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Abstract 
 

Invasive freshwater fish systems are known to readily hybridize with indigenous congeneric species, 

driving loss of unique and irreplaceable genetic resources. Here we reveal that newly discovered (2013-
2016) evolutionarily significant populations of Korogwe tilapia (Oreochromis korogwe) from southern 

Tanzania are threatened by hybridization with the larger invasive Nile tilapia (Oreochromis niloticus). 

We use a combination of morphology, microsatellite allele frequencies and whole genome sequences to 

show that O. korogwe from southern lakes (Nambawala, Rutamba and Mitupa) are distinct from 
geographically-disjunct populations in northern Tanzania (Zigi River and Mlingano Dam). We also 

provide genetic evidence of O. korogwe x niloticus hybrids in three lakes and demonstrate heterogeneity 

in the extent of admixture across the genome. Finally, using the least admixed genomic regions we 
estimate that the northern and southern O. korogwe populations most plausibly diverged approximately 

140,000 years ago, suggesting that the geographical separation of the northern and southern groups is 

not a result of a recent translocation, and instead these populations represent independent evolutionarily 
significant units. We conclude that these newly-discovered and phenotypically unique cichlid 

populations are already threatened by hybridization with an invasive species, and propose that these 

irreplaceable genetic resources would benefit from conservation interventions. 

 
Keywords: Introgression, admixture, biodiversity conservation, cichlid fishes, population genomics, 

geometric morphometrics.  
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Freshwater ecosystems are undergoing rapid changes in biodiversity due to the interacting effects of 

habitat degradation, over-exploitation, water pollution, flow modification and species invasion (Sala et 

al. 2000; Dudgeon et al. 2006; Millennium Ecosystem Assessment, 2016). As human population sizes 
continue to rise, and climate change becomes an ever-increasing threat, these impacts are predicted to 

grow (Martinuzzi et al. 2014; Arroita et al. 2017; Kalacska et al. 2017). A specific issue is hybridization 

between introduced species and native fish species. This has been reported in closely-related species 
from multiple fish families, including the salmonids (Muhlfield et al. 2014; Mandeville et al. 2019), 

cichlids (Firmat et al. 2013; Shechonge et al. 2018) and cyprinids (Almodóvar et al. 2012; Hata et al. 

2019), and is likely to become increasingly common due to the spread of freshwater species for 
aquaculture and inland fisheries enhancement (Deines et al. 2014). However, the full evolutionary and 

ecological consequences of hybridization between invasive and native species are typically unclear, and 

further studies of the impact of hybridization events on native biodiversity are required. 

 
African inland fisheries depend heavily on “Tilapias” (Brummett & Williams, 2000), a group of cichlids 

that includes the commercially important genera Oreochromis, Sarotherodon and Coptodon. Among 

the most favoured of these species is the Nile tilapia, Oreochromis niloticus, which has broad 
physiological tolerances of environmental conditions, potential for rapid growth, and thus has been 

widely translocated across the continent (Josupeit, 2010; Dienes et al. 2014). However, because of these 

traits the species is also highly invasive within its introduced range (Ogutu-Ohwayo, 1990; Canonico et 
al. 2005; Deines et al. 2017). Moreover, O. niloticus is also known to hybridize with native Oreochromis 

species at the locations where it has been introduced, for example with Oreochromis mossambicus in 

Southern Africa (D’Amato, 2007), Oreochromis esculentus in Lake Victoria (Angienda et al. 2011) and 

Oreochromis urolepis and Oreochromis jipe in Tanzania (Shechonge et al. 2018; Bradbeer et al. 2019). 
However, despite the growing concern surrounding the impacts of hybridization on native Oreochromis 

populations, the potential loss of unique native genetic diversity due to hybridization with O. niloticus 

remains poorly studied. This is an important area to study because shifts in cichlid fish biodiversity and 
community composition can lead to fundamental changes in ecosystem functioning (Lévêque 1995), 

and loss of potential valuable genomic resources for future Oreochromis aquaculture strain development 

(Eknath & Hulata 2009; Lind et al. 2012). 

 
Tanzania has a rich diversity of Oreochromis species, and preservation of this natural species and its 

genetic diversity has been recognized as an important conservation goal, given threats of changing 

environment and hybridization with invasive Oreochromis species (Shechonge et al. 2018). Recently 
(between 2013 and 2016) populations of Oreochromis korogwe were discovered in three lakes in 

southern Tanzania near Lindi (Lakes Rutamba, Nambawala and Mitupa; hereafter referred to as 

‘southern populations’; Fig. 1). Previously this species was only known from the Pangani and Zigi river 
catchments in northern Tanzania (hereafter referred to as ‘northern populations’; Fig. 1), some 500 km 

north of Lindi (Trewavas, 1983; Bradbeer et al. 2018; Shechonge et al. 2019); the holotype is a specimen 

from Korogwe in the Pangani catchment (Lowe, 1955). The close evolutionary relationship between 

representatives of the northern and southern populations has been confirmed in a recent genus-level 
phylogeny, based on ~3000 bp of nuclear DNA across six loci and ~1500bp of mtDNA (Ford et al. 

2019, where they were referred to as O. korogwe and O. sp. Rutamba, respectively). Importantly, the 

rivers between Lindi and the Pangani are populated naturally only by O. urolepis. Such a large 
geographic discontinuity in the apparent natural distribution of Oreochromis is not known in any other 

species (Trewavas 1983, Shechonge et al. 2019), and is rare in other African freshwater fishes (e.g. 

Skelton 2001). Importantly, in all three of the southern lakes studied, the invasive O. niloticus was also 
found, and the presence of phenotypically intermediate individuals suggested the presence of hybrids. 

 

In this study we aimed to characterize the diversity and origins of the newly discovered southern 

populations of O. korogwe. We first quantified the extent of hybridization between these populations 
and invasive Nile tilapia. We then evaluated the possibility that the southern population could be a newly 

recognized evolutionarily significant unit (sensu Fraser & Bernatchez 2001), by comparing genetic and 

morphological differences with northern O. korogwe. We also investigate varying levels of admixture 
across the genome from O. niloticus into southern O. korogwe. These results demonstrate that an 

evolutionarily significant unit is threatened by hybridization with an invasive species, and add to a 
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growing body of evidence for the heterogenous nature of admixture across genomes during 

hybridization events.  

 
Materials and Methods 

 

Study sites and sample collection. 

 
Oreochromis korogwe, O. niloticus and their potential hybrids were collected from southern Tanzania 

(Lake Rutamba, Lake Nambawala, and Lake Mitupa) on the 14 August 2013, 2-4 May 2015 and 21-27 
October 2016 (Fig. 1; Table 1). Samples of O. korogwe were collected from northern Tanzania (Zigi 

River and Mlingano Dam) on the 18 August 2015 (Fig. 1; Table 1). Samples were collected either using 

multi-mesh gill nets, a seine net, or from purchasing from local fishermen. Multi-mesh nets measured 
30m in length with a stretched depth of 1.5m height, and 12 panels each 2.5 meters long. Mesh sizes for 

panels were in the following order 43mm, 19.5mm, 6.25mm, 10mm, 55mm,Need 8mm, 12.5mm, 

24mm, 15.5mm, 5mm, 35mm and 29mm. The seine net measured 30 m in length, 1.5 m in height with 
25.4 mm mesh and fine mesh cod end.  

 

 
Figure 1. Sampling sites and example specimens of focal populations. a) northern O. korogwe male, b) 

northern O. korogwe female, c) southern O. korogwe male, d) southern O. korogwe female. Pink and purple 
filled circles indicate northern O. korogwe populations sampled, darker blue filled circles locations of the 

southern O. korogwe populations sampled. Grey and black filled circles indicate the sampling locations of O. 

urolepis (Wami and Rufiji and rivers, respectively). The orange filled circles indicate the sampling location of O. 

placidus (Lake Chidya). 

 

Other samples used for this study were O. placidus rovumae from Lake Chidya in the Ruvuma 
catchment sampled on 18 August 2013, O. placidus rovumae from the Ruvuma river sampled on 16 

August 2013, O. placidus rovumae from the Muhuwesi river (Ruvuma drainage) sampled on 17 August 

2013, O. urolepis from Lake Lugongwe near Utete on the Rufiji river sampled on 11 March 2015, O. 
urolepis from Mbuyuni pool on the Wami river sampled on 22 August 2015, and O. niloticus from 

within its native (rather than introduced) distribution in Lake Albert, Uganda, sampled on 29 October 

2015 (Tables S1, S2). Field collected samples were preserved either in 96-100% ethanol or DMSO salt 
buffer. 
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Table 1. Sample sizes for southern comparison analysis of O. korogwe, O. niloticus, and individuals 

of hybrid origin (comparison 1) and comparisons of southern and northern O. korogwe populations 

and reference O. urolepis and O. placidus (comparison 2). 
 
Site Species Microsatellite Linear (conventional) 

measures 
Geometric 
morphometric 

     
Comparison 1: southern comparison analysis of O. korogwe, O. niloticus, and hybrids 
     
Lake Mitupa O. korogwe (M-OK) 2 - - 
 O. niloticus (M-ON) 3 3 3 

 Hybrid (M-OK x M-ON) 2 1 1 

     

Lake Rutamba O. korogwe (R-OK) 17 9 9 

 O. niloticus (R–ON) 13 6 6 

 Hybrid (R-OK x R-ON) 2 2 2 

     
Lake Nambawala O. korogwe (N-OK) 10 9 9 
 O. niloticus (N-ON) 6 4 4 
  Hybrid (OK x ON) 6 5 5 
     
Comparison 2: southern and northern O. korogwe populations, and reference species 

     
Mlingano dam O. korogwe (Ml-OK) 40 34 40 
     
Zigi River O. korogwe (Z-OK) 16 23 29 
     
Lake Chidya O. placidus (C-OP) 10 - - 
     
Rufiji River O. urolepis (RR-OU) 26 - - 

     
Lake Nambawala O. korogwe (N-OK) 10 9 10 
     
Lake Rutamba O. korogwe (R-OK) 17 14 9 
     

 

 
Population genetics – microsatellite genotyping 

 
DNA was extracted from fin clips using the Wizard kit from Promega (Madison, WI).  Samples were 
genotyped at 13 microsatellite loci (Table S3), sourced from Saju et al. (2010) and Liu et al. (2013), 

within two multiplex reactions for each sample. The first contained 6 loci and the second 7 loci. 

Polymerase Chain Reaction (PCR) was performed using solutions comprising: 1𝜇l DNA, 0.2𝜇l of each 

10𝜇M forward primer, 0.2𝜇l of each 10𝜇M reverse primer, 5𝜇l 2x Qiagen Multiplex PCR Master Mix, 

and made up to 10 𝜇l using RNase-free water. PCR was conducted on a 3PRIME X/02 thermocycler 

(Techne), with the following settings: an initial denaturation at 95°C for 60 seconds, followed by 35 

cycles of 94°C for 30 seconds, 57°C for 90 seconds, and 72°C for 60 seconds. The final extension stage 
was 60°C for 30 minutes. Products were genotyped on an Applied Biosystems 3500 Genetic Analyser 

alongside a LIZ500 size standard. Peaks were identified automatically using the software Genemapper 

v4.1 (Applied Biosystems; CA) and checked manually for accuracy. Arlequin v3.5 (Excoffier and 
Lischer, 2010) was used to summarize genetic diversity of populations and test for deviations from 

Hardy Weinberg Equilibrium.  

 

 
 

Population genetics – microsatellite evidence of hybridization in the southern lakes 

 
Potential hybrid individuals between O. korogwe and O. niloticus were identified from microsatellite 

data using a two-step process. 1) For all three lakes simultaneously, the find.clusters function in the R 

package adegenet v2.1.1 (Jombart and Ahmed 2011) was applied, selecting max.n.clust = 40, and the 
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maximum number of principal components, to make a preliminary assignment of individuals to two 

genetic clusters (K = 2), representing O. korogwe and O. niloticus. 2) Structure v2.3.4 (Pritchard et al. 

2000) was used to quantify probability of assignment of individuals to the two species. Structure runs 
used K = 2 with the adegenet find.clusters assignments as a prior. The admixture model was used, with 

each run including 100,000 steps as burn-in, followed by 100,000 sampled steps. Runs were repeated a 

total of 10 times, and Structure results were summarized across the runs using Clumpak (Kopelman et 
al. 2015), with putatively purebred individuals identified as those possessing > 0.9 probability of 

belonging to either O. korogwe or O. niloticus, and the remainder considered to be putative O. niloticus 

x korogwe hybrids. To ordinate the genetic structure present within the southern lakes, a Factorial 
Correspondence Analysis in Genetix v4.05 was used (Belkhir et al. 1999). 

 

Population genetics – microsatellite differences between northern and southern O. korogwe. 

 
The genetic structure of putative purebreds from the southern O. korogwe populations (Lake Nambawala 

and Lake Rutamba) to the northern O. korogwe populations (Zigi River and Mlingano Dam) was 

compared, as well as O. placidus (Lake Chidya) and O. urolepis (Rufiji river at Utete) (Table S4). 
Oreochromis korogwe individuals from Lake Mitupa were not included in the analysis due to the small 

sample size of purebred individuals (n = 6).  Structure v2.3.4 (Pritchard et al. 2000) was used to assess 

population genetic structure, using sampling location as a prior. The admixture model was selected, with 
each run including 100,000 steps as burn-in, followed by 100,000 sampled steps. Runs for each potential 

number of clusters K (between 2 and 6), were repeated a total of 10 times, and the results were 

summarized using Clumpak (Kopelman et al. 2015). Within Clumpak the Evanno method (Evanno et 

al. 2005) was used to identify the optimal number of clusters present in the data. A Factorial 
Correspondence Analysis in Genetix 4.05 was used to ordinate the genetic structure (Belkhir et al. 

1999). Genetic structure among the populations was estimated in Genepop v4.2 (Rousset, 2008) using 

FST and the significance of differences among populations was estimated using Exact tests with default 
settings.  

 

Whole genome resequencing - library preparation and data analysis 

 
Twelve samples were processed for whole genome resequencing, comprising two O. niloticus 

specimens, two O. urolepis specimens, two O. placidus specimens, three specimens from a northern O. 

korogwe population (Mlingano Dam) and three specimens from a southern O. korogwe population (Lake 
Nambawala) (Tables S1 and S2). The selection of these specimens was based on phenotypic characters, 

and they were all assumed to be purebred at the time of selection for WGS analysis. DNA was extracted 

from fin clips using a PureLink Genomic DNA extraction kit (ThermoFisher, MA, USA). Genomic 
libraries were prepared using the Illumina TruSeq HT paired-end read protocol, by Earlham Institute 

Pipelines department. Samples were sequenced using an Illumina HiSeq 2500 with version 4 chemistry 

(10 samples per lane; target 5X coverage per sample) and a 125bp paired end read metric. Initial data 

handling and quality analysis included demultiplexing and conversion to FASTQ files, followed by use 
of FASTQC (Andrews, 2010) for quality analysis of FASTQ files. 

 

Whole genome resequencing - Read mapping and SNP calling 

 

Reads were mapped against the “GCF_001858045.2” reference Oreochromis niloticus assembly (Conte 

et al. 2019) from NCBI, using the default settings of BWA-MEM v0.7.17 (Li 2013), with the output 
bam files subjected to samtools v1.9 (Li et al. 2009) fixmate prior to being sorted by co-ordinate. 

Duplicate reads were then marked using picardtools (v1.140; http://broadinstitute.github.io/picard). 

SNPs were then called using gatk (v4.1.6.0) (McKenna et al. 2010). First, HaplotypeCaller was used on 

each sample, using min-pruning 1, min-dangling-branch-length 1 and heterozygosity 0.01. All samples 
were collated using GenomicsDBImport, before joint-genotyping with GenotypeGVCFs. SNPs within 

5 base pairs of an indel were removed using BCFtools v1.10.2, and then SNPs with total depth exceeding 

180 (average exceeding 15x coverage per sample), quality-by-depth less than 2, FS greater than 10, MQ 
less than 30, MQRankSum less than -2, ReadPosRankSum less than -2 or SOR greater than 3 were 

filtered using GATK VariantFiltration (Table S5). Individual genotypes with depth less than 3 were 
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replaced with a no-call. BCFtools v1.10.2 was then used to remove sites which overlapped with indels 

in some samples, and remove SNPs which fell in scaffolds other than the inferred linkage groups.  

 
Whole genome resequencing – PCA, ADMIXTURE and phylogenetic analysis 

 

For PCA and ADMIXTURE analysis, biallelic SNPs within the linkage groups, with a minor-allele 
count of at least 3 and less than 25% missing taxa per site were extracted. These were filtered for linkage-

disequilibrium using PLINK v2.0.0 (Purcell et al. 2007), removing SNPs with r2 > 0.2 in sliding 

windows of 50 SNPs, with 10 SNP overlap. PCA analysis on the resulting 160,883 SNPs was then 
carried out in PLINK, with the top 20 principal components reported. To investigate population 

membership, we used Bayesian clustering in ADMIXTURE v1.3.0 (Alexander et al. 2009) on the same 

SNP dataset. which uses a similar algorithm to the Structure program used for the microsatellite analysis, 

but runs more quickly on large datasets. ADMIXTURE analysis was run using the main algorithm, from 
K = 1 to K = 6, with default values for cross-validation error estimation.  

 

For the nuclear phylogeny, SNPs with at least one homozygous reference and one homozygous alternate 
site were extracted. A phylogenetic tree was inferred using RAxML v8.0.20 (Stamatakis 2014) and the 

GTRGAMMA model of evolution, with the lewis ascertainment bias correction and 200 rapid 

bootstraps. To examine the mitochondrial phylogeny, de novo assemblies were produced from the raw 
reads for each individual, using mtArchitect (Lobon et al. 2016), which accounts for nuclear 

mitochondrial DNA segments. These assemblies were aligned using MAFFT v7.271 (Katoh and 

Standley 2013). A phylogenetic tree was then inferred using RAxML, the GTRGAMMA model of 

evolution and 200 rapid bootstraps. 
 

Whole genome resequencing - differentiation across the genome 

 
Relative genetic differentiation between populations (Weir and Cockerham FST) as well as absolute 

sequence divergence within (pi) and between (Dxy) populations were calculated in non-overlapping 

50kb windows using popgenWindows.py (https://github.com/simonhmartin/genomics_general). For 

this analysis, SNPs were filtered to include only sites with at least two individuals per population. Both 
pi and Dxy require counts of all sites in a window, including SNPs and monomorphic sites. To get the 

number of callable sites across the genome, we used the CallableLoci function within GATK v3.7.0 

(McKenna et al. 2010) and a custom script to get counts in each 50kb window. Inferred values of Dxy 
and pi from popgenWindows.py were then corrected to account for monomorphic sites, which were not 

in the input vcf, by multiplying them by the number of SNPs in the windows, and then dividing by the 

total number of callable sites. The O. placidus  samples were not included as one specimen was evidently 
a hybrid (see Results). 

 

We also used Twisst (Martin and Van Belleghem 2017) to explore phylogenetic relationships across the 

genome. Although we did not perform phasing and imputation for the main whole genome dataset 
analysis due to the small sample size, it is useful for phylogenetic analysis and likely to be accurate over 

the short (50-SNP) regions considered in the Twisst analysis (discussed further in Martin & Belleghem 

2017). We therefore first performed phasing and imputation of biallelic SNPs with minor-allele count 
of at least three and less than 3 missing taxa using Beagle v4.1 (Browning and Browning 2007) with a 

window size of 10,000 and overlap of 1000 SNPs. Phylogenetic trees were inferred over sliding 50-SNP 

windows (requiring at least 40 SNPs per individual), with a 10 SNP overlap using IQtree v1.6.12 
(Nguyen et al. 2015) using the best fit model for each, with ascertainment bias correction, using scripts 

modified from genomics_general (https://github.com/simonhmartin/genomics_general).. We then ran 

Twisst to calculate topology weightings for each window using the method ‘complete’. A smoothing 

parameter was applied with a loess span of 500,000 base pairs, with a 25,000 spacing.  
Divergence times 

 

We used estimates of Dxy to estimate divergence times between korogwe from Mlingano, and 
Nambawala. To convert estimates of Dxy to divergence times, we used the genome-wide mutation (μ) 

estimate of 3.5 × 10−9 (95% confidence interval: 1.6 × 10−9 to 4.6 × 10−9) per bp per generation as 
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recently estimated for haplochromine cichlids in Malinsky et al. (2018) and assumed a generation time 

of one year.  This was chosen because studies of wild populations of Oreochromis species suggest that 

generation time varies from 3-36 months and is dependent on habitat and population density, with 
populations in shallow-water and inshore habitats maturing at 12 months or less (Lowe-McConnell 

1982). Given the small adult body size of O. korogwe and its occurrence in shallow eutrophic water 

bodies, we used a generation time at the lower end of this range of 1 year. 
 

Estimates of Dxy between the Mlingano and Nambawala korogwe will be increased in genomic regions 

involved with introgression or incomplete lineage sorting. Using the Twisst output, we identified 
windows where the weighting of the species tree was 1, i.e. there is no evidence for discordance. Using 

bedtools (v2.28.0) (Quinlan and Hall 2010), we found the 50kb windows overlapping these regions, and 

used Dxy  from these regions to get a measure of divergence in windows supporting the species tree.  

 
 

D3 statistics 

 
The genotypes used for sliding window FST, Dxy and pi analysis were using to calculate pairwise-

distances between each individual, in 50kb non-overlapping windows across the genome, using 

distMat.py (https://github.com/simonhmartin/genomics_general). This pairwise-distance was corrected 
using the number of callable sites per window (see that section of the methods). D3 statistics can be 

used to test for introgression between either P3 and P2 or P3 and P1 in a three-taxon phylogeny 

(P3,(P2,P1));, without the presence of an outgroup, using genetic distances. Introgression would be 

expected to result in reduced genetic distance between the two taxon in question. Using the equation 
D3= (dP1P3 – dP2P3) / (dP1P3 + dP2P3); where dP1P3 is the distance between P1 and P3 and dP2P3 

is the distance between P2 and P3, a result where D3 is significantly less than 0 indicates introgression 

between P1 and P3, whereas a result where D3 is significantly greater than 0 indicates introgression 
between P2 and P3 (Hahn and Hibbins 2019). Significance was assessed by 1000 block bootstrap 

replicates, with the standard deviation used to calculate p values using the overall mean D3. The test 

was carried out between all trios of species where P1 was an individual from O. korogwe Nambawala, 

P2 was an individual from O. korogwe Mlingano and P3 was an individual from either Oreochromis 
niloticus or Oreochromis urolepis. 

 

Geometric morphometrics – analyses of individuals from the southern lakes 
 

Ethanol preserved specimens were photographed on their left side in standard orientation with a scale. 

The image was calibrated for size and 24 landmarks (Fig. S1) were placed onto the image of each 
specimen using tpsDIG 1.40 (Rohlf, 2004). All microsatellite-genotyped fish (See below) were included 

in geometric morphometrics, except for specimens of O. korogwe where pelvic fins were naturally 

absent. Landmark data were subjected to a Procrustes analysis in MorphoJ 1.06 (Klingenberg, 2011). 

Individuals were assigned to one of three groups based on Structure results (purebred O. niloticus, 
purebred O. korogwe, hybrid O. niloticus x korogwe). The Procrustes coordinates were then regressed 

against centroid size in MorphoJ 1.06, and the size standardized residuals from this regression analysis 

were then used in a stepwise Discriminant Analysis in SPSS 24 (IBM, London), with purebred O. 
niloticus and purebred O. korogwe placed in a-priori known categories, and hybrid individuals 

uncategorized.  

 
Linear morphometric measurements were taken from each genotyped specimen collected in 2016 using 

digital calipers, following methods outlined in Barel et al. (1977) and Snoeks (2004). The following 

measures were made: standard length, body depth, head length, caudal peduncle length, caudal peduncle 

depth, dorsal fin base length, anal fin base length, pectoral fin base length, pelvic fin length, caudal fin 
length, head width, snout length, eye length, interorbital width and lower jaw length. Measurements 

were log10 transformed and size-standardized residuals generated from a linear regression against 

standard length. Individuals were assigned to the three different groups based on Structure results 
(purebred O. niloticus, purebred O. korogwe, hybrid O. niloticus x korogwe). The size-standardized 

residuals were used in a Discriminant Analysis in SPSS 24 (IBM, London), with purebred O. niloticus 
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and purebred O. korogwe placed in a-priori known categories, and hybrid individuals remaining 

uncategorized. 

 
Morphological comparisons between northern and southern O. korogwe 

 

The morphology of genetically purebred O. korogwe from Lakes Rutamba and Nambawala (identified 
from microsatellite data) was compared to individuals from the Mlingano Dam and Zigi River in 

northern Tanzania. Geometric morphometric landmarks and linear morphometric measurement data 

were collected using the methods described above. The geometric morphometric landmarks were 
subjected to a Procrustes standardization and the resultant Procrustes coordinates were subjected to a 

pooled within-group regression against centroid size, generating size standardized residuals. These 

residuals were used in a Canonical Variates Analysis in MorphoJ 1.06, and a Discriminant Analysis in 

SPSS 24. Linear morphometric measurements were log10 transformed. A small number (9 of 2000) of 
measurements were interpolated using Bayesian PCA in the R package pcaMethods (Stacklies et al. 

2007), allowing individuals with absent pelvic fins or damaged fins to be included in analyses. We then 

pooled within-group regressions of each variable against standard length, treating each of the four 
populations as a group. The size-standardized residuals generated from these regressions were then used 

in a Discriminant Analysis in SPSS 24. 

 
Results 

 

Population genetics - microsatellite analysis of purebred and hybrid Oreochromis in southern lakes 

 
Using Structure, the majority of individuals were assigned to one of the two parent species with a 

probability of >90%. Individuals that were not able to be assigned to a single species with a probability 

of >90% were considered hybrids. In total these hybrids comprised 29% of individuals sampled from 
Lake Mitupa (2 of 7), 27% of individuals from Lake Nambawala (6 of 22), and 6% of individuals from 

Lake Rutamba (2 of 32) (Fig. 2a,b).  

 
Figure 2. Genetic and morphological contrasts between O. korogwe, O. niloticus and O. korogwe x niloticus 

hybrids. a) Structure assignment of individuals to populations (K = 2) using microsatellite data from 

Oreochromis from the southern lakes. Filled black symbols indicate individuals of putative hybrid origin. b) 

images of O. korogwe (top), O. korogwe x niloticus (middle) and O. niloticus (bottom). c) Discriminant function 

axes illustrate distinctive morphology of purebred O. korogwe (blue)s and O. niloticus (red) O. korogwe x 

niloticus hybrid individuals which overlap in morphospace with parent taxa.  
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Figure 3. Genetic and morphological analysis of focal populations of O. korogwe, and reference populations of 

O. urolepis (Utete), and O. placidus (Lake Chidya). a) Structure analysis of the six populations, using K = 5. b) 

Factorial correspondence analysis (FCA) of all populations from all six sites, c) FCA of the four O. korogwe 

populations, d-e) Discriminant Function analysis (DFA) of the four O. korogwe populations using linear and 

geometric measures respectively, and f) Wireframe analysis from Canonical Variates Analysis (CVA) showing 

geometric morphometric divergence between northern (light blue lines) and southern (dark blue lines) 

populations. 

 

Morphological comparisons of purebred and hybrid Oreochromis in southern lakes 

 

Discriminant Analysis of geometric morphometric data demonstrated that O. niloticus and O. korogwe 

individuals could be reliably separated (Wilk’s λ = 0.272, χ2 = 37.054, P < 0.001) with 30 of 32 purebred 
individuals correctly classified (Table S6). Equally, Discriminant Analysis using linear morphometric 

measurements showed that that O. niloticus and O. korogwe individuals could be reliably separated 

(Wilk’s λ = 0.314, χ2 = 32.401, P < 0.001), with 29 of 32 purebred individuals correctly classified (Table 
S6). Typically, O. niloticus were characterized as possessing a longer and broader head (Table S7). 

Hybrid morphospace overlapped with that of purebred species in both datasets (Fig. 2c). 
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Population genetics – microsatellite genetic structure among Oreochromis populations 

 

Structure analyses indicated the optimum number of genetically distinct populations across the six 
sampled populations was K = 5, with the southern populations from neighbouring lakes Rutamba and 

Nambawala resolved as genetically homogeneous group (Fig 3a). All O. korogwe were genetically 

distinct from reference populations of O. urolepis from the Rufiji river and O. placidus from Lake 
Chidya in ordination plots (Fig. 3b). Analysis including only O. korogwe revealed the Zigi river and 

Mlingano dam populations to be distinct from one another, and to both populations from the south (Fig. 

3c). In pairwise comparisons, all populations showed highly significant genetic differences, with 
exception of O. korogwe from Lakes Rutamba and Nambawala (Table 2). No populations showed clear 

patterns of significant deviation from Hardy-Weinberg Equilibrium in microsatellite loci (Table S4).  

 

Table 2. Matrix of FST pairwise comparisons (below left) and corresponding P values from Exact tests 
(above right). 

 

Morphological comparisons of northern and southern O. korogwe  

 
Discriminant Function Analysis of both the geometric morphometric data and the traditional 

morphometric data demonstrated highly significant differences between the northern and southern O. 

korogwe groups (Fig. 3d,e), with the majority of individuals being able to be classified by sampling site 
using either linear traditional measurement data (74 of 80 individuals), or geometric morphometric data 

(84 of 88 individuals; Table S8). Discriminant Function Axis 1 separated northern and southern 

populations in both morphological datasets. In the linear measurements this axis indicated O. korogwe 

from the northern populations to have shallower body depth, a less deep caudal peduncle, a narrower 
interorbital width and shorter pectoral fins, relative to southern populations (Table S9). Wireframe 

diagrams indicated northern O. korogwe populations had smaller eyes and shallower body dimensions 

than southern populations (Fig. 3f). 
 

Whole genome resequencing: phylogenomic analyses 

 
Illumina sequencing resulted in an average of 22 million reads per sample (range: 20.53 to 24.40 

million), and mapping rates to the O. niloticus reference genome of 97.39 to 99.18% (Table S1). Mean 

sequencing coverage across the dataset was 5.29X, with approximately half the genome covered with a 

sequencing depth of at least 5X (Table S1). The filtered datasets and number of SNPs used for 
downstream analysis are given in Table S10.  ADMIXTURE analysis of all 12 samples suggested cross-

validation minima at K = 2 and K = 5, indicating the most likely number of clusters in the dataset (Fig. 

S2). At K = 5, there was a clear separation of the northern and southern O. korogwe populations 
alongside the other species, supported by groupings in PCA (Fig. 4a). The ADMIXTURE analysis also 

indicated that one O. placidus sample was likely an early-generation O. placidus x niloticus hybrid or 

backcross, with approximately 40% O. niloticus cluster membership (Fig. 4b).  
 

Maximum likelihood phylogenetic analysis indicated that the O. placidus hybrid was likely the result of 

a female O. niloticus x male O. placidus cross, as the (maternally inherited) mtDNA of the sample 

 

O. placidus 

Chidya 

O. korogwe 

Zigi  

O. korogwe 

Mlingano  

O. urolepis 

Rufiji 

O. korogwe 

Rutamba 

O. korogwe 

Nambawala 

       

O. placidus Lake Chidya  <0.001 <0.001 <0.001 <0.001 <0.001 

O. korogwe Zigi river 0.547  <0.001 <0.001 <0.001 <0.001 

O. korogwe Mlingano dam 0.761 0.341  <0.001 <0.001 <0.001 

O. urolepis Rufiji river 0.229 0.455 0.612  <0.001 <0.001 

O. korogwe Lake Rutamba 0.659 0.358 0.378 0.511  0.473 

O. korogwe Lake Nambawala 0.618 0.415 0.470 0.461 0.011  
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clustered with O. niloticus (Fig. 4d). Otherwise, there was a clear separation of O. urolepis, O. niloticus, 

O. placidus and the two O. korogwe populations in both the nuclear and mtDNA phylogenies (Fig. 4c-

d). 

 
Figure 4. Analyses of genome-wide data. a) Principal Component Analysis (PCA) of all variants, b) Admixture 

analysis of all variances, c) phylogeny based on nuclear genome variants, using RAxML GTR+ Γ model. d) 

phylogeny based on mitochondrial genome variants, using RAxML GTR+ Γ model. Scale bars in changes per bp. 

Values on nodes indicate bootstrap support values for 1000 bootstraps, those >70% shown.  

 

Differentiation (FST) was highest among interspecific comparisons (Fig. 5a-f). Between the northern 

(Mlingano Dam) and southern (Nambawala) O. korogwe populations, most 50kb windows had low 
differentiation, but there were prominent regions of the genome showing very high FST differentiation 

(Fig. 5e). Notably, there were regions of relatively low genetic differentiation between the O. niloticus 

and O. korogwe sampled from Nambawala where the two species are sympatric (Fig 5f), but these were 
not apparent in the comparison between the fully allopatric O. niloticus and O. korogwe from Mlingano 

Dam (Fig. 5d). Section of low FST were also apparent in the comparison of O. korogwe from Nambawala 

and O. urolepis. Sections of low FST were showed no clear pattern of being associated with areas of 

elevated or depleted genomic diversity (pi) in the focal species (Fig. S3). However, it was notable that 
in all species LG3 had substantially higher variability in genetic diversity relative to other linkage 
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groups, and possessed higher absolute sequence divergence in both intraspecific and interspecific 

comparisons (Fig. S4). 

 

 
Figure 5.  a-f) Pairwise sliding window FST between populations across genome linkage groups, in 50-kb 

windows, between combinations of O. niloticus, O. urolepis, southern O. korogwe N (Lake Nambawala), 

northern O. korogwe M (Mlingano Dam). g) Phylogenetic representation across genomes of four populations, as 

estimated by Twisst. Three possible phylogenies for the four taxa are illustrated below, and their colours 

correspond to relative weightings in plot above. The linkage groups are labelled according to the numbering of 

the linkage groups in the reference genome.  
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Whole genome resequencing: differentiation across the genome and timescale of divergence 

 

Phylogenetic relationships across the genome, generated using Twisst, provided evidence of admixture 
that was heterogeneous across the genome (Fig. 5g). The two O. korogwe populations were resolved as 

sister taxa across most of the genome. However, for substantive sections of the genome, a phylogeny 

supported O. niloticus and the southern O. korogwe (Nambawala) as sister taxa, and O. urolepis and 
northern O. korogwe (Mlingano Dam) as sisters. Notably, these tracts of the genome consistent that are 

consistent with interspecific hybridization corresponded with both the low FST regions O. niloticus and 

the southern O. korogwe (Nambawala) (Fig 5f), and low FST region between O. urolepis and the northern 
O. korogwe (Mlingano) (Fig 5b). D3 statistics consistently provided strong statistical support for 

scenarios of both decreased genetic distance between O. niloticus and southern O. korogwe in 

Nambawala compared to between O. niloticus and northern O. korogwe, and between O. urolepis and 

the northern O. korogwe at the Mlingano Dam compared to between O. urolepis and southern O. 
korogwe (Table S11). 

 

Overall absolute sequence divergence (Dxy) between the northern (Mlingano Dam) and southern 
(Nambawala) O. korogwe populations was 0.0009 (Fig. S5). Applying the genome-wide mutation (μ) 

rate estimate of 3.5 × 10−9 (95% confidence interval: 1.6 × 10−9 to 4.6 × 10−9) from Malinsky et al. 

(2018), with a generation time of one year, gave a genome-wide divergence time estimate of 271 KYA 
(95% CI: 206-594 KYA). Using only those regions of the genome consistent with the hypothesis of the 

northern and southern O. korogwe being sister taxa, the overall absolute sequence divergence (Dxy) was 

0.0005, providing a divergence time estimate of 144 KYA (95% CI: 109-315 KYA).  

 
Discussion 

 

Population structure of southern and northern O. korogwe. 
 

This study confirmed the distinctness of all sampled O. korogwe populations from two other species of 

Oreochromis naturally present in coastal rivers of Tanzania, namely O. placidus and O. urolepis. The 

results also demonstrated a close evolutionary relationship between O. korogwe individuals in northern 
and southern Tanzania. Nevertheless, there has been extensive morphological divergence between the 

northern and southern O. korogwe, and  based on least admixed sections of the genome, this divergence 

took place approximately 140,000 years ago. Therefore, the data are consistent with these taxa 
representing independent evolutionarily significant units. The presence of a 500 km gap between the 

sampled northern and southern populations of O. korogwe in Tanzania, is intriguing. In tilapiine cichlids 

the presence of such gaps is typically due to human intervention. For example, stocking has resulted in 
O. niloticus having a broad discontinuous distribution across Africa, and further afield (Deines et al. 

2014). However, our results are consistent with the current distribution of O. korogwe  being natural. 

The distribution may have arisen from a natural long-distance colonization event, or perhaps that the 

species once had a wider distribution that has been disrupted through either extirpation or introgression 
with O. urolepis, a species that neatly fits the gap between northern and southern O. korogwe (Ford et 

al. 2019; Shechonge et al. 2019). 

 
Morphological variation among O. korogwe populations 

 

Our results showed that the northern and southern O. korogwe populations are largely distinct in 
characters such as body depth, fin length and eye size morphology. The populations are sufficiently 

divergent in morphology to warrant consideration of these as distinct species under morphological 

species concepts. The anatomical divergence may be accompanied by ecological differences, as 

variation in craniofacial morphology and body shape are often related to resource use patterns in 
cichlids. For example, variation in eye size is related to visual environment (Hahn et al. 2017), and fin 

morphology is related to patterns of habitat use (Colombo et al. 2016). Little is known about the feeding 

habits of O. korogwe and detailed analysis of diets and foraging environments within the sampled 
locations are required to explore functions of the morphological variation observed. Given the allopatric 

nature of the populations, further ecologically and developmentally-focussed work would also help to 
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reveal if the observed divergence can be attributed to fixed genetic differences, or alternatively variation 

between environments during development (Parsons et al. 2011; Schneider and Meyer, 2017). 

 
Our microsatellite-based results also confirmed the presence of hybrids between O. korogwe and 

invasive O. niloticus in all three of the southern lakes, with a frequency of between 6 and 29% of 

sampled individuals. This level of hybridization is likely to be an underestimate if purebreds are present 
(Boecklen & Howard, 1997), which our genome-wide analyses also support. Such hybridization 

between native and non-native species commonly occurs when invader is closely-related to the native 

species, and the species pair are still reproductively compatible due to an absence of strong reproductive 
barriers that typically isolate naturally sympatric taxa (Horreo et al. 2011, Gainsford, 2014). It is not 

fully understood what factors influence the extent of reproductive isolation among Oreochromis species. 

However, it is notable that like many African mouthbrooding cichlids, Oreochromis exhibit traits 

indicative of sexual selection based on male colours or the characteristics of breeding territory 
(Trewavas 1983). It is possible that in this case hybridization between O. korogwe or O. niloticus takes 

place due to both species possessing dark male breeding colours (Genner et al. 2018). Female mating 

decisions also biased towards larger individuals in Oreochromis species, most likely due to the influence 
of male-male competition on breeding territory acquisition (Nelson 1995; Fessehaye et al. 2006). Hence, 

is also conceivable that larger O. niloticus males have effectively excluded smaller O. korogwe males 

from suitable breeding habitats; but detailed survey and experimental work is required to test this 
hypothesis, including tests of sex-biases in the direction of hybridization (e.g. Hayden et al. 2010; 

Rognon & Guyomard, 2003). 

 

Heterogeneity of admixture across the genome  
 

We conducted genome-wide scans of FST and Dxy between O. niloticus, O. urolepis and O. korogwe 

populations. FST between the northern (Mlingano Dam) and southern (Nambawala) O. korogwe 

populations was typically low across all linkage groups, with peaks of high FST that may reflect genomic 
regions under directional selection. These peaks of the FST were not clustered, and these regions 

associated loci associated with the divergent phenotypes of these populations. These patterns are 

characteristic of early stage speciation under geographical isolation (Seehausen et al. 2014). 
 

Between O. urolepis and O. niloticus a consistent pattern of high FST was present, reflecting the long 

divergence. On linkage group 3, FST was lower, and but it is notable that this shows an unusually high 

level of sequence diversity in all our studied Oreochromis populations (Fig. S4), as well as a high level 
of absolute sequence divergence between all populations (Fig. S5).  On account of this linkage group 

being 2-3 times larger than any other in the Oreochromis genome (Fig. 6; Conte et al. 2019), LG3 has 

been referred to as a megachromosome, and is likely to consist of a fusion with an ancestral B-
chromosome (Conte et al. 2020). It is rich in long-coding RNA, genes related to immune response and 

regulation, and repetitive elements. It has also been reported as containing a sex-determination locus in 

Oreochromis, albeit not in O. niloticus itself (Conte et al. 2020). Collectively, the high genetic diversity 
of this linkage group explains the relatively low FST observed between O. urolepis and O. niloticus, and 

between other species pairs. 

 

In comparisons between O. niloticus and southern O. korogwe from Lake Nambawala, there was 
considerable heterogeneity in FST across the genome. There were notable long-tracts of relatively low 

FST, most conspicuously on linkage groups 1, 7, 9 10, 17, 20 and 23. Many of these were paralleled by 

low FST between O. urolepis and O. korogwe from Lake Nambawala. However, the regions of low 
differentiation were not present in comparisons between O. niloticus and northern O. korogwe from the 

Mlingano Dam, or between O. urolepis and O. korogwe from the Mlingano Dam. This is suggestive of 

the observed patterns of substantive genomic heterogeneity being reflective of admixture events in the 

south of Tanzania, after the split from northern O. korogwe approximately 140,000 years ago. 
 

Given our microsatellite evidence of individuals of O. korogwe x niloticus hybrid ancestry within Lake 

Nambawala, tracts of low FST between O. korogwe x O. niloticus plausibly reflect hybridization between 
in the southern region. The analysis of phylogenetic relationships of the focal populations in this study 
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using Twisst show that although the species tree relationship is most common across the genome, there 

is a substantial difference in the frequency of the two discordant relationships, which under incomplete 

lineage sorting alone would be expected to have the same frequency, The observed excess of the 
discordant topology grouping O. niloticus with O. korogwe Nambawala and O. urolepis with O. 

korogwe Mlingano (green in Figure 5g) therefore suggests introgression between O. niloticus and O. 

korogwe Nambawala or between O. urolepis and O. korogwe Mlingano. Supporting this, all D3 analysis 
suggest significantly lower genetic distances between O. niloticus and O. korogwe Nambawala and 

between O. urolepis and O. korogwe Mligano, than otherwise expected under a model of no-

hybridization. However, this three-taxon analysis can be confounded by introgression events involving 
taxa that have not been included in the analysis. Introgression between O. niloticus and O. korogwe 

Nambawala, for example, would increase average the genetic distance between O. korogwe Nambawala 

and O. urolepis, as the genetic distance between O. urolepis and O. niloticus is greater than between O. 

urolepis and O. korogwe Nambawala. A single introgression event, between  O. niloticus and O. 
korogwe Nambawala, could therefore explain both positive results.  

 

The genomic regions of this introgression highlighted by the Twisst analysis overlap with the low FST 
regions between O. niloticus and O. korogwe Nambawala, but such low FST regions are not observed 

between O. urolepis and O. korogwe Mlingano. The most congruent interpretation of these FST results 

is introgression between O. niloticus and O. korogwe Nambawala. The parallel regions of low FST 
present between O. korogwe from Lake Nambawala and O. urolepis are unusual however, given that O. 

urolepis has never been recorded inside Lake Nambawala, or elsewhere in the known range of O. 

korogwe (Shechonge et al. 2019). One possible explanation for this pattern is that the introduced O. 

niloticus population in Lake Nambawala could itself comprise O. urolepis x niloticus hybrids, as these 
species are known to hybridise elsewhere in Tanzania (Shechonge et al. 2018), and it is plausible that 

Nambawala was stocked from a hybrid population. Alternatively, these low FST tracts may reflect recent 

admixture of ancestral variation shared by both O. urolepis and O. niloticus. We have not sequenced the 
O. niloticus from Lake Nambawala to test for the presence of recent introgression with O. urolepis, but 

this may be enlightening. We must also note that the low sample sizes (n=2 to 3 individuals) will have 

limited the accuracy and reliability of FST, Dxy and pi statistics. Further studies with more 

comprehensive phylogenetic and population sampling with greater sample sizes may be able to untangle 
the nature of introgression events with more precision.  

 

Extensive heterogeneity in the extent of admixture across genomes has been reported in multiple studies 
of closely related species, including trees (Wang et al. 2020), insects (Martin et al. 2019, Valencia-

Motoya et al. 2020) and cichlid fish (Gante et al. 2016, Svardel et al. 2020). Tracts of the southern O. 

korogwe genome with extensive evidence for hybridization (e.g. LG7, LG9 and LG17), may have 
resulted from introgressed alleles in those regions being favoured by selection. In North America 

hybridization between introduced rainbow trout (Oncorhynchus mykiss) and native westslope cutthroat 

trout (Oncorhynchus clarkii lewisi), has led to multiple genomic variants being shared between the 

species, with selection repeatedly favouring some introduced alleles within the native species (Bay et 
al. 2019). Adaptive introgression has similarly been suggested to have led to multiple beneficial traits 

arising from close-relatives in many species groups, including Darwin’s finches (Lamichhaney et al. 

2015), snowshoe hares (Jones et al. 2018) and multiple plant taxa (Suarez-Gonzalez et al. 2018).  
 

In comparisons of O. korogwe from Lake Nambawala and O. niloticus, regions of the genome with low 

levels of introgression (e.g. LG6, LG16 and LG19). This may be due to the presence of “barrier” loci 
that reduce gene flow and maintain species boundaries (Elmer et al. 2019). It is been shown that 

hybridization can suppress recombination rates in some genomic regions of hybrid trout (Ostberg et al. 

2013). It has also been proposed that recombination is particularly strongly suppressed near genes 

associated with reproductive isolation among parent species, due to hybrids have a low relative fitness 
(Hvala et al. 2018). In particularly, hybridization could lead to the breakup of coadapted “supergene” 

clusters, leading to low fitness hybrids, and so these large genomic regions would in principle be among 

most resistant to introgression. Positive associations between recombination rate of genome and 
admixture have been described in humans and swordtail fishes (Schumer et al. 2018), as well as 

sympatric pairs of Heliconius butterflies (Martin et al. 2019). However, accurate estimations of 
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recombination rate require genotype data from more extensive population sampling than has been 

undertaken for our study, so this remains an untested yet plausible explanation for at some of the 

heterogeneity observed. 
 

Conservation implications 

 
Our results support the concept that the northern and southern O. korogwe populations are long-diverged 

and phenotypically-divergent evolutionarily significant units. These may require consideration as 

discrete species, which will have implications for the biodiversity of tilapias of East Africa. However, 
the results also illustrate that genetic structure within the newly discovered populations of O. korogwe 

has already been impacted by the invasive species O. niloticus. Similarly, the results also show O. 

niloticus has hybridized with O. placidus in the neighbouring Ruvuma drainage. Species introductions 

can have non-reversible impacts on genetic diversity (Dudgeon et al. 2006), and therefore the presence 
of this highly invasive species in these lakes is of considerable concern for the long-term conservation 

status for these populations. Hybridization could have larger impacts on the genetic diversity of this 

population over time, especially given evidence from other lakes where O. niloticus have been 
introduced (e.g. Deines et al. 2014) and given the lack of understanding of the long-term fitness 

consequences of these interaction. Although there is some evidence that hybridization could introduce 

advantageous alleles into the population, our findings suggest that these southern O. korogwe 
populations are likely to be locally adapted to the southern lakes. Therefore, introgression may have 

negative outcomes for the genetic uniqueness of the O. korogwe populations at least.  

 

Our results clearly demonstrate an ongoing threat to unique southern O. korogwe populations, and long-
term monitoring of the genetic and phenotypic diversity within the studied lakes will yield insights into 

changes of their status. We suggest that clear conservation actions could be implemented. Given the 

removal of O. niloticus from the southern lakes would be impractical, conservation of the unique genetic 
resources within the southern lakes would be best done through the identification of potential ark sites. 

For this research we sampled three of the water bodies in close proximity to the towns of Lindi and 

Rutamba, and it is possible that O. korogwe populations unaffected by O. niloticus are present in four 

additional proximate water bodies that we have not yet been surveyed. Each of these potential ark lakes 
will need to be intensively investigated to determine the species of fish present, and the potential for O. 

niloticus colonisation via natural waterways. In the absence of the suitable ark sites, the ex-situ 

conservation could be implemented. In both conservation strategies, genome-wide sequencing would 
be useful to confirm the genetic purity of the stocks, as this study has shown a clear signal of 

introgression in individuals of O. korogwe from Lake Nambawala that were assumed to purebred on the 

basis of the phenotypes. Therefore, this study underlines the value of using genome-wide sequencing 
for assessing the conservation status of taxa under threat from hybridization with introduced species. 
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