records available for AA (IUCN15); and (4) global
conservation assessments from the ThreatSearch literature database. We only tested these
alternative references with ConR, since we expect the other index-based methods to have
similar results, and the alternative datasets included too few species to train IUC-NN models.

The reliability of AA

To address question 3, we tested how the accuracy of IUC-NN dependent on the number of
occurrence records available per species, different levels of geographic cleaning of the input
data and the evenness of geographic sampling. See Supplementary Material S1 for details on
the individual tests.

Data availability We used binomial regressions to test the dependence of AA and IUCN RL
agreement on the number of occurrence records available for a species, using the stats::glm
function in R, with a logit link.

Data quality We compared the accuracy of ConR assessments based on different datasets of
species occurrences, representing three levels of data curation (1) “raw”, the data downloaded
from GBIF scrubbed taxonomically, (2) “intermediate”, the raw data subjected to automated
removal of records with common geographic errors (Zizka et al. 2020b), and (3) “filtered”,
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the intermediate data with additional removal of records outside the known occurrence range
of species from WCSP (WCSP 2019). We only ran this test with ConR, since we expect
the two other index-based methods to respond similarly to the issue and because we expect
IUC-NN to be more robust against erroneous coordinates, since the features used for IUC-NN
prediction are mean values across all records of a species.

Sampling bias Since IUCN RL and digitally available occurrence records are geographically
biased (Meyer et al. 2016; Daru et al. 2018; Zizka et al. 2020a), we tested whether the
observed differences in the statistical distribution of species over growth form types and
geographic regions among (1) all orchid species, (2) IUCN RL assessed species and (3) species
in our AA were greater than expected by random chance based on a null model in which we
randomly permuted bias measurements among model types.

We did all analyses in R (R Core Team 2019) and Python, the analysed data and scripts,
including the trained IUC-NN models will be available upon publication of this manuscript
at a zenodo repository (10.5281/zenodo.3862199).

Results

Orchid extinction risk

We obtained 3,321,927 records with complete names for 19,034 taxa from GBIF. Of those,
we retained 3,050,875/17,971 (records/species) for the “raw” dataset, 1,188,658/16,935 for
the “intermediate” dataset, and 999,476/14,148 for the “filtered” dataset (see Supplementary
Table S1 in Supplementary Material S2 for the effect of individual filters). We obtained
IUCN RL assessments for 1,404 species, and retained 861 species (49.7% of them Threatened)
fitting our criteria to train the IUC-NN neural network.

We generated IUC-NN assessments 13,910 species (47.3 % of all species in the family;
Supplementary Material S3). On the binary level, 9,772 (68.9%) classified as Not Threatened
and 4,415 (31.1%) classified as Possibly Threatened. On the detailed level 10,733 species
(75.7%) classified as LC, 51 species (0.4%) as NT, 70 species (0.5%) as VU, 2,610 species
(18.4%) as EN, and 723 species (5.1%) as CR. As the accuracy of the binary assessments was
higher, we focus the visualization of our results and discussion on these, but provide results
for the detailed assessment in the supporting information.

We identified three continental-level centers for Orchid conservation: northern South America,
East Africa and south-east Asia with high numbers and proportions of Possibly Threatened
orchid species (Fig. 1a). The regions with the most Possibly Threatened species were:
Madagascar (646 species), Colombia (427), Borneo (369), and China South-Central (364)
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(Fig. 1a). Of those areas with more than ten Orchid species, the twelve most relevant
regions included 6 islands: Réunion (73% of species Possibly Threatened), Mauritius (62%),
Comoros (56%), Taiwan (51%), Seychelles (50%), and the Christmas Islands (50%) as well as
6 continental regions: Madagascar (86%), China South-Central (58%), Tibet (54%), Nepal
(50%), Vietnam (49%), and East Himalaya (48%) (Fig. 1b). See Supplementary Figure S1,
for a map of the detailed assessment.

The number of Possibly Threatened Orchid species was highest in the Tropical moist
broadleaved forest biome (3254 species) following the general diversity pattern of Orchids (Fig.
2, see Supplementary Figure S2, for the detailed assessment). In contrast, the proportion of
Possibly Threatened Orchid species was highest in the Temperate conifer forest biome (45.8%
of 365 species).

IUC-NN increased the proportion of species evaluated across regions by a median of 53%
(Fig. 3), with the highest increase in continental areas (TDWG level 3) in Gambia (from 0%
of species evaluated to 100%), Southern Australia (from 1% to 94%), and South Argentina
(from 0% to 92%).

The accuracy of AA

The accuracy of all tested AA methods varied between 44.3% and 84.3%. As expected, the
accuracy was higher separating Possibly Threatened from Not Threatened species (65.5% -
84.3%, Fig. 4b) as compared to the detailed assessments (44.3% - 64%, Fig. 4a, Supplementary
Tables S2 and S3). At both levels the accuracy was similar for the index-based methods but
higher for IUC-NN (Fig. 4).

The best IUC-NN model considered binary threat levels, used only geographic features
and reached a test accuracy of 84.3% (88% positive predictive value and 79% negative
predictive value; Table 1). Adding other features decreased the validation accuracy, but still
remained within ~5% of the best model (Supplementary Material S4). The best IUC-NN
model on the detailed level included geographic features and the human footprint index and
reached a test accuracy of 64% (Supplementary Material S4). The accuracy was generally
higher for CR and EN as well as LC classes but low for the intermediate VU and NT
classes (Supplementary Material S2). Furthermore, the accuracy was highest for species the
IUCN considered threatened by “Natural systems modification” and “Energy production and
mining”, and the lowest for species threatened by “Human intrusion & disturbance” and
“Pollution” (Supplementary Figure S3). Concerning alternative reference datasets as gold
standard instead of IUCN RL, the binary accuracy of index-based methods increased when
using IUCN15 (69.9%, n = 359) or ThreatSearch (78.6%, n = 14), was similar for IUCN2008
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(64.4%, n = 810) and lower for SRLI (57.1%, n = 261, Supplementary Table S4).

The training and cross-validation of the IUC-NN model took less than 24 hours and the
IUC-NN assessments for all species using the trained network took about 0.0005 seconds per
species on a standard laptop. For the index-based methods, the median computation time
was 0.02 seconds per species for rCAT, 0.13 seconds for SPGC, and 0.31 seconds for ConR
on a standard laptop (n = 945), but increased with the number of records, in particular for
ConR (Supplementary Figure S4) up to a maximum of 33.3 hours for Gymnadenia conopsea
with 31,055 records.

The reliability of AA

Data availability The accuracy of all index-based methods depended significantly on the
number of records available (rCAT & SPGC: p=0.016, ConR: p=0.0056, n=861), but that
was not the case for IUC-NN (p=0.14, n=861, Fig. 4c).

Data quality The geographic filtering of the input data only marginally affected by the
accuracy of ConR, which varied between 65.5 - 68% among methods for the “filtered” dataset,
67.1 - 68.7% for the “intermediate” and 67.3 - 67.4% for the “raw” dataset.

Sampling bias The sampling intensity of the geographic input data was highest in Central
and Northern Europe, Southern Australia, and Northern and Central America and was low in
south-east Asia (Supplementary Figure S5). We found a difference in the evaluation frequency
between the IUCN RL and AA based on life form and geography. Terrestrial species were
over-represented on the IUCN RL (Fig. 5a), as were species from Africa, temperate Asia
and Europe (Fig. 5b). Despite the strong bias in the availability of species occurrence data,
we found significantly lower evaluation bias for AA than for the IUCN RL with respect to
life form (epiphytic, lithophytic, terrestrial, mixed; p = 0.00465) and geographic region (p =
0.01855, see Supplementary Figure S6 for the interaction).

Discussion

Orchid extinction risk

We found that 31.1% (4,415) of the Orchid species we were able to assess are Possibly
Threatened, which is comparable to the recent estimate of 29.5% of global land plant species
(Pelletier et al. 2018). As we could only evaluate species with available occurrence information,
it is likely that an even higher proportion of those species we were unable to evaluate are
Possibly Threatened. Indeed, unsampled species are likely to be rare and therefore infrequently
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encountered and identified. This possibility, combined with information on the generally
high pressure humans have on orchids (Fay 2018), confirms that there is no doubt that the
Orchidaceae family is in need of immediate conservation prioritization. Our findings also
highlight that the risk is not equally distributed across their life forms, biomes and geographic
regions.

We found that the distribution patterns of Possibly Threatened Orchids are related to total
orchid species richness. There are high numbers of Possibly Threatened species in the species-
rich tropics, especially the Neotropics, which are an important center of diversification for the
Orchids with more than 11,000 Orchid species (Givnish et al. 2016), and in the Oriental and
Papua-Melanesian biogeographic regions. These centers of orchid extinction risk coincide well
with known areas of endemism, and hence small range sizes, for all plants (Kier et al. 2009).
The North American Orchid flora is surprisingly depauperate given its large area (Gaskett &
Gallagher 2018), and we found that few species in this region are Possibly Threatened (Fig.
1, Fig. 2). A similar pattern exists for northern Europe and Asia, although there are some
Possibly Threatened species in the north of Asia. This general pattern may be associated
with the climate of these north temperate regions, concomitant with a high proportion of
terrestrial species.

It is well established that many species in the Orchid family need conservation attention
(Dixon 2003; Wraith & Pickering 2018; Fay 2018; Liu et al. 2020), and there is an abundance
of expertise and information available to successfully implement conservation strategies for
both terrestrial (Swarts & Dixon 2009, 2017) and epiphytic species (Cribb et al. 2003; Swarts
& Dixon 2017; Fay 2018). Most species are facing more than one threat and have limited
distributions (Wraith & Pickering 2018). Until now, what has been lacking is a comprehensive
assessment of the conservation status this large and highly diverse family, particularly for
understudied species and geographic regions.

The benefits and challenges of AA

The 84% accuracy of IUC-NN to correctly identify Possibly Threatened species suggests that
it can be used with confidence for conservation science and practice. The major advantages
of IUC-NN are that it is: 1) orders of magnitude faster than full IUCN RL assessments
(Supplementary Figure S4), 2) objective and reproducible, 3) based solely on digitally available
data, and 4) able to incorporate data beyond the formal IUCN RL Criteria (Bland et al.
2015). Furthermore, IUC-NN is less sensitive than index-based methods to limited available
occurrence data and displayed a lower false positive rate (Table 1, Fig. 4; Rivers et al. 2011;
Lughadha et al. 2019).
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The overall accuracy of IUC-NN was similar to the performance of prediction-based methods
in other taxa (e.g. amphibians, González-del-Pliego et al. 2019; mammals, Bland et al. 2015;
non-orchid monocots, Darrah et al. 2017 and land plants @Lughadha2019). However, the
mis-classification rate of ~15% is undesirable when making specific conservation decisions. A
close examination of the species which IUC-NN misclassified most severely (wrong by the
binary model and wrong by the maximum number of categories by the detailed model; n =
11; Supplementary Material S5), provides insight on the main causes of misclassification. The
four species for which IUC-NN overestimated extinction risk: Ancistrorhynchus parviflorus,
Disperis elaphoceras, Oligophyton drummondii, Tridactyle stevartiana all are known from
only a few locations in East Africa, and were assessed as LC on the IUCN RL because
these locations are within protected areas, on the strong assumption that these guarantee
effective and long-term protection. The seven species IUC-NN underestimated extinction
risk: Anguloa cliftonii, Brachionidium pteroglossum, Bulbophyllum sceliphron, Caladenia
hastata, Paphiopedilum schoseri, Paphiopedilum supardii, Vanilla cribbiana, the IUCN RL
assessment included information regarding human changes to the local environment, severe
collection pressure for the horticultural trade, or observed population declines. In particular,
the terrestrial orchid C. hastata is already the focus of active recovery (www.iucn.org), and
B. sceliphron might be even more threatened than it is currently listed and is in need of
further assessment according to the detailed IUCN RL assessment.

Including data on species trade, land use or life history, once they are available, may help
to increase the accuracy of IUC-NN and to overcome the dependency on threat category
(Supplementary Figure S3). Further, combining the binary and detailed model, which
contradicted in some cases (Supplementary File 4), might increase the performance of IUC-
NN. We suggest that labelling species where the binary and detailed model disagree as Data
Deficient might reduce the number of false predictions. Future developments of IUC-NN
will quantify the estimation of threat as a continuous parameter to increase the accuracy
for intermediate threat levels and will implement Bayesian neural networks to quantify
uncertainties in the prediction (Silvestro & Andermann 2020).

Our results suggest that AA are robust to geographic errors in the input data and reduce
evaluation bias compared to the IUCN RL (Fig. 5). Although AA are certainly not free from
error, due to the biased availability of the underlying occurrence records and RL data (Meyer
et al. 2016, Supplementary Figure S5; Daru et al. 2018), the reduced bias compared to IUCN
RL is likely related to the fact that the factors biasing the collection of species geographic
occurrence records, such as physical accessibility or socio-economic factors (Meyer et al. 2016;
Daru et al. 2018; Zizka et al. 2020d), affect the collection of detailed data necessary for
IUCN RL assessments (e.g., population trends) even more strongly.
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Cleaning spatial data did surprisingly little to improve the accuracy of AA (Table 1),
considering that geographic errors can erroneously increase the range size of species by
thousands of kilometers. This result is likely due to low number records available for many
Orchid species. In such a setting, the reduction of range size produced via the removal of
erroneous points might have improved the estimation of the range shape, but not the range
size, as the range size is already underestimated for most species.

The advantages of IUC-NN come at the price of applying complex statistical machinery and
moving beyond strict adherence of IUCN criteria, which warrants some caution (Walker et
al. 2020). We see the major application of IUC-NN in integrating diverse types of data into
preliminary conservation assessments identifying species or areas in need of protection or more
detailed assessment (Fig. 1). This approach is particularly valuable for the species-rich, but
data-poor, tropical regions of Earth (Mounce et al. 2018), where even preliminary assessments
will be useful for informing conservation. A particular strength of IUC-NN is that it can be
trained for other taxonomic groups or regions contributing to speeding up the conservation
assessment of all species on Earth.

Conclusions
We classified 4,342 orchid species (31.2% of the family) as Possibly Threatened, or on a more
detailed scale 718 (5.2%) as Critically Endangered, 2,567 (18.5%) as Endangered, and 68
(0.5%) as Vulnerable (question 1). Northern South America, Madagascar and south-east Asia
as well as the Tropical moist broad leaf forest biome harbor the highest number of Possibly
Threatened species. In relation to total species richness we identified Madagascar, oceanic
islands as well as parts of East Asia as the centers of Possibly Threatened species.

We showed that the IUC-NN method based on digitally available data can identify Potentially
Threatened Orchid species with an accuracy of over 84%, and individual IUCN categories with
an accuracy of 64% (question 2). IUC-NN provides preliminary conservation assessments
for 13,049 so-far unevaluated Orchid species in a short time and increases the proportion of
evaluated species by 53% across geographic regions. IUC-NN was robust to data availability,
was less biased than the IUCN Red List and AA were robust to errors in the geographic
input data (question 3).

Supporting Information
Supplementary Material S1 - Supplementary Methods

Supplementary Material S2 - Supplementary Tables and Figures
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Tables
Table 1: Confusion matrices for different automated assessments in comparison to the IUCN
RL assessment. For the index-based methods the results use all species with digitally available
occurrence records (n = 866), for IUC-NN results from the test dataset are shown (n = 89).

IUCN Assessment
AA method Spatial

cleaning
Not

Threatened
Possibly

Threatened
Type

ConR
Not Threatened full 75.1 24.9 Index-based
Possibly Threatened full 38.8 61.2 Index-based
Not Threatened medium 75.1 24.9 Index-based
Possibly Threatened medium 36.4 63.6 Index-based
Not Threatened raw 73.8 26.2 Index-based
Possibly Threatened raw 35.3 64.7 Index-based

rCat
Not Threatened full 68.3 31.7 Index-based
Possibly Threatened full 32.5 67.5 Index-based

SPGC
Not Threatened full 68.5 31.5 Index-based
Possibly Threatened full 32.4 67.6 Index-based

IUC-NN best model
Not Threatened full 78.9 21.1 Prediction-based
Possibly Threatened full 11.8 88.2 Prediction-based

IUC-NN all features
Not Threatened full 81.6 18.4 Prediction-based
Possibly Threatened full 29.4 70.6 Prediction-based
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Figure 1: Global conservation status of orchids. (a) The number of possibly threatened
orchid species per TDWG region. (b) The proportion of possibly threatened Orchid species
on the number of evaluated species. Small islands and archipelagos with more than 10 known
Orchid species are shown as points for better visualization. The red outlines indicate the
12 areas with the highest number (in a) and highest fraction (in b) of Possibly Threatened
species. Region refer to TDWG level 1.

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.145557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145557
http://creativecommons.org/licenses/by-nc/4.0/


Orchid conservation assessment

Figure 2: The threat status of Orchid species in the biomes of the world (Olson et al., 2001).
Tropical moist broadleaf forest was the most specious habitat, and harbored the highest
number of Possibly Threatened orchid species. The proportion of Possibly Threatened species
was highest in temperate conifer forest.
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Figure 3: The fraction of Orchid species per geographic region evaluated for their conser-
vation status. (a) IUCN Red List, (b) IUC-NN (prediction-based automated conservation
assessment). (c) The proportion of species evaluated on the continental scale under both
schemes. Each data point shows a geographic (TDWG) region and the y-axis indicates the
number of percentage points by which IUC-NN increased the fraction of species evaluated.
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Figure 4: The accuracy of different methods for automated conservation assessment compared
to the IUCN RL as gold standard. (a) The accuracy when assessing species into full IUCN
categories (CR, EN, VU, NT, LC, the last two combined for the index-based methods) (b)
The accuracy to identify species as Possibly Threatened or Not Threatened (c) The probability
of classifying species accurately as Possibly Threatened or Not Threatened depending on the
number of occurrence records available per species (n = 861). Not the logarithmic x-axis. In
(c) the curves for rCAT and SPGC are identical.
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Figure 5: The bias in the conservation assessment of Orchids. (a) Life form. Most orchids
with a known life form are epiphytes, but terrestrial species are over-represented in the
IUCN Red List, potentially due to accessibility and geographic distribution. The automated
assessment based on distribution records reduced this bias. (b) Geography. Most orchid
species occur in South America and tropical Asia, but the IUCN Red List is biased towards
Africa, temperate Asia and Europe. The automated conservation assessment reduced this
bias. Regions refer to TDWG level 1.
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