Navigating through chemical space and evolutionary time across the Australian continent in plant genus *Eremophila*

Oliver Gericke^{1, 8}, Rachael M. Fowler^{2, 8}, Allison M. Heskes¹, Michael J. Bayly², Susan J. Semple³, Chi P. Ndi³, Dan Stærk⁴, Claus J. Løland⁵, Daniel J. Murphy⁶, Bevan J. Buirchell⁷ and Birger L. Møller^{1, *}.

Abstract

Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemoevolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution) and medicinal properties (traditional medicinal uses and antibacterial studies) augmenting our understanding of complex interactions in biological systems.

Key words: Eremophila, Scrophulariaceae, metabolomics, Myoporeae, phylogeny, diterpenoid, serrulatane, viscidane.

Introduction

The large, cosmopolitan plant family Scrophulariaceae *sensu stricto* contains eight tribes including the Myoporeae. Myoporeae contains seven genera, with *Eremophila* being the largest genus in the tribe (\sim 230 species and 58 subspecies). *Eremophila* exhibits incredible morphological diversity throughout the Eremean (arid) biome, which covers approximately 70% of the Australian continent. Indigenous

¹ Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.

² School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.

³ Quality Use of Medicines and Pharmacy Research Centre, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.

⁴ Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.

⁵ Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.

⁶ Royal Botanic Gardens Victoria, Melbourne, Victoria 3004, Australia.

⁷ Wise Owl Consulting, Como, Western Australia 6152, Australia.

⁸ Co-first author.

^{*} Correspondant author: blm@plen.ku.dk

people of the Australian mainland – the Australian Aboriginal Peoples – recognize *Eremophila* species as important sources of traditional medicine [1–3]. Aboriginal Peoples' use a range of *Eremophila* species and preparation methods, though use of leaves is documented most commonly. Ethnomedicine can be a key guide to bioactive natural products and potential drug leads [4, 5].

Chemical exploration of *Eremophila* and closely related species was pioneered by Emilio Ghisalberti and colleagues in the 1970s [6]. A plethora of unique and structurally diverse metabolites belonging to the family of terpenoids have subsequently been uncovered [7–14] (Figure 1). Extracts from *Eremophila* species have been tested for anti-viral [15], anti-bacterial [16–18] and anti-cancer [19] activity, and show inhibitory activity of ion channels [20]. Isolated serrulatane- and viscidane-type diterpenoids exhibit anti-malarial [21], anti-bacterial [7, 22–27], anti-diabetic [10, 11], and anti-inflammatory [22, 24] properties. The presence and biosynthesis of interesting metabolites in species of Myoporeae have previously been demonstrated [10–14, 18, 21, 28] and recent phylogenetic studies have revealed complex evolutionary relationships between genera in the tribe [29, 30]. Still only a fraction of species within the Myoporeae have had their metabolites investigated. Based on the rich source of bioactive molecules this group has proven to be, it is expected that further investigation will yield many more novel molecules with potential as pharmaceuticals.

Plant diterpenoids represent a rich source of bio-based pharmaceuticals and constitute the foundation of many drug development success stories [31], such as paclitaxel (Taxol) [32], ingenol mebutate (Picato) [33] and forskolin (e.g. ForsLean) [34]. Despite evidence of diterpenoids as high-value compounds, only a few plant species have been thoroughly investigated in drug discovery campaigns [35, 36]. The hunt for novel plant derived pharmaceuticals is not a trivial task given the immense number of unknown metabolites present in any given species. Emerging tools that can help in this challenge are *in silico* dereplication methodologies that can illuminate this chemical "dark matter" found in plants [37]. One such tool is molecular networking, an approach which greatly enhances the dereplication of metabolomics data and allows a streamlined hypothesis-driven targeting of metabolites in contrast to the traditional "grind and find" model [38–40]. Molecular networking further enables integration of functional annotations, such as biological, taxonomic and geographical data [41–43]. This multilayered approach facilitates the dereplication of large metabolite datasets associated with interesting functionalities and thus improves our understanding of biological systems in which they are found.

In this study, we have investigated the chemo-evolutionary relationships in the plant tribe Myoporeae by applying phylogenetics and state-of-the-art computational metabolomics to a dataset of 291 leaf samples of *Eremophila* and allied genera. Information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution) and medicinal properties (traditional medicinal uses and antibacterial studies) is used to bring chemical knowledge gained on the natural products present, qualified by use of a large dataset of 76 reference compounds, into a systematic context that augments our understanding of interactions in biological systems and facilitates targeted drug discovery. This research has been conducted under Australia's access and benefit-sharing laws which are consistent with obligations under the Nagoya Protocol [44].

Results

Chemo-evolutionary relationships in Myoporeae

In this study, molecular phylogenetics using data from high-throughput DNA sequencing was integrated with plant metabolomics utilizing state-of-the-art molecular networking tools to elucidate chemoevolutionary relationships by exploring metabolite diversity and evolution across the diverse tribe My-

oporeae (Fig. S1). Our uniquely comprehensive sampling included 291 specimens, representing six genera and \sim 80% of the species in the tribe.

We assessed metabolite diversity in Myoporeae using untargeted high-resolution mass spectrometry (MS¹ and MS²) to generate a molecular network via a feature-based molecular networking pipeline [45]. To focus on the chemically diversified fraction of the Myoporeae metabolome, we used the 100 largest chemical subnetworks with at least 9 nodes; each chemical subnetwork representing a chemical family of structurally related metabolites (Figure 2). Those 100 chemical families altogether comprised 3415 nodes, representing 69% of the full connected network (4936 nodes), excluding singletons (6267 nodes without a structurally similar neighbour node). Within this dataset, the median number of detected chemical families per specimen was 15 and the maximum was 36. Chemical similarity among samples was assessed, based on binary presence/absence information of chemical families, using hierarchical cluster analysis.

Clear phylogenetic patterns, with closely related species having similar chemical profiles, were revealed when metabolic clusters and phylogenetic analyses were compared in the form of a tanglegram (Figure 3). The phylogenetic analysis identified eight major lineages (labelled clades A–H) and the metabolic cluster analysis identified two distinct tanglegram metabolic clusters (TMC) A and B. TMC A includes the majority of *Eremophila* diversity, all allied genera, and both outgroup species (*Leucophyllum*) (Table 1). Morphologically, species producing metabolites characteristic of TMC A are highly diverse, being variously insect or bird pollinated, having hairy or glabrous and resinous or non-resinous leaves. Geographically, species of TMC A are represented across the full distribution of the tribe, throughout Australia's arid and semi-arid zones, but also including temperate, subtropical and non-Australian members. In contrast, species producing metabolites characterizing TMC B are a subset of Eremophila species from three main lineages of phylogenetic clade H (subclades H11, H12, H14). Species producing the metabolites characteristic of TMC B are also morphologically diverse (bird and insect pollinated, hairy and glabrous leaves) and are more likely to have some particular traits: within the TMC B taxa, 83% of the species have resinous leaves whereas this only applies to 31% of the TMC A taxa. Species in TMC B occur largely in Australia's central arid zone, with particularly high species diversity in the north west (TMC B1) and south west (TMC B2) of Western Australia relative to species associated with TMC A chemistry (Figure S2).

Heatmap analyses integrating the observed chemical space with phylogenetic relationships in Myoporeae were used to explore possible associations between plant chemistry, resin production and geography. This approach shows a clear phylogenetic signal, with specific groups of chemical families (heatmap metabolic clusters, HMC) found to be associated with phylogenetic clades (Figure 4). The HMCs V, VIII, IX and X show strong phylogenetic signatures in the heatmap, and the dereplication approach revealed a dominance of terpenoid-related chemistry in these clusters, typically associated with serrulatane and/or viscidane diterpenoids. The complete lack of these chemical families in outgroup species, yet dominance amongst many clades of *Eremophila* suggests that this chemistry may be unique, and highly specialised within Myoporeae. Specifically, HMC IX chemistry is dominant in phylogenetic subclades H11, H12 and largely absent from other lineages. The HMC VIII chemistry extends to early-diverging lineages (clades A–G) while that of HMC X extends to clade H14. HMC V is largely unique to phylogenetic clade H14.

Resin chemistry as a key strategy to adapt to the Eremean zone

To relate chemo-evolutionary relationships to specific plant and environmental characteristics, as well as to biological activity, we enhanced the heatmap analysis with metadata on leaf resin and hairiness, pollinator types, geographic distributions, traditional medicinal usage and reported activities against

human Gram-positive bacterial pathogens (Table S1). This revealed a strong association between HMC IX and X chemistry and the formation and accumulation of leaf resin in phylogenetic clades H11–H14 (Figure 4). Generalised linear models for each HMC-metadata combination showed that resinous leaves are significantly associated with both HMC IX (manyglm, p = 0.001) and X (manyglm, p = 0.001) (Table S2). The species in these two heatmap metabolic clusters directly correspond to the main members of TMC B with a high frequency of leaf resin relative to TMC A. We hypothesise that HMC IX and X chemistry is a main driver of tanglegram clustering patterns, based on its predominant presence in TMC B (Table S3). PERMANOVA analysis supports a strong overall association of leaf resin on chemical diversity in the dataset, with leaf resin explaining a relatively high degree of variation (8.2%, adonis, F = 25.8, p = 0.001). However, those results could be affected by non-homogeneous dispersion of the data. In fact, specimens without leaf resin are significantly more dispersed (betadisper, p = 0.018), indicating an increased chemical diversity compared to plants with resinous leaves, which are more specialized (Table S4). Notably, no strong associations between leaf chemistry and leaf hairiness nor pollination syndrome are evident (explained variances of 1.4% (adonis, F = 4.16, p = 0.001) and 1.1% (adonis, F = 3.32, p = 0.002), respectively). Univariate testing based on a generalised linear model and subsequent indicator species analysis revealed five chemical families that are significantly associated with bird pollination (Table S5). Those families included a large group of flavonoids (chemical family 9) that comprises the identified compound KU036-6-1. Future work is needed to explore presence of these compounds in other plant organs (i.e. flowers, fruit) and a possible correlation to pollination strategy (i.e. guiding birds through flower colour).

The majority of species in Myoporeae (i.e. phylogenetic clade H) are, with few exceptions including Bontia, Myoporum and a small number of Eremophila species, distributed in arid/semi-arid regions of Australia (Figure S3). The complex evolutionary history and spatially heterogenous nature of Australia's arid zone is now being recognised [46, 47], although dividing the arid biome into smaller areas for biogeographic analysis remains problematic [48]. In the present study, clear geographic patterns emerge between phylogenetic clades A–H (Figure S3). While phylogenetic clade H is clearly widespread and mainly arid in distribution, the early diverging lineages of the phylogeny (clades A-G) have more coastal/mesic distributions. Within phylogenetic clade H, differences in species distributions between subclades are observed (Figure S4) that can be attributed to the different patterns between the dominant HMC of the heatmap analysis. For example, species in phylogenetic clades H2, H4, H6, H7, H11 and H12 are all distributed in the central arid region of Australia, compared to other subclades that occur in more peripheral southern or eastern arid regions. The central arid phylogenetic clades share the unique HMC IX and X chemistry associated with leaf resin, which is largely absent from other lineages. One exception to this is phylogenetic clade H14 that does show some HMC X chemistry and is also mostly resinous but occurs in the south-west arid region of Western Australia. Unlike all central arid-distributed phylogenetic subclades, H14 also exhibits unique HMC V chemistry not seen anywhere else in the tribe. The exceptional association of HMC V chemistry with clade H14 is considered in greater detail below.

From the observed chemo-evolutionary relationships, we envision a chemistry-based adaptive evolution of species, particularly from the phylogenetic clades H2, H4, H6, H7, H11 and H12, associated with the presence of leaf resin. Further molecular work is needed to resolve relationships between these clades, but they may constitute a single evolutionary lineage adapted for the central/western arid region of Australia. The large number of closely related species in phylogenetic clades H11 and H12 in particular, paired with short branch lengths and a lack of resolution between species relative to other lineages of the phylogeny, suggest that recent and rapid speciation may be responsible for the species diversity. The association between these species and the unique HMC IX and X related serrulatane- and viscidane-type diterpenoids, possibly all localized within the leaf resins [12], may have afforded an es-

sential adaptive advantage in the arms race against arid zone herbivores and pathogens, augmenting the number of specialised diterpenoids formed [49, 50]. A recent chemo-evolutionary adaptation study in the cosmopolitan *Euphorbia* genus advocated that greater herbivory pressure resulted in a highly diversified content of toxic diterpenoids in the Afro-Eurasia geographic region where specialised herbivores co-occur compared to the Americas where specialised herbivores are absent [43]. Evidence suggests that the Australian arid biome is relatively recent in origin and developed within the past 5–10 million years [46, 51]. The contrasting geographic species distributions between the largely non-arid phylogenetic clades A to G at the base of our phylogeny and the mainly arid distribution of phylogenetic clade H (Figure S4) support a hypothesis of a relatively recent diversification of Myoporeae in the arid biome coinciding with the evolution of the unique diterpenoid chemistry represented in HMC IX, X, and V. Following diversification into the arid biome, evolution of a resinous protective layer on the leaf surfaces may offer the additional adaptive advantage of reducing water loss via evapotranspiration and protecting leaves from UV and thermal damage by increased reflection of the solar irradiation [52].

Chemo-evolutionary relationships of serrulatane and viscidane-type diterpenoids across Myoporeae

We found prenol lipids as the dominant chemical identity within the Myoporeae molecular network, representing 56% of the nodes (1913 nodes) within the 100 largest chemical families. Indeed, the importance of terpenoid-related metabolism in Myoporeae is suggested by the prevalence and patterns of occurrence of chemical families containing serrulatane and viscidane-type diterpenoids in several clades (Figure 4). To further investigate this highly diverse family of diterpenoids [8], we focused on all chemical families within the connected molecular network associated with either serrulatane or viscidane chemistry. Our analysis led to dereplication of 30 distinct chemical families with these diterpenoid scaffolds, involving 1444 nodes (29% of the connected molecular network). Notably, no overlap of these diterpenoid classes within a chemical family was found, despite the structural similarity of the core structures based on a prenyl tail attached to a bicyclic head. Heatmap (Figure S5) and tanglegram analyses (Figure S6) of this chemical space revealed a bloom of metabolite diversity among phylogenetic clades H2, H4, H6, H7 and H11 to H14. This stands in contrast to the less diversified chemistry found in other species of clade H and in the clades A-G. This result supports the observed division of species into TMC A and B, and emphasises their role as important factors in understanding chemo-evolutionary relationships within Myoporeae. The analysis corroborates the co-occurrence of serrulatane and viscidane diterpenoids with the presence of leaf resin, suggesting important physiological roles of the presence of these compounds at the leaf surface. This finding is supported by our recent study, which investigated the underlying biosynthetic pathways in E. lucida, E. drummondii and E. denticulata subsp. trisulcata [12], showing that serrulatane and viscidane diterpenoids are concentrated at the resinous leaf surface and synthesized within specialized glandular trichomes embedded within the epidermis. The physiological roles of these diterpenoids are not yet known but could potentially be involved in pathogen defence due to their antibacterial properties [53] or UV protection based either on absorption or resin-mediated increased leaf reflectance [54].

Phylogenetic clade H14 presents a unique chemical signature, which specifically comprises HMC V (Figure 4). Two of the dominant chemical families found in HMC V (10 and 22) were dereplicated as serrulatane-diterpenoid related. Both chemical families show a similar network topology, with a few nodes being found in several species of varying phylogenetic background, besides multiple nodes solely represented by phylogenetic clade H14 (Figure 5). Substructural motif blooms were found within these two chemical families, indicating chemical diversification of serrulatane scaffolds KU006-14 and KU036-12 of chemical families 10 and 22, respectively. Besides some reliable high-level dereplication events, a wide range of metabolite masses, as well as *Eremophila*-specific substructural motifs, indicate

a large unknown chemical space of serrulatane chemistry, which has yet to be explored. Most of the species within clade H14 have resinous leaves, as do other species from clades H11 and H12 that also correspond to the diterpenoid enriched TMC B. The majority of species placed in clade H14 are part of TMC B2, with seven species falling in various parts of TMC A as the exceptions. Species within TMC B2 have resinous leaves, while six of the seven species placed in TMC A have non-resinous leaves. The sole exception to this is *E. subfloccosa* subsp. *subfloccosa*, which has resinous leaves and is found in TMC A3. When specifically focusing the metabolic cluster analysis on all chemical families within the connected molecular network associated with serrulatane and viscidane chemistry, *E. subfloccosa* subsp. *subfloccosa* does in fact localize within the resinous members of phylogenetic clade H14 (Figure S6). Furthermore, none of the non-resinous species found in clade H14 share metabolites from the serrulatane-related chemical families in HMC V (10 and 22), underlining the relationship between serrulatane formation and accumulation of leaf resins.

Phylogenetic clade H14 stands out as an interesting group within tribe Myoporeae because it harbours morphologically highly diverse *Eremophila* species, a unique chemical signature and strongly associated antibacterial properties. Notably, there are no published instances of traditional medicinal use for these species. Both phylogenetic and metabolic cluster analyses support the unexpected placement of morphologically diverse species from three different sections of *Eremophila* (*sensu* [3]) in phylogenetic clade H14. Two of these sections (*Stenochilus* and *Virides*) comprise morphologically similar species, while the third section (*Australophilae*) contains species that vary considerably from the other two. Morphologically, species in clade H14 have not previously been considered as closely related, however strong phylogenetic support for this lineage, paired with the unique metabolome identified in the current study, has allowed these relationships to be revealed. This case underlines the utility of combining molecular phylogenetics and metabolite profiling: the observed distribution of particular chemical families supported unexpected phylogenetic relationships and furthermore, raises questions about the potential interplay between specialised metabolism and species diversification for future investigation [55].

The molecular networking approach facilitates discovery of novel specialised metabolites

Our approach guides drug isolation efforts by narrowing the large number of metabolites down to chemical families and predicting chemical classification. This information can be used to target unknown chemical analogues within chemical families with known bioactivities of interest. In addition, functional annotation with the results of antimicrobial assays of crude plant extracts can guide the selection process to uncover novel chemical families not previously considered. A univariate test based on a generalised linear model including tested specimens, revealed chemical families significantly associated with antibacterial activity that are solely from the terpenoid enriched HMC V and X. A subsequent indicator species analysis further associates these families with positive activity, highlighting them as interesting targets for antibacterial drug discovery (Table S5). When focusing on bioactive serrulatane and viscidane-type diterpenoids, many of the chemical families are not well structurally dereplicated and are thus excellent targets for drug discovery. In fact, 20 out of 30 chemical families that are part of this particular chemical space contain no level 1 identified metabolite, providing a source of unknown serrulatane or viscidane analogues (Figure S5). To maximize investigated chemical diversity while minimizing drug isolation efforts, we can use the heatmap analysis to identify ideal species for sampling. Using this approach, five plant species (E. galeata, E. enata, E. spectabilis subsp. brevis, E. margarethae and E. glabra subsp. Paynes Find) out of a total 206 species were shown to cover up to 18% of the observed chemical space of viscidane and serrulatane-type diterpenoids, accounting for 1444 putative metabolites in total. Other well dereplicated chemical families have been identified and should be explored to further enrich our knowledge of the highly diverse diterpenoid structures present. For example, chemical family 10 was found to contain the highly oxygenated serrulatane KU006-14 besides other identified analogues (Figure 5). Serrulatane KU006-14 was only found in seven of the 23 total species in phylogenetic clade H14, and thus represents a specific branch of the serrulatane-related chemical space. KU006-14 is identical to 7,8,16-trihydroxyserrulat-19-oic acid which we previously isolated from *E. drummondii* and carries a hydroxylation at C-16 as a desired target for substitutions to obtain derivatives with increased Type 2 anti-diabetic activity [11]. Thus the C-16 positioned 3-methylbutanoyl ester drastically decreased the IC₅₀ of PTP1B inhibition from 1260 ± 560 μM (KU006-14) to 3.44 ± 0.88 μΜ [11]. A metabolite with the corresponding mass ([M+H]+ of 435.2739) to this chemical analogue can be found in chemical family 10 in close proximity to KU006-14. Further exploration of chemical family 10-associated diterpenoids, and subsequent testing for their anti-diabetic activities, may reveal the presence of even better drug candidates in other species of phylogenetic clade H14. Additional synthetic functionalization may further extend the potential biological activity of KU006-14-related metabolites. This has been documented for the close analogue 3,7,8-trihydroxyserrulat-14-en-19-oic acid [56]. This compound did not show any antimalarial activity, whereas a number of derived amides did.

Our results show how our molecular networking pipeline can aid in the identification of both plant species and chemical families with potential as sources of new bioactive molecules. Chemical families with low levels of metabolite identification based on *in silico* spectral support are easily determined, and represent a prime source to unfold the rich chemical "dark matter" in Myoporeae [37]. A single example is chemical family 5, which includes 110 nodes and was dereplicated as fatty acid related. Notably, this prediction is solely based on level 3a identifications, and therefore warrants research to identify the structures of some of the compounds in the molecular network. The median mass of 332.2732 Da and retention time of 17.8 min of this chemical family is comparable with known diterpenoids in this study and further suggests an interesting source for potential drug candidates. Additionally, this chemistry is mainly localized to species of phylogenetic clades A–G, indicating its role in specialized metabolism. Notably, the resinous *Glycocystis beckeri* and *Myoporum bateae* contribute significantly to the chemical space in chemical family 5 and thus represent suitable targets for investigation. Additionally, these two species also harbor flavone related metabolites from chemical family 11, which accumulate mostly in clades A-G.

Australian Aboriginal Peoples use herbal extracts from some *Eremophila* species as integrated components of their traditional medicine [1–3]. These herbal extracts contain a multiplicity of bioactive natural products that individually or in combination could provide the perceived curing effects. In an attempt to begin to associate the presence of specific bioactive natural products or combinations thereof to the beneficial effects, species with documented Aboriginal uses were highlighted in our current study. To underline this approach, measured anti-bacterial effects of herbal extracts against human pathogenic bacterial species and of individual isolated natural products were also integrated into this investigation (Table S1). Traditional medicinal uses of herbal extracts were widespread throughout Myoporeae. Interestingly, no use of *Eremophila* species from phylogenetic clade H14 was found in the literature. This contrasts with the number of reports documenting a high abundance of herbal extracts and isolated diterpenoids possessing anti-bacterial activity within this subclade [18, 57]. This could indicate that the diversity of serrulatanes in clade H14 somehow is associated with negative effects in traditional medicine. However, the use of plants within Aboriginal traditional medicine is likely to be underreported in the literature. It is recognised that much traditional knowledge was lost with the break-up of traditional societies and the denial of access to land and natural resources for Aboriginal Peoples following the British colonisation of Australia [58, 59]. Further, some traditional custodians may have chosen not to have this information recorded in the public domain. Therefore, the absence of recorded traditional use of Eremophila species in clade H14 does not mean that some of these species were not used by a specific group at some point in time. Nevertheless, from the records it is clear that E. alternifolia had and continues to have

a prominent medicinal role [1, 8, 58], and is recognised in our current study for its rich flavone-related chemistry. A second prominent species is *E. cuneifolia* [1, 8] with a distinct elevated compound diversity in terpenoid-related chemical families 23 and 95, which are mostly absent in other species. Thus, successful functional annotations to a specific molecular network could enable assignment of metabolites present to specific biological activities, morphological traits and geographical distributions and enable targeted drug discovery approaches [39, 60].

Conclusion

The present study highlights the power of combining large-scale molecular networking and phylogenetic analyses to investigate chemo-evolutionary diversification that involves specialized diterpenoid chemistry associated with resin development in Myoporeae. By integrating functional annotations in our analysis, we hypothesize that this specialized chemistry may complement the transpiration barrier function of the resin with pathogen and herbivore defence as well as UV protection. To shed further light on the broader area of arid zone ecosystem evolution, ecological and phylogenetic information for associated insects could be integrated into the chemo-evolutionary framework developed here for Myoporeae. A number of studies have shown several insect groups that occur almost exclusively with *Eremophila* [61, 62]. Further research in this area may help us to understand the links between chemistry and species radiations (both plant and insect) as well as regional and fine scale patterns of diversification.

Despite great progress in illuminating the chemical space of Myoporeae, there are still chemical families of unknown character waiting to be elucidated. Our study shows the state-of-the-art computational tools that can be used to target drug discovery approaches by giving an idea about the identity of the observed chemical space. Additionally, the chemical component of the present study focused solely on leaf chemistry. However, ongoing research in *Eremophila* and other plant groups has revealed that other plant organs may also be rich sources of distinct bioactive metabolites. An example is the antimalarial microthecaline A, a novel quinoline–serrulatane alkaloid, which was found in roots of *E. microtheca* and *M. insulare* [14, 21].

By establishing a chemo-evolutionary framework and enriching it with functional annotations, we present a systematic outline of chemistry and evolution in Myoporeae and lay foundations for further interdisciplinary research. We encourage the use and further extension of this dataset through functional annotations to explore chemo-evolutionary relationships and to select compelling chemical families for natural product isolation to describe the unknown aspects of Myoporeae chemistry.

Acknowledgements

This work was supported by the VILLUM Center for Plant Plasticity (VKR023054) (BLM); the European Research Council Advanced Grant (ERC-2012-ADG_20120314) (BLM), the Lundbeck Foundation (R223-2016-85, "Brewing diterpenoids"), the Cybec Foundation (Jim Ross Scholarship), and the Novo Nordisk Foundation Interdisciplinary Synergy (NNF 16OC0021616, "Desert-loving therapeutics") and Distinguished Investigator 2019 (NNF 0054563, "The Black Holes in the Plant Universe") programs (BLM). We would like to thank Tanja Schuster for specimen collections, and Bob Chinnock and Ron and Claire Dadd for access to their private garden collections. Australian National Botanic Garden, Canberra, the Australian Arid Lands Botanic Garden, Port Augusta, the National Tropical Botanic Garden, Kauai for collection of garden specimens. Elizabeth H. J. Neilson (UCPH, Denmark) for initiating the chemical profiling work of *Eremophila* species. Madeleine Ernst (SSI, Denmark) for the advice regarding molecular networking tools. Yong Zhao (UCPH, Denmark) and Laura Mikél Mc Nair (UCPH,

Denmark) for providing reference compounds to establish the in house spectral library. Dominik Merges (BiK-F, Frankfurt) and the PLEN R-club for additional advice regarding multivariate statistics.

Author Contributions

OG, RMF and BLM designed the study. RMF, MJB and BJB collected, identified, and sampled *Eremophila* and related species from field and cultivated collections from across Australia. RMF and MJB performed taxonomic description and phylogenetic analyses of these specimens. OG and AMH prepared the plant extracts and performed the LC-qToF-HRMS analysis. OG conducted the mass spectral data processing and quality check as well as subsequent molecular networking analysis. All reference compounds derived from *Eremophila* species were isolated, structurally characterized and provided by DS. OG established the in house reference compound and *in silico* spectral databases and performed dereplication of the molecular network including the MS2LDA substructural analysis. OG established the computational pipeline to establish and analyse the chemo-evolutionary framework in Myoporeae and wrote all scripts used to conduct data processing as well as cluster, tanglegram, heatmap and statistical analysis. Different authors provided information about functional annotations, leaf resin, hairiness and pollination (RMF and BJB), antibacterial activity and traditional usage (RMF, SJS and CPN) and biogeography (RMF and DJM). Species distribution mapping was completed by RMF. OG, RMF and BLM wrote the manuscript. All authors discussed the results and contributed with comments during the writing process.

Competing Interests statement

The authors declare that there are no competing interests.

Experimental section

Collection of plant material

Leaf tissue and herbarium voucher specimens were collected from field and cultivated collections from across Australia. A cultivated specimen of *Bontia daphnoides* was sent from Fairchild Tropical Botanic Garden, Florida. Collection details, herbarium voucher numbers and GenBank accession numbers are provided in Table S1. Leaf material was picked fresh and stored immediately in silica beads. The same silica dried leaf material was used for DNA and phytochemical extractions.

Phylogenetic analysis

Total genomic DNA was isolated using a modified cetyltrimethylammonium bromide (CTAB) protocol [63]. Library preparation was completed 'in-house', using a version of the sample preparation protocol outlined in [64]. Samples were sequenced using both Illumina HiSeq2000 (2 x 125 bp) and Illumina NextSeq500 (2 x 150 bp) sequencing platforms, based at AgriBio, Centre for AgriBioscience (La Trobe University) and the Walter and Eliza Hall Institute (WEHI) in Melbourne, Australia. Raw read data of total genomic DNA was *de-novo* assembled using CLC Genomics Workbench version 8.5.1 (https://www.qiagenbioinformatics.com/) with default settings. Resulting contigs were imported into Geneious version 9.1.8 (http://www.geneious.com [65], where the nuclear ribosomal cistron was constructed for each sample, initially using the partial ITS/ETS sequence available for *Eremophila macdonnellii* on GenBank (DQ444239) as a reference. Contigs were mapped to *E. macdonnellii* using custom

sensitivity settings; gaps allowed set to a maximum of 20% per read, maximum gap size of 3000 and 2-3 iterations. Total raw reads were then mapped back to the consensus sequence and a final consensus sequence extracted using a consensus threshold of 75%, to confirm sequence accuracy. Nuclear ribosomal cistron length varied between samples, from 5976–7863 base pairs. Differences in sequence lengths were largely due to variation in DNA read coverage of the external transcribed spacer (ETS)/nontranscribed spacer (NTS) regions. All samples contained complete coverage of 18S, ITS1, 5.8S, ITS2 and 26S nrDNA regions. Sequences were aligned in Geneious using the MAFFT pairwise alignment plug-in (MAFFT version 7.222; [66]) with default settings. The alignment was assessed by eye and any adjustments were made manually. After exclusion of poorly aligned sequence ends, the 291 nuclear ribosomal sequences resulted in an aligned matrix of 6568 bp. This alignment is available in TreeBase (study accession number 26197). Phylogenetic analysis was completed using MrBayes version 2.3 [67]. The alignment was partitioned into six character sets representing coding ribosomal DNA sequence (18S, 5.8S and 28S genes) and intergenic spacers (ITS1, ITS2 and ETS + non-transcribed spacer). Models of evolution for each partition were estimated using the Bayesian information criterion (BIC) in IQ-TREE version 1.6.12 [68]. Where exact models were not available in MrBayes equivalent models were selected (18S: GTR + I + G, 5.8S: K2P + I, 26S: GTR + I + G, ITS1: SYM + G, ITS2: SYM +I + G, non-transcribed spacer: GTR+ I + G). The BI analysis was run for 15 million generations with unlinked partitions and a tree sampling frequency of 1000 to estimate posterior probabilities. The average standard deviation of split frequencies reached a value less than 0.01 during this analysis, with convergence of MCMC chains checked in Tracer version 1.6 [69]. Twenty five percent of the trees were discarded as burn-in, a consensus tree was generated, and Bayesian posterior probabilities estimated for nodes from the consensus tree (Figure S7).

Metabolite analysis

Ground and dried leaf tissues were extracted with 50% acetonitrile (supplemented with 2ppm forskolin), while shaking incubation at 25 °C for 2 h. Acetonitrile extracts were filtered using a 0.22 μm 96-well filter plate (Merck Millipore, Darmstadt, Germany) and analysed using an Ultimate 3000 UHPLC+ Focused system (Dionex Corporation, Sunnyvale, CA) coupled to a Bruker Compact ESI-QTOF-MS (Bruker) system. Samples were separated on a Kinetex XB-C18 column (100 × 2.1 mm ID, 1.7 μm particle size, 100 Å pore size; Phenomenex Inc., Torrance, CA) maintained at 40 °C with a flow rate of 0.3 mL min-1 and mobile phase consisting of 0.05% (v/v) formic acid in water (solvent A) and 0.05% (v/v) formic acid in acetonitrile (solvent B). The LC method was as follows: 0-1 min, 10% B; 1-23 min, linear increase from 10 to 100% B; 23-25 min, 100% B; 25 to 25.5 min, 100-20%; 25.5-30.5 min, linear decrease to 10% B. Mass spectra were acquired in positive ion mode over a scan range of m/z 50-1200 with the following ESI and MS settings: capillary voltage, 4000 V; end plate offset, 500 V; dry gas temperature, 220 °C; dry gas flow of 8 L min⁻¹; nebulizer pressure, 2 bar; in source CID energy, 0 eV; hexapole RF, 50 Vpp; quadrupole ion energy, 4 eV; collision cell energy, 7 eV. Samples were further subjected to untargeted LC-MS/MS using a collision cell energy of 27 eV. Quality control samples were prepared from a pool of different extract samples and run after a sequence of 22 samples as well as before and after the total run. Raw chromatogram data was calibrated using an internal sodium formate standard and subsequently exported as .mzML format using DataAnalysis 4.1 (Bruker). Further processing of the raw chromatogram data was conducted using MZmine2 (v.2.5.3) [70]. At first, a signal intensity noise cutoff of 1000 and 100 was applied to MS¹ and MS² data, respectively. In addition, only scans between 0.5 and 24 min retention time were considered. Chromatograms have been built using the 'ADAP chromatogram builder' with m/z tolerance of 0.003 Da (5 ppm) and a signal intensity threshold of 20000. The generated extracted ion chromatograms were deconvoluted into individual peaks using the 'local minimum search' module. After isotopes were removed, the feature list was aligned using the 'joint aligner' tool using

m/z tolerance of 0.006 Da (10 ppm) and retention time tolerance of 0.1 min. Subsequently, individual metabolites have been identified by comparing it to MS² data of an in house spectral database (level 1 identification includes m/z, RT and MS² similarity). This library includes 76 reference compounds commercially sourced as well as isolated from different *Eremophila* species during prior studies ([71], Table S6), which were analysed with the same MS system as described above. Missing data points have been added using the 'gap filler' tool and afterwards intensities below 1000 set to 0, by applying a peak filter. The resulting peak list was further used to undergo a quality control that was conducted by a principal component analysis comprising all species and quality control samples on top of the gap-filled (but not peak filtered) peak list. In this projection, all quality control samples are found in close proximity, indicating reliable data acquisition over time (Figure S8). Finally, background features that were shared between the samples and quality controls were removed manually, which includes the internal standard forskolin as well (data kept for normalization). The generated peak list was exported twice, as csv-file (containing peak signal intensity) for further processing in R script and via the 'GNPS-FBMN export' module for subsequent upload to the GNPS server. A detailed description of the MZmine2 processing parameters used can be found in Table S7. A molecular network was created with the Feature-Based Molecular Networking workflow [45] on GNPS (https://gnps.ucsd.edu) [38]. The data was filtered by removing all MS² fragment ions within +/- 17 Da of the precursor m/z. MS² spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50 Da window throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da and the MS² fragment ion tolerance to 0.02 Da. A molecular network was then built where edges were filtered to have a cosine score above 0.8 and more than 8 matched peaks. Further, edges between two nodes were kept in the network if and only if each of the nodes appeared in each others respective top 5 most similar nodes. Finally, the maximum size of a chemical family was set to 0 (no size limitation), and the lowest scoring edges were removed from chemical families until the chemical family size was below this threshold. The spectra in the network were then searched against GNPS spectral libraries [38, 72] as well as an in house library including 76 reference spectra (level 2 identification includes MS² similarity). The library spectra were filtered in the same manner as the input data. All matches kept between network spectra and library spectra were required to have a score above 0.7 and at least 6 matched peaks. The molecular networks were visualized using Cytoscape software (v3.7.2) [73]. To predict a consensus of chemical classification for individual chemical families, the network annotation propagation tool was applied to the generated molecular network. Thereby, multiple public in silico spectral databases were used, i.e. GNPS, SUPNAT, NPAtlas, CHEBI and DRUGBANK. Additionally, an *Eremophila* specific in house in silico fragmentation database was used that contains 293 metabolite structures that have been characterized in *Eremophila* species during prior studies [8, 71]. The *in silico* fragmentation based dereplication results were categorized by their reliability, with SMILES from Fusion, Consensus and MetFrag algorithm corresponding to level 3a, 3b and 3c identification, respectively. Additionally, insight into substructural information was achieved using the MS2LDA motif search via the GNPS server. MS2LDA allows annotation of smaller substructures shared by metabolites of a chemical family within a molecular network [74]. Eventually, the results from the different molecular network based analyses were joined via the MolNetEnhancer (v15) tool [75]. A detailed description of the molecular networking pipeline presented in this study can be found in Table S8. The MZmine2 pre-processed chromatogram data was further processed for downstream analysis using R script (v3.6.1). Thereby, the data was normalized to the median of the internal standard and sample weight. Subsequently, a signal intensity cutoff of 10000 was applied and resulting features that had no occurrence anymore were removed, resulting in a normalized dataset of 10696 features. Eventually, every intensity above 0 was assigned the value '1' to create a binary matrix. To add the information gained from the molecular network analysis, the 100 largest chemical families (9 – 810 nodes per chemical family, Table S9) have been isolated and combined with the processed chromatogram data to generate a new data matrix. In this way, a 'continous' dataset that contains the number of features that are shared

of a particular chemical family for each species was generated. Additionally, a 'categorical' dataset was generated that contains solely the value '1', for a species that shares at least one node of a chemical family, and '0' for not having a single node (Figure 4). Based on the categorical dataset, a distance matrix was generated using Jaccard distance, which was subjected to a hierarchical cluster analysis using the 'ward.d2' agglomeration method. Using the 'ape' package (v5.3), this analysis was converted to a dendrogram, which was then compared to the dendrogram derived from the molecular phylogeny via a tanglegram analysis ('dendextend' package v1.12.0). The resulting tanglegram was untangled using the 'step2side' algorithm and the rearranged molecular phylogeny used for further heatmap analyses. Using the R package 'ComplexHeatmap', a heatmap was generated based on the 'categorical' dataset using Jaccard distance and 'ward.d2' agglomeration method (km=10000), which clusters the presence/absence of chemical families according to phylogenetic similarity, while the order of specimen in the phylogeny is fixed. A 'continous' heatmap analysis is based on the cluster generated by the 'categorical' analysis and highlights the total number of putative metabolites from a chemical family for each specimen (Figure S9). Combined detailed information of tanglegram and heatmap analysis are found in Table S10. Additional information about chemical classification (Table S11, Table S12) and leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution) and medicinal properties (traditional medicinal uses and antibacterial studies) were aligned to the heatmap analyses. Another heatmap analysis focused solely on serrulatane and viscidane diterpenoid related chemical families. In that regard, all chemical families (down to 2 nodes) were selected manually from the global molecular network that contain at least one corresponding dereplication hit of level 1-3c (Table S13, Table S14). These 30 chemical families were subjected to a tanglegram analysis as described above (Figure S6) as well as a heatmap analysis that clustered the 'continous' chemical information using Euclidean distance and 'complete' agglomeration method (Figure S5). Another tanglegram was conducted based on the binary dataset including all metabolites after normalization (Figure S10).

Raw spectral data available at: (MassIVE link will be provided upon journal publication).

The molecular networking job can be publicly accessed at

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f74d3374a7ba43eb8d58e5d2a312bf33.

The network annotation propagation job can be publicly accessed at

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=5980fea229b9427bb610a8e7d6c25827.

The MS2LDA job can be publicly accessed at

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8082c8133d1843c39af42164157ab043.

Statistical analysis

To test for overall significant differences of functional annotations among the investigated specimens, we used the non-parametric permutational multivariate statistical tests: permutational multivariate analysis of variance (PERMANOVA) [76]. This method use a dissimilarity metric to calculate for differences between annotation object classes. For PERMANOVA, the null hypothesis is that the metric centroid does not differ between groups. PERMANOVA was calculated with the adonis2() function in the vegan package (http://cran.r-project.org/package=vegan) [77]. This analysis was based on the categorical dataset, for which dissimilarity metric was generated by the vegdist() function using Jaccard distance. PERMANOVA is sensitive to differences in data dispersion within groups and may therefore confuse within-group variation with among-group variation [78]. To test if groups differed in their dispersion, we used the betadisper() function with the null hypothesis that the average within-group dispersion is the same in all groups. In each test, the number of permutations was set to 999. For all analyses, we considered a p-value threshold of 0.05 significant. We conducted these tests on the full dataset (100 chemical families), to test the significance of functional annotations of leaf resin, leaf hairiness, antibac-

terial activity, pollination, biogeography and general clades ("O": outgroup, "AG": clade A to G, "H3": clade H3, "H10": clade H10, "H11": clade H11, "H12": clade H12, "H14": clade H14 and "H": remaining clade H associated taxa), whereby specimens with missing values were excluded. Since records for aboriginal usage are scarce, we excluded it from all statistical analyses. We used generalised linear models to test for significant differences of functional annotations among the investigated specimens within a HMC background, [79]. Models were generated for each HMC–annotation combination using the clogloc model, while excluding specimens with missing functional annotation. Each test was conducted using the anova.manyglm() function from the mvabund package [80]. In each test, the number of bootstrap iterations was set to 999 and used the montecarlo resampling method. For all analyses, we considered a p-value threshold of 0.05 significant. To access individual chemical families as overall significant drivers for a functional annotation, a subsequent univariate test was conducted for the generated generalised linear models to receive individual p-values. An additional indicator species analysis using the indval() function (labdsv package [81]) was applied to indicate the direction of annotation (level) for each chemical family (Table S5).

Main figures and tables

Tables

Table 1. Summary of morphological, environmental and medicinal attributes between major tanglegram metabolic clusters. Attributes are evaluated between the two dominant tanglegram metabolic clusters (TMC), A and B, which are based on the presence/absence of the 100 largest chemical families found within the investigated Myoporeae associated molecular network.

	TMC A	тмс в
Total no. species	130 (+ 2 outgroup species)	85
	Bontia (1)	Diocirea (2)
	Calamphoreus (1)	Eremophila (82)
Genera represented, no. of species in	Diocirea (1)	Myoporum (1)
brackets	Glycocystis (1)	
	Eremophila (114)	
	Myoporum (12)	
No. of resinous:non-resinous taxa (duplicate specimens removed)	45:99 (31% resinous:69% non-resinous)	86:18 (83% resinous:17% non-resinous)
No. of taxa with hairy leaves:glabrous eaves	90 hairy:54 glabrous (62%:38%)	76 hairy:28 glabrous (73%:27%)
No. of insect:bird pollinated species duplicate specimens removed)	111:36 (75% insect:25% bird)	67:37 (64% insect:36% bird)
Documented traditional use	10 species	8 species
Documented antimicrobial activity	8 species (of total 51 taxa tested (8+43))	25 species (of total 37 taxa tested (25+12)

Figures

Figure 1. Chemical and morphological representation of selected *Eremophila* species. Images on the left display selected *Eremophila* species. Corresponding diterpenoids isolated in prior studies are displayed in the middle column. The right column shows a typical Eremean habitat in Western Australia. *Eremophila rugosa*, (a) KU036-6-5 [71]; *E. gibbosa*, (b) 8-hydroxy-16-oxoserrulat-14-en-19-oic acid [11]; *E. glabra*, (c) 8-hydroxy-16-cinnamoyloxyserrulat-19-oic acid [11], *E. drummondii*, (d) 7,8-dihydroxy-16-[3-methylbutanoyloxy]serrulat-19-oic acid [11]; *E. lucida*, (e) 5-hydroxyviscida-3,14-dien-20-oic acid and (f) (3Z, 7E, 11Z)-15-hydroxycembra-3,7,11-trien-19-oic acid [10].

Global molecular network

Figure 2. Validation of dereplication in the global molecular network of Myoporeae. The global molecular network of Myoporeae comprises a connected part, with clusters of spectral features that represent structurally-related putative metabolites, as well as singletons, which represent features that did not show spectral similarity to another one. The connected dataset was dereplicated using public, in house and *in silico* spectral libraries and subsequent Network Annotation Propagation (NAP). Identification of nodes took place on six different levels, with level 1: m/z, retention time and MS² match using in house spectral library; level 2: MS² match using in house and public spectral libraries; level 3a-c: Fusion, Consensus or MetFrag algorithm based *in silico* fragmentation database match; level 0: no spectral match. The presented network on the left, displays a kingdom score based assessment with overall high scoring values that support a robust dereplication of the corresponding chemical families. The network on the right side displays NAP-generated chemical superclass prediction for each chemical family, with selected classes highlighted in colour.

Figure 3. Molecular network-based tanglegram analysis showing chemo-evolutionary relationships in Myoporeae. Tanglegram representation of conjoined phylogenetic and metabolic information from 291 specimens of tribe Myoporeae. Left side displays the Bayesian inference nuclear ribosomal DNA phylogeny. All bifurcating branches have strong support (posterior probability ≥ 0.95 %), all nodes with support <0.95 have been collapsed. All phylogenetic clades are labelled (clades A – H), and major ones are highlighted by color code. The right side displays the metabolic cluster analysis that was conducted based on the presence or absence of the 100 largest chemical families within the generated molecular network of Myoporeae. Therein, tanglegram metabolic cluster (TMC) are indicated. The tanglegram analysis connects same specimens by a line, which is colored when equal clustering of specimens is present in both analyses.

Figure 4. Categorial heatmap analysis displays the chemo-evolutionary framework of Myoporeae. A heatmap analysis was used to evaluate chemical information in an evolutionary context. Information from the 100 largest chemical families was compiled, which derived from the molecular network of Myoporeae. For each specimen in this study, the presence (black) or absence (white) of at least one putative metabolite from a corresponding chemical family is displayed within the heatmap. *LEFT*: The nuclear ribosomal DNA phylogeny on the left side presents the major phylogenetic clades. *TOP*: As depicted on top of the heatmap, the chemical information underwent a hierarchical clustering according to the given phylogeny to reveal chemo-evolutionary patterns among subsets of chemical families, defined as heatmap metabolic clusters (HMC) I – X. *BOTTOM*: Selected information about chemical identity comprise different levels of classification, i.e. superclass (lipids and lipid-like molecules), class (prenol lipids and fatty acyls) as well as annotations on the metabolite level (serrulatane and viscidane-type diterpenoids). Successful dereplication is indicated in blue, while the additional presence of level 1 identification (m/z, retention time and MS² match) in a particular chemical family is highlighted in gold. *RIGHT*: Functional annotations including the presence of leaf resin and hairiness, pollination, antibacterial activity, traditional medicinal usage as well as biogeographical species distribution information are displayed on the right side. A summary of legends are included to the right of the figure.

Figure 5. In depth analysis of selected serrulatane diterpenoid-related chemical families. Detailed analysis of serrulatane diterpenoid-related chemical families 10 and 22. On the left, chemical families are displayed with detected metabolite mass (Da) information for each node as well as individual dereplication events, which are highlighted with selected spectrometric and structural information. In addition, MS2LDA-based substructure analysis is shown by color coded pie charts on each node, which points out areas of shared spectral motifs. On the right side, investigated chemical families harboring information about phylogenetic clade association, as displayed for every node with colored pie charts. Also the total amount of occurrences of each putative metabolite in the dataset is presented for every node.

Supplementary figures and tables

Supplementary tables

Table S1. Specimen details for all samples included in this study. Specimen information include collecting number, species name (authority), *Eremophila* section, collection location, herbarium voucher number and GenBank accession number. Collecting numbers followed by * denote specimens grown in cultivation, where provenance information was known this was recorded in latitude/longitude. Collection initials refer to: RMF (Rachael Fowler), MJB (Michael Bayly), BB (Bevan Buirchell), TMS (Tanja Schuster), FTBG (Fairchild Tropical Botanic Garden), NTBG (National Tropical Botanical Garden). Published records of traditional medicinal use for each species is recorded where available [1, 18, 22, 58, 82–108]. Evidence of antimicrobial activity against human bacterial pathogens (gram positive bacteria) for each species is recorded where available [7, 9, 18, 22, 23, 25–27, 57, 97, 109–112].

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF211	Eremophila compressa Chinnock	Platycarpus	-32.90429	121.60685	MELUD119198a	MN411553		
RMF36*	Eremophila saligna (S. Moore) C. Gardner	Platycarpus	-31.2314	121.4603	-	MN486179		
MJB2384*	Eremophila deserti (Cunn. ex Benth.)	Pholidiopsis	-30.82	117.48	MELUD119043a	MN411456		
RMF204	Eremophila deserti (Cunn. ex Benth.)	Pholidiopsis	-32.94995	123.20631	MELUD119194a	MN411550		
RMF228	Eremophila deserti (Cunn. ex Benth.)	Pholidiopsis	-34.29655	142.2312	MELUD119206a	MN411558		
RMF243	Eremophila fallax Chinnock	Pholidiopsis	-31.27039	138.87086	MELUD119213a	MN411564		
RMF246	Eremophila fallax Chinnock	Pholidiopsis	-31.27932	138.57864	-	MN486169		
MJB2380*	Eremophila micrantha Chinnock	Crustaceae	-25.48	119.65	MELUD119040a	MN411453		
RMF212	Eremophila succinea Chinnock	Crustaceae	-32.82656	121.19814	MELUD119199a	MN411554		
RMF192	Eremophila dempsteri F. Muell.	Crustaceae	-32.15891	120.58533	MELUD119186a	MN411545		
MJB2362*	Eremophila ciliata Chinnock	Crustaceae	-33.41	123.4	MELUD119021a	MN411437		
RMF201	Eremophila dichroantha Diels	Crustaceae	-32.06511	122.37669	MELUD119191a	MN411548		
RMF144*	Eremophila interstans subsp. virgata (W.V. Fitzg.) Chinnock	Crustaceae	-30.99	121.13	MELUD119150a	MN411382		
RMF234	Eremophila sturtii R. Br.	Crustaceae	-34.14759	141.30539	MELUD119210a	MN411561	[22, 58, 82, 83]	[22, 97]
RMF12*	Eremophila mitchellii Benth.	Crustaceae	-32.75	145.5833	CBG7910121	MN411422	[1]	
RMF145*	Eremophila paisleyi subsp. paisleyi F. Muell.	Crustaceae	-31.04	123.56	MELUD119151a	MN411383	[82, 84]	
RMF274*	Eremophila paisleyi subsp. glandulosa Chinnock	Crustaceae	-	-	MELUD119230a	MN411406		
MJB2428	Eremophila falcata Chinnock	Crustaceae	-26.56599	120.00422	MELUD119081a	MN411470		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2379*	Eremophila caperata Chinnock	Crustaceae	-31.32	119.13	MELUD119039a	MN411452		
RMF289	Eremophila debilis (Andrews)	Chamaepogoni a	-36.1082	145.8249	MELUD119238a	MN411583	[85]	
RMF290	Eremophila debilis (Andrews)	Chamaepogoni a	-36.1082	145.8249	MELUD119239a	MN411584	[85]	
RMF218	Eremophila chamaephila Diels	Australophilae	-33.5168	120.58369	MELUD119203a	MN411556		
MJB2393*	Eremophila perglandulosa Chinnock	Australophilae	-30.79	123.46	MELUD119049a	MN411462		
RMF17*	Eremophila weldii F. Muell.	Australophilae	-31.6667	128.9167	CBG59633	MN411418		
RMF254	Eremophila weldii F. Muell.	Australophilae	-33.52283	135.72063	MELUD119221a	MN411570		
RMF126*	Eremophila parvifolia subsp. parvifolia J. Black	Australophilae	-	-	MELUD119135a	MN411376		
RMF200	Eremophila parvifolia subsp. auricampa Chinnock	Australophilae	-32.1581	121.76448	MELUD119190a	MN411396		
RMF203	Eremophila oblonga Chinnock	Australophilae	-32.0843	123.0882	MELUD119193a	MN411549		
MJB2461	Eremophila ionantha Diels	Australophilae	-30.95319	121.1434	MELUD119107a	MN411501		[18]
RMF252	Eremophila praecox Chinnock	Australophilae	-33.12447	136.24911	MELUD119219a	MN411569		
MJB2458	Eremophila pustulata S. Moore	Australophilae	-30.17	120.60627	MELUD119105a	MN411499		
MJB2392*	Eremophila homoplastica (S. Moore) C. Gardner	Australophilae	-28.18	119.29	MELUD119048a	MN411461		
MJB2364*	Eremophila verticillata Chinnock	Australophilae	-33.1	119.02	MELUD119027a	MN411443		
MJB2358*	Eremophila ternifolia Chinnock	Australophilae	-30.89	116.72	MELUD119018a	MN411434		
MJB2394*	Eremophila veronica (S. Moore) C. Gardner	Australophilae	-30.99	121.13	MELUD119050a	MN411463		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF132*	Eremophila caerulea subsp. merralli (F. Muell. ex Ewart, Jean White & B. Wood)	Australophilae	-31.88	118.15	MELUD119140a	MN411379		
RMF191	Eremophila clavata Chinnock	Australophilae	-32.15881	120.58519	MELUD119185a	MN411544		
RMF217	Eremophila densifolia subsp. pubiflora Chinnock	Australophilae	-32.62364	119.7429	MELUD119202a	MN411399		
RMF263*	Eremophila densifolia subsp. capitata Chinnock	Australophilae	-	-	MELUD119226a	MN411404		
RMF133*	Eremophila microtheca (F. Muell. ex Benth.)	Australophilae	-	-	MELUD119141a	MN411520		[18, 23, 57]
RMF186	Eremophila phillipsii F. Muell.	Australophilae	-32.54483	118.60204	MELUD119180a	MN411540		[18]
RMF143*	Eremophila complanata Chinnock	Australophilae	-30.9	118.66	MELUD119149a	MN411526		[18, 57]
RMF125*	Eremophila adenotricha (F. Muell. ex Benth.)	Australophilae	-31.93	119.1	MELUD119134a	MN411517		
RMF172*	Eremophila rugosa Chinnock	Australophilae	-30.98	121.14	MELUD119170a	MN411534		[18], Semple
RMF187	Eremophila rugosa Chinnock	Australophilae	-32.41673	119.71435	MELUD119181a	MN411541		et al. (unpub.)
RMF176*	Eremophila papillata Chinnock	Australophilae	-30.82	116.68	MELUD119174a	MN411538		
MJB2363*	Eremophila scaberula W.V. Fitzg.	Australophilae	-30.63	116	MELUD119026a	MN411442		[57]
RMF123*	Eremophila sargentii (S. Moore) Chinnock	Australophilae	-30.82	116.68	MELUD119132a	MN411515		
RMF173*	Eremophila brevifolia (Bartling)	Australophilae	-28.399	115.01	MELUD119171a	MN411535		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF185	Eremophila lehmanniana (Sonder ex Lehm.) Chinnock	Australophilae	-32.328	117.79542	MELUD119179a	MN411539		[57]
MJB2389*	Eremophila occidens Chinnock, G. Paczkowska & A.R. Chapman	Australophilae	-22.1	114	MELUD119046a	MN411459		
MJB2353*	Eremophila koobabbiensis Chinnock	Australophilae	-30.48	116.27	MELUD119016a	MN411432		
RMF258	Eremophila behriana (F. Muell.) F. Muell.	Duttonia	-33.91742	136.19766	MELUD119222a	MN411571		
TMS14-11	Eremophila crassifolia (F. Muell.) F. Muell.	Duttonia	-34.52	141.49	-	MN486165		
RMF259	Eremophila gibbifolia (F. Muell.) F. Muell.	Duttonia	-33.63334	136.54605	MELUD119223a	MN411572		
МЈВ2559	Eremophila gibbifolia (F. Muell.) F. Muell.	Duttonia	-36.62289	141.74581	MELUD119112a	MN411503		
MJB2422	Eremophila spuria Chinnock	Arenariae	-26.58504	118.60338	MELUD119075a	MN411482		
MJB2431	Eremophila platythamnos subsp. platythamnos Diels	Arenariae	-26.28864	121.08012	MELUD119083a	MN411358		[18]
RMF160*	Eremophila platythamnos subsp. exotrachys (Kraenzlin) Chinnock	Arenariae	-25.81	123.14	MELUD119161a	MN411389		
RMF114*	Eremophila gibsonii F. Muell.	Arenariae	-	-	MELUD119124a	MN411509		
RMF174*	Eremophila arenaria Chinnock	Arenariae	-	-	MELUD119172a	MN411536		
MJB2367*	Eremophila aureivisca Chinnock	Arenariae	-28.76	124.33	MELUD119030a	MN411444		[57]
MJB2427	Eremophila enata Chinnock	Eremaeae	-26.54832	119.95721	MELUD119080a	MN411486		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2430	Eremophila gilesii subsp. gilesii F. Muell. (broad leaf form)	Eremaeae	-26.55436	120.66073	MELUD119082a	MN411357	[84, 86, 87, 88]	
BB35	Eremophila gilesii subsp. variabilis Chinnock	Eremaeae	-24.01503	117.28156	-	MN486171		
MJB2481	Eremophila gilesii F. Muell.	Eremaeae	-23.50827	133.85552	MELUD119109a	MN411369		
MJB2409	Eremophila foliosissima Kraenzlin	Eremaeae	-27.82393	117.92946	MELUD119062a	MN411472		
RMF64	Eremophila lanceolata Chinnock	Eremaeae	-24.44214	119.67825	MELUD119254a	MN411592		
RMF118*	Eremophila linsmithii R.D. Henderson	Eremaeae	-	-	MELUD119127a	MN411511		
MJB2399*	Eremophila prolata Chinnock	Eremaeae	-25.69	118.07	MELUD119055a	MN411466		
BB02	Eremophila freelingii F. Muell.	Eremaeae	-31.21825	139.64822	MELUD118892a	MN411429	[58, 82, 84, 86, 89-91]	[97]
RMF248	Eremophila freelingii F. Muell.	Eremaeae	-31.34296	138.56223	MELUD119215a	MN411566		
RMF61	Eremophila spectabilis subsp. spectabilis C. Gardner	Eremaeae	-24.9467	119.82532	MELUD119253a	MN411408		
MJB2426	Eremophila spectabilis subsp. brevis Chinnock	Eremaeae	-26.50627	119.86596	MELUD119079a	MN411356		
MJB2418	Eremophila phyllopoda subsp. phyllopoda Chinnock	Eremaeae	-26.58322	118.46572	MELUD119071a	MN411354		
BB32	Eremophila phyllopoda subsp. obliqua Chinnock	Eremaeae	-23.45561	117.13253	-	MN486178		
RMF139	Eremophila rigens Chinnock	Eremaeae	-24.2	116.87	MELUD119145a	MN411523		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF103	Eremophila crenulata Chinnock	Eremaeae	-25.48907	114.3763	-	MN486166		[18]
MJB2440	Eremophila cuneifolia Kraenzlin	Eremaeae	-26.25232	121.68553	MELUD119089a	MN411490		
RMF79	Eremophila cuneifolia Kraenzlin	Eremaeae	-24.32425	119.54748	MELUD119266a	MN411595	[90]	[18]
RMF94	Eremophila cuneifolia 'Big leaf' Kraenzlin	Eremaeae	-24.21885	116.53811	MELUD119276a	MN411337		
RMF178*	Eremophila goodwinii subsp. ecapitata Chinnock	Eremaeae	-	-	MELUD119175a	MN411394	[84]	
RMF13*	Eremophila willsii subsp. integrifolia (Ewart) Chinnock	Eremaeae	-25.3464	131.0636	CANB801460	MN380716		
RMF267*	Eremophila prostrata Chinnock	Eremaeae	-	-	MELUD119228a	MN411576		
RMF179*	Eremophila elderii F. Muell.	Eremaeae	-24.859	128.02	MELUD119176a	MN486168	[83]	
MJB2375*	Eremophila canaliculata Chinnock	Eremaeae	-25.08	118.28	MELUD119037a	MN411450		
RMF124*	Eremophila acrida Chinnock	Eremaeae	-24.859	128.02	MELUD119133a	MN411516		[18]
MJB2410	Eremophila georgei Diels	Eremaeae	-27.40926	117.90519	MELUD119063a	MN411473		[18]
RMF107	Eremophila clarkeii Oldfield & F. Muell.	Eremaeae	-26.64231	114.61106	MELUD119120a	MN411506		
MJB2452	Eremophila metallicorum S. Moore	Eremaeae	-28.69941	122.07719	MELUD119100a	MN411496		
MJB2459	Eremophila granitica S. Moore	Eremaeae	-30.43796	120.81703	MELUD119106a	MN411500		
RMF65	Eremophila appressa Chinnock	Eremaeae	-24.34813	119.6922	MELUD119255a	MN411593		
MJB2439	Eremophila punctata Chinnock	Eremaeae	-26.25219	121.6821	MELUD119088a	MN411327		
RMF87	Eremophila obliquisepala Chinnock	Eremaeae	-24.97115	118.42377	MELUD119270a	MN411329		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
МЈВ2450	Eremophila simulans subsp. simulans Chinnock	Eremaeae	-27.80841	122.28447	MELUD119098a	MN411363		
RMF110	Eremophila simulans subsp. megacalyx Chinnock	Eremaeae	-27.21885	116.3052	MELUD119122a	MN411374		
RMF134*	Eremophila conglomerata Chinnock	Eremaeae	-27.98	119.29	MELUD119142a	MN411521		
MJB2433	Eremophila pungens Chinnock	Eremaeae	-26.14454	121.14867	MELUD119084a	MN411487		
RMF56	Eremophila aff. pungens 'Meekatharra' Chinnock	Eremaeae	-25.97086	118.9006	MELUD119250a	MN486194		
RMF69	Eremophila incisa Chinnock	Eremaeae	-24.22421	119.78342	MELUD119259a	MN411594		
MJB2423	Eremophila flabellata Chinnock	Eremaeae	-26.58504	118.60338	MELUD119076a	MN411483		
MJB2414	Eremophila glutinosa Chinnock	Eremaeae	-27.20193	118.01662	MELUD119067a	MN411477		
RMF66	Eremophila petrophila subsp. petrophila Chinnock	Eremaeae	-24.34786	119.6922	MELUD119256a	MN411409		
RMF102	Eremophila petrophila subsp. densa Chinnock	Eremaeae	-25.46398	115.18572	MELUD119116a	MN411371		
MJB2444	Eremophila hughesii	Eremaeae	-26.02358	121.96667	MELUD119092a	MN411361		
MJB2406	Eremophila exilifolia F. Muell.	Eremaeae	-28.26294	117.85965	MELUD119060a	MN411469		
МЈВ2449	Eremophila shonae subsp. diffusa Chinnock	Eremaeae	-27.64173	121.63891	MELUD119097a	MN411362		
MJB2442	Eremophila annosocaulis Chinnock	Eremaeae	-26.27867	121.83372	MELUD119091a	MN411491		
RMF120*	Eremophila battii F. Muell.	Eremaeae	-26.59	120.22	MELUD119129a	MN411513		
RMF181*	Eremophila battii 'Granite Peaks' F. Muell.	Eremaeae	-25.67	121.3	MELUD119177a	MN411331		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2398*	Eremophila magnifica subsp. magnifica Chinnock	Eremaeae	-22.25	117.98	MELUD119054a	MN411350		
MJB2382*	Eremophila pallida Chinnock	Eremaeae	-23.5	126.37	MELUD119041a	MN411454		
RMF119*	Eremophila pentaptera J. Black	Carnosae	-	-	MELUD119128a	MN411512		
RMF265*	Eremophila macdonnellii (broad leaf) F. Muell.	Platycalyx	-	-	MELUD119227a	MN411575		
RMF284*	Eremophila arbuscula Chinnock	Eremophila	-26.5	143.81	MELUD119236a	MN411581		
MJB2401	Eremophila oppositifolia subsp. angustifolia (S. Moore) Chinnock	Eremophila	-29.70754	117.0847	MELUD118629a	MN411343		
RMF277*	Eremophila oppositifolia subsp. rubra (White & Francis) Chinnock	Eremophila	-	-	MELUD119232a	MN411407		
MJB2368*	Eremophila reticulata Chinnock	Eremophila	-24.32	117.23	MELUD119031a	MN411445		
MJB2390*	Eremophila cryptothrix Chinnock	Eremophila	-23.16	117.63	MELUD119047a	MN411460		
BB06	Eremophila rotundifolia F. Muell.	Eremophila	-29.57689	135.07367	MELUD119011a	MN411430		
MJB2415	Eremophila spathulata W.V. Fitzg.	Eremophila	-27.04921	118.17319	MELUD119068a	MN411478		
MJB2385*	Eremophila rigida Chinnock	Eremophila	-24.94	118.7	MELUD119044a	MN411457		
RMF100	Eremophila tietkensii F. Muell.	Eremophila	-24.678	115.25732	MELUD119114a	MN411504		
RMF74	Eremophila tietkensii 'Hamersby' F. Muell.	Eremophila	-23.04108	118.85095	MELUD119263a	MN411336		
BB17	Eremophila tietkensii F. Muell.	Eremophila	-23.91603	128.74172	-	MN486181		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF121*	Eremophila mirabilis Chinnock	Eremophila	-29.35	121.29	MELUD119130a	MN411514		
MJB2400*	Eremophila platycalyx subsp. platycalyx F. Muell.	Eremophila	-26.51	118.5	MELUD119056a	MN411351		
RMF105	Eremophila platycalyx subsp. platycalyx F. Muell.	Eremophila	-26.28749	114.41776	MELUD119118a	MN411373		
RMF169*	Eremophila platycalyx 'Leonora' F. Muell.	Eremophila	-28.85	121.64	MELUD119169a	MN411330		
RMF85	Eremophila platycalyx 'Milgen' F. Muell.	Eremophila	-24.94533	118.45538	MELUD119269a	MN411597		
RMF54	Eremophila platycalyx 'Granite' F. Muell.	Eremophila	-26.57933	118.47971	MELUD119248a	MN411335		
MJB2413	Eremophila macmillaniana C. Gardner	Eremophila	-27.20172	118.01705	MELUD119066a	MN411476		
RMF232	Eremophila polyclada (F. Muell.) F. Muell.	Platychilus	-34.13445	141.31102	MELUD119208a	MN411560		
RMF236	Eremophila bignoniiflora (Benth.) F. Muell.	Platychilus	-34.13842	141.33371	MELUD119211a	MN411562	[92]	
RMF162*	Eremophila arachnoides subsp. arachnoides Chinnock	Pholidia	-	-	MELUD119163a	MN411391		
RMF147*	Eremophila arachnoides subsp. tenera Chinnock	Pholidia	-	-	MELUD119153a	MN411384		
RMF23*	Eremophila dalyana F. Muell.	Pholidia	-27.7322	142.9833	CANB602768	MN380715	[84, 88, 93]	
RMF113*	Eremophila stenophylla Chinnock	Pholidia	-	-	MELUD119123a	MN411508		
MJB2411	Eremophila pantonii F. Muell.	Pholidia	-27.27829	117.97772	MELUD119064a	MN411474		
MJB2402	Eremophila scoparia (R. Br.)	Pholidia	-29.52997	117.16625	MELUD119057a	MN411467		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF194	Eremophila scoparia (R. Br.)	Pholidia	-32.03243	120.74231	MELUD119187a	MN411546		
TMS14-13	Eremophila scoparia (R. Br.)	Pholidia	-34.79	141.63	-	MN486180		
RMF231	Eremophila scoparia (R. Br.)	Pholidia	-34.38153	141.33385	MELUD119207a	MN411559		
RMF249	Eremophila scoparia (R. Br.)	Pholidia	-31.33969	138.55145	MELUD119216a	MN411567		
MJB2441	Eremophila youngii subsp. youngii F. Muell.	Pholidia	-26.25773	121.75411	MELUD119090a	MN411360		
RMF73	Eremophila youngii subsp. lepidota Chinnock	Pholidia	-22.69531	119.94966	MELUD119262a	MN411413		
RMF227	Eremophila divaricata subsp. divaricata (F. Muell.) F. Muell.	Sentis	-34.28471	142.21725	MELUD119205a	MN411400		
RMF150*	Eremophila decussata Chinnock	Decussatae	-	-	MELUD119156a	MN411530		
MJB2424	Eremophila malacoides Chinnock	Decussatae	-26.49111	119.78154	MELUD119077a	MN411484		
RMF148*	Eremophila delisseri F. Muell.	Decussatae	-	-	MELUD119154a	MN411528		
RMF149*	Eremophila dendritica Chinnock	Decussatae	-30.79	125.37	MELUD119155a	MN411529		
RMF159*	Eremophila mackinlayi subsp. mackinlayi F. Muell.	Hygrophanae	-28.07	117.75	MELUD119160a	MN411388		
RMF106	Eremophila strongylophylla F. Muell.	Hygrophanae	-26.54748	114.51396	MELUD119119a	MN411505		
MJB2454	Eremophila hygrophana Chinnock	Hygrophanae	-28.88918	121.37331	MELUD119102a	MN411497		
RMF115*	Eremophila ovata Chinnock	Hygrophanae	-	-	MELUD119125a	MN411510		
MJB2378*	Eremophila fasciata Chinnock	Hygrophanae	-26.88	118.66	MELUD119038a	MN411451		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2396*	Eremophila warnesii Chinnock	Hygrophanae	-25.58	117.98	MELUD119052a	MN411464		
RMF183*	Eremophila macgillivrayi J. Black	Contortae	-	-	MELUD122771a	MN486175		
RMF104	Eremophila pterocarpa subsp. pterocarpa W.V. Fitzg.	Contortae	-25.57502	114.2225	MELUD119117a	MN411372		
NG6475	Eremophila pterocarpa subsp. acicularis Chinnock	Contortae	-25.32736	120.86552	MEL2390092	MN411342		
RMF05*	Eremophila bowmanii subsp. bowmanii F. Muell.	Eriocalyx	-30.6075	145.7986	CANB602733	MN380713		
RMF152*	Eremophila bowmanii subsp. nutans Chinnock	Eriocalyx	-	-	MELUD119158a	MN411386		
MJB2405	Eremophila forrestii subsp. forrestii F. Muell.	Eriocalyx	-28.94095	117.82689	MELUD119059a	MN411352		
RMF142	Eremophila forrestii subsp. capensis Chinnock	Eriocalyx	-22.11	114.04	MELUD119148a	MN411381		
MJB2455	Eremophila glandulifera Chinnock	Eriocalyx	-28.88918	121.37331	MELUD119103a	MN411498		
MJB2407	Eremophila punicea S. Moore	Eriocalyx	-28.26294	117.85965	MELUD119061a	MN411471		
MJB2421	Eremophila latrobei subsp. latrobei F. Muell.	Eriocalyx	-26.58322	118.46572	MELUD119074a	MN411355	[58, 86, 89,	Semple <i>et al.</i>
NG6477	Eremophila latrobei subsp. latrobei F. Muell.	Eriocalyx	-25.06827	120.6555	MEL2390089	MN411341	94]	(unpub.)
RMF72	Eremophila latrobei subsp. filiformis Chinnock	Eriocalyx	-22.78621	120.00291	MELUD119261a	MN411412		
RMF268*	Eremophila latrobei subsp. glabra (L.S. Smith) Chinnock	Eriocalyx	-	-	MELUD119229a	MN411405		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF165*	Eremophila compacta subsp. compacta S. Moore	Eriocalyx	-	-	MELUD119166a	MN411392		
RMF135*	Eremophila compacta subsp. fecunda Chinnock	Eriocalyx	-26.37	117.34	MELUD119143a	MN411380		
RMF101	Eremophila aff. compacta 'Kennedy Ranges' S. Moore	Eriocalyx	-24.66147	115.17414	MELUD119115a	MN486190		
MJB2370*	Eremophila conferta Chinnock	Eriocalyx	-24.2	116.44	MELUD119033a	MN411447		
RMF93	Eremophila conferta Chinnock	Eriocalyx	-24.32825	116.87273	MELUD119275a	MN411599		
RMF97	Eremophila rhegos Chinnock	Eriocalyx	-24.7399	116.06875	MELUD119278a	MN411601		
RMF77	Eremophila aff. rhegos Chinnock	Eriocalyx	-23.73387	119.72642	MELUD119265a	MN486195		
RMF130	Eremophila congesta Chinnock	Eriocalyx	-26.37	120.24	MELUD119139a	MN411519		
MJB2436	Eremophila citrina Chinnock	Eriocalyx	-26.20009	121.26826	MELUD119086a	MN411489		
RMF59	Eremophila demissa Chinnock	Eriocalyx	-25.48275	119.26962	MELUD119252a	MN411591		
RMF82	Eremophila demissa	Eriocalyx	-24.61331	118.60313	MELUD119268a	MN486196		
MJB2416	Eremophila jucunda subsp. jucunda Chinnock	Eriocalyx	-27.04921	118.17319	MELUD119069a	MN411353		
RMF75	Eremophila jucunda subsp. pulcherrima Chinnock	Eriocalyx	-23.04178	118.85008	MELUD119264a	MN411414		
MJB2419	Eremophila retropila Chinnock	Eriocalyx	-26.58322	118.46572	MELUD119072a	MN411480		
MJB2425	Eremophila margarethae S. Moore	Eriocalyx	-26.49111	119.78154	MELUD119078a	MN411485		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF55	Eremophila aff. anomala 'Meekatharra' Chinnock	Eriocalyx	-25.97079	118.90061	MELUD119249a	MN486193		
MJB2372*	Eremophila muelleriana C. Gardner	Eriocalyx	-25.11	117.58	MELUD119035a	MN411448		
MJB2371*	Eremophila eriocalyx F. Muell.	Eriocalyx	-27.74	115.81	MELUD119034a	MN411326		
RMF68	Eremophila caespitosa Chinnock	Eriocalyx	-24.22388	119.78333	MELUD119258a	MN411328		
RMF128*	Eremophila obovata subsp. obovata L.S. Smith	Eriocalyx	-	-	MELUD119137a	MN411378		
RMF127*	Eremophila obovata subsp. glabriuscula (L.S. Smith) Chinnock	Eriocalyx	-	-	MELUD119136a	MN411377		
MJB2397*	Eremophila maitlandii F. Muell. ex Benth.	Eriocalyx	-24.9	113.67	MELUD119053a	MN411465		
RMF99	Eremophila recurva Chinnock	Eriocalyx	-25.26767	115.56365	MELUD119280a	MN411602		
RMF141*	Eremophila physocalyx Chinnock	Eriocalyx	-32.2	121.76	MELUD119147a	MN411525		
MJB2417	Eremophila lachnocalyx C. Gardner	Eriocalyx	-26.58322	118.46572	MELUD119070a	MN411479		
BB48a	Eremophila ballythunnensis Buirchell & A.P.Br.	Eriocalyx	-26.071	115.7495	-	MN486160		
RMF96	Eremophila yinnetharrensis Buirchell & A.P.Br.	Eriocalyx	-24.71546	116.1329	MELUD119277a	MN411600		
RMF92	Eremophila buirchellii A.P.Br.	Eriocalyx	-24.32963	116.86642	MELUD119274a	MN411598		
MJB2448	Eremophila campanulata Chinnock	Campanulatae	-26.58209	122.80328	MELUD119096a	MN411495		
RMF81	Eremophila humilis Chinnock	Campanulatae	-24.61329	118.60305	MELUD119267a	MN411596		
RMF175*	Eremophila tetraptera C.T. White	Subscissocarpa e	-	-	MELUD119173a	MN411537		[18]

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF109	Eremophila Iaanii F. Muell.	Amphichilus	-26.83023	115.44857	MELUD119121a	MN411507		
MJB2412	Eremophila longifolia (R. Br.) F. Muell.	Amphichilus	-27.27829	117.97772	MELUD119065a	MN411475		
RMF225	Eremophila longifolia (R. Br.) F. Muell.	Amphichilus	-34.28999	142.1859	MELUD119204a	MN411557	[83, 89, 94, 95]	[109], Semple et al. (unpub.)
RMF241	Eremophila longifolia (R. Br.) F. Muell.	Amphichilus	-31.3024	138.83626	MELUD119212a	MN411563		
MJB2351*	Eremophila rostrata subsp. trifida Chinnock	Amphichilus	-29.46	116.48	MELUD119015a	MN411346		
RMF233	Eremophila maculata subsp. maculata (Ker Gawler) F. Muell.	Stenochilus	-34.13435	141.31055	MELUD119209a	MN411401		
TMS14-08	Eremophila maculata subsp. maculata (Ker Gawler) F. Muell.	Stenochilus	-34.3	142.23	-	MN486176	[96]	
MJB2484	Eremophila maculata subsp. maculata (Ker Gawler) F. Muell.	Stenochilus	-23.3011	133.7875	MELUD119111a	MN411370		
MJB2462	Eremophila maculata subsp. brevifolia (Benth) Chinnock	Stenochilus	-30.95319	121.1434	MELUD119108a	MN411368		
RMF166*	Eremophila maculata subsp. filifolia Chinnock	Stenochilus	-21.09	119.83	MELUD119167a	MN411393		
RMF189	Eremophila racemosa (Endl.) F. Muell.	Stenochilus	-32.35143	119.74735	MELUD119183a	MN411543		
RMF213	Eremophila calorhabdos Diels	Stenochilus	-32.9413	120.34617	MELUD119200a	MN411555		[57]
MJB2350*	Eremophila denticulata subsp. denticulata F. Muell.	Stenochilus	-33.89	119.85	MELUD119014a	MN411345		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2365*	Eremophila denticulata subsp. trisulcata Chinnock	Stenochilus	-33.44	123.46	MELUD119028a	MN411347		[18]
RMF163*	Eremophila splendens Chinnock	Stenochilus	-26.27	113.89	MELUD119164a	MN411531		
RMF188	Eremophila biserrata Chinnock	Stenochilus	-32.4673	119.75875	MELUD119182a	MN411542		[18]
MJB2437	Eremophila glabra subsp. glabra (R. Br.) Ostenf.	Stenochilus	-26.22714	121.445	MELUD119087a	MN411359		[18, 25]
RMF251	Eremophila glabra subsp. glabra (R. Br.) Ostenf.	Stenochilus	-33.03468	136.79251	MELUD119218a	MN411402		. [18, 25]
RMF215	Eremophila glabra subsp. albicans (Bartling) Chinnock	Stenochilus	-33.15895	120.09927	MELUD119201a	MN411398		
RMF153*	Eremophila glabra subsp. carnosa Chinnock	Stenochilus	-28.19	114.25	MELUD119159a	MN411387		
RMF122*	Eremophila glabra subsp. chlorella (Gandoger) Chinnock	Stenochilus	-32.02	115.92	MELUD119131a	MN411375		
RMF151*	Eremophila glabra subsp. verrucosa Chinnock	Stenochilus	-29.42	121.89	MELUD119157a	MN411385		
RMF53	Eremophila glabra 'Paynes Find' (R. Br.) Ostenf.	Stenochilus	-29.2907	117.59231	MELUD119247a	MN411334		
RMF184	Eremophila glabra 'York' (R. Br.) Ostenf.	Stenochilus	-31.94689	116.97558	MELUD119178a	MN411332		
MJB2456	Eremophila decipiens subsp. decipiens Ostenf.	Stenochilus	-29.727	120.82164	MELUD119104a	MN411366		[10 =7]
RMF190	Eremophila decipiens subsp. decipiens Ostenf.	Stenochilus	-32.34968	119.74717	MELUD119184a	MN411367		[18, 57]
MJB2356*	Eremophila subteretifolia Chinnock	Stenochilus	-32.82	119.52	MELUD119017a	MN411433		[18]

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2369*	Eremophila hillii E.A. Shaw	Stenochilus			MELUD119032a	MN411446		
RMF03*	Eremophila subfloccosa subsp. subfloccosa Benth.	Stenochilus	-31.7794	117.4839	CBG9805407	MN411340		[18]
RMF205	Eremophila subfloccosa subsp. glandulosa Chinnock	Stenochilus	-33.24094	123.22465	MELUD119195a	MN411397		[57]
RMF253	Eremophila subfloccosa subsp. lanata Chinnock	Stenochilus	-33.2052	136.0592	MELUD119220a	MN411403		
RMF140	Eremophila calcicola R.W. Davis	Stenochilus	-33.699	122.6	MELUD119146a	MN411524		
RMF196	Eremophila gibbosa Chinnock	Virides	-32.02489	120.73406	MELUD119188a	MN411547		[18]
MJB2359*	Eremophila virens C. Gardner	Virides	-30.92	118.23	MELUD119019a	MN411435		[18, 57]
RMF146*	Eremophila undulata Chinnock	Virides	-	-	MELUD119152a	MN411527	[18]	
MJB2404	Eremophila serrulata (Cunn. ex A. DC.) Druce	Virides	-28.94095	117.82689	MELUD119058a	MN411468		[40.27]
RMF261*	Eremophila serrulata (Cunn. ex A. DC.) Druce	Virides	-	-	MELUD119225a	MN411574		- [18, 27]
MJB2434	Eremophila alternifolia R.Br.	Scariosepalae	-26.14361	121.2885	MELUD119085a	MN411488	[58, 89]	
RMF247	Eremophila alternifolia R.Br.	Scariosepalae	-31.34098	138.56705	MELUD119214a	MN411565	[97]	[9, 97], Semple et al. (unpub.)
RMF202	Eremophila alternifolia 'Broadleaf' R. Br.	Scariosepalae	-32.02849	122.86559	MELUD119192a	MN411333	[98]	c. a (anpub.)
RMF168*	Eremophila purpurascens Chinnock	Scariosepalae	-32.2	121.68	MELUD119168a	MN411533		
MJB2451	Eremophila abietina subsp. abietina Kraenzlin	Pulchrisepalae	-28.48833	122.42218	MELUD119099a	MN411364		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2366*	Eremophila abietina subsp. ciliata Chinnock	Pulchrisepalae	-28.76	124.33	MELUD119029a	MN411348		
RMF70	Eremophila fraserii subsp. fraserii F. Muell.	Pulchrisepalae	-24.26112	119.71781	MELUD119260a	MN411411	[00]	
RMF88	Eremophila fraserii subsp. fraserii F. Muell.	Pulchrisepalae	-25.11716	118.28693	MELUD119271a	MN411415	- [90]	
RMF90	Eremophila fraserii subsp. parva Chinnock	Pulchrisepalae	-25.17587	117.68446	MELUD119273a	MN411416		
MJB2447	Eremophila galeata Chinnock	Pulchrisepalae	-26.5822	123.05959	MELUD119095a	MN411494	[00]	[18], Semple
RMF58	Eremophila galeata Chinnock	Pulchrisepalae	-25.97263	118.89314	MELUD119251a	MN411590	- [99]	et al. (unpub.)
MJB2445	Eremophila ramiflora Dell	Pulchrisepalae	-25.85671	122.5485	MELUD119093a	MN411492		
RMF67	Eremophila flaccida subsp. flaccida Chinnock	Pulchrisepalae	-24.26702	119.71123	MELUD119257a	MN411410		
RMF161	Eremophila flaccida subsp. attenuata Chinnock	Pulchrisepalae	-25.18	115.49	MELUD119162a	MN411390		
MJB2446	Eremophila miniata Gardner	Pulchrisepalae	-26.53575	123.18797	MELUD119094a	MN411493		
MJB2388*	Eremophila miniata Gardner	Pulchrisepalae	-30.46	117.5	MELUD119045a	MN411458		
RMF129*	Eremophila neglecta J. Black	Pulchrisepalae	-	-	MELUD119138a	MN411518	[84]	[7, 18]
MJB2360*	Eremophila viscida Endl.	Pulchrisepalae	-30.7	116.87	MELUD119020a	MN411436		
RMF292	Eremophila lucida Chinnock	Pulchrisepalae	-32.27932	120.26237	MELUD119240a	MN411585		[18, 26, 57]
MJB2395*	Eremophila oldfieldii subsp. oldfieldii F. Muell.	Pulchrisepalae	-30.29	116.68	MELUD119051a	MN411349		
MJB2453	Eremophila oldfieldii subsp. angustifolia (S. Moore) Chinnock	Pulchrisepalae	-28.7434	122.02129	MELUD119101a	MN411365		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
MJB2420	Eremophila linearis Chinnock	Pulchrisepalae	-26.58322	118.46572	MELUD119073a	MN411481		[18], Semple et al. (unpub.)
MJB2483	Eremophila duttonii F. Muell.	Pulchrisepalae	-23.30118	133.78698	MELUD119110a	MN411502		
RMF136*	Eremophila duttonii F. Muell.	Pulchrisepalae	-	-	MELUD119144a	MN411522	[58, 82]	[97, 110]
RMF250	Eremophila duttonii F. Muell.	Pulchrisepalae	-31.3384	138.52936	MELUD119217a	MN411568		
MJB2374*	Eremophila grandiflora A.P. Br & Buirchell	Pulchrisepalae	-29.09	117.19	MELUD119036a	MN411449		
RMF49	Eremophila sp. Wubin North (R. Wait 8305)	-	-30.09924	116.62247	MELUD119245a	MN486192		
RMF89	Eremophila sp. Yarlarweelor (M. Greeve 41)	-	-25.295	118.06142	MELUD119272a	MN486197		
BB55	Eremophila sp. Little Sandy Desert (A. A. Mitchell PRP 1263)	-	-25.49556	122.65833	-	MN486177		
RMF31*	montanum R.	-	-27.615	152.9069	CBG7810920	MN411419	[100, 101] [102]	[102]
RMF46	Myoporum boninense subsp. australe Chinnock	-	-35.70108	150.19981	MELUD119244a	MN411589		
RMF281	Myoporum insulare R. Br.	-	-33.15676	138.06808	MELUD119235a	MN411580	[103]	[111]
RMF45	Myoporum acuminatum R. Br.	-	-35.70231	150.18958	MELUD119243a	MN411588	[104]	[112]
RMF29*	Myoporum caprarioides Benth.	-	-34.6833	117.95	CBG7901554	MN411420		
RMF32*	Myoporum petiolatum Chinnock	-	-38.4167	144.1333	CBG18760	MN380717		
RMF280	Myoporum petiolatum Chinnock	-	-32.82301	138.18399	MELUD119234a	MN411579		
RMF209	Myoporum tetrandrum (Labill.) Domin.	-	-33.79922	121.96305	MELUD119196a	MN411551		
RMF38*	Myoporum betcheanum subsp. betcheanum L. Smith	-	-28.05	152.3833	CBG8604103	MN411424		

Collection number	Taxon name and authority	Eremophila section (sensu Chinnock 2007)	Latitude	Longitude	Herbarium voucher number	GenBank accession number	Published traditional medicinal use for this species	Evidence available of antimicrobial activity for this species
RMF25*	Myoporum parvifolium R. Br.	-	-33.3667	136.6333	CBG36473	MN411417		
RMF260	Myoporum brevipes Benth.	-	-33.65805	136.98543	MELUD119224a	MN411573		
NTBG061301	Myoporum sandwicense subsp. sandwicense A. Gray	-	21.461	-157.991	PTBG075975	MN411618	[105]	
RMF42	Myoporum bateae F. Muell.	-	-35.77214	150.169	MELUD119242a	MN411587		
RMF35*	Myoporum platycarpum subsp. platycarpum R. Br.	-	-33.1833	137.0333	CBG8209994	MN411338	[103]	
RMF214	Glycocystis beckeri (F. Muell.) Chinnock	-	-32.95107	120.32957	MELUD119023a	MN411439		
FTBG64271*	Bontia daphnoides L.	-	25.67469	-80.276301	FTG4719	MN411428	[106-108]	
RMF220*	Calamphoreus inflatus (C. Gardner) Chinnock	-	-33.1	119.66	MELUD119024a	MN411440		
MJB2383*	Diocirea microphylla Chinnock	-	-31.01	120.9	MELUD119042a	MN411455		
RMF131*	Diocirea violacea Chinnock	-	-	-	MELUD119022a	MN411438		
RMF210	Diocirea violacea Chinnock	-	-32.93161	121.61952	MELUD119197a	MN411552		
RMF275*	Leucophyllum fruitescens I.M. Johnst	-	-	-	MELUD119231a	MN411577		
RMF288*	Leucophyllum fruitescens I.M. Johnst	-	-	-	MELUD119025a	MN411441		
RMF286*	Leucophyllum zygophyllum I.M. Johnst	-	-	-	MELUD119237a	MN411582		

Table S2. Statistical analysis on individual heatmap metabolic cluster using general linear models. Generalised linear models were used to test for significant differences of functional annotations among the investigated specimens within a heatmap metabolic cluster (HMC) background. Models were generated for each HMC-attribute combination using the clogloc model, while excluding specimens with missing functional annotation. Each test was conducted using the anova.manyglm() function from the mvabund package. A p-value threshold of 0.05 was considered significant.

I leaf resin 288 1 45 0.001	нис	Attributo	Res.Df	Df.diff	Deviation	
leaf hairiness 289	НМС	Attribute loaf rosin				p 0.001
pollination 289 1	-					
antibacterial activity 124 1 17 0.002						
activity 124			203		10	0.001
biogeography 286			124	1	17	0.002
II			286	4	19	0.134
leaf hairiness 289	П					
pollination 289				1		
activity 124 1 2 0.898				1		
activity		antibacterial	424	4	2	0.000
III		activity	124	1	2	0.898
leaf hairiness 289 1 7 0.044		biogeography	286	4	44	0.004
pollination 289 1 9 0.025 antibacterial activity 124 1 12 0.015	III	leaf resin	288	1	29	0.001
antibacterial activity 124 1 12 0.015 biogeography 286 4 23 0.056 IV leaf resin 288 1 44 0.001 leaf hairiness 289 1 7 0.362 pollination 289 1 20 0.004 antibacterial activity 124 1 5 0.547 biogeography 286 4 37 0.085 V leaf resin 288 1 125 0.001 leaf hairiness 289 1 34 0.001 pollination 289 1 58 0.001 antibacterial activity 124 1 92 0.001 antibacterial activity 124 1 92 0.001 antibacterial activity 124 1 92 0.001 biogeography 286 4 27 0.405 VI leaf resin 288 1 206 0.001 leaf hairiness 289 1 98 0.001 pollination 289 1 97 0.001 antibacterial activity 124 1 130 0.001 biogeography 286 4 173 0.001 VII leaf resin 288 1 36 0.001 VII leaf resin 288 1 36 0.001 VII leaf resin 288 1 36 0.001 vII leaf hairiness 289 1 4 0.792 pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436 VIII leaf resin 288 1 95 0.001 leaf hairiness 289 1 27 0.001 pollination 289 1 2 0.753 antibacterial activity 124 1 6 0.174 biogeography 286 4 28 0.049 IX leaf resin 288 1 112 0.001 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001		leaf hairiness	289	1	7	0.044
activity 124 1 12 0.015		pollination	289	1	9	0.025
activity			124	1	12	0.015
IV leaf resin 288 1 44 0.001 leaf hairiness 289 1 7 0.362 pollination 289 1 20 0.004 antibacterial activity 124 1 5 0.547 biogeography 286 4 37 0.085 V leaf resin 288 1 125 0.001 leaf hairiness 289 1 34 0.001 pollination 289 1 58 0.001 antibacterial activity 124 1 92 0.001 biogeography 286 4 27 0.405 VI leaf resin 288 1 206 0.001 leaf hairiness 289 1 98 0.001 pollination 289 1 97 0.001 antibacterial activity 124 1 130 0.001 pollination 289 1 97 0.001 antibacterial activity 124 1 130 0.001 biogeography 286 4 173 0.001 VII leaf resin 288 1 36 0.001 leaf hairiness 289 1 4 0.792 pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436 VIII leaf resin 288 1 95 0.001 pollination 289 1 27 0.001 leaf hairiness 289 1 27 0.001 leaf hairiness 289 1 27 0.001 biogeography 286 4 28 0.049 IX leaf resin 288 1 112 0.001 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 biogeography 286 4 129 0.001 X leaf resin 288 1 278 0.001 Leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001						
leaf hairiness 289						
pollination 289 1 20 0.004	IV					
antibacterial activity 124 1 5 0.547						
activity 124 1 5 0.54/	—	•	289	1	20	0.004
biogeography 286			124	1	5	0.547
V leaf resin 288 1 125 0.001 leaf hairiness 289 1 34 0.001 pollination 289 1 58 0.001 antibacterial activity 124 1 92 0.001 biogeography 286 4 27 0.405 VI leaf resin 288 1 206 0.001 leaf hairiness 289 1 98 0.001 antibacterial activity 124 1 130 0.001 biogeography 286 4 173 0.001 VIII leaf resin 288 1 36 0.001 leaf hairiness 289 1 4 0.792 pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436 VIII leaf resin 288 1 95 0.001 leaf hairiness 289 1 27 0.001 </td <th></th> <td></td> <td>206</td> <td>4</td> <td>27</td> <td>U U0E</td>			206	4	27	U U0E
leaf hairiness 289						
pollination 289 1 58 0.001	V					
antibacterial activity 124 1 92 0.001						
activity 124 1 92 0.001						
biogeography 286			124	1	92	0.001
VI leaf resin 288 1 206 0.001 leaf hairiness 289 1 98 0.001 pollination 289 1 97 0.001 antibacterial activity 124 1 130 0.001 VII leaf resin 288 1 36 0.001 VIII leaf resin 288 1 36 0.001 leaf hairiness 289 1 4 0.792 pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436 VIII leaf resin 288 1 95 0.001 pollination 289 1 27 0.001 pollination 289 1 27 0.001 pollination 289 1 27 0.001 pollination 289 1 2 0.753 antibacterial activity 288 1 11		,	286	4	27	0.405
pollination 289 1 97 0.001 antibacterial activity 124 1 130 0.001	VI			1	206	0.001
antibacterial activity 124 1 130 0.001		leaf hairiness	289	1	98	0.001
activity 124 1 130 0.001		pollination	289	1	97	0.001
activity		antibacterial	124	1	120	0.001
VII leaf resin 288 1 36 0.001 leaf hairiness 289 1 4 0.792 pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436 biogeography 286 4 6 1 VIII leaf resin 288 1 95 0.001 leaf hairiness 289 1 27 0.001 pollination 289 1 2 0.753 antibacterial activity 124 1 6 0.174 biogeography 286 4 28 0.049 IX leaf resin 288 1 112 0.01 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 X leaf resin 288 4 129		activity	124	1	130	0.001
leaf hairiness 289 1		biogeography	286	4	173	0.001
pollination 289 1 5 0.733 antibacterial activity 124 1 7 0.436	VII	leaf resin	288	1	36	0.001
antibacterial activity 124 1 7 0.436				1	4	
activity 124 1			289	1	5	0.733
activity			124	1	7	0.436
VIII leaf resin 288 1 95 0.001 leaf hairiness 289 1 27 0.001 pollination 289 1 2 0.753 antibacterial activity 124 1 6 0.174 biogeography 286 4 28 0.049 IX leaf resin 288 1 112 0.001 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 286 4 129 0.001 X leaf resin 288 1 278 0.001 Leaf hairiness 289 1 52 0.001 pollination 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001			200			
leaf hairiness 289 1 27 0.001	\/'''					
pollination 289 1 2 0.753 antibacterial activity 124 1 6 0.174	VIII					
antibacterial activity 124 1 6 0.174						
activity 124 1 6 0.174			289	1		0./53
biogeography 286 4 28 0.049 X leaf resin 288 1 112 0.001 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 biogeography 286 4 129 0.001 X leaf resin 288 1 278 0.001 leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001			124	1	6	0.174
IX leaf resin 288 1 112 0.001 leaf hairiness 289 1 30 0.008 pollination 289 1 18 0.163 antibacterial activity 124 1 23 0.065 biogeography 286 4 129 0.001 X leaf resin 288 1 278 0.001 leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001		,	286	4	28	0.049
leaf hairiness 289 1 30 0.008	ΙX					
pollination 289 1 18 0.163						
antibacterial activity 124 1 23 0.065 biogeography 286 4 129 0.001 X leaf resin 288 1 278 0.001 leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001						
activity 124 1 23 0.065						
biogeography 286 4 129 0.001 X leaf resin 288 1 278 0.001 leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001			124	1	23	0.065
X leaf resin 288 1 278 0.001 leaf hairiness 289 1 52 0.001 pollination 289 1 9 0.292 antibacterial activity 124 1 106 0.001			286	4	129	0.001
leaf hairiness 289 1 52 0.001	Х		288	1	278	
antibacterial activity 124 1 106 0.001			289	1	52	0.001
activity 124 1 106 0.001		pollination	289	1	9	0.292
activity		antibacterial	124	1	106	0.001
biogeography 286 4 104 0.001		activity				
		biogeography	286	4	104	0.001

Table S3. Chemical comparison of tanglegram metabolic cluster A and B. Comparison of the chemical content between tanglegram metabolic cluster (TMC) A and B. The underlying metabolic cluster analysis is based on the 100 largest chemical families of the generated molecular network of Myoporeae. Number of specimens from major phylogenetic clades are shown with "O": outgroup, "AG": clade A to G, "H3": clade H3, "H10": clade H10, "H11": clade H11, "H12": clade H12, "H14": clade H14 and "H": remaining clade H associated taxa. Dominant chemical families are depicted for each TMC, with "CF80": chemical families present in 80% of the specimens, as well as "CF50" and "CF30", depicting 50% and 30% abundancy of a given family among the given specimens, respectively. Different levels of predicted chemical classification and corresponding scores are shown for each chemical family. If present, level 1 identifications and their associated molecular structures are displayed.

				Phylogen	etic clade				total						Super			T .		1		
TMC	0	AG	н	нз	H10	H11	H12	H14	no.	CF80	CF50	CF30	нмс	Super class	class	Class	Class	Sub class	Sub class score	number of nodes	Level 1 identification	Molecular structure + formula
		AG		ns	HIU		HIZ	H24	Species						score		ZOIC		acore .	OI IIIOES	KU036-10 as M-	734
																					H2O+H (289.254) C20H34O2	Y -
А	3	37	34	35	43	5	8	7	172	1	1	1	П	Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19		cos=0.969	C ₂₀ H ₂₄ O ₂
										27	27			Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24		-
										38	38	38		Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18		
		_	_							100	100 19	100		Organic acids and derivatives	0.33	Peptidomimetics	0.33	Depsipeptides	0.33	9		
			_								19 26			Lipids and lipid-like molecules Lipids and lipid-like molecules		Prenol lipids Prenol lipids	0.40	nan Tetraterpenoids	0.30	30 25		
-											26	26	III	Lipids and lipid-like molecules	0.40	Prenoi lipids	0.40	Tetraterpenoids	0.20	25	-	
											34	34	ı	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H1005 cos=0.995	C ₁ ,H ₁₀ O ₁
																					KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	C.,H.,O.
												3	III	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H10O5 cos=0.995	
																					KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	Cotting of
												6	Ш	Phenylpropanoids and polyketides	0.27	Prenol lipids	0.17	Terpene glycosides	0.15	86		
												9	ı	Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28		KU036-6-1 as M+H (315.086) C17H14O6 cos=0.994	C ₁ ,H ₁₀ O ₆
			_									47		Lipids and lipid-like molecules	0.75	Prenol lipids	0.63	Monoterpenoids	0.31	16		
-												56	IV	Lipids and lipid-like molecules	0.50	Prenol lipids	0.43	Monoterpenoids	0.14	14	-	
												87	ı	Upids and lipid-like molecules	0.80	Fatty Acyls	0.70	Fatty acids and conjugates	0.60	10	KU036-6-6-2 as M- H2O+H (315.195) C20H28O4 cos=0.966	C ₂₀ H ₂₀ O ₄
																					KU006-11 as M- H20+H (315.196) C20H28O4 cos=0.953	C _{2l} H _{2l} O ₄

														ı		I						
TMC					etic clade		1	1	total no.	CF80	CF50	CF30	нмс	Super class	Super	Class	Class	Sub class	Sub class	number	Level 1	Molecular structure + formula
	0	AG	н	НЗ	H10	H11	H12	H14	Species			-			score		score		score	of nodes	identification	
																						\^\/
																						Y *J _/
																					KU036-10 as M-	
																					H2O+H (289.254) C20H34O2	70
			20	2		21	20	20	119					Lipids and lipid-like molecules	0.55	Prenol lipids	0.24	Sesquiterpenoids	0.19	910	C20H34U2 cos=0.969	EWO-
В	0	-	20		-	31	30	30	119	-			"	cipios and ripio-like molecules	0.55	Prenoripius	0.34	Sesquiter periorus	0.19	810	103-0.303	(5)(1)(0)
																					KU036-6-1 as M+H	
																					(315.086)	
																					C17H14O6	les 🔻
										9	9	9	1	Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28			C ₁₂ H ₁₄ O ₆
										27	27	27	II	Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24		-
										38	38	38	II	Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18		
							-	-		100	100	100	II	Organic acids and derivatives Lipids and lipid-like molecules		Peptidomimetics Prenol lipids		Depsipeptides Triterpenoids	0.33	298		-
								1			- 4	- 4	^	Elpius and ripio-like molecules	0.50	Prenoripids	0.30	Titterperious	0.13	236		
																						اللمما
																					KU002-15-1 as	1777
																					M+H (271.06)	Y
																					C15H10O5	5. E
											3	3	Ш	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	cos=0.995	C ₁₅ H ₁₀ O ₅
							1		1						1		1	I		l	1	
1	Ì					Ì	ĺ	ĺ	1			Ì					1	I	Ì	1	KU006-5-3 as M+H	
							1		1						1		1	I		l	(301.07) C16H12O6	[]
							1		1						1		1	I		l	cos=0.840	CuHu04
																						m a al:
							1		1						1		1	I		l	1	
							1		1						1		1	I		l	KU036-9-2a as M-	' ' / \∕√_
							1		1						1		1	I		l	H20+H (303.232)	44
							1		1						1		1	I		l	C20H32O3	
											4	4	х	Lipids and lipid-like molecules	0.48	Fatty Acyls	0.26	Fatty acids and conjugates	0.16	143		C ₂₆ H ₂₂ O ₃
											19 24		II	Lipids and lipid-like molecules	0.40	Prenol lipids	0.40	nan	0.30	30 27		
							-	-			24 26	24 26	X	Lipids and lipid-like molecules Lipids and lipid-like molecules		Fatty Acyls Prenol lipids	0.30	nan Tetraterpenoids	0.19	27		-
								1			32	32		Benzenoids		Benzene and substituted derivatives	0.40	Phenylpyruvic acid derivatives	0.47	19		
																	-	1,01				
																						ヘヘヘレノー
																					KU002-15-1 as	111.
																					M+H (271.06)	Y
																		_			C15H10O5	5+ 8
											34	34	1	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	cos=0.995	C ₁₅ H ₁₀ O ₅
																					KU006-5-3 as M+H	
																					(301.07) C16H12O6	~ <u>[</u>
																					cos=0.840	C.,H.,O,
											46	46	VIII	Organoheterocyclic compounds	0.29	Pyrans	0.29	Pyranones and derivatives	0.29	17		
												8	х	Organoheterocyclic compounds	0.29	Fatty Acyls	0.13	nan	0.37	63		
																						~~~ I
																					KU036-11-2-1 as M-	$[X \rightarrow X]$
																					H2O+H (287.237) C20H32O2	70
1	Ì					Ì	ĺ	ĺ	1			13	ıx	Lipids and lipid-like molecules	0.63	Fatty Acyls	0.30	Retinoids	0.25	40	C20H32O2 cos=0.975	CHO.
<b>—</b>							<b>†</b>	<b>†</b>	1			- 15			0.03		0.50		0.23	40	W-37 3	
							1		1						1		1	I		l	1	
			1 1				1	1	1								1	1		l	KU036-10-2 as M-	
			1 1				1	1	1								1	1		l	H2O+H (287.237)	\ <u>\</u>
1	Ì					Ì	ĺ	ĺ	1			Ì					1	I	Ì	1	C20H32O2	1 1
							1	1										1			cos=0.817	C ₂₀ H ₂₂ O ₂
							_	1				14		Lipids and lipid-like molecules		Prenol lipids	0.34	Sesquiterpenoids	0.11	38		
							1	1	-			16 31		Organic acids and derivatives Lipids and lipid-like molecules		Carboxylic acids and derivatives Fatty Acyls	0.27	Amino acids, peptides, and analogues	0.27	37 20		1
$\vdash$	-	-		-	-	-	<del> </del>	+	-			31		Lipids and lipid-like molecules Lipids and lipid-like molecules		Fatty Acyls Fatty Acyls	0.40		0.15	20 19		
							1	1			_	45		Lipids and lipid-like molecules		Fatty Acyls	0.16		0.11	17		
												51		Organoheterocyclic compounds		Prenol lipids		Pyranones and derivatives	0.19	16		
												53	х	Organic nitrogen compounds	0.25	nan	0.25	nan	0.38	16		
							_	1				56	IV	Lipids and lipid-like molecules		Prenol lipids		Monoterpenoids	0.14	14		
<b>—</b>	-	-		-	-	<b>-</b>	<del> </del>	-	-	$\vdash$		67 76		Organic acids and derivatives	0.50 1.00	Carboxylic acids and derivatives	0.33	Amino acids, peptides, and analogues	0.33	12		-
-							<del>                                     </del>	<del>                                     </del>	<del>                                     </del>	$\vdash$		76 78		Organic oxygen compounds Phenylpropanoids and polyketides		Organooxygen compounds Isoflavonoids	1.00	Carbonyl compounds Isoflavonoid O-glycosides	1.00 0.36	11		
							<b>†</b>	t —				/8	_		0./3		V.43	Tonor o pycostes	0.30			Of U
							1		1						1		1	I		l	1	<b>, √</b> , √, 1
							1		1						1		1	I		l	1	ローメス人 コ
							1		1						1		1	I		l	KU036-6-6-2 as M-	
1	Ì					Ì	ĺ	ĺ	1			Ì					1	I	Ì	1	H2O+H (315.195)	YY
			1 1				1	1	1								1	1		l	C20H28O4	1 b.
												87	1	Lipids and lipid-like molecules	0.80	Fatty Acyls	0.70	Fatty acids and conjugates	0.60	10	cos=0.966	C ₂₀ H ₂₀ O ₄
1							1		1						l		1	I		l	1	
1	Ì					Ì	ĺ	ĺ	1			Ì					1	I	Ì	1	I	المحاا
							1		1						l		1	I		l	KU006-11 as M-	
1	Ì					Ì	ĺ	ĺ	1			Ì					1	I	Ì	1	H20+H (315.196)	
							1		1						l		1	I		l	C20H28O4	1 l.
																					cos=0.953	C ₂₆ H ₂₈ O ₄
				1	1	ı	1	1	1	1		93	IX	Lipids and lipid-like molecules	0.90	Prenol lipids	0.50	Triterpenoids	0.50	10	-	1-

**Table S4. Multivariate statistical analysis involving the chemical space of Myoporeae.** Permutational multivariate analysis of variance (PERMANOVA) analysis were conducted involving all samples associated with a given functional annotation. Results of the Adonis2() and betadisper() functions are shown, which give information about statistical significance and data dispersion of tested attribute levels, respectively.

Total no. of samples tested	Attribute	Adonis R^2	Adonis pseudo-F	Adonis p	Betadisper pseudo-F	Betadisper p	average distance to median for each attribute level
290	leaf resin	0.082182431	25.78784815	0.001	5.16402472	0.018	absence: 0.5111; presence: 0.4950
291	leaf hairiness	0.01417886	4.156626852	0.001	19.88992926	0.001	absence: 0.4943; presence: 0.5249
291	pollination	0.01135124	3.318173828	0.002	0.209051399	0.645	insect: 0.5139; bird: 0.5188
126	antibacterial activity	0.064022044	8.481752595	0.001	0.071970114	0.804	negative 0.5063; positive: 0.5038
291	biogeography	0.035266087	2.613700219	0.001	12.61980403	0.001	widespread: 0.4874; eremean: 0.5182; southwestern temperate: 0.4930; southeastern temperate: 0.4532; non Australian: 0.3953
291	general clade	0.28086	15.79	0.001	13.075	0.001	A-G: 0.4452; H: 0.4885; H3: 0.4271; H10: 0.4876; H11: 0.4297; H12: 0.4795; H14: 0.4594; O: 0.1178

**Table S5.** Univariate tests and indicator species analysis on individual chemical families. To determine individual chemical families as overall significantly associated to a functional annotation, an univariate test was conducted using generalised linear models including all specimens with corresponding metadata to receive adjusted p-values. An additional indicator species analysis using the indval() function was applied to indicate the direction of annotation (level) for each chemical family.

## Chemical family ->

Test	Attribute		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GLM univariate test	leaf resin	р	0.9	0.001	0.004	0.001	1	0.101	0.34	0.001	0.001	0.003	0.917	0.8	0.109	0.014	0.87	0.001	0.001	0.059
indicator species analysis		р	0.076	0.001	0.001	0.001	0.402	0.004	0.004	0.001	0.001	0.001	0.119	0.042	0.003	0.001	0.050	0.001	0.001	0.001
		level	absence	presence	presence	presence	presence	absence	absence	presence	presence	presence	presence	presence	presence	presence	absence	presence	presence	absence
GLM univariate test	leaf hairiness	р	1	0.67	0.468	0.541	0.398	1	1	0.425	1	0.786	0.066	0.786	0.964	1	1	0.058	0.061	1
indicator species analysis		р	0.528	0.023	0.005	0.038	0.007	1.000	0.768	0.032	0.913	0.062	0.001	0.050	0.101	0.773	0.690	0.007	0.003	1.000
		level	absence	presence	absence	presence	absence	presence	presence	presence	absence	presence	absence	presence	presence	presence	absence	presence	absence	presence
GLM univariate test	pollination	р	1	1	1	1	1	0.273	0.97	1	0.006	1	1	1	1	0.888	1	0.349	1	1
indicator species analysis		р	1.000	0.780	0.901	0.592	0.128	0.020	0.029	0.195	0.001	0.076	1.000	1.000	0.233	0.093	0.419	0.003	0.177	0.140
		level	insect	bird	insect	bird	bird	insect	bird	bird	bird	bird	bird	insect	bird	insect	bird	bird	bird	bird
GLM univariate test	antibacterial activity	р	1	0.001	1	0.956	1	0.099	1	0.001	0.558	0.001	1	1	1	1	1	0.034	0.967	1
indicator species analysis		р	0.575	0.001	0.600	0.033	0.216	0.002	0.418	0.001	0.010	0.001	0.604	1.000	0.117	0.646	0.376	0.002	0.045	0.164
		level	negative	positive	positive	positive	positive	negative	negative	positive	positive	positive	negative	negative	positive	positive	positive	positive	positive	negative
GLM univariate test	biogeography	р	1	0.129	1	0.001	0.902	0.392	1	0.513	1	0.999	0.729	0.143	0.925	0.138	1	1	0.925	1
indicator species analysis		р	0.127	0.260	0.541	0.041	0.167	0.220	0.782	0.308	0.713	0.089	0.044	0.153	0.370	0.193	0.136	0.538	0.049	0.010
		level	widespread	south-western temperate	non Australian	eremean	south-eastern temperate	widespread	widespread	eremean	south-western temperate	south-western temperate	south-eastern temperate	eremean	eremean	eremean	non Australian	south-western temperate	south-eastern temperate	non Australian

Test	Attribute		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
GLM univariate test	leaf resin	р	1	1	1	0.009	0.13	0.001	0.444	1	0.9	1	0.754	0.789	0.001	0.001	0.009	0.141	1	0.428
indicator species analysis		р	0.795	0.538	0.475	0.002	0.004	0.001	0.020	0.712	0.092	0.386	0.050	0.037	0.001	0.001	0.001	0.005	0.407	0.075
		level	presence	presence	absence	presence	presence	presence	presence	presence	presence	absence	absence	presence	presence	presence	absence	presence	presence	presence
GLM univariate test	leaf hairiness	р	1	1	1	0.379	1	0.01	1	1	1	1	1	1	0.978	0.776	1	1	1	1
indicator species analysis		р	0.178	0.305	0.795	0.026	1.000	0.003	0.243	1.000	0.461	0.227	0.721	0.232	0.139	0.050	0.397	1.000	0.144	0.638
		level	absence	presence	presence	presence	presence	presence	presence	absence	absence	presence	presence	presence	presence	presence	presence	presence	presence	presence
GLM univariate test	pollination	р	1	1	1	0.12	1	1	1	1	1	1	1	1	1	1	1	1	1	0.886
indicator species analysis		р	0.897	0.385	1.000	0.002	0.329	0.251	0.079	0.776	0.696	0.796	0.249	0.531	0.435	0.064	1.000	0.122	0.782	0.031
		level	insect	bird	insect	bird	insect	bird	bird	insect	bird	bird	insect	insect	bird	bird	bird	bird	bird	bird
GLM univariate test	antibacterial activity	р	1	1	1	0.95	0.562	0.002	0.027	1	1	1	0.103	1	0.089	0.001	0.999	0.192	1	1
indicator species analysis		р	0.709	0.406	0.669	0.027	0.020	0.001	0.002	0.285	0.785	1.000	0.001	0.373	0.002	0.001	0.123	0.004	0.234	0.590
		level	negative	positive	negative	positive	positive	positive	positive	positive	positive	positive	negative	positive	positive	positive	negative	positive	positive	positive
GLM univariate test	biogeography	р	0.951	0.999	1	1	1	0.443	1	1	0.902	1	1	0.951	0.951	0.94	1	0.951	1	1
indicator species analysis		р	0.231	0.698	0.008	0.909	0.666	0.385	0.631	0.107	0.710	0.003	0.637	0.430	0.586	0.657	0.347	0.063	0.837	0.562
		level	south-western temperate	eremean	non Australian	south-western temperate	eremean	eremean	eremean	non Australian	widespread	non Australian	eremean	eremean	eremean	eremean	south-eastern temperate	non Australian	south-western temperate	widespread

Test	Attribute		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
GLM univariate test	leaf resin	р	0.535	0.021	0.721	1	0.997	0.208	0.96	0.13	0.109	0.001	0.722	0.725	0.002	0.8	0.001	1	0.001	1
indicator species analysis		p	0.032	0.002	0.035	0.418	0.251	0.004	0.207	0.003	0.002	0.001	0.032	0.043	0.001	0.044	0.001	0.412	0.001	0.850
		level	presence	presence	absence	presence	absence	absence	presence	presence	presence	presence	absence	presence	presence	absence	presence	presence	presence	presence
GLM univariate test	leaf hairiness	р	1	1	1	1	1	1	1	0.122	0.786	1	1	1	1	1	1	0.974	0.786	0.81
indicator species analysis		p	1.000	0.101	0.324	0.776	1.000	0.696	1.000	0.019	0.046	0.337	0.907	0.359	0.782	0.745	0.091	0.051	0.040	0.012
		level	presence	absence	presence	presence	presence	presence	presence	presence	presence	absence	absence	presence	presence	absence	absence	absence	presence	absence
GLM univariate test	pollination	р	1	1	1	1	1	1	1	0.651	1	1	1	0.997	1	0.97	1	1	1	1
indicator species analysis		р	0.068	1.000	0.456	0.236	0.131	0.546	0.391	0.014	1.000	1.000	0.125	0.181	0.781	0.021	0.556	0.696	0.195	0.289
		level	bird	insect	insect	insect	bird	bird	bird	bird	insect	insect	bird	insect	bird	bird	insect	bird	insect	insect
GLM univariate test	antibacterial activity	р	1	1	1	1	1	1	1	0.14	1	1	1	1	1	1	1	1	0.558	1
indicator species analysis		р	0.320	0.514	0.343	1.000	0.542	1.000	0.311	0.012	0.081	0.370	0.550	1.000	1.000	0.845	0.529	1.000	0.011	1.000
		level	positive	positive	negative	negative	positive	negative	positive	positive	positive	positive	negative	positive	negative	negative	positive	negative	positive	negative
GLM univariate test	biogeography	р	1	0.999	1	1	1	1	1	1	0.925	1	1	0.916	1	1	1	1	0.248	1
indicator species analysis		р	0.756	0.987	0.001	0.610	0.343	0.688	1.000	0.814	0.414	0.277	0.444	0.255	0.602	0.935	0.924	0.009	0.362	0.003
		level	widespread	widespread	non Australian	eremean	non Australian	non Australian	eremean	south-western temperate	eremean	south-eastern temperate	south-eastern temperate	eremean	eremean	south-eastern temperate	south-eastern temperate	south-eastern temperate	eremean	non Australian

Test	Attribute		55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
GLM univariate test	leaf resin	р	0.931	0.967	0.138	1	1	1	0.191	0.006	0.003	1	0.994	0.967	0.994	0.523	0.451	0.105	0.229	0.917
indicator species analysis		р	0.117	0.105	0.012	0.575	0.395	0.540	0.007	0.001	0.001	0.443	0.385	0.136	0.227	0.022	0.012	0.003	0.031	0.072
		level	absence	absence	presence	presence	presence	absence	absence	presence	presence	presence	presence	absence	presence	presence	absence	absence	presence	absence
GLM univariate test	leaf hairiness	р	1	0.906	1	0.838	1	1	1	1	1	0.337	1	0.232	1	0.997	1	1	1	1
indicator species analysis		р	1.000	0.076	0.452	0.062	0.755	1.000	1.000	0.204	0.250	0.009	0.688	0.003	0.324	0.123	0.423	1.000	0.688	0.539
		level	presence	presence	presence	presence	presence	presence	presence	presence	presence	absence	presence	absence	presence	presence	presence	presence	presence	presence
GLM univariate test	pollination	р	1	0.273	1	1	0.651	1	1	0.144	0.067	1	1	0.015	1	1	1	1	1	1
indicator species analysis		р	0.627	0.002	0.220	0.239	0.009	0.346	1.000	0.002	0.002	0.225	0.652	0.001	0.667	0.340	0.613	0.534	1.000	0.825
		level	bird	bird	bird	bird	bird	insect	bird	bird	bird	bird	bird	bird	bird	bird	insect	bird	bird	bird
GLM univariate test	antibacterial activity	р	1	1	0.32	1	1	0.217	0.676	0.079	0.003	1	0.629	1	1	0.979	1	1	1	1
indicator species analysis		р	0.490	0.472	0.023	0.243	0.498	0.013	0.072	0.003	0.001	1.000	0.041	0.623	0.434	0.083	0.244	0.388	NA	0.673
		level	negative	positive	positive	positive	positive	negative	negative	positive	positive	positive	positive	negative	positive	positive	negative	negative	NA	negative
GLM univariate test	biogeography	р	1	0.008	1	1	1	1	0.971	1	1	1	1	0.991	1	0.925	1	1	1	1
indicator species analysis		р	0.003	0.281	0.138	0.632	1.000	0.642	0.263	0.626	0.299	0.008	0.107	0.254	0.933	0.338	0.766	0.001	1.000	0.972
		level	non Australian	eremean	south-western temperate	eremean	south-western temperate	eremean	south-eastern temperate	south-western temperate	south-western temperate	south-eastern temperate	south-western temperate	non Australian	south-western temperate	eremean	south-eastern temperate	non Australian	eremean	south-western temperate

Test	Attribute		73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
GLM univariate test	leaf resin	р	0.87	1	0.96	0.001	0.212	0.024	0.006	0.869	0.869	0.905	0.931	0.823	0.542	0.215	1	0.145	0.721	1
indicator species analysis		р	0.252	1.000	0.124	0.001	0.007	0.002	0.001	0.251	0.240	0.062	0.102	0.115	0.031	0.012	0.292	0.003	0.032	0.598
		level	presence	presence	absence	presence	presence	presence	absence	presence	presence	absence	presence	absence	presence	presence	absence	absence	absence	presence
GLM univariate test	leaf hairiness	р	1	1	1	1	1	1	1	1	1	1	0.998	1	1	1	0.986	1	1	1
indicator species analysis		р	0.548	0.391	1.000	1.000	0.323	0.633	0.263	1.000	0.550	0.741	0.060	0.535	0.209	0.348	0.105	0.741	0.406	0.297
		level	presence	absence	presence	presence	presence	presence	presence	presence	presence	presence	absence	presence	presence	presence	presence	presence	absence	absence
GLM univariate test	pollination	р	1	1	1	1	1	1	1	1	1	1	1	0.551	1	1	1	1	0.021	1
indicator species analysis		р	0.232	0.361	0.319	0.208	1.000	0.081	0.642	0.563	1.000	1.000	1.000	0.027	0.202	0.352	0.414	0.739	0.001	1.000
		level	bird	bird	bird	bird	insect	bird	insect	insect	bird	bird	insect	bird	bird	bird	bird	insect	bird	bird
GLM univariate test	antibacterial activity	р	0.997	1	1	0.987	1	1	1	1	1	1	1	1	0.045	0.999	1	1	0.987	1
indicator species analysis		р	0.215	0.504	0.384	0.057	0.161	0.102	1.000	0.461	1.000	0.610	1.000	NA	0.002	0.204	0.307	0.526	0.094	0.679
		level	positive	negative	negative	positive	positive	positive	positive	positive	negative	negative	negative	NA	positive	positive	positive	negative	negative	negative
GLM univariate test	biogeography	р	1	1	0.998	0.015	0.951	0.997	0.934	1	1	1	0.998	1	0.98	1	1	1	0.923	1
indicator species analysis		р	0.266	0.056	0.260	0.068	0.440	0.704	0.267	1.000	1.000	0.358	0.526	1.000	0.044	0.693	0.909	0.077	0.102	0.849
		level	south-western temperate	non Australian	non Australian	eremean	eremean	widespread	eremean	eremean	eremean	south-eastern temperate	widespread	eremean	south-western temperate	eremean	eremean	non Australian	south-eastern temperate	south-western temperate

Test	Attribute		91	92	93	94	95	96	97	98	99	100
GLM univariate test	leaf resin	р	0.949	1	0.827	1	0.038	1	1	0.87	0.001	0.115
indicator species analysis		р	0.266	1.000	0.060	0.452	0.003	1.000	0.326	0.262	0.001	0.005
		level	absence	presence	presence	absence	presence	presence	absence	presence	presence	presence
GLM univariate test	leaf hairiness	р	0.96	1	0.997	1	1	0.969	1	1	0.988	0.01
indicator species analysis		р	0.118	1.000	0.117	0.102	1.000	0.169	0.423	1.000	0.144	0.001
		level	absence	presence	presence	absence	presence	presence	presence	presence	presence	absence
GLM univariate test	pollination	р	1	1	1	1	1	0.886	1	1	0.031	1
indicator species analysis		р	1.000	1.000	1.000	0.659	0.737	0.034	0.802	0.585	0.001	0.718
		level	bird	insect	insect	insect	insect	bird	insect	insect	bird	bird
GLM univariate test	antibacterial activity	р	1	1	1	0.989	0.98	1	1	0.998	0.001	1
indicator species analysis		р	NA	NA	0.811	0.256	0.096	0.488	1.000	0.201	0.001	1.000
		level	NA	NA	positive	negative	positive	negative	negative	positive	positive	negative
GLM univariate test	biogeography	р	1	1	0.966	1	1	1	1	1	1	0.486
indicator species analysis		р	1.000	1.000	0.488	1.000	0.799	1.000	0.603	0.062	0.578	0.854
		level	eremean	eremean	eremean	eremean	eremean	eremean	widespread	south-western temperate	south-western temperate	widespread

**Table S6. List of reference compounds used as in house spectral database.** Detailed spectrometric and structural information about all reference compounds used in this study.

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
BCFA_1	М+Н	253.1797	13.55	C15H24O3	252.1725	OCC(/c=c/cccccc)=c/c=c/c(o)=0	E. oppositifolia subsp. angustifolia	[13]
BCFA_12	M-H2+H	545.3461	20.43	C32H50O7	546.3557	0=C(0)/c=c/(c@н]1C(coc(c)=0)=C(c@@н](cccccc)(c@н]((c@@н]1/c(c	E. oppositifolia subsp. angustifolia	[13]
BCFA_2	М+Н	253.1801	14.49	C15H24O3	252.1725	CCCCCCC/c=c/c(co)=c/c=c/c(o)=0	E. oppositifolia subsp. angustifolia	[13]
BCFA_3	M+H	505.3518	16.15	С30Н48О6	504.3451	Occ1=C[c@@H](CcCCCCC)[c@@H](c(0)=O)[c@H](/c=c(cO)/c=c/cccccc)[c@H]1/c=c/c(0)=O	E. oppositifolia subsp. angustifolia	[13]
BCFA_4	М+Н	295.1907	15.96	C17H26O4	294.1831	cccccc/c=c/c(coc(c)=o)=c\c=c\c(c)=o	E. oppositifolia subsp. angustifolia	[13]
KU002-11-1	М+Н	361.0919	10.04	C18H16O8	360.0845	OC1=C(OC)C=CC([C@@H]2[C@@H](OC(C)=O)C(C3=C(O)C=C(O)C=C3O2)=O)=C	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-11-2	M+H	331.0789	10.11	C17H14O7	330.0740	OC1=C(OC)C=CC(C2=C(OC)C(C3=C(O)C=C(O)C=C3O2)=O)=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-11-3	М+Н	367.1756	10.23	С19Н26О7	366.1679	0=C(/C=C(C)/COC(C)=0)CC(CCCC(C01)=CC1=0)COC(C)=0	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-12-3-1	М+Н	309.1691	10.79	C17H24O5	308.1624	0=c(c=c(c)c)cc(cccc(c01)=cc1=0)coc(c)=0	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-13	М+Н	429.19	11.52	C24H28O7	428.1835	0C1=C(0)C=CC(/C=C/C(0CC(CCCC(CO2)=CC2=0)CC(C=C(C)C)=0)=0)=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU002-14	М+Н	257.0803	11.75	C15H12O4	256.0736	OC1=CC(O)=C(C(CC(C2=CC=CC2)O3)=O)C3=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-15-1	М+Н	271.0595	11.93	C15H10O5	270.0528	OC1=CC(O)=C(C(C(O)=C(C2=CC=CC2)O3)=O)C3=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-15-2	М+Н	315.0864	12.11	C17H14O6	314.0790	OC1=CC(0)=C(C([C@H](OC(C)=O)[C@@H](C2=CC=CC=C2)O3)=O)C3=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-16	М+Н	285.0753	12.41	C16H12O5	284.0685	OC1=CC(O)=C(C(C(OC)=C(C2=CC=CC)O3)=O)C3=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-2	М+Н	625.2115	5.92	С29Н36О15	624.2054	O[C@@H]1[C@@H](O[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](C)O2][C @H](OC(/C=C/C3=CC(O)=C(O)C=C3)=O)[C@@H](CO)O[C@H]100CCC4=CC=C(O) C(O)=C4	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-3	M+H	305.0658	5.75	C15H12O7	304.0583	O[C@H]1C(C2=C(O)C=C(O)C=C2O[C@@H]1C3=CC(O)=C(O)C=C3)=O	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-5-1	M+H	289.07	6.81	C15H12O6	288.0634	O[C@H]1C(C2=C(O)C=C(O)C=C(O)C=C(O)C=C3)=O	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-5-2	М+Н	325.1626	7.47	C17H24O6	324.1573	о=С//c=c(c)/co)cc(cccc(co1)=cc1=0)coc(c)=o	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-8-2	М+Н	445.1861	8.98	C24H28O8	444.1784	OC1=C(O)C=CC(/C=C/C(OCC(CCCC(CO2)=CC2=O)CC(/C=C(C)/CO)=O)=O)=C1	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-8-3	M+H	347.077	8.7	C17H14O8	346.0689	HO OH	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU002-8-4	M+H	317.0651	8.66	C16H12O7	316.0583	OC(C=C1)=C(O)C=C1[C@@H]2[C@@H](OC(C)=O)C(C3=C(O)C=C(O)C=C3O2)=O  OC(C=C1)=C(O)C=C1C2=C(O)C(C3=C(O)C=C3O2)=O	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU002-9-2	М+Н	273.0757	9.21	C15H12O5	272.0685	O[C@H]1C(C2=C(O)C=C(O)C=C2O[C@@H]1C3=CC=CC=C3)=O	Eremophila bignoniiflora	Zhao <i>et al.</i> (unpub.)
KU006-11	М+Н	333.2059	12.97	С20Н28О4	332.1988	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(CO)\C)([H])	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-12	М+Н	335.2223	13.47	С20Н30О4	334.2144	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CCCC(CO)C){[H])C	E. denticulata subsp. trisulcata	Zhao <i>et al</i> . (unpub.)
KU006-14	М+Н	351.2173	14.31	С20Н30О5	350.2093	OC1=C(O)C(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCCC(CO)C)([H])	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-15-1	М+Н	361.2008	15.04	C22H32O4	360.2301	OC1=CC(COC(C)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(CO)\C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-15-2	М+Н	361.1986	14.94	C21H28O5	360.1937	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(C(OC)=O)\C]([H])	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-15-3	М+Н	363.218	15.22	C21H30O5	362.2093	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCCC(C(OC)=O)C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-17-2	M-H2O+H	333.2058	10.57	С20Н30О5	350.2093	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{(H])[C@@](CCC(O)C(C)(O)C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-17-3	M-H2O+H	333.206	10.92	С20Н30О5	350.2093	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)(O)C)([H]))C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-17-4	М+Н	365.2318	12.36	C21H32O5	364.2250	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)(OC)C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU006-17-6	M-H2O+H	315.1953	12.91	С20Н28О4	332.1988	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)=C)([H])	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-17-9-1	M-H2O+H	299.1984	15.15	C20H28O3	316.2038	OC(C1=CC{[C@@]{[C@@]{CC#CC(CO)\C)([H])C}([H])CC[C@H]2C)=C2C=C1)=O	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-17-9-2	М+Н	361.201	15.24	C21H28O5	360.1937	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(C)\C(OC)=O)([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])[H]([H])([H])	E. denticulata subsp. trisulcota	Zhao <i>et al.</i> (unpub.)
KU006-4-1	М+Н	221.0814	7.7	C12H12O4	220.0736	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CCC2=O	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-4-3	M+H	317.066	8.35	C16H12O7	316.0583	OC(C=C1)=C(O)C=C1C2=CC(C3-C(O)C(OC)=C(O)C=C3O2)=O	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-4-4	M-H2O+H	331.1905	8.81	C20H28O5	348.1937	OC1=CC(C(O)=O)=CC2=C1[C@H](C)C[C@@H](O)[C@@]2([H])[C@@](CC/C=C(CO)\C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-4-5	M-H2O+H	333.2054	9.17	С20Н30О5	350.2093	OC1=CC(C(O)=O)=CC2=C1[C@H](C)C[C@@H](O)[C@@]2{[H])[C@@](CCCC(CO)  O([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-4-5b	М+Н	367.2106	9.27	С20Н30О6	366.2042	OC1=CC(C(O)=O)=CC2=C1[c@H](c)CC[c@@]2([H])[c@@](CCC(O)C(CO)(O)C)([H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-5-3	М+Н	301.07	9.41	C16H12O6	300.0634	OC(C=C1)=CC=C1C2=CC(C3=C(0)C(OC)=C(0)C=C3O2)=O	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-5-4	М+Н	331.0809	9.71	C17H14O7	330.0740	OC(C=C1)=C(OC)C=C1C2=CC(C3=C(O)C(OC)=C(O)C=C3O2)=O	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU006-6-1	М+Н	379.211	10.76	C21H30O6	378.2042	OC1=CC(C(O)=O)=CC2=C1[C@H](C)C[C@@H](O)[C@@]2([H])[C@@](CCCC(C(O)=O)=O)[C([H])[C)[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[C]([H])[H])[C]([H])[H])[C]([H])[H])[C]([H])[H])[C]([H])[H])[H])[H])[H])[H])[H])[H])[H])[H])	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU006-8-1	М+Н	395.206	11.46	C21H30O7	394.1992	OC1=C(O)C(C(O)=O)=CC2=C1[C@H](C)C[C@@H](O)[C@@]2{[H])[C@@](CCCC(C(OC)=O)C)[[H])C	E. denticulata subsp. trisulcata	Zhao <i>et al.</i> (unpub.)
KU030-2	M+H	509.1653	6.5	C24H28O12	508.1581	O[c@@H]1C2(O)[c@@)[(C@@H](O[c@H]3O[c@@H](CO)[c@H](O)[c@@H] (O)[c@@H]3O)OC=C2)([H])[c@@]4(cOC(/C=C/C5=CC=CC5)=O)[c@@H]10	E. oppositifolia subsp. angustifolia	Zhao <i>et al.</i> (unpub.)
KU030-3	М+Н	493.1684	6.86	C24H28O11	492.1632	OC1C2C(C(O[C@H]30]C(C@H](CO)(C@H](O)[C@@H](O)[C@@H]30)OC=C2)C4(COC(/C=C/C5=CC=C5)=O)C104	E. oppositifolia subsp. angustifolia	Zhao et al. (unpub.)
KU036-10	M-H2O+H	289.2537	15.58	C20H34O2	306.2559	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H])C)([H])CC[C@@H]2C)C[C@@H]10	E. rugosa	[71]
KU036-10-2	M-H2O+H	287.2368	15.51	C20H32O2	304.2402	CC1=CC[C@]2[[C@@][CC/C=C(C)\CO)([H])C)[[H])CC[C@@H]2C)CC1=0	E. rugosa	[71]
KU036-11-1-1	M-H2O+H	285.221	17.05	C20H30O2	302.2246	OC1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CCC=C(C)C)([H])C	E. rugosa	[71]
KU036-11-2-1	M-H2O+H	287.237	16.57	C20H32O2	304.2402	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@ H]10	E. rugosa	[71]
KU036-11-3-2	М+Н	509.2522	16.57	С30Н36О7	508.2461	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@](C)([H])CC/C=C(C)\COC (/C=C\C3=CC=C(O)C(OC)=C3)=O	E. rugosa	[71]

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU036-11-4	М+Н	509.2554	16.7	С30Н36О7	508.2461	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@](C)([H])CC/C=C(COC(/C=C\(3-C)(C)C(O))C)	E. rugosa	[71]
KU036-11-5	M+H	509.2559	16.54	С30Н36О7	508.2461	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{(H))[C@](C)([H])CC/C=C(C)\COC (/C=C/C3=CC(OC)=C(O)=C3)=O	E. rugosa	[71]
KU036-11-6	M+H	509.2528	16.71	С30Н36О7	508.2461	OC1=CC(C(O)=0)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CC/C=C(COC(/C=C/C3=C)COC](C]=C](O)=C3)=O)(C)([H])C	E. rugosa	[71]
KU036-11-7	M+H	511.2677	17.14	С30Н38О7	510.2618	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCCC(COC(/C=C/C3 =CC(OC)=C(O)=C3)=O)C([H])C	E. rugosa	[71]
KU036-12	М+Н	317.2098	17.13	С20Н28ОЗ	316.2038	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CCC=C(C)C)[[H])C	E. rugosa	[71]
KU036-4-3	М-Н2О+Н	261.1476	10.07	C16H22O4	278.1518	OC1=C2C([C@@]([C@@](CCO)([H])C)([H])CC[C@H]2C)=CC(C(O)=O)=C1	E. rugosa	[71]
KU036-4-4	М+Н	335.2211	10.17	C20H30O4	334.2144	0C1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CCC=C(CO)CO)([H])C	E. rugosa	[71]
KU036-4-5	М+Н	349.2007	10.24	С20Н28О5	348.1937	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(CO)=C)([H])[C]	E. rugosa	[71]
KU036-5	М+Н	349.2002	10.62	С20Н28О5	348.1937	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC=C(CO)CO)([H])	E. rugosa	[71]

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU036-6-1	М+Н	315.086	10.84	C17H14O6	314.0790	O=C1C2=C(O)C(OC)=C(OC)C=C2OC(C3=CC=C(O)C=C3)=C1	E. rugosa	[71]
KU036-6-2-1a	М+Н	317.1742	12.2	C19H24O4	316.1675	O=C(O)C1=CC(O)=C2C([C@@]{[C@@]{(C/C=C/C(C)=O){[H]}C)}[[H])CC[C@H]2C)=C1	E. rugosa	[71]
KU036-6-4-6	M-H2O+H	273.1482	11.65	C17H22O4	290.1518	O=C(O)C1=CC(O)=C2C([C@@]([C@@](CCC=O)([H])C)([H])CC(C@H]2C)=C1	E. rugosa	[71]
KU036-6-5	M-H2O+H	305.246	11.96	C20H34O3	322.2508	CC1=CC[C@]2{[C@]{[C@@](CCC=C(CO)CO)([H])C)([H])CC[C@@H]2C)C[C@@H]3O	E. rugosa	[71]
KU036-6-6-1	M-H2O+H	301.2161	12.65	C20H30O3	318.2195	0C1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CC/C=C(C)\CO)[[H])C	E. rugosa	[71]
KU036-6-6-2	M-H2O+H	315.1947	12.69	С20Н28О4	332.1988	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)=C)([H])	E. rugosa	[71]
KU036-6-8	М+Н	315.1959	16.07	С20Н26ОЗ	314.1882	C[C@@H](C]C@H]1C=C(C)C)[C@@]2([H])C3=C1C(C(O)=O)=CC(O)=C3[C@H](C)	E. rugosa	[71]
KU036-7	M-H2O+H	315.1947	12.93	С20Н28О4	332.1988	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(C)\CO)([H])	E. rugosa	[71]
KU036-8	M-H2O+H	315.1948	13.16	C20H28O4	332.1988	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(CO)\C)([H])	E. rugosa	[71]
KU036-9-1a	М+Н	331.1905	13.99	C20H26O4	330.1831	O=C(O)C1=CC([C@@]([C@@](CC/C=C(C=O)\C)([H])C)([H])CC[C@H]2C)=C2C(O) =C1	E. rugosa	[71]

ID	Adduct	m/z	Reten tion time	Chemical formula	Exact mass in Da	Molecular structure + SMILES	Origin species	Reference
KU036-9-2a	M-H20+H	303.2316	14.59	С20Н32О3	320.2351	CC1=CC[C@]2([C@@](CC/C=C(C)/C(O)=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10	E. rugosa	[71]
KU036-9-3	М-Н2О+Н	299.2016	13.86	С20Н28ОЗ	316.2038	O=C(0)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C)([H])C[C@H](O)[C@H]2C)=C2 C=C1	E. rugosa	[71]
KU036-9-3a	M+H	317.2107	14.82	C20H28O3	316.2038	O=C(O)C1=CC([C@@]([C@@](CC/C=C(C)\CO)([H])C)([H])CC(C@H]2C)=C2C=C1	E. rugosa	[71]
KU036-9-4	М+Н	335.2221	13.51	С20Н30О4	334.2144	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CCCC(CO)C){[H])C	E. rugosa	[71]
KU036-9-6	М+Н	525.2471	13.77	С30Н36О8	524.2410	OC1=CC(C(O)=O)=C(2=C1[C@H](C)CC[C@@]2{[H])[C@@](CC/C=C(COC(/C=C/C3=C)(C)=C(O)=C3=O)(CO)[[H])[C]	E. rugosa	[71]
Prunasin	M+H	296.1128	4.19	C14H17NO6	295.1056	N	commercially provided	-
Sambunigrin	M+H	296.1124	4.25	C14H17NO6	295.1056	C1=CC=C(C=C1)C(C#N)OC2C(C(C(C02)CO)O)OO	commercially provided	-

**Table S7. MZmine2 parameters used for raw chromatogram data processing.** Detailed overview about parameters used for raw chromatogram data processing done in this study. This was carried out using the software MzMine2 [70].

Step	Parameter	Value				
Mass Detection	mass detector	centroid				
	polarity	+				
	MS level	1				
	noise level	1000				
	retention time	0.5 - 24 min				
Mass Detection	mass detector	centroid				
	polarity	+				
	MS level	2				
	noise level	100				
	retention time	0.5 - 24 min				
ADAP Chromatogram	MS level	1				
Builder	polarity	+				
	spectrum type	centroid 5				
	min group size retention time	0.5 - 24 min				
	min highest intensity	20000				
	group intensity threshold	10000				
	m/z tolerance	0.003 m/z (5 ppm)				
Chromatogram	algorithm	Local Min Search				
Deconvolution	chromatographic threshold	98%				
	min in RT range	0.05 min				
	min relative height	10%				
	min absolute height	10000				
	min ratio of peak top/edge	1%				
	peak duration range	0.05 - 2 min				
	m/z center calculation	median				
	MS2 pairing: m/z range	0,03				
	MS2 pairing: RT range(min)	0,3				
Isotopic peak grouper	m/z tolerance	0.01 m/z (10 ppm)				
	RT tolerance	0.1 min				
	monotopic shape	yes				
	max charge	1				
0 1400 111	representative isotope	most intense				
Group MS2 scans with	RT tolerance	0.3 min				
features	m/z tolerance	0.03 m/z (10 ppm)				
Peak list row filter	limit bt RT edges MS2 only for GNPS	yes				
reak list row litter	Reset the peak number ID	yes				
Join aligner	m/z tolerance	0.006 m/z (10 ppm)				
Join diigner	weight for m/z	10				
	RT tolerance	0.1 min				
	weight for RT	10				
Local spectra database	MS level	2				
search	precursor m/z tolerance	0.01 m/z (5 ppm)				
	minimum ion intensity	100				
	spectral m/z tolerance	0.02 m/z (10 ppm)				
	RT tolerance	0.2 min				
	min matched signals	6				
	similarity	weighted dot-product cosine				
	weights	NONE				
	min cosine similarity	0,8				
Gap filling - peak finder	intensity tolerance	1%				
(multithread)	m/z tolerance	0.006 m/z (5 ppm)				
D 1 CH	RT tolerance	0.1 min				
Peak filter	height	1E3-1E9				
Export for GNPS-FBMN	merge MS/MS	yes				
	select spectra	across samples				
	m/z merge mode	weighted average				
	intensity merge mode	max intensity				
	exp. mass deviation	0.01 m/z (15 ppm)				
	cosine threshold peak count threshold	20%				
	isolation window offset	0				
	isolation window width	3				
	isolation window width	12				

**Table S8. Molecular networking parameters.** Detailed overview about parameters used for the feature-based molecular networking approach presented in this study. The analysis was carried out using the Global Natural Products Social Molecular Networking (GNPS) toolbox [38]

Step	Parameter	Value
Feature-based-	quantification table source	Mzmine
molecular-	precursor ion mass tolerance	0.02 Da
networking (v18)	fragment ion mass tolerance	0.02 Da
	min pairs cos	0.8
	network topk	5
	min matched fragment ions	8
	max connected component size	0
	library search min matched peaks	6
	search analogs	no
	top results to report per query	1
	score threshold	0.7
	filter precursor window	yes
	filter peaks in 50 Da window	yes
	filter library	yes
	normalization	no
NAP CCMS2 (v1.2.5)	number of cluster index	0
	n first candidates for consensus score	10
	accuracy for candidate search	15 ppm
	acquisition mode	positive
	adduct types	[M+H], [M+Na], [M+ACN+H]
	structure databases	GNPS,SUPNAT,NPAtlas,CHEBI,DRUGBANK
	user provided databases	Eremophila ISDB
	max candidate structures in graph	1
	cosine value to subselect	0.5
	fusion result for consensus	yes
	workflow type	MZmine
MS2LDA (v14)	bin width	0.005
	LDA iterations	1000
	min MS2 intensity	100
	LDA free motifs	300
	motifDB selection	all included
	overlap score threshold	0.3
	probability value threshold	0.1
	topX node	5

**Table S9. List of 100 largest chemical families derived from the molecular network of Myoporeae.** Detailed information about the largest 100 chemical families generated by the molecular networking approach conducted in this study. Chemical family classification is predicted based on the applied dereplication pipeline. Further indicated are total node count and total numbers of different levels of chemical identification determined in this analysis.

										- 1	evel	of ide	ontif	icati	ion
Chemical	Total number of	Super class	Super	Class	Class	Sub class	Sub	mz	retention time		ever	JI IU	enui	ICALI	T
family	nodes	Super class	score	Class	score	Jub class	score	median	median	1	2	3a	3b	30	0
1	810	Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	259.2417	13.09	1	59	75	634	40	) 1
2	298 151	Lipids and lipid-like molecules Phenylpropanoids and polyketides		Prenol lipids Prenol lipids	0.36	Triterpenoids	0.15	686.4604 467.2789	13.18 11.07	2	0	22			
4	143	Lipids and lipid-like molecules	0.48	Fatty Acyls	0.26	Fatty acids and conjugates	0.11	337.2366	13.31	1		21			
5	110	Lipids and lipid-like molecules	0.58	Fatty Acyls	0.38	Fatty acids and conjugates	0.19	332.2732	17.86	0	0	0			
7	86 68	Phenylpropanoids and polyketides Lipids and lipid-like molecules	0.27	Prenol lipids Prenol lipids	0.17	Terpene glycosides nan	0.15	611.1389 267.6744	7.92 10.865	0	3	7	76 62		
8	63	Organoheterocyclic compounds	0.29	Fatty Acyls	0.13	nan	0.37	341.2096	13.36	0	0	0	55	8	0
9 10	58 54	Organoheterocyclic compounds Lipids and lipid-like molecules	0.40	Benzopyrans Prenol lipids	0.18	nan Amino acids, peptides, and analogues	0.28	345.0967 451.7478	10.005 16.43	1	6	15 3			
11	49	Phenylpropanoids and polyketides	0.28	Flavonoids	0.10	nan	0.18	385.1633	12.22	1	3	8		0	0
12 13	45 40	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.53	Prenol lipids Fatty Acyls	0.26	Fatty acids and conjugates Retinoids	0.14	467.2772 322.2494	15.91 13.345	2	7	9	31 22		
14	38	Lipids and lipid-like molecules	0.58	Prenol lipids	0.34	Sesquiterpenoids	0.23	289.217	10.93	0	1	3			
15	38	Benzenoids	0.42	Indenes and isoindenes	0.26	nan	0.63	202.0911	11.2	0	0	0	38		
16 17	37 37	Organic acids and derivatives Phenylpropanoids and polyketides	0.27	Carboxylic acids and derivatives Linear 1,3-diarylpropanoids	0.27	Amino acids, peptides, and analogues Chalcones and dihydrochalcones	0.27	331.1899 303.0862	12.22 10.78	1	8	17			
18	36	Benzenoids	0.26	Benzene and substituted derivatives	0.17	nan	0.15	399.1798	11.89	0	6	9	20	1	0
19 20	30 30	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.40	Prenol lipids Prenol lipids	0.40	nan Sesquiterpenoids	0.30	213.127 203.1793	11.61 12.935	0	6	2			
21	29	Organoheterocyclic compounds	0.20	Carboxylic acids and derivatives	0.10	Amino acids, peptides, and analogues	0.10	401.1577	10.48	0	0	0			
22	28	Lipids and lipid-like molecules	0.64	Prenol lipids	0.50	Diterpenoids	0.29	404.2738	18.995	0	1	3	24		
23 24	28 27	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.71	Prenol lipids Fatty Acyls	0.54	Triterpenoids nan	0.29	657.4702 333.2055	16.915 14.31	0		0			
25	25	Organic oxygen compounds	1.00	Organooxygen compounds	1.00	Carbonyl compounds	1.00	177.0547	6.63	0	0	0	25		
26	25	Lipids and lipid-like molecules	0.40	Prenol lipids Tetrapyroles and derivatives	0.40	Tetraterpenoids	0.20	661.4432	14.47	0	0	0			
27 28	24	Organoheterocyclic compounds Phenylpropanoids and polyketides	0.33	Tetrapyrroles and derivatives Benzopyrans	0.33	nan nan	0.21	635.2838 363.133	16.54 9.71	0	0	0	20		
29	21	Organoheterocyclic compounds	0.52	Azobenzenes	0.52	nan	0.52	311.1485	8.08	0	0	0	21	0	0
30 31	21	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.57	Prenol lipids Fatty Acyls	0.52	Triterpenoids nan	0.14	641.475 341.2028	15.33 11.4	0	0	0			
32	19	Benzenoids	0.58	Benzene and substituted derivatives	0.40	Phenylpyruvic acid derivatives	0.15	179.0704	5.7	0	0	0	19	_	_
33	19	Organoheterocyclic compounds	0.32	Benzopyrans	0.21	nan	0.21	261.1121	9.12	0	1	2	16		
34 35	19 19	Phenylpropanoids and polyketides Phenylpropanoids and polyketides	0.74	Flavonoids Cinnamic acids and derivatives	0.45	Flavones Cinnamic acids	0.32	299.091 331.19	10.63 14.83	2	8	0	5 19		
36	19	Organic acids and derivatives	0.68	Carboxylic acids and derivatives	0.42	Amino acids, peptides, and analogues	0.42	781.4158	11.79	0	0	0	16	3	0
37	19	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.26	Fatty Acyls Steroids and steroid derivatives	0.16	nan Stigmastanes and derivatives	0.11	391.2114	13.51	0		0			
38 39	18 18	Organoheterocyclic compounds	0.50	Benzodioxoles	0.22	nan	0.22	634.4208 248.0861	12.085 12.775	0	0	0	18	_	
40	18	Phenylpropanoids and polyketides	0.78	Coumarins and derivatives	0.44	Coumarin glycosides	0.44	339.1071	5.82	0	0	0			
41	17 17	Phenylpropanoids and polyketides Organic acids and derivatives	0.29	Flavonoids Carboxylic acids and derivatives	0.24	O-methylated flavonoids Amino acids, peptides, and analogues	0.21	375.107 394.2587	11.47	1	7	8	17		
43	17	Lipids and lipid-like molecules	0.71	Prenol lipids	0.47	Sesquiterpenoids	0.24	703.5121	16.65	0		0			
44	17	Lipids and lipid-like molecules		Prenol lipids	0.35	Terpene lactones	0.18	267.1591	10.18	0		0			
45 46	17 17	Lipids and lipid-like molecules Organoheterocyclic compounds	0.53	Fatty Acyls Pyrans	0.24	nan Pyranones and derivatives	0.12	334.2367 299.1487	12.9 8.07	0	0	0	17 17	_	
47	16	Lipids and lipid-like molecules	0.75	Prenol lipids	0.63	Monoterpenoids	0.31	248.1404	12.325	0	0	0	16	0	0
48 49	16 16	Organic oxygen compounds Lipids and lipid-like molecules	0.38	Organooxygen compounds Prenol lipids	0.38	Carbohydrates and carbohydrate conjugates Retinoids	0.38	365.2314 315.195	10.525 13.06	0	0	0	16 15		
50	16	Lipids and lipid-like molecules	0.38	Benzene and substituted derivatives	0.44	Styrenes	0.25	275.2181	13.245	0	0				
51	16	Organoheterocyclic compounds		Prenol lipids	0.25	Pyranones and derivatives	0.19	231.1379	13.265	0		0			
52 53	16 16	Organoheterocyclic compounds Organic nitrogen compounds	0.41	Benzopyrans nan	0.22	nan nan	0.28	317.0655 330.2991	16.755	1	4	9	9		
54	16	Lipids and lipid-like molecules	0.31	Prenol lipids	0.19	Terpene glycosides	0.19	360.142	5.075	0	3	2			
55 56	15 14	Phenylpropanoids and polyketides Lipids and lipid-like molecules	0.33	Diazines Prenol lipids	0.20	nan Monoterpenoids	0.20	418.1855 527.319	12.8 19.42	0	0	0	15 14		
57	14	Lipids and lipid-like molecules		Fatty Acyls	0.43	Fatty acids and conjugates	0.43	296.1774	11.62	0	0	0			
58	14	Lipids and lipid-like molecules	0.43	Prenol lipids	0.43	Sesquiterpenoids	0.43	205.1948	16.43	0	1	1		_	_
59 60	13 13	Organic acids and derivatives Organoheterocyclic compounds	0.46	Carboxylic acids and derivatives Benzazepines	0.31	Amino acids, peptides, and analogues nan	0.31	665.4032 296.1489	13.19	0	0	0			
61	13	Organoheterocyclic compounds	0.23	Diazines	0.23	Pyrimidines and pyrimidine derivatives	0.23	681.3973	14.75	0	0	0	13	0	0
62	13	Benzenoids no matches	1.00 0.00	Benzene and substituted derivatives no matches	0.62	Benzyl alcohols no matches	0.62	205.0861 159.1166	14.79 12.21	0	0	0	13 11		
64	12	Benzenoids		Benzene and substituted derivatives	0.25	Benzyloxycarbonyls	0.25	203.0703	13.205	0		0			
65	12	Lipids and lipid-like molecules	0.75	Fatty Acyls	0.50	Fatty acids and conjugates	0.25	396.3158	13.855	0	0	0			
66 67	12	Lipids and lipid-like molecules  Organic acids and derivatives	0.33	Fatty Acyls Carboxylic acids and derivatives	0.33	Fatty acids and conjugates Amino acids, peptides, and analogues	0.25	352.2314 433.2225	15.805 10.895	0	0	0	12	0	
68	12	Organoheterocyclic compounds	0.58	Piperidines	0.50	N-acylpiperidines	0.42	352.2595	3.56	0	0	0	12	0	0
69 70	12 12	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.42	Prenol lipids Fatty Acyls	0.42	Monoterpenoids Fatty acids and conjugates	0.42	400.7603 195.0652	11.17 5.855	0	0	3	12 8		
71	12	Organic oxygen compounds	0.42	Organooxygen compounds	0.42	Carbohydrates and carbohydrate conjugates	0.42	319.1256	4.22	0		1			
72	12	Phenylpropanoids and polyketides		Diarylheptanoids	0.25	Linear diarylheptanoids	0.25	481.221	15.99	0	0	0	11	1	0
73 74	12 11	Organoheterocyclic compounds Benzenoids		Benzene and substituted derivatives Benzene and substituted derivatives	0.25	nan Benzoic acids and derivatives	0.25	261.1119 349.2004	7.77 15.98	0	0	0			
75	11	Lipids and lipid-like molecules	0.64	Prenol lipids	0.55	Terpene glycosides	0.27	726.4893	20.49	0	0	0	11	0	0
76 77	11	Organic oxygen compounds  Lipids and lipid-like molecules		Organooxygen compounds Prenol lipids		Carbonyl compounds Triterpenoids	1.00 0.36	177.0546 641.475	10.43 21.04		0			1	
78	11	Phenylpropanoids and polyketides		Isoflavonoids		Isoflavonoid O-glycosides	0.36	741.2013	8.17						0
79	11	Phenylpropanoids and polyketides		Fatty Acyls	0.27	nan	0.45		1.26	0	0	0	11	0	0
80 81	11 11	Alkaloids and derivatives Benzenoids	0.36	nan Benzene and substituted derivatives	0.36	nan Styrenes	0.55	364.211 205.1223	10.81 13.19	0	0	0	11 11	0	
82	11	Organic acids and derivatives	0.27	Carboxylic acids and derivatives	0.27	Amino acids, peptides, and analogues	0.27	312.1437	8.47	0	0	0	11	0	0
83 84	11	Organic oxygen compounds Lipids and lipid-like molecules		Organooxygen compounds Prenol lipids	0.36	Carbohydrates and carbohydrate conjugates  Diterpenoids	0.36	319.2261 650.4362	15.44 16.37		0				0
84 85	11	Lipids and lipid-like molecules	0.45	Fatty Acyls		Fatty acids and conjugates	0.45	303.2311	14.87						0
86	11	Phenylpropanoids and polyketides	0.36	Phenylpropanoic acids	0.36		0.36	167.0702	9.14	0	0	0	11	0	0
87 88	10 10	Lipids and lipid-like molecules Lipids and lipid-like molecules		Fatty Acyls Prenol lipids	0.70	Fatty acids and conjugates nan	0.60	315.1953 493.2675	15.065 20.135	0	0	0	10	0	
89	10	Lipids and lipid-like molecules	0.30	Fatty Acyls	0.30	Morpholines	0.20	234.1489	1.77	0	0	0	6	4	0
90 91	10 10	Phenylpropanoids and polyketides Lipids and lipid-like molecules	0.60	Flavonoids Fatty Acyls	0.45		0.45	565.1546 407.3492	5.255 20.18		8	2	0	0	
91	10	Organoheterocyclic compounds		Benzene and substituted derivatives	0.70		0.40	486.3076	18.355		0				
93	10	Lipids and lipid-like molecules	0.90	Prenol lipids	0.50	Triterpenoids	0.50	680.4565	11.095	0	0	0	10	0	0
94 95	10 10	Lipids and lipid-like molecules Lipids and lipid-like molecules	1.00 0.80	Fatty Acyls Prenol lipids	0.95	Fatty acids and conjugates Sesquiterpenoids	0.95	301.2156 201.1637	14.6 13.915	0	0				
96	10	Organoheterocyclic compounds	0.60	Diazines	0.30	nan	0.30	445.1646	10.77	0	0	0	6	4	0
97	10	Benzenoids		Benzene and substituted derivatives		Phenylpyruvic acid derivatives	0.30	180.0599	8.095	0	0	0	7	3	0
98 99	10 10	Phenylpropanoids and polyketides Phenylpropanoids and polyketides		Coumarins and derivatives Flavonoids	0.30		0.40	358.1046 646.1261	7.4 5.2		0				0
100	9	Organic acids and derivatives	0.40	Peptidomimetics	0.40		0.40	787.5331	15.87	0	0	0	9		

**Table S10.** Phylogenetic and chemical information about the performed metabolic cluster analysis in Myoporaea. Comparison of the chemical content information extracted from determined tanglegram metabolic clusters (TMC). The underlying metabolic cluster analysis is based on the absence/presence of the 100 largest chemical families of the generated molecular network of Myoporeae. Number of specimens from major phylogenetic clades are shown with "O": outgroup, "AG": clade A to G, "H3": clade H3, "H10": clade H10, "H11": clade H11, "H12": clade H12, "H14": clade H14 and "H": remaining clade H associated taxa. Dominant chemical families are depicted for each TMC, with "CF100" indicating chemical families present in all species (100%) of the corresponding TMC, as well as "CF90" and "CF80", depicting 90% and 80% abundancy of chemical families among the associated specimens, respectively. Different levels of predicted chemical classification and associated scores are shown. If present, level 1 identifications and their associated molecular structures are displayed.

тмс	0	AG	Phy	logene H3	etic cla	de H11	H12	H14	total no.	CF100	CF90	CF80	нмс	Super class	Super class score	Class	Class	Sub class	Sub class score	number of nodes	Level 1 identification	Molecular structure + formula
A1	0	17	1	0	0	0	0	0	18	17	17	17	VIII		score							
														Phenylpropanoids and polyketides	0.61	Linear 1,3- diarylpropanoids	0.38	Chalcones and dihydrochalcones	0.38	37	KU002-14 as M+H (257.08) C15H12O4 cos=0.998	HO OH O
										38	38	38	1	Lipids and lipid-like molecules Organic acids and	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18	-	C ₁₅ H ₁₂ O ₄ -
										-	1	1		derivatives	0.33	Peptidomimetics	0.33	Depsipeptides	0.33			
														Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	HO HO
										-	11	11	VIII	Phenylpropanoids and	0.28	Flavonoids	0.10	nan	0.18	49	KU002-15-2 as M+H (315.086) C17H1406 cos=0.972	HO OH O
														polyketides							KU002-11-1 as M+H (361.092) C18H16O8 cos=0.937	
										-	27	27	-	Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24	-	
											. 34	. 34		Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H100S cos=0.995	HO
																					KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	MOO JOH O
											51	51 9	VIII	Organoheterocyclic compounds	0.31	Prenol lipids	0.25	Pyranones and derivatives	0.19	16	-	- OH
														Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28	58	KU036-6-1 as M+H (315.086) C17H14O6 cos=0.994	MHC OH OH
										-	,	19		Lipids and lipid-like molecules	0.40	Prenol lipids	0.40	nan	0.30	30	-	-
A2	0	9	2	2	23	0	0	1	37	-	1	46	VIII	Organoheterocyclic compounds	0.29	Pyrans	0.29	Pyranones and derivatives	0.29	17	-	- H
AZ		3	_	-	د2	J	3	1	3/		•			Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H3402 cos=0.969	HO H
												38		Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18	-	-
А3	0	3	3	0	20	0	0	2	28		19	19	-	Lipids and lipid-like molecules	0.40	Prenol lipids	0.40	nan	0.30	30	-	
										-	34	34	1	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H100S cos=0.995	HO CHINADA
										_	87	87	1								KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	100 July 100 D
														Lipids and lipid-like	0.80	Fatty Acyls	0.70	Fatty acids and	0.60	10	KU006-11 v2 as M- H20+H (315.196) C20H2804 cos=0.953	100 100 100 100 100 100 100 100 100 100
														motecules				conjugates			KU036-6-6-2 as M- H2O+H (315.195) C20H28O4 cos=0.966	Costs Os
										-	,	1		Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										-	1	9	1	Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28	58	KU036-6-1 as M+H (315.086) C17H1406 cos=0.994	Mac OH
	1								1		-	27	-	Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24	-	-
			- 1	- 1	- 1				ļ	-		38	11	Lipids and lipid-like		Steroids and steroid		Stigmastanes and				
A4	0	2	5	20	0	1	0	0	28	19	19	38 19	1	Lipids and lipid-like molecules Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives Prenol lipids	0.22	Stigmastanes and derivatives	0.22	18 30	-	-

тмс	0	AG	Ph H	yloger H3			H12	H14	total no.	CF100	CF90	CF80	нмс	Super class	Super	Class	Class	Sub class	Sub class score	number of nodes	Level 1 identification	Molecular structure + formula
		AG		ns	HIU	111	nız	nis	species	-	1	1	-		score		Zuic		Zoic	1000	KU036-10 as M-	H. BOH
														Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	
										-	38	38	-	Lipids and lipid-like	0.50	Steroids and steroid	0.22	Stigmastanes and	0.22	18	-	C ₂₀ H ₃₄ O ₂
										-	100	100	-	molecules Organic acids and	0.33	derivatives Peptidomimetics	0.33	derivatives Depsipeptides	0.33	9	-	-
										-		27	-	derivatives Organoheterocyclic	0.33	Tetrapyrroles and	0.33	nan	0.21	24	-	
A5	0	4	16	4	0	4	6	1	35	-	27	27	-	compounds Organoheterocyclic	0.33	derivatives Tetrapyrroles and	0.33	nan	0.21	24	-	-
										-	38	38	-	compounds Lipids and lipid-like	0.50	derivatives Steroids and steroid	0.22	Stigmastanes and	0.22	18	-	
										-	100	100	-	molecules Organic acids and	0.33	derivatives Peptidomimetics	0.33	derivatives Depsipeptides	0.33	9	-	
											-	1	-	derivatives	0.33	repudoniments	0.33	Depsipeptides	0.33		-	H
														Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	HO HO C ₂₀ H ₂₄ O ₂
										-		26	≡	Lipids and lipid-like molecules	0.40	Prenol lipids	0.40	Tetraterpenoids	0.20	25	-	-
										-		34	-	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H10OS cos=0.995  KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	C _O H _O O ₂
																						C ₁₆ H ₁₂ O ₆
A6	3	2	7	9	0	0	2	3	26	38	38	38		Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18	-	-
										-	1	1		Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	10
											27	27	-	Organoheterocyclic	0.33	Tetrapyrroles and	0.33	nan	0.21	24	-	C ₂₀ H ₂₄ O ₂
			Ì							-	100	100	-	compounds Organic acids and	0.33	derivatives	0.33	nan Depsipeptides	0.21	9	-	
								Ì		-	-	18	VII	derivatives	0.33	Peptidomimetics  Benzene and substituted	0.17		0.15	36	-	
B1	0	1	17	2	^	21	20	0	83		1	1	_	Benzenoids	0.20	derivatives	0.17	nan	0.15	30	-	<u> </u>
, BI		1	17	2	,	31	20		83					Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	810	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	HO NO C ₂₀ H ₃₀ O ₃
										-	27	27		Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24	-	
										-	38	38	-	Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18	-	
										-	-	2	Х	Lipids and lipid-like	0.50	Prenol lipids	0.36	Triterpenoids	0.15	298	-	
										-		4	х	molecules  Lipids and lipid-like molecules	0.48	Fatty Acyls	0.26	Fatty acids and conjugates	0.16	143	KU036-9-2a v1 as M- H20+H (303.232) C20H32O3 cos=0.863	H000C
										-	-	9	- 1									OH
														Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28	58	KU036-6-1 as M+H (315.086) C17H1406 cos=0.994	Mico OH O
												46	VIII	Organoheterocyclic compounds	0.29	Pyrans	0.29	Pyranones and derivatives	0.29	17	-	-
										-	-	100	-	Organic acids and derivatives	0.33	Peptidomimetics	0.33	Depsipeptides	0.33	9	-	-
В2	0	0	3	1	0	0	2	30	36	38	38	38	_	Lipids and lipid-like molecules	0.50	Steroids and steroid derivatives	0.22	Stigmastanes and derivatives	0.22	18	-	
								Ì		100	100	100	-	Organic acids and derivatives	0.33	Peptidomimetics	0.33	Depsipeptides	0.33	9	-	-
										-	9	9	_	Organoheterocyclic compounds	0.40	Benzopyrans	0.18	nan	0.28	58	KU036-6-1 as M+H (315.086) C17H1406 cos=0.994	Mao OH CHILLIAN Chill
								1		-	27	27	-	Organoheterocyclic compounds	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21	24	-	-
								Ì		-	-	19	-	Lipids and lipid-like molecules	0.40	Prenol lipids	0.40	nan	0.30	30	-	-
			Ì					Ì		-	-	32	х	molecules Benzenoids	0.58	Benzene and substituted derivatives	0.47	Phenylpyruvic acid	0.47	19	-	-
										-	-	34	-	Phenylpropanoids and polyketides	0.74	derivatives  Flavonoids	0.45	derivatives  Flavones	0.32	19	KU002-15-1 as M+H (271.06) C15H100S cos=0.99S	CoHuOs
																					(301.07) C16H12O6 cos=0.840	C ₁₆ H ₁₂ O ₆

**Table S11. Detailed chemical information about heatmap metabolic clusters.** Heatmap metabolic cluster (HMC) were generated using a categorical heatmap analysis based on the presence/absence of the 100 largest chemical families found in the molecular network of Myoporeae. Information about chemical identity is given based on the conducted dereplication pipeline. Further indicated are spectrometric and structural information about corresponding level 1 identification events.

Chem-			Super		Class		Sub		
ical family	нмс	Super class	class score	Class	score	Sub class	class score	Level 1 identification	Molecular structure + SMILES
9	-	Organoheterocyclic compounds	0.4	Benzopyrans	0.18	nan	0.28	KU036-6-1 as M+H (315.086) C17H14O6 cos=0.994	0=C1C2=C(0)C(0C)=C(0C)C-C2OC(C3=CC-C(0)C=C3)=C1
34	1	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	KU006-5-3 as M+H (301.07) C16H12O6 cos=0.840	0C(C-C1)=CC-C1(2-CC((3-C(0)C(0)-C(0)C-C302)=0
34	1	Phenylpropanoids and polyketides	0.74	Flavonoids	0.45	Flavones	0.32	KU002-15-1 as M+H (271.06) C15H10O5 cos=0.995	0C1-CC(0)=C(C(Q0)=C(2-CC-CC-C2)03)=0)(3=C1
87	1	Lipids and lipid-like molecules	0.8	Fatty Acyls	0.7	Fatty acids and conjugates	0.6	KU036-6-6-2 as M- H20+H (315.195) C20H2804 cos=0.966	OC1-CC[(CI)=O]=CC2-C1[C@H]](C)CC[C@@]2[[H]][C@@](CCC(O)C(C)=C(I)[H])(C)CC[C](C)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C
87	ı	Lipids and lipid-like molecules	0.8	Fatty Acyls	0.7	Fatty acids and conjugates	0.6	KU006-11 as M- H20+H (315.196) C20H2804 cos=0.953	OC1-CC(C(O)=O)=CC2-C1(C@H)(C)CC(C@@)2([H))(C@@)(CC/C=C(CO))(C([H))C
1	II	Lipids and lipid-like molecules	0.55	Prenol lipids	0.34	Sesquiterpenoids	0.19	KU036-10 as M- H2O+H (289.254) C20H34O2 cos=0.969	HOO CCI=CC[C@)2[[C@)[[C@)[CC/C-C(C)\CO)[[H])C\[[H])CC[C@@H]2C[C(@@H]10
19	Ш	Lipids and lipid-like molecules	0.4	Prenol lipids	0.4	nan	0.3	-	-
27	Ш	Organoheterocyclic	0.33	Tetrapyrroles and derivatives	0.33	nan	0.21		-
38	Ш	compounds Lipids and lipid-like	0.5	Steroids and steroid	0.22	Stigmastanes and	0.22		-
100	Ш	molecules Organic acids and derivatives	0.33	derivatives Peptidomimetics	0.33	derivatives Depsipeptides	0.33	-	-
3	Ш	Phenylpropanoids and polyketides	0.25	Prenol lipids	0.15	nan	0.11	KU030-3 as M+H (493.168) C24H28011 cos=0.999	HO THE THE PART OF
3	=	Phenylpropanoids and polyketides	0.25	Prenol lipids	0.15	nan	0.11	KU030-2 as M+H (509.165) C24H28012 cos=0.999	OC122(C(O[C@H]3O[C@H](O)[C@H](O)[C@H]3O) OC-C2)C4(COC/C-C/C5-CC-CC-C5-O)C104  HO O(C@H]1C2(O)[C@][(C@H](O[C@H]3O(C@H](O)[C@H]3O(C@H](O)[C@H]3O(C@H](O)[C@H]3O(C@H](O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[C@H]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH]3O(CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[CGH)(O)[
6	Ш	Phenylpropanoids and polyketides	0.27	Prenol lipids	0.17	Terpene glycosides	0.15	-	-
26	Ш	Lipids and lipid-like molecules	0.4	Prenol lipids	0.4	Tetraterpenoids	0.2	-	-

Chem- ical	нмс	Super class	Super	Class	Class	Sub class	Sub class	Level 1 identification	Molecular structure + SMILES
family 7	IV	Lipids and lipid-like	score 0.29	Prenol lipids	0.16	nan	score 0.16		
33	IV	molecules Organoheterocyclic	0.32	Benzopyrans	0.21	nan	0.21		
42	IV	compounds Organic acids and	0.29	Carboxylic acids and	0.29	Amino acids, peptides, and	0.29	-	-
47	IV	derivatives Lipids and lipid-like	0.75	derivatives Prenol lipids	0.63	analogues Monoterpenoids	0.31		
50	IV	molecules Lipids and lipid-like	0.38	Benzene and substituted	0.25	Styrenes	0.25		
56	IV	molecules Lipids and lipid-like	0.5	derivatives Prenol lipids	0.43	Monoterpenoids	0.14		
10	v	molecules Lipids and lipid-like molecules	0.28	Prenol lipids	0.19	Amino acids, peptides, and analogues	0.15	KU006-14 as M+H (351.217) C20H3005 cos=0.997	OC1=C(0)C(C(0)=0)=CC2=C1[C@H](C)CC[C@@]2([H))[C@@](CCCC(C
16	v	Organic acids and derivatives	0.27	Carboxylic acids and derivatives	0.27	Amino acids, peptides, and analogues	0.27	-	-
22	v	Lipids and lipid-like molecules	0.64	Prenol lipids	0.5	Diterpenoids	0.29	-	-
62	٧	Benzenoids	1	Benzene and substituted derivatives	0.62	Benzyl alcohols	0.62	-	-
63	٧	no matches	0	no matches	0	no matches	0	-	-
99	٧	Phenylpropanoids and polyketides	0.4	Flavonoids	0.4	Flavonoid glycosides	0.4	-	-
5	VI	Lipids and lipid-like molecules	0.58	Fatty Acyls	0.38	Fatty acids and conjugates	0.19	-	-
20	VI	Lipids and lipid-like molecules	0.2	Prenol lipids	0.2	Sesquiterpenoids	0.2	-	-
23	VI	Lipids and lipid-like molecules	0.71	Prenol lipids	0.54	Triterpenoids	0.29	-	-
25	VI	Organic oxygen compounds	1	Organooxygen compounds	1	Carbonyl compounds	1	-	-
29	VI	Organoheterocyclic compounds	0.52	Azobenzenes	0.52	nan	0.52	-	-
35	VI	Phenylpropanoids and polyketides	0.32	Cinnamic acids and derivatives	0.32	Cinnamic acids	0.32	-	-
36	VI	Organic acids and derivatives	0.68	Carboxylic acids and derivatives	0.42	Amino acids, peptides, and analogues	0.42	-	-
40	VI	Phenylpropanoids and polyketides	0.78	Coumarins and derivatives	0.44	Coumarin glycosides	0.44	-	-
41	VI	Phenylpropanoids and polyketides	0.29	Flavonoids	0.24	O-methylated flavonoids	0.21	KU002-11-2 as M+H (331.079) C17H1407 cos=0.822	OC1=C(OC)C=CC(C2=C(OC)C(C3=C(O)C=C(O)C=C302)=0)=C1
43	VI	Lipids and lipid-like molecules	0.71	Prenol lipids	0.47	Sesquiterpenoids	0.24	-	-
44	VI	Lipids and lipid-like molecules	0.41	Prenol lipids	0.35	Terpene lactones	0.18	-	-
49	VI	Lipids and lipid-like molecules	0.69	Prenol lipids	0.44	Retinoids	0.38	-	-
52	VI	Organoheterocyclic compounds	0.41	Benzopyrans	0.22	nan	0.28	KU002-16 as M+H (285.075) C16H12O5 cos=0.998	OC1-CC(O)=C(C(OC)=C(C2-CC=C2)O3)=O)C3-C1
52	VI	Organoheterocyclic compounds	0.41	Benzopyrans	0.22	nan	0.28	KU002-8-4 as M+H (317.065) C16H12O7 cos=0.997	OC(C=C1)=C(O)C=C1C2=C(OC)C(C3=C(O)C=C3O2)=O
54	VI	Lipids and lipid-like molecules	0.31	Prenol lipids	0.19	Terpene glycosides	0.19	-	-
57	VI	Lipids and lipid-like molecules	0.71	Fatty Acyls	0.57	Fatty acids and conjugates	0.43	-	-
58	VI	Lipids and lipid-like molecules	0.43	Prenol lipids	0.43	Sesquiterpenoids	0.43	-	-
59	VI	Organic acids and derivatives	0.46	Carboxylic acids and derivatives	0.31	Amino acids, peptides, and analogues	0.31		-
60	VI	Organoheterocyclic compounds	0.69	Benzazepines	0.23	nan	0.23	-	-
61	VI	Organoheterocyclic compounds	0.23	Diazines	0.23	Pyrimidines and pyrimidine derivatives	0.23	-	-
64	VI	Benzenoids	0.25	Benzene and substituted derivatives	0.25	Benzyloxycarbonyls	0.25	-	-
65	VI	Lipids and lipid-like molecules	0.75	Fatty Acyls	0.5	Fatty acids and conjugates	0.25	-	-
66	VI	Lipids and lipid-like molecules	0.33	Fatty Acyls	0.33	Fatty acids and conjugates	0.25	-	-
69	VI	Lipids and lipid-like molecules	0.42	Prenol lipids	0.42	Monoterpenoids	0.42	-	-

11 VIII Phenylpropanoids and polyketides 0.28 Flavonoids 0.1 nan 0.18 (XU002-15-2 as M+H (315.086) C17H1406 cos=0.972	Chem- ical family	нмс	Super class	Super class score	Class	Class score	Sub class	Sub class score	Level 1 identification	Molecular structure + SMILES
10		VI			Organooxygen compounds	0.58			-	
23	72	VI		0.42	Diarylheptanoids	0.25	Linear diarylheptanoids	0.25		-
No.	73	VI	Organoheterocyclic	0.33		0.25	nan	0.25	-	-
	74	VI		0.64	Benzene and substituted	0.64		0.64		
Proceedings										
13	-									-
12   V/										•
13										•
23   V1   Components   Compon					derivatives				•	-
24	82	VI		0.27		0.27		0.27	-	-
17	83	VI	compounds	0.36	Organooxygen compounds	0.36		0.36	-	
50   VI   Principle   Composition   Compos	84	VI	molecules	0.55	Prenol lipids	0.55	Diterpenoids	0.45	-	-
88   VI   Light and light 64th   0.3   Festive Apis   0.3   Morpholities   0.2	85	VI		0.45	Fatty Acyls	0.27	Fatty acids and conjugates	0.18	-	-
88    VI	86	VI		0.36	Phenylpropanoic acids	0.36	nan	0.36	-	<u> </u>
Section   Sect	88	VI	Lipids and lipid-like	0.5	Prenol lipids	0.5	nan	0.2	-	•
20	89	VI	Lipids and lipid-like	0.3	Fatty Acyls	0.3	Morpholines	0.2	-	
1	90	VI	Phenylpropanoids and	0.6	Flavonoids	0.45	Flavonoid glycosides	0.45	-	-
92    VI	91	VI	Lipids and lipid-like	0.8	Fatty Acyls	0.7	Fatty acid esters	0.4		
1	92	VI	Organoheterocyclic	0.2	Benzene and substituted	0.2		0.2		
Promotion   Prom	94	VI	Lipids and lipid-like	1		0.95		0.95		
									_	
1										-
98    V										•
15   VII   Benzenoids   0.42   Indenes and isoindenes   0.26   nan   0.63					derivatives		derivatives			
18			polyketides				nan		•	•
1										-
28    VII	18	VII		0.26	derivatives	0.17		0.15	-	-
2.5   VII	21	VII	compounds	0.17		0.1		0.1	-	•
11   VIII   Phenylpropanoids and polyketides   0.28   Flavonoids   0.1   0.18   0.18   0.19   0.18   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19	28	VII	polyketides	0.42	Benzopyrans	0.17	nan	0.42	-	•
11   VIII   Phenylpropanoids and polyketides   0.28   Flavonoids   0.1   nan   0.18	39	VII	compounds	0.5	Benzodioxoles	0.5	nan	0.5	-	-
11   VIII   Phenylpropanoids and polyketides   0.28   Flavonoids   0.1   nan   0.18	55	VII	polyketides	0.33	Diazines	0.2	nan	0.2	-	-
11    VIII	70	VII		0.42	Fatty Acyls	0.42	Fatty acids and conjugates	0.42	-	-
11    VIII	11	VIII		0.28	Flavonoids	0.1	nan	0.18	(361.092) C18H16O8	OC1=C(OC)C=CC([C@@H]2[C@@H](OC(C)=O)C(C3=C(O)C=C3
17 VIII Principropanous and polyketides 0.61 clinear 1,3- diary/propanoids 0.38 clinear 1,3- diary/propanoids 0.39 clinear 1,3- diary/propanoids 0.38 clinea	11	VIII		0.28	Flavonoids	0.1	nan	0.18	(315.086) C17H14O6	OC1=CC(0)=C(C[(@H)(OC(c)=0)(c@@H)(C2=CC=CC=C2)O3)=O)C3= C1
46 VIII compounds 0.29 Pyrans 0.29 Pyranones and derivatives 0.29	17	VIII	polyketides	0.61		0.38		0.38	(257.08) C15H12O4	OC1-CC(O)=C(C(CC(C2-CC-C2)O3)=O)C3-C1
32 VIII compounds U.52 Preiroi riprus U.23 Pryraitorites airu ueirvatives U.19 -	46	VIII	compounds	0.29	Pyrans	0.29	Pyranones and derivatives	0.29	-	-
Linids and linid-like	51	VIII	Organoheterocyclic	0.31	Prenol lipids	0.25	Pyranones and derivatives	0.19	-	-
12 IX molecules 0.53 Prenol lipids 0.26 Fatty acids and conjugates 0.14	12	IX	Lipids and lipid-like	0.53	Prenol lipids	0.26	Fatty acids and conjugates	0.14	-	-

Chem- ical family	нмс	Super class	Super class score	Class	Class score	Sub class	Sub class score	Level 1 identification	Molecular structure + SMILES
13	IX	Lipids and lipid-like molecules	0.63	Fatty Acyls	0.3	Retinoids	0.25	KU036-11-2-1 as M- H2O+H (287.237) C20H32O2 cos=0.975	CC1=CC[C@)2[[C@]([C@@](CC/C=C(C)C=O)([H])C)([H])CC[C@@H]2 C)C(C@@H]10
13	IX	Lipids and lipid-like molecules	0.63	Fatty Acyls	0.3	Retinoids	0.25	KU036-10-2 as M- H2O+H (287.237) C20H32O2 cos=0.817	HO CCI=CC[C@)2[C@)[CC/C-C(C)CO)[(H])C)[(H])CC[C@@H]2C)
14	IX	Lipids and lipid-like molecules	0.58	Prenol lipids	0.34	Sesquiterpenoids	0.11		-
30	IX	Lipids and lipid-like molecules	0.57	Prenol lipids	0.52	Triterpenoids	0.14		-
37	IX	Lipids and lipid-like molecules	0.26	Fatty Acyls	0.16	nan	0.11	-	-
45	IX	Lipids and lipid-like molecules	0.53	Fatty Acyls	0.24	nan	0.12	-	-
48	IX	Organic oxygen compounds	0.38	Organooxygen compounds	0.38	Carbohydrates and carbohydrate conjugates	0.38	-	•
67	IX	Organic acids and derivatives	0.5	Carboxylic acids and derivatives	0.33	Amino acids, peptides, and analogues	0.33	-	-
68	IX	Organoheterocyclic compounds	0.58	Piperidines	0.5	N-acylpiperidines	0.42	-	-
76	IX	Organic oxygen compounds	1	Organooxygen compounds	1	Carbonyl compounds	1		-
77	IX	Lipids and lipid-like molecules	0.73	Prenol lipids	0.45	Triterpenoids	0.36	-	-
78	IX	Phenylpropanoids and polyketides	0.73	Isoflavonoids	0.45	Isoflavonoid O-glycosides	0.36	-	-
93	IX	Lipids and lipid-like molecules	0.9	Prenol lipids	0.5	Triterpenoids	0.5	-	-
2	х	Lipids and lipid-like molecules	0.5	Prenol lipids	0.36	Triterpenoids	0.15	-	-
4	х	Lipids and lipid-like molecules	0.48	Fatty Acyls	0.26	Fatty acids and conjugates	0.16	KU036-9-2a as M- H20+H (303.232) C20H32O3 cos=0.863	CC1=CC[C@)2[[C@)[[C@@](CC/C-C(C)/C(O)=O)([H])C)([H])CC[C@@ H12C(C[C@@H110
8	х	Organoheterocyclic compounds	0.29	Fatty Acyls	0.13	nan	0.37	-	-
24	х	Lipids and lipid-like molecules	0.37	Fatty Acyls	0.3	nan	0.19		-
31	х	Lipids and lipid-like molecules	0.55	Fatty Acyls	0.4	nan	0.15	-	-
32	х	Benzenoids	0.58	Benzene and substituted derivatives	0.47	Phenylpyruvic acid derivatives	0.47		-
53	х	Organic nitrogen compounds	0.25	nan	0.25	nan	0.38	-	-

**Table S12. Identified metabolites within the 100 largest chemical families in Myoporeae.** Detailed spectrometric and structural information about level 1 and 2 identification events found within the largest 100 chemical families from the molecular network of Myoporeae.

Chem- ical	m/z	Reten- tion	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
family 1	235.1697	18.5			NCGC00169769-02_C15H22O2_2- Naphthaleneaceticacid,1,2,3,5,6,7,8,8a- octahydro-8,8a-dimethyl-alpha-	
1	233.1534	11.71			methylene-,(2R,8S,8aR)-	CCI-CCCXCI-CICE@HIJCC@HIJCC@HIJCCICI-CICIOI-O
1	289.252	17.34	0		) KU036-10	CC1-CC(C@)3(C@)(CQ@)(CC/C-C(C)CO)(H)(Q H)(CCC@@H)2CC(C@@H)10
1	289.2521	10.97	0		KU036-10	
1	455.3504	20.65			NCGC00347643- 02_C3014603_(5xi_5xi_13xi_18xi_19beta)	
1	287.2362	13.76	0		3-Oxolup-20[29]-en-28-oicacid	CC1=C(Ce)1(Ce)(CQe)2(C(e)3(Cq(ce)3(C(ce)4)C(Cc1-0)(C)(C)CCC(ce)34C(C12)(O)-0  CC1=C(Ce)2(Ce)(Ce)2(Ce)3(Cq(ce)34C(C12)(O)-0  CC1=C(Ce)2(Ce)3(Ce)(Ce)3(Cq(ce)34C(C12)(O)-0  CC1=C(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)(Ce)3(Ce)3
1	273.2573	20.87	0		NCGC00385919-01_C20H34O_2-Penten- 1-0L5-[15,4a5,8a5]-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-,(ZE)-	CO/CCCICI-OCCCICICICCCCCCIA)-C/CO
1	289.2522	15.61	KU036-10 as M-H2O+H (289.254) C20H34O2 cos=0.969	CC1=CC[C@)2[(C@)[(C@)CC/C-CIC)(CO)[ H] C( H) CC[C@@H]2C C[C@@H]10	0	0
1	471.3452	16.12			NCGC00347357-02_C30H4805_Olean- 12-en-28-oicacid_2,3_19-trihydroxy-	
1	289.2518	13.07	0		] (2alpha,3beta,5xi,5xi,19alpha)-	(B)12(C(B)PH1O(CO)-O
1	263.2012	13.86	0		NCGC00384851-01_C17H2803_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	CCI=-0/00CTCCCI(GCCCIC-0CIG)(H))(H))CI(H))CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC+++H12CCIC++++H12CCIC++++H12CCIC++++H12CCIC++++H12CCIC+++++H12CCIC+++++H12CCIC++++++++++++++++++++++++++++++++++
1	289.252	17.14	0		KU036-10	CC1-CCIC@)3/(C@)(C@)(CC/C-C(CIC/CO)(H)(Q)(H)(CIC@@#H)2CIC(@@#H)10
1	273.2576	20.24	0	· ·	NCGC00385919-01_C20H34O_2-Penten- 1-ol,5-[(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-(2E)-	COI/CCCIGI-COCCOI(CI(CCCCCCC)-CI/CO
1	291.2676	17.79	0		NCGC00385919-01_C20H340_2-Penten- 1-ol.5-{(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-(,2E)-	CCI/CCCICI-CICCOCICICICCCCCIXI-C/CO
1	289.252	18	0		KU036-10	CCT=CCTGSTCGNCGeNCCA-CC(C)CON(H)CV(H)CCCGeHXCCCCGeHXD
1	263.2007	16.02	0		NCGC00380971- 01_C17H2803_{1R,2R,4a5,8a5}-2-{(2R)-2 Hydroxybutyl-1,3-dimethyl- 1,2,4a,5,6,7,8,8a-octahydro-1- naphthalenecarboxylicacid	CCCC@#NJOCIC@#NJVCI-CI(C@#NJ2CCCC(C@#NJ2IC@@]1IC(CIO)-O)C
1	235.1691	14.44	0		NCGC00169769-02_C15H22O2_2- Naphthaleneaceticacid,1,2,3,5,6,7,8,8a- octahydro-8,8a-dimethyl-alpha- methylene-,(2R,8S,8aR)-	 
1	289.2519	14.65	0		KU036-10	

Chem- ical family	m/z	Reten- tion	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
1	205.1946	17.51			NCGC00169963-02_C15H26O_[3,3,7-	Cot .
1	319.2259	8.24	0	·	Trimethyltricyclo[5.4.0.0~2,9~]undec-8- yl)methanol  NCGC00347803-02_C20H32O4_1- Naphthalenecarboxylicacid, decahydro-5- [18]5-5-hydroxy-2-lhydroxymethyli-3-	CCI(CCCC)(C)(C)(C)(CCCCCC13
1	233.1529	15.89	0		penten-1-yl)-1,4a-dimethyl-6-methylene-	CC12CCCC(CCC0)=C/CO(CO)=O
1	291.2673	17.37	0		COSTUNOUDE  NCGC0038S919-01_C20H340_2-Penten- 1-0,5-[(15,4s5,8s5)-decahydro-5,5,8s- trimethyl-2-methylene-1-aphthalenyl]-	CC1=CCC/C1=C/C@#H]CC3/C1=C1C1=0)02I/C
1	273.2574	11.82	0		3-methyl-,(2E)- NCGC00385919-01_C20H34O_2-Penten- 1-ol,5-{(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl)- 3-methyl-(2B)-	CCI/CCC1CI-CICCCCICICICCCCCCCCCCCCCCCCCC
1	273.2575	10.9	0		NCGC00385919-01_C20H340_2-Penten- 1-0L5-[15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-(ZE)-	CCI/CCC1cj-c/cccx(c)(c)ccccc1cj-c/co
1	273.2575	14.88	0		NCGC00385919-01_C20H34O_2-Penten- 1-ol,5-(15,4aS,8aS)-decaphydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-,(2E)-	CCI/CCLC =CCCCCC C CCCCC2c]=c/CO
1	287.2364	11.61	0		NCGC00384643-01_C20H3202_{2E}-3- Methyl-5-[(15,8a5)-5,5,8a-trimethyl-2- methylenedecahydro-1-naphthalenyl]-2- pentenoicacid	CCU/CCIC@HILCI=CCCCCICIGCCCCC@HIXCI=C\CIOI=0
1	289.2519	12.53	0		KU036-10	CC1=CC[C@)2([C@)([C@@)(CC/C=C(C)/CD)((H) C (H))CC C@@HJ2C CC@@HJ10
1	233.1533	11.83	0		COSTUNOLIDE	CC1=CC/C1=C/C@#H)CC1)C1=G(C1=G)C2)/C
1	303.2314	11.45	0		KU036-9-2a	CC1=CC(C@)2 (C@)(C@@)(CC/C=C(C)(C))=O)([H] C  H](CC(C@@H ZC)(C@#H ZC)(C@#H ZC)
1	298.2371	14.47	0		NCGC00384851-01_C17H2803_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	cci-0)ocaccca(cacci-caci-cacicio
1	263.2004	14.71	0		NCGC00384851-01_C17H2803_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	CCI-0)OCICCCXIQCCC(CZCI-qCiclico
1	263.1996	15.44	0		NCGC00384851-01_C17H28O3_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	CCG-0)0C3CCC3(GCCC(CCAC1-C)C(G(G)
1	303.2311	18.81	0		NCGC00384702-01!(22,6E,10E)-12- hydroxy-6,10-dimethyl-2-(4-methylpent- 3-enyl)dodeca-2,6,10-trienoicacid NCGC00384702-01!(22,6E,10E)-12-	00000000000000000000000000000000000000
1	233.1536	9.6	0		hydroxy-6,10-dimethyl-2-(4-methylpent- 3-envl)dodeca-2,6,10-trienoicacid	000 CCCG-CCCCCI-CCCCCICI-CCCCICI-CCCCICIO-O
1	233.1531	7.37	0	<u> </u>	NCGC00385483-01_C15H22O3_	6H CC1CCC2/C1=C/C3 O CC C C C123 C O =O
1	233.1537	18.76	0	· ·	NCGC00385483-01_C15H22O3_	CC1CCCY(=-(/C9()C(C)(C)(C123)C(0)=0
1	298.2384	14.2	0		NCGC00385483-01 C15H22O3  NCGC00384851-01 C17H28O3_2- Naphthalenemethanol,7- (acetyloxyldecahydro-alpha,alpha,4a- trimethyl-8-methylene-	CCI-CO)CCICCCXIG/CCCIT23(CIO)-O

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
1	235.1691	11.6	0	·	NCGC00169769-02_C15H2202_2- Naphthaleneaceticacid_1,2,3,5,6,7,8,8a- octahydro-8,8a-dimethyl-alpha- methylene-,(2R,8S,8aR)-	(CLE#H)LCCX(2~CX[C#H]C(G#)2CK[-CX(O)+0
1	233.1529	19.17			COSTUNCIOS	
1	263.2002	13.21	0	· ·	COSTUNDLIDE  NCGC00384851-01_C17H2803_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	CC1=0(OC2CCC)(CC2C1+C)(C(OC2C1+C)(C)(O(O)
1	233.1531	10.92				
1	231.1374	9.71	0		NCGC00385837-01_C15H2003_6- Hydroxy-5a-methyl-3.9- bis(methylend)decahydronaphtho(1,2-	CC1=CCC/c1=0/1Ce=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe=0HIXCe
1	235.1689	15.73	0	(	bjfuran-2(3H)-one  NCGC00169769-02_C15H22O2_2- Naphthaleneaceticacid,1,2,3,5,6,7,8,8a- octahydro-8,a-dimethyl-alpha- methylene-(2R,8S,8aR)-	C(CeN)CCC/S=C(C(CeN)(C(Ce))CCCCO
1	287.2354	15.59	0		) KU036-11-2-1	CC1=CC[C@2]([C@#](CC)C-C[C](C-O)([H])(C([H])(C([C@#H]2C[C[C@#H]10
1	235.1689	11.92				
1	235.1691	11.21	0		Curcumenol  NCGC00169782-02_C15H2202_[2E]-5- [2,3-Dimethyltricyclo[2.2.1.0^2,6^]hept-	CCI=CICC23CI(CCCC(=CCI)O(03)CC
1	273.2575	20.98	0		3-yll-2-methyl-2-pentenoicacid  NCGC00385919-01_C20H34O_2-Penten- 1-ol,5-{(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl - 3-methyl-(23)	COLIC-CCCCICICICICICICICICICICICICICICICIC
1	231.1381	12.52			NCGC0038S837-01_C15H20O3_6- Hydroxy-Sa-methyl-3,9- bis(methylendjecathydronaphtho[1,2-	du du
1	233.1532	11.08	0		b)furan-2(3H)-one	CC12CCC3Q(0q-0)C1=QC1Cq-CCC20
1	273.2572	16.52	0		NCGC00385919-01_C20H34Q_2-Penten- 1-ol,5-{(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl)- 3-methyl-(23)	CCI_CCCCC(_CQ_ewi)(C_1)c(_c)c(_c)c(_c)c(_c)c(_c)c(_c)c(_c)c(
1	291.2677	15.91	0		NCGC00385919-01_C20H34O_2-Penten- 1-ol,5-[(15,4a5,8a5)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-(2E)-	CO/CCCICI-COCCCICICICCCCCC124-CAO
1	263.2003	14.2	0		NCGC00384851-01_C17H28O3_2- Naphthalenemethanol,7- (acetyloxy)decahydro-alpha,alpha,4a- trimethyl-8-methylene-	cci-olocaccasidaccicas-olicido
1	291.2676	17.72	0	· ·	NCGC00385919-01_C20H340_2-Penten- 1-ol.5-{ I.S.4aS,8aS}-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-,[2E]-	CCI/CCCICI-C)CCCX(C)(C)CCCCCXC)-C/KO
1	289.2517	15.19			) KU036-10	CC1=CC(C@)2l(C@)l(C@)l(CC)CC(l(NCO)l(H))Cl(H))CC(C@@H)2C)C(C@@H)10
1	273.2566	18.95	0		NCGC00385919-01_C20H34O_2-Penten- 1-0L5-[1(S,4aS,8aS)-decahydro-5,5,8a- trimethyl-2-methylene-1-naphthalenyl]- 3-methyl-,(ZE)-	COJ/CCCICI-CJCCCCI(GICJCCCCCI)-C/CO

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
1	289.252	9.97	0	0	KU036-10	CC1-CC(C@)2 (C@) (C@) (CC/C-C(C)\CO)((H) C((H) CC(C@@H)2C)C(C@@H)10
1	287.2358	13.18	0	0	KU036-11-2-1	CC1=CC1C@)2 (C@) (C@) (CC)<-CC1C=O)( h )C (h )CC1C@@hl2C\CC@@hl2C\CC
1	289.2513	13.16	0	0	KU036-10	CCI-CCIC@)2IC@HICQHIIQGHHICCIC@#HI2CIC@#HI3O
1	331.19	17.26	0		NCGC00168841-03_C20H26O4_2- Propenoicacid,3-(4-hydroxy-3- methoxyphenyl)-,1,7,7- trimethyliocyclo[2.2.1]hept-2- ylester,(2E)-	COC1=C[O]C=CC[=C])C=C[C]=O]OCCCGCCCC[C]G[C]C
3	468.1859	6.56			[[15]-5-hydroxy-1-[(25,3R.45,55,6R]- 3,4,5-trihydroxy-6-(hydroxymethyl) oxan- 2-ylloxy-1,48,7-2 tetrahydrocyclopental(pyran-7- yllmethylbenzosy)	100-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
3	433.149	6.57			NCGC00169681-03_C22H26010_[(15)-1- (beta-0-Glucopyranosylony)-5-hydroxy- 1-48,5-7a-teta/drocylopenta[-0]-6-1	OC(C#H)10(C##H)(O(C##H)(O(C##H)(O)C#CA(CO(-O)C4-CC-CC-C4)C23)(C#H)(O)(C##H)(O
3	545.1639	8.67	0		7-yijmethybenzoate  NCGC038509-01115.3R.4R.58-l.3- dilydrony-4.5-bill[II]-3-(4-hydroxy-3- methoxyhenylprop-2- menyloxylprop-2- menyloxylprop-2- menyloxylprop-2- menyloxylprop-2- menyloxylprop-2- menyloxylprop-1- menyloxylprop-1	C(CEPHILO
3	517.134	6.84			phellopterin	100 CEC(ctcx1)C-C/C1-0)C(CeH)IC(CeH)(CCH)(10C(-0)/C-C/ctccc(ct1)O)O)O(C1-0)O)OO
3	493.1699	6.85	KU030-3 as M+H (493.168) C241/28011	00122(4(0)C#HJ30(C#HJ30(C#HJ0)(C#HJ0)(C#HJ30)C-22)C#(CX/C-c/C5-cC-cC		
3	369.1176	4.73	cos=0.999	<u>-c3)ct04</u>	0  NCGC00380877- 01_C17H2009_Cyclohexanecarboxylicac id,1,3,5-trihydroxy-4-[((2E)-3-(4-hydroxy- 3-methoxyphenyl)-1-oxo-2-propen-1- yloxy-[12lapha,3alpha,4alpha,5beta)-	0 1000=4CC -CC-C10)(Ce\C -0)0(Ce\H 2)(Ce\H 2)
3	493.1693	6.24	v		Notal Caracter and	SOCIAL LICENSE PROPERTY OF THE
3	511.268	17.16	0		KU030-3 KU036-11-7	OCIZCI(QI(E#H)30(C##H)(CI(E#H)(QIC(E#H)30)C=C2)C4(CCC/C=C/CS-CC-CC-CCS-CC)-CI(E#H)(QIC(E#H)30)C=C2)C4(CCC/C=C/CS-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-C
3	369.1177	4.3	0		NCGC00380877- 01_C17H2009_Cyclohexanecarboxylicac id_13_5-trihydroxy-4{[(2E)-3-(4-hydroxy- 3-methoxyhenyl)-tox-2-propen-1	COCT-CCT-CT-OTO(C-Q/CI-Q)O(C#HISICEHI(O)CIC##IIO)CIC##IISOKIOI-O

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
3	355.1022	1.73	0	~ (		HO
3	509.1649	6.5	KU030-2 as M+H (509.165) C24H28012			
4	303.2309	13.44	cos=0.999	(IM)(C@@)4(COC/C=-C/C=-CC-CS)=O)(C@@H)1.04	U   KU036-9-2a	CCI-CCIC@AIIC@HICCYC-CIC/CIOHONHICINHICCIC@#HZCICl@#HID
4	355.2468	8.03	0		5-[S-hydroxy-3-{hydroxymethyl]pentyl]- 8a-(hydroxymethyl)-5,6-dimethyl- 3,4,4a,6,7,8-hexahydronaphthalene-1- carboxylicacid	O
4	303.2314	14.78	KU036-9-2a v1 as M- H20+H (303.232) C20H32O3 cos=0.863	CC1=CC1(c@)(C(c@)(CQ)(CQ)(CQ)(CQ)(CQ)(CQ)(CQ)(CQ)(CQ)(CQ		
4	303.2314	12.25			KU036-9-2a	
4	301.2156	12.45	-		NCGC00169419-02_C20H2802_[5xi)-	
4	319.2265	11.14	0		Abieta-8,11,13-trien-18-oicacid  NCGC00347803-02_C20H3204_1- Naphthalenecarboxylicacid,decahydro-5- ([381-5-hydroxy-3-(hydroxymethyl)-3- penten-1-yl-1,4-d-imethyl-6-methylen-6-	CCCCCC(C)(C1cCC2+C)-C(CC1)(C)(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(CO)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)C(O)+O(C)+O(C
4	299.2003	8.62	n		NCGC00380144-01_C20H2803_[8E]-14- Hydroxy-5,9,12,13-tetramethyl-16- methylene-4- oxatricylo[10.3.1.0°3,5°]hexadeca- 1[15],8-dien-2-one	
4	301.2158	15.2	0		NCGC00169419-02_C20H2802_(5xi)- Abieta+8,11,13-trien-18-oicacid	CCICIC+CC2-CIC-11 (G@@ SICCCCIC@ ICICICC2)C(O)+O
6	595.1435	8.25			[6-[2-(3,4-dihydroxyphenyl)-8-hydroxy-4-oxochromen-7-yl]oxy-3,4,5- trihydroxyoxan-2-yl]methyl[E)-3-(4- hydroxyphenyl)prop-2-enoste	HO
6	539.1754	5.5	0		NCGC00169485- 03_C25H30013_Cyclopenta[c]pyran-4- carboxylicacid_1-[[6-0-[[2]-3-1],4- dhydroxyphenyl]cuo-2-propen-1-y]- beta-D-glucopyranosyljoxy]- 1,4a,5,6,7/a-hexalydro-7-hydroxy7- methy-1,15,4a,5,7,363-	(cice)HolociceHilo(eeHilo(eHilo
6	539.1759	5.75	0		NCGC00169485- 03_C2SH30013_Cyclopenta[c]pyran-4- carboxylicacid_1-[[6-0-(]2E)-3-(3,4- dihydroxypha-1-oxo-2-propen-1-yl]- beta-D-glucopyranosyl]oxy]- 1,445,6-7,7-b-exahydro-7-hydroxy-7- methyl-(15,45,57,25)-	C(ce) 10 Cc(ce) 10 Ce) 10 Ce) 10 Cc(ce) 10 C
7	309.1689	11.29				
9	283.0973	11.43	0		KU002-12-3-1  MLS001049094-011	0-c(c)-c(c)c(cc(cc)-c)-cc1-o)(cc(c)-o  Coc(c)(0(c)-kv1-o)(cc)-kc1-ccc2

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
9	359.1124	12.63	0		5-Hydroxy-2',4',7,8- Tetramethoxyflavone	Cockece(de1)OC)ckeel-0k2de(el(e20s)OC)OC)
9	315.0861	10.84	KU036-6-1 as M+H (315.086) C17H14O6 cos=0.994	0-CLC2-C(0)Q(0)-C(0)C-C2O(C3-CC-Q(0)-C3)-C1	0	0
9	345.0967	12.81	0		NCGC00385819-0115-hydroxy-2-(4- hydroxy-3-methoxyphenyl)-3,7- dimethoxychromen-4-one	01 01 00 00 00 00 00 00 00 00 00 00 00 0
9	315.0859	7.49			KU036-6-1	0-c1;2-c10(c)00-c100(c-c200(c3-cc-c10(c-c3)-c1
9	299.0911	9.92	o d		S-hydroxy-6,7-dimethoxyflavone	COctac2c(c -0)(c(c3cccc2))e2)c(c10C)
9	315.0857	11.77	n		KU036-6-1	0-61C2-4(0)(()(0)-()(0)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)(C-620)
10	351.2164	14.41	KU006-14 as M+H (351.217) (2013005 cos=0.997	0C1=C(0)C(0)=-0)-CC2=C(1)C#H(C)CC2#@D(H)(C##)CCCC(CO)C()(H)()C		0
10	351.2168	22.96				HC. CH
11	361.0923	9.85	C		KU006-14	0C1=C10)C(10)=-0)=C22=C1C#H (CCC(c@#)2(H ) (c##)(CCC(C0)C)(H )C
11	303.0859	9.66	o d		KU002-11-1  NCGC00168957-02I(2R,3R)-3,5-dilhydroxy-2-(4-hydroxyphenyl)-7-	0C1-(10C)C-CC((2@9H)2(2@9H)(0C(1)-0)(C3-C(0)C-C(0)C-C302)-0)-C1
11	467.1185	2.36	u u		methoxy-2,3-dihydrochromen-4-one  NCGC00385588-011[RR,3R]-2-(3,4-dihydroxyshenyl-5,7-dihydroxys- [[25,3,R,5,5,6,8]-3,4,5-trihydroxys- [hydroxymethyloxys-4]-(hydroxys-6)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydroxymethyloxys-4)-(hydrox	COCL=CC2=C(C1=O)((@+H)(0)((@+H)(02)C2=CC-C(0)(C-C3)C(0)=C1  10  11  11  11  11  11  11  11  11
11	315.0861	12.17	KU002-15-2 as M+H (315.086) C17H14O6 cos=0.972	0C1=CC10]C(B H) OC1C-0](@@H) C2=CC-CC-C2)03]=0)C3=C1	dihydrochromen-4-one	@HI(I)(I(@@HI)O
12	378.2621	18.2			NCGC00380860-01_C22H32O4_15-	and the state of t
12	303.231	20.5	C		Acetoxykaur-16-en-18-oicacid	CCI=CCI(@)DI(@#HICI=CI(@#HICCCCI(@)HICI(HI)CCI(@#HIZC)CI(@#HIZO)HIO
12	301.2155	18.15	0		NCGC00180680- 03_C20H2802_(Sbeta,8alpha,10alpha)- Kaura-9[11],16-dien-18-oicacid	

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
12	303.2309	20.64	0		KU036-9-2a	
12	289.252	17.63	0		KU036-10	CC1-CC(c@)2((c@)(C@)(c@)(CC)(C(C(C)()(  )()(  ()(C(C)(c@)()(2)(C(C)()()()()()()()()()()()()()()(
12	303.2313	17.67	0		KU036-9-2a	CC1-CCIC@20IC@9IC@9CC/C-CICI/GOI-OMINICUINI)CCIC@9HJ2CICC@9HJ1O
12	303.2312	19.84			KU036-9-2a	CC1=CC(c@)2[(c@)(c@@)(cC+-C(c)(c)(0)-0)([H](c)([H])Cc(c@@H]2C(c(c@H)10
12	303.2308	16.61				La Contraction
13	287.236	11.06			KU036-9-2a	CCL-CC(Ce)2((Ce))((Ce))(CC/CC)(C(O)-O)((H)C)((H))CC(Ce)eH)2C)C(Ce)eH110
13	287.2368	16.28	0		KU036-11-2-1	CCCL-CCC(c@2)(CQC)(CCCC)CCCCO(C-O)(H)(CCCCQ @H)(2C)(CQ @H)(10
13	287.2358	12.78	0		KU036-11-2-1	CCL-CC(C@)(I(C@)(I(C@)(I(C)(C-C)(C)(C-O)(H)(C)(I(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(
13	305.247	16.34	0		RU036-11-2-1  NCGC00384643-01_C20H32O2_[2E]-3- Methyl-5-[(1S,8aS)-5,5,8a-trimethyl-2- methylenedecahydro-1-naphthalenyl]-2-	CCL-CCL@PICePICePICePICE/CCPC-CCTC-ON(H)CN(H)CCLC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC@PHIZCICC
13	287.237	16.62	0 KU036-11-2-1 as M- H2O+H (287.237) C20H32O2 cos=0.975	CC1=CCIC@DI(C@B)(CC/C=CC)(C=O)(H)(CI(H)(CIC@BH)ZCIC@BH)10	pentenoicacid	CCC//CCC@M  LC -QCCCZC(G  QCCC C@  12C -C\C O  -D
13	287.2356	15.74	0		KU036-11-2-1	CC1=CC[c@)2([c@)([c@=)(CC/c-C[c]C-O)( H) C( (H) CC[c@=H)2C]C[c@=H)10
13	287.2366	15.47	KU036-10-2 as M- H20-H (287.237) C20H32O2 cos=0.817	CC1=CC(C@)2((C@)(C@@)(CC/CCC(C)(XO)((H)(C(C)(@)(H)(CCC)(CD)(CD)(CD)(CD)(CD)(CD)(CD)(CD)(C		a a second secon
13	287.2356	18.49			KU036-11-2-1	CC1-CC(c@)2((C@)(C@@)(CC/C/C)C-C)(N)(N)(C)(N)(C)(C@@H)2C(C(@@H)10
13	287.2363	12.93				, in the second
14	317.2107	11.03	0	0	KU036-11-2-1	CCT-CC(C-B)XI(C-B)II(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-B)XI(C-
17	303.0864	9.1	0		NCGC00347612-02_C20H3004_17- Hydroxy-15,16-epoxykauran-18-oicacid	CC12CCC(C)C(CC24CC(CC23)CS(CO)OC45)C(O)-O
17	301.1065	13.49	0	0	NCGC00347394-021(2R)-5,8-dihydroxy-2- (2-hydroxyphenyl)-7-methoxy-2,3- dihydrochromen-4-one	OCI-CC(0)-CC(-0)C(@@#I)(OC2-C10)C3-CC-CC-C30
- 1/	301.1005	13.49	0		(E)-1-(3,4-dihydroxy-2,6- dimethoxyphenyl)-3-phenylprop-2-en-1- one	COctec(cicle1C(-D)/C-E/cteccec1)OC(D)O
17	273.0757	9.04	0			04(3)ecq(3)((2)H)((1)Oc(2)E((0)cc(0)Z(C=0)1

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
17	303.0862	6.09	0		Sternbin	00 Loc(c/C)-0)CC(clacc(dc(3)0)0)0c2c1)0
17	303.0862	10.36	0	o	NCGC00384501-01/2-(3,4- dihydroxyphenyl) 5-hydroxy-7-methoxy- 2,3-dihydroxhome-4-one	0
17	257.081	11.54	0		KU002-14	0C1+CC(0)+Q(CC(2)+CC+CC+C)(03)+0)(3+C1
17	317.1017	11.87	0		Eriodictyol7, 3"-dimethylether	0C1-c[0c(c-c[(c@#HZC(C)=00(c-c[00(c-c]02)=0)c-c1
17	287.0905	11.96	0	o	NCGC00180735-02/5,7-dihydroxy-6- methoxy-2-phenyl-2,3-dihydrochromen- 4-one	COCI-C[O]C2-C[O]C2-CC-O]C3-CC-O
17	257.0807	11.78	KU002-14 as M+H (257.08) C15H12O4 cos=0.998	0C1=C(10)=(1((C(12)=C\c-C(-C1)0))=0)C3=C1	0	
18	419.1698	6.49			NCCC0380577-014 [[JR.Rah 6,5,6sh]-6,64h]-(4hylfony-3.5-dimethosyphenyl- 1,3,3,6,6,6-heahylfoduro[J.k-[Jlura-3]/],6-dimethosyphen)	COCI-CCCCCQQC-LONC@HJ3CQC@HJ3CQC@HJ3CA-CCQCC-CQQCQCQ-CA
18	464.2275	12.09			NCGC00169368-0213,6-bis[3,4,5- trineshaydrofur[0]-1,3,3a/4,6a- haydrofur[0]-1,3,3a/4,fun	COCI-CCI-CCIOC;-CLOCIC/COCCIC/CXCOC3K4-CCIOC]-CIOCICIOC]-C4
18	401.1589	13.03			6-[3-{3,4-dimethoxyphenyl}- 1,3,3a,4,6,6+hexahydrofuro[3,4-c]furan-	
18	464.2269	12.42	0	0	6-yil 4-methoxy 1,3-beruodioxide  NGCC00169368-0213,6-bis[3,4,5-	COCheccicatOC(CICZOCC)Caccica(cia)OCO4)OC(CXCO)
18	383.1484	13.38	0		timethoxyphenyl-1,3,3,4,6,6a- hexahydrofuro[3,4-c]furan  NCGC00169904-02_C22H2407_1,3-Benzodioxole,6-[4-[3,4-dimethoxyphenyl]tetrahydro-1H,3H-furo[3,4-c]furan-1y d-methoxy-	COCI-C()C()C-C()C()CCCCCCCCCCCCCCCCCCCCCCC
18	419.1697	6.69	0	o	NCCC00380572-014-[12R.3aR.65.6ah]-6-(6-hytron-3-5-dimethoxyphenol)-1,3a,46,66-headydour[-0]-4,-(furan-3-4)-2,6-dimethoxyphenol	COCI-CC[-CC[OC]=C10](c@H]3(c@H]3(c@H]3(c@H]3(c4-CC[OC]=C0)(c[OC]=C4

Chem- ical	m/z	Reten- tion	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
family		time				
20	221.1896	12.39			NCGC00179861-02_C15H26O2_1,8-	
			0	,	Azulenediol,1,2,3,3a,4,7,8,8a-octahydro- 3a,6-dimethyl-1-(1-methylethyl)- ,(1R,3aR,8S,8aS)-	े _ल ^{भठे} cc(c)(e)1(o)cc(c)2(c)c(c)c(c)(o)(c)@#]1)12
			0		,(10,3an,03,043)*	telejtejtotetejtejtet et jedeenjojteenia
20	221.1899	10.73			NCGC00179861-02_C15H26O2_1,8-	The state of the s
			0		Azulenediol,1,2,3,3a,4,7,8,8a-octahydro- 3a,6-dimethyl-1-(1-methylethyl)- ,(1R,3aR,8S,8aS)-	Mon   Mon   CC(C) C@ 1(O)CC(C@ 1(O)CC@ M 12 C@ M 12 CC(C)CC(C C C C C C C C C C C C C C C C
						Alta-
20	221.1895	13.2			NCGC00179861-02_C15H26O2_1,8- Azulenediol,1,2,3,3a,4,7,8,8a-octahydro-	
			0	C	3a,6-dimethyl-1-(1-methylethyl)- (1R,3aR,8S,8aS)-	CC(C)[C@]1(O)CC[C@)2(C)C\C=C(\C)C[C@H](O)[C@@H]12
						The state of the s
20	221.1898	13.72			NCGC00179861-02_C15H26O2_1,8- Azulenediol,1,2,3,3a,4,7,8,8a-octahydro-	The state of the s
			0	c	3a,6-dimethyl-1-(1-methylethyl)-	он / cc(c)[c@]1(o)c2[c@]2(c)cc=c(\c)c[c@н](o)[c@@н]12
20	221.1899	9.95			NCGC00179861-02_C15H26O2_1,8- Azulenediol,1,2,3,3a,4,7,8,8a-octahydro-	The state of the s
			0	C	3a,6-dimethyl-1-(1-methylethyl)- (1R,3aR,8S,8aS)-	CC(C)[C@)1(O)CC(C@)2(C)C-C(\C)C(C@H (O)[C@@H)12
20	221.19	10.09			NCGC00179861-02_C15H26O2_1,8- Azulenediol,1,2,3,3a,4,7,8,8a-octahydro- 3a,6-dimethyl-1-(1-methylethyl)-	OH MO
			0	C	Ja,b-dimetnyi-1-(1-methyletnyi)- J,(1R,3aR,8S,8aS)-	CC(C)(C@)1(0)CC(C@)2(C)C-C(\C)C(C@H)(0)(C@@H)12
						МО
22	317.2105	17.23				
			0	C	KU036-12	OC1=CC(Q(0)=0)=CC2=C1[C@H](C)CC[C@@)2([H])[C@@)[CCC=C(C)C ([H])C
33	247.1328	10.89			NCGC00385910-01_C15H20O4_1H-3a,6- Epoxyazulene-7-aceticacid,octahydro-	
			0	C	4,8a-dimethyl-alpha-methylene-1-oxo- ,(3aR,4S,6S,7R,8aS)-	   C C@H 3C C@@H 2O C@ 33CCC -0  C@@ 3(C)C C@@H 2C(-C)C(0)=0
34	255.065	11.58				HO
			0		Chrysin	   c1cce(ec1)c1cc(=0)c2e(ec(ec2o1)0)0
					Linyan	Learner of the control of the contro
34	271.06	9.19				
						MO GI
			0	OH 0		Oc(c3)cce(c3)C(=C1)Oc(c2)c(c(O)cc(O)2)C(=O)1
34	301.0705	9.51	KU006-5-3 as M+H	но		
			(301.07) C16H12O6 cos=0.840	OC(C=C1)=CC=C1C2=CC(C3=C(O)C(OC)=C(O)C=C302)=0	0	OH O
34	285.0755	11.74				
				,	MLS002153960-01 Acacetin480-44-4	COctecc(cc1)c2cc(=0)c3c(0)cc(0)cc3o2
			Ü			
34	287.0549	8.18				ОО
						U OH
			0	C	3',4',5,7-tetrahydroxyflavone	c1ce(e(cc1c1ec(=0)c2e(ec(cc2o1)0)0)0)0
						ОН
34	287.0547	9.36				
			0	c		C1=CC(=CC=C1C2=C(C(=0)C3=C(C=C(C=C3O2)O)O)O
						ОН
34	317.0655	9.71				
						ОН
			0		3'-O-Methylquercetin	0=c1c2=c(0)c=c20c(c3=cc(0c)=c(0)c=c3)=c10
34	271.0601	9.75				
					NCGC00385189 0115 7 9 4-74-4	OH OH
			0	c	NCGC00385188-01!5,7,8-trihydroxy-2- phenylchromen-4-one	OC1=CC(0)=C2C(=0)C=C(0C2=C10)C3=CC=CC=C3

Chem- ical	m/z	Reten- tion	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
family		time				OH OH OH
34	317.0647	10.63				J J OH
					NCGC00384961-01!2-(3,4- dihydroxyphenyl)-3,5,7-trihydroxy-6-	ОН
			0	C OH	methylchromen-4-one	CC1=C(0)C=C20C(=C(0)C(=0)C2=C10)C3=CC(0)=C(0)C=C3
34	271.0601	11.93				
			KU002-15-1 as M+H (271.06) C15H10O5	О		
			cos=0.995	OC1=CC(O)=C(C(O)=C(C2=CC=CC=C2)O3)=O)C3=C1	0	он о I II
41	375.107	11.73				
			0	C		COc(c3)c(O)cc(c3)C(O1)=C(OC)C(=0)c(c(O)2)c(cc(OC)c(OC)2)1
41	359.1124	14.29				
			0	c	5-hydroxy-3,6,7-trimethoxy-2-(4- methoxyphenyl)-4H-chromen-4-one	0=C1C2=C(0)C(0C)=C(0C)C=C20C(C3=CC=C(0C)C=C3)=C10C
41	391.102	10.65				OH OH
					5,7-dihydroxy-2-(3-hydroxy-4,5-	
			0		dimethoxyphenyl]-3,6-dimethoxy-4H- chromen-4-one	он OC1=C(C(OC)=C(OC)=C(OC)C(OC)=C2)O3)=O)C3=CC(O)=C1OC
41	419.1333	13.77				
			0	ОН В	5-hydroxy-3,6,7-trimethoxy-2-(3,4,5- trimethoxyphenyl)-4H-chromen-4-one	0=C1C2=C(0)C(OC)=C(OC)C=C2OC(C3=CC(OC)=C(OC)C(OC)=C3)=C1OC
41	331.0811	10.04	KU002-11-2 as M+H	NO TOM		
			(331.079) C17H14O7 cos=0.822	OC1=C(OC)C=CC(C2=C(OC)C(C3=C(O)C=C(3O2)=0)=C1	0	OH Q
41	315.0858	12.75				HO
			0	c	NCGC00384486-01!5,7-dihydroxy-3,6- dimethoxy-2-phenylchromen-4-one	COC1=C(0)C=C2OC(C3=CC=CC=C3)=C(OC)C(=0)C2=C10
41	361.0915	10.29				100
			0	,	jaceidin	COcice(ccc10)e1e(c[=0)e2e(cc(e(e20)OC)0)o1)OC
						OH O
						HO CONTRACTOR OF THE PARTY OF T
41	405.1176	12.28				
L			0		5,7-dihydroxy-3,6-dimethoxy-2-(3,4,5- trimethoxyphenyl)-4H-chromen-4-one	0=C1C2=C(0)C(OC)=C(0)C=C2OC(C3=CC(OC)=C(OC)C(OC)=C3)=C1OC
				Ů,		
49	299.2002	15.2				
			KU006-17-9-1 as M-	ОН		
			H2O+H (299.198)	0c(c1=cc(]c@@)([c@@)(cc/c=c(co)\c)([H])c)([H])cc[c@H]2c]=c2c=c1)=0	0	QH 0
52	329.1012	15.39				
			0	0 04	5-hydroxy-3,7-dimethoxy-2-(4- methoxyphenyl)-4H-chromen-4-one	0=C1C2=C(0)C=C(0C)C=C20C(C3=CCC=C(0C)C=C3)=C10C
52	285.0757	12.43		ОН		
			KU002-16 as M+H (285.075) C16H12O5 cos=0.998	OC1=CC(O)=C(C(C(OC)=C(C2=CC=CC=C2)O3)=O)C3=C1	0	
52	285.076	10.37				ON ON
				,	KU002-16	OC1=CC(0)=C(C(C(OC]=C(C2=CC-CC=C2)O3)=O)C3=C1
			0			OH O
52	317.0654	8.64				NO CH
						ОН
			0		KU002-8-4	OC(C=C1)=C(O)C=C1C2=C(OC)C(C3=C(O)C=C(O)C=C3O2)=O

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
52	301.0705	9.83	0		isokaempferide	COcts(-0)/2k/esc/2octs(esc(es))00)0
54	329.1228	7.85	0	0	NCGC00347404-02_C15H2008_4-Acetyl- 3-hydroxy-5-methylphenylbeta-D- glucopyranoside	CCI-01C1-CICIC-EMIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOICE+HIZOIC
54	329.1232	7.23	0		NCGC00347404-02_C15H2008_4-Acetyl- 3-hydroxy-5-methylphenylbeta-D- glucopyranoside	10
54	329.1228	8.36	_		NCGC00347404-02_C15H20O8_4-Acetyl- 3-hydroxy-5-methylphenylbeta-D- glucopyranoside	CCC-0/CL-C(GC-C)(C@@#\)20/C@#\ CO\(C@#\)[0](C@#\)[0](C@#\)[0](C@#\)20/C-C10
58	205.1948	16.33	0		NCGC00385952-01_C15H26O_1,7- Dimethyl-7-(4-methyl-3-penter-1- yl)bicyclo(2.2.1)heptan-2-ol	CCC)-CCCCLIC/CCCCLIC/COP ###/DIC ####/DIC ####/DIC ####/DIC ####################################
70	177.0547	1.26	0	0		06(2)(c(2)(C(2-CC(-CC)))
71	313.1391	3.82	a		Prunasin	
87	315.195	13.32				HO_OH OH
87	315.1949	12.77	0 KU036-6-6-2 as M- H2O+H (315.195) C20H28O4 cos=0.966	0C1=CC(C(O)=)=CC2=C1(e=H)(C)CC(e=e)2(H)(cee)(CCC(O)C(C)=C1(H))C	KU036-7	OCI=CC(C(O)=O)=CC2=CI(C@HI(C)CC(C@@)2(IHI)(C@@)(CC/C=C(C)(CO)(IHI)(C
87	315.1953	13.01	KU006-11 v2 as M- H20+H (315.196) C20H2804 cos=0.953	0C1=CG(CIO)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CC2=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=O)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=CG(CI)=C	0	0
87	299.2	14.52			KU006-17-9-1	OC(C1=CC)[C@@][(C@@)[CC)(~C(C0)(C)[H)[C,[H])[C][C@H][2C]~CX(~C1)=O
87	315.196	18.83	0			OH OH
87	315.1956	18.59	0	•	KU006-17-6	0C1=CCC(Q)=0)=C22=C1(@H)(CCC(Q@Q)2( H))(Q@Q)(CCC(Q)C(C)=Q)( H))C
87	315.1952	15.61	0		KU036-7	OC1=CC(C(O)=O)=CC2=C1(c@#)(C)CC(C@#)2([H])(c@#)(CC/C-C(C)\CO)([H])C  PO
87	315.1955	18.24	0		KU036-7	OC1=CQ(Q)=O)=CC2=C1(@H)(CC(C@)2( H))(@B)(CQ/C-C(C)(CO)(H))C

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
87	315.1953	12.91	0		DKU036-7	0C1=CC[C]0+0]+C2=C1[C#H](CDC(C##)(IM](C##)(CC/C=C[C]\CO)(IM](C
87	299.1997	23.51	0		0KU006-17-9-1	OC(C1+CCI(C@@) (C@@) CC/C=C(C0)C( (H) C( (H) CC(@M)2C)+CXC=C1)=0
90	549.1595	5.53	0		NCGC0038059-0115,7-dihydray-2- pheny6-6 [3,45-trihydray-6- (hydraymethyloson-2-y)8-6 [3,4,5- brihydrayosun-2-y)6-040men-4-or	0CC10GQ(0)(Q)(2)(Q)(C)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)
90	565.1552	5.23	0		NCGC00169650-0315,7-dihydroxy-2-(4- hydroxyphenyl)-8-(3,4,5-trihydroxy-6- (hydroxymethyl)osu-2-yi-6-(3,4,5- trihydroxyna-2-yi-6-(phromen-4-oro	0C100G(0)K(0)C10(2-30G)+CC6-0)K-C(0)G(2ACACC(0)K(0)C40)+C20(3-CC-G0)C-CS
90	565.1547	0.93	0		NCGC00169650-0315,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-tihydroxy-6-(hydroxymethyl)oxan-2-yl-6-(3,4,5-tihydroxy-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydroxymethyloxan-2-yl-6-(hydr	00CLOGIGIOICIOICIOICZ-G30GI-CCC-0(X-CQ0)GC40CCC0(XI)GIGICAD-ICZO)GS-CC-GOIC-CS
90	549.1595	5.72	0		NCGC0038059-0115,7-dihydray-2- phen/6-EJA,5-trihydray-6- (hydraymethyloson-2-y/8-EJA,5- lothydrayosun-2-y/g-Hydronen-4-or	0CLOQQ(0)(Q)(Q)(Q)(2)(2)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)
90	595.1664	0.93			NCGC00385604 0215,7-dihydrany 2-(4- hydranyheny) 6,8-big 1,4-5 hinydrany- 6-hydranyen (1)4-big 1,7-big	0CLOCQC(0)C(0)C10(2-C(0)C(100C(0)C(0)(0)(0)(20)-C40C(1-C(1-C(1-C(1-C(1-C(1-C(1-C(1-C(1-C(1-
90	565.1545	5.02	0		NCGC00169650-0315,7-dihydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-2-(-6-hydroxy-	OCCIOCICIO(CIO(CIO)CIO(2-CIOC)=CCI-O)CI=CCIO(CIO(CIO(CIO(CIO)CIO)CIO-CC-CIO)CI-CC
90	579.1698	5.28			NCCC0038165-015, 7-8hydray-2- phorp-6,9-846[3,5-1thydray-2- phorp-6,9-846[3,5-thydray-2- phorp-6,9-846[3,6-thydray-2-	0CCLOC(CIO)(CIO(CIO)CIO)CC2-CIO)(CIOC(CIO)CIO)(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO)CIO(CIO
90	595.1652	4.37	0		NCGC00385604-0215,7-dihydroxy-2-(4-hydroxypbenyl)-6,8-big1,3,5-trihydroxy-6-(hydroxypethyl)-can-2-y(jictromen-6-)one	00CC10G(Q(0)C(0)C10)C2+C(0)CC2G(0)C(0)C(0)C(0)C10C1+0C(0)C4+C2O)C5+CC+C(0)C+C5

Chem- ical family	m/z	Reten- tion time	Level 1 identification	Level 1 identification molecular structure + SMILES	Level 2 identification	Level 2 identification molecular structure + SMILES
94	301.2155	14.98	0		NCGC00180680- 03_C201/2602_(Sbeta,8alpha,10alpha)- Kaura-9(11),16-dien-18-oicacid	

**Table S13. Dereplication of serrulatane and viscidane-related chemical families.** List of 30 chemical families from Myoporeae that have been dereplicated as serrulatane or viscidane related. Chemical family classification is predicted based on the applied dereplication pipeline. Further indicated are total node count and total numbers of different levels of chemical identification determined in this analysis as well as mass and retention time median of each chemical family.

Chem-	Total		Super				Sub			Reten-		Level	of ide	entific	ation	
ical	number	Super class	class	Class	Class	Sub class	class	Diterpenoid	m/z	tion						
family	of	Super diass	score	Class	score	Sub class	score	class	median	time	1	2	3a	3b	3с	0
,	nodes									median						_
1	810	Lipids and lipid-like molecules		Prenol lipids	0.34	Sesquiterpenoids	0.19	Viscidane	259.2417	13.09	1	59	75	634	40	1
3	151	Phenylpropanoids and polyketides	0.25	Prenol lipids	0.15	nan	0.11	Serrulatane	467.2789	11.07	2	9	22	114	2	2
4	143	Lipids and lipid-like molecules	0.48	Fatty Acyls	0.26	Fatty acids and conjugates	0.16	Viscidane	337.2366	13.31	1	/	21	114	0	0
8	63	Organoheterocyclic compounds	0.29	Fatty Acyls	0.13	nan	0.37	Serrulatane	341.2096	13.36	0	0	0	55	8	0
10	54	Lipids and lipid-like molecules	0.28	Prenol lipids	0.19	Amino acids, peptides, and analogues	0.15	Serrulatane	451.74775	16.43	1	1	3	47	2	0
12	45	Lipids and lipid-like molecules	0.53	Prenol lipids	0.26	Fatty acids and conjugates	0.14	Viscidane	467.2772	15.91	0	8	6	31	0	0
13	40	Lipids and lipid-like molecules	0.63	Fatty Acyls	0.30	Retinoids	0.25	Viscidane	322.24935	13.345	2	7	9	22	0	0
22	28	Lipids and lipid-like molecules	0.64	Prenol lipids		Diterpenoids	0.29	Serrulatane	404.2738	18.995	0	1	3	24	0	0
24	27	Lipids and lipid-like molecules	0.37	Fatty Acyls	0.30	nan	0.19	Serrulatane	333.2055	14.31	0	0	0	26	1	0
42	17	Organic acids and derivatives	0.29	Carboxylic acids and derivatives	0.29	Amino acids, peptides, and analogues	0.29	Serrulatane	394.2587	14.1	0	0	0	17	0	0
49	16	Lipids and lipid-like molecules	0.69	Prenol lipids	0.44	Retinoids	0.38	Serrulatane	315.19495	13.06	1	0	0	15	0	0
74	11	Benzenoids	0.64	Benzene and substituted derivatives	0.64	Benzoic acids and derivatives	0.64	Serrulatane	349.2004	15.98	0	0	0	10	1	0
87	10	Lipids and lipid-like molecules	0.80	Fatty Acyls	0.70	Fatty acids and conjugates	0.60	Serrulatane	315.19525	15.065	2	8	0	0	0	0
101	8	Lipids and lipid-like molecules	0.38	Prenol lipids	0.25	Retinoids	0.13	Serrulatane	355.20085	12.555	0	0	0	8	0	0
102	8	Lipids and lipid-like molecules	0.88	Prenol lipids	0.63	Diterpenoids	0.38	Serrulatane	294.2263	15.86	0	1	2	5	0	0
103	7	Lipids and lipid-like molecules	0.86	Prenol lipids	0.43	Fatty acids and conjugates	0.43	Viscidane	305.2463	12.63	0	1	3	3	0	0
104	6	Lipids and lipid-like molecules	0.83	Fatty Acyls	0.50	Retinoids	0.33	Viscidane	312.2358	10.96	0	2	1	3	0	0
105	5	Lipids and lipid-like molecules	0.60	Fatty Acyls	0.40	Lineolic acids and derivatives	0.40	Viscidane	291.2314	16.26	0	1	1	3	0	0
106	5	Phenylpropanoids and polyketides	0.20	Coumarins and derivatives	0.20	nan	0.20	Serrulatane	333.2056	11.02	0	0	0	5	0	0
107	4	Phenylpropanoids and polyketides	0.50	Stilbenes	0.25	nan	0.50	Serrulatane	322.18485	14.155	1	0	2	1	0	0
108	4	Lipids and lipid-like molecules	1.00	Prenol lipids	1.00	Diterpenoids	0.50	Viscidane	289.2523	14.595	1	1	2	0	0	0
109	4	Phenylpropanoids and polyketides	0.75	Coumarins and derivatives	0.50	nan	0.50	Serrulatane	273.1484	13.32	0	2	2	0	0	0
110	3	Benzenoids	0.33	Benzene and substituted derivatives	0.33	Monoterpenoids	0.33	Serrulatane	392.2422	15.62	0	0	0	3	0	0
111	2	Lipids and lipid-like molecules	1.00	Fatty Acyls	1.00	Fatty acids and conjugates	1.00	Serrulatane	310.2213	11.02	0	0	0	2	0	0
112	2	Lipids and lipid-like molecules	1.00	Fatty Acyls	1.00	Fatty acids and conjugates	1.00	Viscidane	312.23675	11.45	0	1	1	0	0	0
113	2	no matches	0.00	no matches	0.00	no matches	0.00	Serrulatane	333.20545	15.59	0	0	0	2	0	0
114	2	Lipids and lipid-like molecules	0.50	Prenol lipids	0.50	Diterpenoids	0.50	Serrulatane	342.211	11.64	0	0	0	2	0	0
115	2	no matches	0.00	no matches	0.00	no matches	0.00	Serrulatane	369.71415	15.04	1	0	1	0	0	0
116	2	Organic acids and derivatives	0.50	Furofurans	0.50	nan	0.50	Serrulatane	343.219	7.7	0	0	0	2	0	0
117	2	no matches	0.00	no matches	0.00	no matches	0.00	Serrulatane	365.1956	14.735	0	0	0	0	2	0

## **Table S14. Predicted serrulatane and viscidane diterpenoid structures in chemical families of Myoporeae.** Detailed spectrometric and structural information about serrulatane and viscidane diterpenoid-related identification events determined within the 30 chemical families within the Myoporeae molecular network that have been found to be associated with this specific chemistry.

		time	identifi- cation	ID	Molecular structure + SMILES
Viscidane	307.2623	11.98	3a	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H])
					C)([H])CC[C@@H]2C)C[C@@H]10
Viscidane	289.252	17.34	2	KU036-10	HO HO
					CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
Viscidane	289.2521	10.97	2	KU036-10	HOIIIII
					CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
Viscidane	321.2415	14.49	3b	Singab_140	H THE THE THE THE THE THE THE THE THE TH
					C[C@](CCC[C@@]([C@H]1CC[C@H](C)[C@@]1 2CC=C(C)C(C2)=O)([H])C)([H])C(O)=O
Viscidane	287.2362	13.76	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
	Viscidane	Viscidane 289.252  Viscidane 289.2521  Viscidane 321.2415	Viscidane         289.252         17.34           Viscidane         289.2521         10.97           Viscidane         321.2415         14.49	Viscidane         289.252         17.34         2           Viscidane         289.2521         10.97         2           Viscidane         321.2415         14.49         3b	Viscidane       289.252       17.34       2       KU036-10         Viscidane       289.2521       10.97       2       KU036-10         Viscidane       321.2415       14.49       3b       Singab_140

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
1	Viscidane	289.2522	15.61	1	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H])
						C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	305.2473	13.25	3a	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
						])c)([H])CC[C@@H]2C)C[C@@H]10
1	Viscidane	323.257	7.66	3a	KU036-6-5	CC1=CC[C@]2([C@]([C@@](CCC=C(CO)CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	289.2518	13.07	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10
1	Viscidane	289.252	17.14	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
1	Viscidane	289.252	18	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	289.2519	14.65	2	KU036-10	CC1=CC[C@@H]2C)C[C@@H]1O  CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	307.2625	12.71	3b	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	289.2519	12.53	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	307.2633	7.48	3a	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
1	Viscidane	303.2314	11.45	2	KU036-9-2a	HO OH OCCURRANTED BY CONTROL OF CHENCE OF CHEN
						CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	307.2625	13.34	3a	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H])
						C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	307.2627	11.51	3a	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	307.2632	16.06	3a	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
1	Viscidane	287.2354	15.59	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10

Chemical family	Diterpenoid class	m/z	Retention time	LvI of identification	ID	Molecular structure + SMILES
1	Viscidane	289.2517	15.19	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H])
1	Viscidane	289.252	9.97	2	KU036-10	C)([H])CC[C@@H]2C)C[C@@H]10  CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10
1	Viscidane	287.2358	13.18	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10
1	Viscidane	289.2513	13.16	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
3	Serrulatane	511.268	17.16	2	KU036-11-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[E@@]24[[H])[C@@](CCCC(COC(/C=C/C3=CC(OC)=C(O)C=C)3)=O)C)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	LvI of identification	ID	Molecular structure + SMILES
4	Viscidane	321.2419	16.77	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O)
						([H])C)([H])CC[С@@H]2C)C[С@@H]1O
4	Viscidane	303.2309	13.44	2	KU036-9-2a	HO OH OH
						CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
4	Viscidane	321.2417	12.22	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O)
						([H])C)([H])CC[C@@H]2C)C[C@@H]10
4	Viscidane	303.2314	14.78	1	KU036-9-2	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O)
						([H])C)([H])CC[C@@H]2C)C[C@@H]10
4	Viscidane	303.2314	12.25	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
4	Viscidane	321.2418	7.31	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O)
						([H])C)([H])CC[C@@H]2C)C[C@@H]10
4	Viscidane	321.2415	7.61	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
4	Viscidane	321.242	14.64	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
8	Serrulatane	361.235	16.1	3b	KU006-15-1	OC1=CC(COC(C)=O)=CC2=C1[C@H](C)CC[C@@] 2([H])[C@@](CC/C=C(CO)\C)([H])C
8	Serrulatane	335.221	10.22	3b	KU036-4-4	OC1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC=C(CO)CO)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
10	Serrulatane	409.2223	12.78	3b	Singab_122	C[C@](CCC[C@]([H]))(COC(C)=O)[C@]1([H])CC[C @](C)([H])C2=C1C=C(C(O)=O)C(O)=C2O)([H])CO
10	Serrulatane	351.2164	14.41	1	KU006-14	OC1=C(O)C(C(O)=O)=CC2=C1[C@H](C)CC[C@@] 2([H])[C@@](CCCC(CO)C)([H])C
10	Serrulatane	375.2164	17.31	3a	Singab_099	C=C(CCC[C@@](C)([H])[C@]1([H])CC[C@@]([H])(COC(C)=O)C2=C1C=C(C(O)=O)C=C2O)C
10	Serrulatane	351.2168	22.96	2	KU006-14	OC1=C(O)C(C(O)=O)=CC2=C1[C@H](C)CC[C@@] 2([H])[C@@](CCCC(CO)C)([H])C
10	Serrulatane	409.2215	12.69	3b	Singab_122	C[C@](CCC[C@]([P]])(COC(C)=O)[C@]1([H])CC[C @](C)([H])C2=C1C=C(C(O)=O)C(O)=C2O)([H])CO

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
10	Serrulatane	333.2057	14.41	3a	KU036-6-6-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([
10	Serrulatane	367.2107	10.46	3b	Singab_121	H])[C@@](CCC(O)C(C)=C)([H])C
10	Serrulatane	367.2111	7.21	3b	Singab_121	C[C@](CCC[C@]([H])(CO)[C@]1([H])CC[C@](C)([H])C2=C1C=C(C(O)=O)C(O)=C2O)([H])CO
12	Viscidane	303.231	20.5	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
12	Viscidane	305.2468	18.23	3a	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
12	Viscidane	303.2309	20.64	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
12	Viscidane	289.252	17.63	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10
12	Viscidane	303.2313	17.67	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
12	Viscidane	303.2312	19.84	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
12	Viscidane	303.2308	16.61	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
12	Viscidane	305.2474	19.31	3a	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
						])c)([H])CC[C@@H]2C)C[C@@H]10
13	Viscidane	287.236	11.06	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]1O
13	Viscidane	287.2368	16.28	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]1O
13	Viscidane	287.2358	12.78	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10
13	Viscidane	287.237	16.62	1	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]10

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
13	Viscidane	287.2356	15.74	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
13	Viscidane	287.2366	15.47	1	KU036-10-2	])C)([H])CC[C@@H]2C)C[C@@H]10  CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)CC1=O
13	Viscidane	287.2356	18.49	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H]))C)([H])CC[C@@H]2C)C[C@@H]1O
13	Viscidane	287.2363	12.93	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]1O
22	Serrulatane	317.2105	17.23	2	KU036-12	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC=C(C)C)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
22	Serrulatane	301.2158	15.47	3a	KU036-15	O=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1
22	Serrulatane	301.2157	22.77	3a	KU036-15	О=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1
22	Serrulatane	301.2165	19.32	3a	KU036-15	O=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1
24	Serrulatane	319.2263	16.8	3b	Singab_124	C[C@](CCC[C@@](C)([H])[C@]1([H])CC[C@](C)( [H])C2=C1C=C(C(O)=O)C=C2)([H])CO
24	Serrulatane	301.2158	16.8	3b	KU036-15	O=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
24	Serrulatane	375.2161	14.2	3b	Singab_102	CACCOCICIO DI CICCICO DI CALVILLING DI MANINO
						C/C(COC(C)=O)=C\CC[C@@](C)([H])[C@]1([H])C C[C@@]([H])(C)C2=C1C=C(C(O)=O)C=C2O
24	Serrulatane	349.2009	10.66	3b	KU036-5	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC=C(CO)CO)([H])C
24	Serrulatane	333.2055	12.24	3b	KU036-8	OC1=CC(C(0)=0)=CC2=C1[C@H](C)CC[C@@]2{[
24	Serrulatane	335.2213	13.54	3b	KU036-4-4	H])[C@@](CC/C=C(CO)\C)([H])C  HO  HO  HO  HO  HO  HO  HO  HO  HO  H
24	Serrulatane	301.2144	19.66	3b	KU036-15	O=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
24	Serrulatane	333.2065	8.34	3b	KU036-6-6-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([
42	Compulators	255 1007	12.02	21-	W1020 C C 2	H])[C@@](CCC(O)C(C)=C)([H])C
42	Serrulatane	355.1907	13.02	3b	KU036-6-6-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)=C)([H])C
49	Serrulatane	299.2002	15.2	1	KU006-17-9-1	ОН
						OC(C1=CC([C@@]([C@@](CC/C=C(CO)\C)([H])C) ([H])CC[C@H]2C)=C2C=C1)=O
74	Serrulatane	349.2006	14.03	3b	Singab_100	HO HIM HO
						CC(C)C(CC[C@@](C)([H])[C@]1([H])CC[C@@]([ H])(CO)C2=C1C=C(C(O)=O)C=C2O)=O
87	Serrulatane	315.195	13.32	2	KU036-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CC/C=C(C)\CO)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
87	Serrulatane	315.1949	12.77	1	KU036-6-6-2	OC1=CC(C(0)=O)=CC2=C1[C@H](C)CC[C@@]2([
87	Serrulatane	315.1953	13.01	1	KU006-11	H])[C@@](CCC(O)C(C)=C)([H])C  HO OH  OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(CO)\C)([H])C
87	Serrulatane	299.2	14.52	2	KU006-17-9-1	OC(C1=CC([C@@]([C@@](CC/C=C(CO)\C)([H])C) ([H])CC[C@H]2C)=C2C=C1)=O
87	Serrulatane	315.196	18.83	2	KU006-17-6	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)=C)([H])C
87	Serrulatane	315.1956	18.59	2	KU036-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CC/C=C(C)\CO)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
87	Serrulatane	315.1952	15.61	2	KU036-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CC/C=C(C)\CO)([H])C
87	Serrulatane	315.1955	18.24	2	KU036-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CC/C=C(C)\CO)([H])C
87	Serrulatane	315.1953	12.91	2	KU036-7	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CC/C=C(C)\CO)([H])C
87	Serrulatane	299.1997	23.51	2	KU006-17-9-1	OC(C1=CC([C@@]([C@@](CC/C=C(CO)\C)([H])C) ([H])CC[C@H]2C)=C2C=C1)=O
101	Serrulatane	365.2318	12.88	3b	KU006-17-4	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)(OC)C)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
102	Serrulatane	285.2212	15.03	2	KU036-11-1-1	OC1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2([H])[
102	Serrulatane	303.2314	17.15	3a	KU036-11-1-1	C@@](CCC=C(C)C)([H])C  HO  OC1=CC(CO)=CC2=C1[C@H](C)CC[C@@]2([H])[ C@@](CCC=C(C)C)([H])C
103	Viscidane	305.2463	14.43	2	KU036-6-5	CC1=CC[C@]2([C@]([C@@](CCC=C(CO)CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
103	Viscidane	305.2464	12.63	3a	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H])C)([H])CC[C@@H]2C)C[C@@H]1O
103	Viscidane	323.2563	10.41	3a	KU036-6-5	CC1=CC[C@]2([C@]([C@@](CCC=C(CO)CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
104	Viscidane	287.235	21.43	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
						])C)([H])CC[C@@H]2C)C[C@@H]1O
104	Viscidane	287.2365	12.53	2	KU036-11-2-1	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H
104	Viscidane	305.2464	11.5	<b>3</b> a	KU036-11-2-1	])C)([H])CC[C@@H]2C)C[C@@H]10
						CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\C=O)([H ])C)([H])CC[C@@H]2C)C[C@@H]1O
105	Viscidane	289.2525	12.14	2	KU036-10	HO H
						СС1=СС[С@]2([С@]([С@@](СС/С=С(С)\СО)([Н]) С)([Н])СС[С@@H]2С)С[С@@H]1О
106	Serrulatane	333.2056	12.36	3b	KU036-8	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2{[H])[C@@](CC/C=C(CO)\C)([H])C

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
107	Serrulatane	331.1901	14.16	1	KU036-9-1	O=C(O)C1=CC([C@@]([C@@](CC/C=C(C=O)\C)([ H])C)([H])CC[C@H]2C)=C2C(O)=C1
108	Viscidane	289.2525	14.93	2	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]10
108	Viscidane	289.2521	15.73	1	KU036-10	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)\CO)([H]) C)([H])CC[C@@H]2C)C[C@@H]1O
109	Serrulatane	273.1485	11.68	2	KU036-6-4-6	0=C(O)C1=CC(O)=C2C([C@@]([C@@](CCC=O)([ H])C)([H])CC[C@H]2C)=C1
109	Serrulatane	291.1587	13.32	3a	KU036-6-4-6	0=C(O)C1=CC(O)=C2C([C@@]([C@@](CCC=O)([ H])C)([H])CC[C@H]2C)=C1

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
109	Serrulatane	273.1483	13.32	2	KU036-6-4-6	0=C(O)C1=CC(O)=C2C([C@@]([C@@](CCC=O)([ H])C)([H])CC[C@H]2C)=C1
110	Serrulatane	392.2422	15.62	3b	KU006-17-3	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([H])[C@@](CCC(O)C(C)(O)C)([H])C
111	Serrulatane	301.2157	11.94	3b	KU036-15	O=C(O)C1=CC([C@@]([C@@](CCC=C(C)C)([H])C )([H])CC[C@H]2C)=C2C=C1
112	Viscidane	321.2423	7.74	3a	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O
112	Viscidane	303.2312	15.16	2	KU036-9-2a	CC1=CC[C@]2([C@]([C@@](CC/C=C(C)/C(O)=O) ([H])C)([H])CC[C@@H]2C)C[C@@H]1O

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
113	Serrulatane	333.2052	15.57	3b	KU036-6-6-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)=C)([H])C
113	Serrulatane	333.2057	15.61	3b	Singab_116	CC(C)=CCC[C@@](C)([H])[C@]1([H])CC[C@@]([H])(CO)C2=C1C=C(C(O)=O)C=C2O
114	Serrulatane	351.2164	9.96	3b	KU006-17-3	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)(O)C)([H])C
114	Serrulatane	333.2056	13.32	3b	KU036-6-6-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)=C)([H])C
115	Serrulatane	378.2276	15.05	3a	KU036-6-7-1_7-2	O=C(O)C1=CC(O)=C2C([C@@]([C@@](CCC(OC) OC)([H])C)([H])CC[C@H]2C)=C1

Chemical family	Diterpenoid class	m/z	Retention time	Lvl of identification	ID	Molecular structure + SMILES
115	Serrulatane	361.2007	15.03	1	KU006-15-2	OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([
						H])[C@@](CC/C=C(C(OC)=O)\C)([H])C
116	Serrulatane	335.2216	7.21	3b	KU036-9-4	ОН
						OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCCC(CO)C)([H])C
116	Serrulatane	351.2164	8.19	3b	KU006-17-3	ОН ОН
						OC1=CC(C(O)=O)=CC2=C1[C@H](C)CC[C@@]2([ H])[C@@](CCC(O)C(C)(O)C)([H])C
117	Serrulatane	365.1959	14.83	3с	Singab_127	HO OH HO OH
						C[C@](CCC[C@]1([H])COC2=C(C(O)=O)C(O)=C(O )C3=C2[C@@]1([H])CC[C@]3(C)[H])([H])CO
117	Serrulatane	365.1953	14.64	3с	Singab_127	C[C@](CCC[C@]1([H])COC2=C(C(O)=O)C(O)=C(O

## **Supplementary figures**



Figure S1. Schematic workflow of the chemo-evolutionary analysis. 291 specimen involving species and subspecies of the tribe Myoporeae were investigated regarding their chemical and phylogenetic relationships. LCqToF-HRMS was applied on crude leaf extracts to generate mass spectrometric data including MS¹ and MS². MZmine2 was used to isolate spectral features from the raw data and align those across all samples to output a feature table that contains the relatively quantified chemical composition of the dataset. Spectral information of those isolated features is then exported and integrated into the feature-based molecular networking (FBMN) pipeline at GNPS (https://gnps.ucsd.edu). The generated molecular network is composed of nodes and edges that represent individual spectral features and shared spectral similarity, respectively. Spectral similar nodes fall into clusters of varying size that are considered as a chemical family of structurally related metabolites. The molecular network provides the foundation for an exhaustive dereplication approach involving public, in house and in silico libraries of reference metabolites for spectral comparison. Dereplicated nodes are structurally annotated and utilized to achieve a prediction of chemical classification for each chemical family by using the Network Annotation Propagation (NAP) method. Using the unsupervised substructure discovery approach MS2LDA, substructural motifs can be predicted within the given spectral data and annotated throughout the molecular network. To compare the chemical profiles of all 291 specimen, the presence (at least one spectral feature present of a corresponding chemical family) and absence (no feature present in the sample) information of chemical families can be used. This approach yields a binary dataset that can be compiled by a metabolic cluster analysis into a dendrogram that displays chemical similarity among the specimen. In contrast, a phylogenetic analysis shows the evolutionary relationships among those specimen and is based on nuclear ribosomal DNA sequencing of leaf tissue from the same specimens. A tanglegram analysis directly compares the analyses by rearranging branches in both dendrograms to reveal similar clustering (i.e. specimen D and E) and thus chemo-evolutionary relationships. Groups of specimen that display an evolutionary lineage are referred to as phylogenetic clades, while chemical similarity is shared within tanglegram metabolic cluster (TMC). To extend the view on the chemo-evolutionary framework, a categorical heatmap analysis is used that clusters the presence/absence of individual chemical families according to their phylogenetic distribution alongside the tanglegram-refined phylogeny. Heatmap metabolic cluster (HMC) can be derived from this approach, which represent subsets of chemical families that share a similar phylogenetic signature. Additional functional annotations can be integrated to test metadata for correlation with the chemoevolutionary framework that is displayed by the heatmap.



Figure S2. Comparison of species distribution between members of TMC A and B related chemistry. Species distributions for members of tanglegram metabolite clusters A (A1 – A6) and B (B1 – B2). Widespread species (those with broad distributions across multiple biomes) have been excluded in clusters A1 (*Eremophila bignoniiflora*, *E. alternifolia*, *E. deserti*), A2 (*Myoporum montanum*, *E. latrobei subsp. glabra*, *E. deserti*), A5 (*M. acuminatum*, *E. longifolia*) and B6 (*E. serrulata*). Data generated from the Australasian Virtual Herbarium (https://avh.chah.org.au/) as at 29/06/20.



**Figure S3. Species distributions for members of Myoporeae phylogenetic clades A–H.** In this representation, widespread species (those with broad distributions across multiple biomes) have been excluded in clade A (*M. acuminatum*, *M. montanum*) and clade D (*E. bignoniiflora*, *E. deserti*, *E. polyclada*). Data generated from the Australasian Virtual Herbarium (https://avh.chah.org.au/) as at 06/04/20.



**Figure S4. Species distributions for members of Myoporeae phylogenetic clade H, subclades H1–H14.** In this representation, widespread species (those with broad distributions across multiple biomes) have been excluded in clade H2 (*E. mitchellii*), clade H5 (*E. longifolia*), clades H8 (*E. maculata*) and clade H10 (*E. latrobei*). Data generated from the Australasian Virtual Herbarium (https://avh.chah.org.au/) as at 06/04/20.



**Figure S5. Continuous heatmap analysis of chemo-evolutionary patterns involving serrulatane and viscidane diterpenoids in Myoporeae.** A heatmap analysis was used to put chemical information into an evolutionary context. For that, information about the 30 chemical families derived from the molecular network of Myoporeae, which have been found to be associated with serrulatane and viscidane diterpene chemistry was compiled. For each specimen in this study, the total amount of metabolites of a corresponding chemical family is displayed within the heatmap. *LEFT*: The nuclear ribosomal DNA phylogeny on the left side presents the major phylogenetic clades. *TOP*: As depicted on top of the heatmap, the chemical information underwent a hierarchical clustering according to the given phylogeny to reveal chemo-evolutionary patterns. *BOTTOM*: Selected chemical classification generated by NAP based dereplication are displayed below in blue, while the presence of level 1 identification (m/z, retention time and MS² match) in a particular chemical family is shown in gold. *RIGHT*: Functional annotations including the presence of leaf resin and hairiness, pollination, antibacterial activity, traditional medicinal usage as well as biogeographical species distribution information are displayed on the right side. A summary of legends are also included to the right of the figure.



Figure S6. Tanglegram analysis based on serrulatane and viscidane related chemical families. Conjunction of phylogenetic and metabolic information from 291 specimen of the tribe Myoporeae visualized by a tanglegram. The nrDNA based phylogeny shows taxa with posterior probability  $\geq 95\%$ . A metabolic cluster analysis was conducted based on the presence or absence of the 30 chemical families found to be associated with serrulatane or viscidane metabolism within the generated global molecular network of Myoporeae. Phylogenetic subclades are indicated with the most prevalent ones highlighted by color code. The tanglegram analysis connects same specimens by a line, which is colored when equal branching of taxa is present in both analyses.



**Figure S7. Phylogeny of tribe Myoporeae based on analysis of nuclear ribosomal DNA sequences.** Bayesian inference 50% majority-rule consensus tree, showing posterior probability values on each branch. Branches with values <0.50 collapsed.



**Figure S8.** LC-qToF-HRMS data quality control. Assessing quality of the full spectral dataset used in this study by plotting all samples (red) together with the quality controls (blue) within a principal component analysis.



Figure S9. Continuous heatmap analysis showing chemo-evolutionary relationships in Myoporeae. A heatmap analysis was used to put chemical information into an evolutionary context. For that, information about the 100 largest chemical families was compiled, which derived from the molecular network of Myoporeae. For each specimen in this study, the total amount of metabolites of a corresponding chemical family is displayed within the heatmap. LEFT: The nuclear ribosomal DNA phylogeny on the left side presents the major phylogenetic clades. TOP: As depicted on top of the heatmap, the chemical information underwent a hierarchical clustering according to the given phylogeny to reveal chemo-evolutionary patterns among subsets of chemical families, defined as heatmap metabolic clusters (HMC) I – X. BOTTOM: Selected chemical classification generated by NAP based dereplication are displayed below in blue, while the presence of level 1 identification (m/z, retention time and MS2 match) in a particular chemical family is shown in gold. RIGHT: Functional annotations including the presence of leaf resin and hairiness, pollination, antibacterial activity, traditional medicinal usage as well as biogeographical species distribution information are displayed on the right side. A summary of legends are also included to the right of the figure.



**Figure S10.** Metabolite based tanglegram analysis showing chemo-evolutionary relationships in Myoporaea. Conjunction of phylogenetic and metabolic information from 291 species of the tribe Myoporeae visualized by a tanglegram. The nrDNA based phylogeny shows taxa with posterior probability above 95%. A metabolic cluster analysis was conducted based on the presence or absence of respective metabolites after normalization of the full spectral dataset (10696 metabolites). Phylogenetic subclades are indicated with the most prevalent ones highlighted by color code. The tanglegram analysis connects same specimens by a line, which is colored when equal branching of taxa is present in both analyses.

## References

- 1. Richmond, G. A review of the use of Eremophila (Myoporaceae) by Australian Aborigines. *Journal of the Adelaide Botanic Garden* **15**, 101–107 (1993).
- 2. Richmond, G. S. & Ghisalberti, E. L. The Australian Desert Shrub Eremophila (Myoporaceae): Medicinal, Cultural, Horticultural and Phytochemical Uses. *Botany* **48**, 35–59 (1994).
- 3. Chinnock, R. J. *Eremophila and Allied Genera. A Monograph of the Myoporaceae* (Rosenberg Publishing, Kenthurst, NSW, Australia, 2007).
- 4. Gyllenhaal, C. *et al.* Ethnobotanical approach versus random approach in the search for new bioactive compounds: support of a hypothesis. *Pharmaceutical biology* **50**, 30–41 (2012).
- 5. Ngo, L. T., Okogun, J. I. & Folk, W. R. 21st Century natural product research and drug development and traditional medicines. *Natural Product Reports* **30**, 584–592 (2013).
- 6. Ghisalberti, E., Jefferies, P. & Sheppard, P. A new class of diterpenes from Eremophila decipiens. *Tetrahedron Letters* **16**, 1775–1778 (1975).
- 7. Ndi, C. P., Semple, S. J., Griesser, H. J., Pyke, S. M. & Barton, M. D. Antimicrobial Compounds from the Australian Desert Plant Eremophila neglecta. *Journal of Natural Products* **70**, 1439–1443 (2007).
- 8. Singab, A. N., Youssef, F. S., Ashour, M. L. & Wink, M. The genus Eremophila (Scrophulariaceae): an ethnobotanical, biological and phytochemical review. *Journal of Pharmacy and Pharmacology* **65**, 1239–1279 (2013).
- 9. Biva, I. J., Ndi, C. P., Griesser, H. J. & Semple, S. J. Antibacterial constituents of Eremophila alternifolia: An Australian aboriginal traditional medicinal plant. *Journal of ethnopharmacology* **182**, 1–9 (2016).
- 10. Tahtah, Y. *et al.* High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extra. *Fitoterapia* **110,** 52–58 (2016).
- 11. Wubshet, S. G. *et al.* Identification of PTP1B and  $\alpha$ -Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and  $\alpha$ -Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR. *Journal of Natural Products* **79**, 1063–1072 (2016).
- 12. Gericke, O. *et al.* Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. *BMC Plant Biology* **20**, 91 (2020).
- 13. Pedersen, H. A. *et al.* PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from Eremophila oppositifolia subsp. angustifolia Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis. *Journal of Natural Products* (2020).
- 14. Kjaerulff, L. *et al.* Isolation, structure elucidation and PTP1B inhibitory activity of serrulatane diterpenoids from the roots of Myoporum insulare. *Phytochemistry Letters* **39**, 49–56 (2020).
- 15. Semple, S. J., Reynolds, G. D., O'Leary, M. C. & Flower, R. L. Screening of Australian medicinal plants for antiviral activity. *Journal of ethnopharmacology* **60**, 163–72 (1998).
- 16. Palombo, E. A. & Semple, S. J. Antibacterial activity of traditional Australian medicinal plants. *Journal of Ethnopharmacology* **77**, 151–157 (2001).
- 17. Palombo, E. A. & Semple, S. J. Antibacterial activity of Australian plant extracts against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). *Journal of Basic Microbiology* **42**, 444–448 (2002).
- 18. Ndi, C. P., Semple, S. J., Griesser, H. J. & Barton, M. D. Antimicrobial activity of some Australian plant species from the genus Eremophila. *Journal of Basic Microbiology* **47**, 158–164 (2007).

- 19. Mijajlovic, S., Smith, J., Watson, K., Parsons, P. & Jones, G. Traditional Australian medicinal plants: Screening for activity against human cancer cell lines. *Journal of the Australian Traditional-Medicine Society* **12**, 129–132 (2006).
- 20. Rogers, K., Fong, W., Redburn, J. & Griffiths, L. Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca2+ channels. *European Journal of Pharmaceutical Sciences* **15**, 321–330 (2002).
- 21. Kumar, R., Duffy, S., Avery, V. M., Carroll, A. R. & Davis, R. A. Microthecaline A, a Quinoline Serrulatane Alkaloid from the Roots of the Australian Desert Plant Eremophila microtheca. *Journal of Natural Products* **81,** 1079–1083 (2018).
- 22. Liu, Q., Harrington, D., Kohen, J. L., Vemulpad, S. & Jamie, J. F. Bactericidal and cyclooxygenase inhibitory diterpenes from Eremophila sturtii. *Phytochemistry* **67**, 1256–1261 (2006).
- 23. Barnes, E. C. *et al.* Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. *Phytochemistry* **93**, 162–169 (2013).
- 24. Mon, H. H. *et al.* Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages. *Journal of Natural Products* **78**, 3031–3040 (2015).
- 25. Algreiby, A. A., Hammer, K. A., Durmic, Z., Vercoe, P. & Flematti, G. R. Antibacterial compounds from the Australian native plant Eremophila glabra. *Fitoterapia* **126**, 45–52 (2018).
- 26. Biva, I. J., Ndi, C. P., Semple, S. J. & Griesser, H. J. Antibacterial Performance of Terpenoids from the Australian Plant Eremophila lucida. *Antibiotics* **8**, 63 (2019).
- 27. Ndi, C. P., Semple, S. J., Griesser, H. J., Pyke, S. M. & Barton, M. D. Antimicrobial compounds from Eremophila serrulata. *Phytochemistry* **68**, 2684–2690 (2007).
- 28. Kracht, O. N. *et al.* Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases. *Phytochemistry* **136**, 15–22 (2017).
- 29. Fowler, R. M. *et al.* Plastid phylogenomic analysis of tribe Myoporeae (Scrophulariaceae). *Plant Systematics and Evolution* **306**, 52 (2020).
- 30. Fowler, R. M. *et al.* Molecular phylogeny of tribe Myoporeae (Scrophulariaceae) using nuclear ribosomal DNA: generic reltionships and evidence for major clades. *TAXON [Manuscript under revision]* (2020).
- 31. Mafu, S. & Zerbe, P. Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges. *Phytochemistry Reviews* **17**, 113–130 (2018).
- 32. Engels, B., Dahm, P. & Jennewein, S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. *Metabolic Engineering* **10**, 201–206 (2008).
- 33. Ogbourne, S. M. & Parsons, P. G. The value of nature's natural product library for the discovery of New Chemical Entities: The discovery of ingenol mebutate. *Fitoterapia* **98**, 36–44 (2014).
- 34. Pateraki, I. *et al.* Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. *eLife* **6** (2017).
- 35. Sharma, V. & Sarkar, I. N. Leveraging biodiversity knowledge for potential phyto-therapeutic applications. *Journal of the American Medical Informatics Association* **20**, 668–679 (2013).
- 36. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. *Nature Reviews Drug Discovery* **14**, 111–129 (2015).
- 37. Da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. *Proceedings of the National Academy of Sciences of the United States of America* **112**, 12549–12550 (2015).
- 38. Wang, M. *et al.* Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. *Nature Biotechnology* **34**, 828–837 (2016).

- 39. Fox Ramos, A. E., Evanno, L., Poupon, E., Champy, P. & Beniddir, M. A. Natural products targeting strategies involving molecular networking: different manners, one goal. *Natural Product Reports* **36**, 960–980 (2019).
- 40. Aron, A. T. *et al.* Reproducible molecular networking of untargeted mass spectrometry data using GNPS. *Nature Protocols* **15**, 1954–1991 (2020).
- 41. Olivon, F. *et al.* Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. *ACS chemical biology* **12**, 2644–2651 (2017).
- 42. Olivon, F. *et al.* Searching for original natural products by molecular networking: Detection, isolation and total synthesis of chloroaustralasines. *Organic Chemistry Frontiers* **5**, 2171–2178 (2018).
- 43. Ernst, M. *et al.* Assessing Specialized Metabolite Diversity in the Cosmopolitan Plant Genus Euphorbia L. *Frontiers in Plant Science* **10** (2019).
- 44. Secretariat of the Convention on Biological Diversity. *Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity.* tech. rep. (Montreal, 2011), 1–15.
- 45. Nothias, L. F. *et al.* Feature-based molecular networking in the GNPS analysis environment. *Nature Methods* **17**, 905–908 (2020).
- 46. Byrne, M. *et al.* Birth of a biome: Insights into the assembly and maintenance of the Australian arid zone biota. *Molecular Ecology* **17**, 4398–4417 (2008).
- 47. Murphy, D. J. *et al.* Do phytogeographic patterns reveal biomes or biotic regions? *Cladistics* **35**, 654–670 (2019).
- 48. Ebach, M. C. & Murphy, D. J. Carving up Australia's arid zone: a review of the bioregionalisation of the Eremaean and Eyrean biogeographic regions. *Australian Journal of Botany* **68**, 229 (2020).
- 49. Becerra, J. X. The impact of herbivore-plant coevolution on plant community structure. *Proceedings of the National Academy of Sciences of the United States of America* **104**, 7483–7488 (2007).
- 50. Richards, L. A. *et al.* Phytochemical diversity drives plant-insect community diversity. *Proceedings of the National Academy of Sciences of the United States of America* **112**, 10973–10978 (2015).
- 51. Crisp, M., Cook, L. & Steane, D. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? in Philosophical Transactions of the Royal Society B: Biological Sciences 359 (Royal Society, 2004), 1551–1571.
- 52. Langenheim, J. H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. *Ann Bot.* **93**, 784–785 (2004).
- 53. Veneziani, R. C., Ambrósio, S. R., Martins, C. H., Lemes, D. C. & Oliveira, L. C. Antibacterial Potential of Diterpenoids. *Studies in Natural Products Chemistry* **54**, 109–139 (2017).
- 54. Dudek, B., Warskulat, A. C. & Schneider, B. The occurrence of flavonoids and related compounds in flower sections of Papaver nudicaule. *Plants* **5,** 93–126 (2016).
- 55. Afzan, A. *et al.* Can biochemical phenotype, obtained from herbarium samples, help taxonomic decisions? A case study using Gentianaceae. *TAXON* **68,** 771–782 (2019).
- 56. Kumar, R., Duffy, S., Avery, V. M. & Davis, R. A. Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid. *Bioorganic and Medicinal Chemistry Letters* **27**, 4091–4095 (2017).
- 57. Lyddiard, D. & Greatrex, B. W. Serrulatic acid diastereomers identified from an antibacterial survey of Eremophila. *Fitoterapia* **126**, 29–34 (2018).
- 58. Smith, N. M. Ethnobotanical field notes from the Northern Territory, Australia. *Journal of the Adelaide Botanic Gardens* **14**, 1–65 (1991).
- 59. Zola, N. & Gott, B. *Koorie Plants Koorie People. Traditional Aboriginal Food, Fibre and Healing Plants of Victoria.* (Koorie Heritage Trust, 1992).

- 60. Nothias, L.-F. *et al.* Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. *Journal of natural products* **81**, 758–767 (2018).
- 61. Cassis, G. & Symonds, C. Systematics, biogeography and host associations of the lace bug genus Inoma(Hemiptera: Heteroptera: Tingidae). *Acta Entomologica Musei Nationalis Pragae* **48**, 433–484 (2008).
- 62. Symonds, C. L. & Cassis, G. A new genus Ittolemma (Heteroptera: Tingidae) gen. nov. and three included species of hirsute lace bugs from temperate woodlands of southern Australia. *Austral Entomology* **53**, 380–390 (2014).
- 63. Shepherd, L. D. & McLay, T. G. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. *Journal of Plant Research* **124**, 311–314 (2011).
- 64. Schuster, T. M. *et al.* Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). *PLoS ONE* **13** (2018).
- 65. Kearse, M. *et al.* Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647–1649 (2012).
- 66. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution* **30**, 772–780 (2013).
- 67. Ronquist, F. *et al.* Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61,** 539–542 (2012).
- 68. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* **32**, 268–274 (2015).
- 69. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. *Systematic Biology* **67**, 901–904 (2018).
- 70. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. *BMC Bioinformatics* **11**, 395 (2010).
- 71. Zhao, Y. *et al.* Combinatorial bioactivity profiling coupled with LC-HRMS/NMR reveals antihyperglycemic and antibacterial diterpenes in Australian desert plant Eremophila rugosa. *[Manuscript in preparation]* (2020).
- 72. Horai, H. *et al.* MassBank: a public repository for sharing mass spectral data for life sciences. *Journal of Mass Spectrometry* **45,** 703–714 (2010).
- 73. Shannon, P. *et al.* Cytoscape: A software Environment for integrated models of biomolecular interaction networks. *Genome Research* **13**, 2498–2504 (2003).
- 74. Van der Hooft, J. J., Wandy, J., Barrett, M. P., Burgess, K. E. V. & Rogers, S. Topic modeling for untargeted substructure exploration in metabolomics. *Proceedings of the National Academy of Sciences of the United States of America* **113**, 13738–13743 (2016).
- 75. Ernst, M. *et al.* MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. *Metabolites* **9**, 144 (2019).
- 76. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. *Austral Ecology* **26,** 32–46 (2001).
- 77. Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-6. (2019).
- 78. Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? *Ecological Monographs* **83**, 557–574 (2013).
- 79. Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. *Methods in Ecology and Evolution* **3,** 89–101 (2012).
- 80. Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 4.1.3. (2020).

- 81. Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.0-1. (2019).
- 82. Barr, A. *Traditional bush medicines: an Aboriginal pharmacopoeia* (Greenhouse Publications, Richmond, Victoria, Australia, 1988).
- 83. Silberbauer, G. B. Ecology of the ernabella aboriginal community. *Anthropological Forum* **3**, 21–36 (1971).
- 84. Latz, P. K. Bushfires and Bushtucker PhD thesis (The University of New England, 1982), 244.
- 85. Webb, L. J. *Guide to the medicinal and poisonous plants of Queensland* BulletinNo (ed Council for Scientific and Industrial Research) (Government Printer, Melbourne, 1948).
- 86. Clealand, J. B. & Tindale, N. B. The native names and uses of plants at Haast Bluff, Central Australia. *Transactions and proceedings of the Royal Society of South Australia* **82,** 123 (1959).
- 87. Tynan, B. J. *Medical systems in conflict. A study of power.* PhD thesis (The University of Sydney, 1979).
- 88. O'Connell, J. F., Latz, P. K. & Barnett, P. Traditional and modern plant use among the Alyawara of central Australia. *Economic Botany* **37**, 80–109 (1983).
- 89. Barr, A., Chapman, J., Smith, N., Wightman, G. & Knight, T. *Traditional Aboriginal Medicines in the Northern Territory of Australia by Aboriginal Communities of the Northern Territory.* (ed Conservation Commission of the Northern Territory) (Darwin, 1993).
- 90. Lassak, E. & McCarthy, T. Australian medicinal plants. *Methuen Australia* (1983).
- 91. Meggitt, M. A study of the Walbiri aborigines of Central Australia. *Angus & Robertson* (1962).
- 92. Bowen, S. E. *Taxonomic studies in the Myoporaceae* PhD thesis (The University of New England, 1975).
- 93. Sadgrove, N. J. *et al.* The Iridoid Myodesert-1-ene and Elemol/Eudesmol are found in Distinct Chemotypes of the Australian Aboriginal Medicinal Plant Eremophila dalyana (Scrophulariaceae). *Natural product communications* **11** (2016).
- 94. Spencer, B. & Gillen, F. J. The Northern Tribes of Central Australia (1969).
- 95. Sadgrove, N. J. & Jones, G. L. A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R. Br.) F. Muell (Scrophulariaceae). *Journal of Ethnopharmacology* **147**, 638–644 (2013).
- 96. Cunningham, G. M., Mulham, W., Milthorpe, P. & Leigh, J. *Plants of western NSW* (Sydney, 1981).
- 97. Evans, L. et al. Plants for people: laboratory study report tech. rep. (2010).
- 98. Tindale, N. B. *Vocabulary of Pitjandjarra, the Language of the Native of the great western Desert* (Adelaide, 1937).
- 99. Clarke, P. A. Discovering Aboriginal Plant Use: the Journeys of an Australian Anthropologist. (Rosenberg Publishing, 2014).
- 100. Isaacs, J. *Bush food: Aboriginal food and herbal medicine* (Weldons, McMahons Point, N.S.W., Australia, 1987).
- 101. Richmond, G. S. & Ghisalberti, E. L. Cultural, food, medicinal uses and potential applications of Myoporum species (Myoporaceae). *Economic Botany* **49**, 276–285 (1995).
- 102. Zaleta-Pinet, D. *et al.* The Use of the Toxic Plant Myoporum montanum in a Traditional Australian Aboriginal Medicine. *Australian Journal of Chemistry* **69,** 161 (2015).
- 103. Clarke, P. A. The aboriginal ethnobotany of the adelaide region, South Australia. *Transactions of the Royal Society of South Australia* **137**, 97–126 (2013).
- 104. Latz, P., Green, J. & Institute for Aboriginal Development. *Bushfires & bushtucker: Aboriginal plant use in Central Australia* (I.A.D. Press, Alice Springs, N.T, 1995).
- 105. Bishop Museum 2020. Hawaiian Ethnobotany Online Database 2020.
- 106. Wong, W. Some folk medicinal plants from Trinidad. *Economic Botany* **30**, 103–142 (1976).

- 107. Woodworth, R. Economic plants of St. John, U.S. Virgin Islands. *Botanical Museum Leaflets, Harvard University* **11**, 29–54 (1943).
- 108. Lans, C. A. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. *Journal of Ethnobiology and Ethnomedicine* **2**, 1–11 (2006).
- 109. Galappathie, S. *et al.* Antibacterial Nerol Cinnamates from the Australian Plant Eremophila longifolia. *Journal of Natural Products* **80,** 1178–1181 (2017).
- 110. Smith, J. E., Tucker, D., Watson, K. & Jones, G. L. Identification of antibacterial constituents from the indigenous Australian medicinal plant Eremophila duttonii F. Muell. (Myoporaceae). *Journal of Ethnopharmacology* **112**, 386–393 (2007).
- 111. Aminimoghadamfarouj, N. & Nematollahi, A. Structure Elucidation and Botanical Characterization of Diterpenes from a Specific Type of Bee Glue. *Molecules* **22**, 1185 (2017).
- 112. Salama, M. T. I. Antimicrobial Activity of Essential Oil of Myoporum acuminatum R.Br Fruits, Cultivated in Libya. *Journal of Essential Oil-Bearing Plants* **20**, 233–239 (2017).