Bacterial adaptation by a transposition burst of an invading IS element

Scott R. Miller, Heidi E. Abresch, Nikea J. Ulrich, Emiko B. Sano, Andrew H. Demaree, and Arkadiy I. Garber Division of Biological Sciences, University of Montana, Missoula, MT 59812 USA

Subject areas: Evolutionary Biology; Genetics and Genomics

Correspondence: scott.miller@umontana.edu

Impact statement

A single transposable element can fuel adaptation to a novel environment for hundreds of generations without an apparent accumulation of a deleterious mutational load.

Abstract

The impact of transposable elements on host fitness range from highly deleterious to beneficial, but their general importance for adaptive evolution remains debated. Here, we investigated whether IS elements are a major source of beneficial mutations during 400 generations of laboratory evolution of the cyanobacterium Acaryochloris marina strain CCMEE 5410, which has experienced a recent or on-going IS element expansion. The dynamics of adaptive evolution were highly repeatable among eight independent experimental populations and included beneficial mutations related to exopolysaccharide production and inorganic carbon concentrating mechanisms for photosynthetic carbon fixation. Most detected mutations were IS transposition events, but, surprisingly, the majority of these involved the copy-and-paste activity of only a single copy of an unclassified element (ISAm1) that has recently invaded the genome of A. marina strain CCMEE 5410. Our study reveals that the activity of a single transposase can fuel adaptation for at least several hundred generations.

Introduction

The role of transposable elements (TEs) in adaptation has been long debated. These mobile DNA sequences may confer a continuum of phenotypic effects on their hosts [1] but have often been considered to solely be genetic parasites [2,3] with largely deleterious consequences for host fitness [4]. These include the disruption of gene regulation or function following transposition to a new location in the genome, large-scale genomic rearrangements resulting from ectopic recombination, and the generation of double-strand

DNA breaks (reviewed by [5]). More recently, however, investigations of insertion sequence (IS) elements - the simplest TEs, found in bacteria and archaea, which consist only of a transposase gene(s) encoding the mobilization machinery [6] - have concluded that a neutral model can explain observed patterns of IS distribution and abundance in bacterial genomes $[7,8]$. Still, it is well-known that IS elements can sometimes also be beneficial for the host through selectively favored null mutations, modified expression of adjacent genes, or large rearrangements [9-13].

Bacteria and archaea exhibit extensive natural variation in IS element number; most bacterial genomes contain no or few (<10) elements, while others have hundreds [14-16]. There is also great variation within and between bacterial species in transposition activity and IS-mediated ectopic recombination rates [17]. We therefore expect that the relative importance of transposition for adaptive evolution in bacteria compared with other mutational mechanisms may scale with IS element copy number and activity. IS elements are predicted to contribute little to adaptive evolution when they are rare [18], but they can play a substantial role when moderately abundant. For example, during the initial stages (\leq 500 generations) of adaptation in E. coli, transposition or other structural variation involving IS elements (e.g., ectopic recombination) accounted for more than half of beneficial mutations for E. coli K12MG1655 (which has 44 TEs) evolved in the mouse gut [19] and for $\sim 25 \%$ of genetic diversity in the Lenski long-term evolution experiment [20]. Here, we investigated whether IS elements are the predominant source of beneficial mutations during laboratory evolution of the cyanobacterium Acaryochloris marina strain CCMEE 5410 [21,22], which has hundreds of IS elements in its genome [23]. We report that most selectively favored mutations involved the transposition of only a single IS element.

Results

Recent IS transposition burst in Acaryochloris marina strain CCMEE 5410. Strains of A. marina are unique in the production of Chlorophyll d as the primary photosynthetic pigment and have large genomes for bacteria, due in part to their high copy number of IS elements $[23,24]$. We compared IS element copy number in the genomes of A. marina strains MBIC11017 [24], CCMEE 5410 [23] and S15 (an epiphyte of the red alga Pikea pinnata isolated in 2016 from Shelter Cove, CA), together with the outgroup strain Cyanothece strain PCC 7425 (Figure 1A). For this analysis, we used an improved assembly for A. marina strain CCMEE 5410 (NCBI BioProject ID PRJNA16707; 23 contigs, $\mathrm{N} 50=4,516,345$) and genome data acquired for strain S15 (NCBI BioProject ID PRJNA649288; 7 contigs, N50 $=5,881,945$). The CCMEE 5410 genome has a much greater number of IS elements compared with the other genomes (Figure 1B). These differences cannot be explained by differences in genome size, which are comparable for A. marina genomes (8.09 Mbp for CCMEE 5410 versus 8.36 Mbp for MBIC11017 and 7.11 Mbp for S15). IS element transposase genes account for $\sim 8 \%$ of protein-coding genes in the CCMEE 5410 genome and include high element copy numbers for IS families that are either absent from or have a low copy number in the genome of sister taxon strain MBIC110017 (e.g., ISAs1; Figure 1 - figure supplement 1).

IS element expression comprised a disproportionately greater fraction of the CCMEE 5410 transcriptome compared with MBIC11017 than would be expected given the two-fold difference in element number between the genomes (Figure 1C). This was the case for both sense and antisense transcripts and implies that CCMEE 5410 may have less regulatory control over the transcription of IS elements than MBIC11017. In CCMEE 5410, approximately 2% of sense transcripts were derived from IS elements during both exponential growth (mean $\pm \mathrm{SD}=2.0 \% \pm 0.22 \%$) and stationary phase $(1.7 \% \pm 0.22 \%$),
respectively. Because unnecessary gene expression is costly [25,26], we consequently expect IS expression to be a greater metabolic burden for CCMEE 5410.

Most IS elements in the CCMEE 5410 genome appear to be of recent origin based on the low levels of synonymous nucleotide divergence ($\mathrm{d} S$) among duplicated gene copies within IS families (Figure 1D). Many of these are pseudogenes that have been inactivated by small deletions or insertions but have not yet been purged from the genome; the CCMEE 5410 genome has a much higher percentage of these frameshifted IS remnants (33\%) than either the MBIC11017 (14\%) or S15 genomes (8\%; Supplementary file 1).

We used the ratio of nonsynonymous to synonymous nucleotide divergence ($\mathrm{d} N / \mathrm{d} S$) between recently duplicated full-length transposase gene copies as a measure of the strength of selection on IS elements. This indicated that IS elements are generally under similarly strong purifying selection in these genomes ($\mathrm{dN} / \mathrm{d} S=0.12$; adjusted $\mathrm{R}^{2}=0.88$; Figure 1D; $p=0.45$ for the F test that there is a difference among strains). This level of selective constraint is similar to what has been observed for other retained gene duplicates in A. marina [23]. These conserved IS elements may potentially have been domesticated for host function [27]. An alternative explanation for such a high degree of functional constraint on most IS elements is that there is selection against inactivating mutations that result in mis-folded proteins [28]. However, the CCMEE 5410 genome also harbors a small number of recently duplicated transposase gene copies that are experiencing lower selective constraint (Figure 1D; dN/ $\mathrm{d} S=0.45 ; R^{2}=0.67 ; N=11$ duplicate pairs; $\mathrm{p}=0.001$ for an F test comparing this high $\mathrm{d} N / \mathrm{d} S$ class with all other $\mathrm{d} N / \mathrm{d} S$ pairs from all strains). These less constrained transposases were also significantly more highly expressed than more conserved IS elements under both exponential growth and lag phase conditions (Figure 1 figure supplement 2).

Together, the above observations suggest that the high IS copy number in the A. marina CCMEE 5410 genome is the product of a recent or on-going expansion of IS elements
from several IS families since it last shared a common ancestor with MBIC11017. This may be a consequence of a reduction in the ability of selection to purge these genes from the CCMEE 5410 genome due to a lower historical effective population size compared with other Acaryochloris, similar to the increased number of IS elements (and pseudogenes) observed in the genomes of many obligate bacterial endosymbionts following a history of bottlenecks [29,30].

Major role for the transposition of a single IS element during adaptive laboratory

 evolution. The A. marina CCMEE 5410 genome provides an opportunity to address the consequences of a high TE load for evolution. To evaluate the relative contribution of IS activity to CCMEE 5410 evolution compared with other mutations, we conducted a laboratory evolution experiment with eight replicate populations (A-H) descended from an ancestral population stock culture (see Materials and Methods). Experimental conditions were identical to the ancestral maintenance conditions, with the exception of the culture volume (150 mL in 250 mL flasks during the experiment, compared with 50 mL in 125 mL flasks for routine maintenance). Population growth was biphasic under these batch culture conditions (Supplementary file 2): after a lag, a period of exponential growth was followed by slower linear growth. Every three weeks (approximately seven generations), 1 mL of culture ($\sim 450,000$ cells) was transferred into fresh medium. The experimental populations were maintained in this way for 400 generations (approximately 40 months). By the end of the experiment, cells from the evolved populations were $\sim 15 \%$ smaller in diameter than the ancestor (mean \pm SE of $2.0 \mu \mathrm{~m} \pm 0.04$ versus $2.3 \mu \mathrm{~m} \pm 0.11$). In aggregate, the evolved populations grew $\sim 15 \%$ faster during the exponential phase compared with the ancestor (Figure $2 \mathrm{~A} ; t=2.59 ; \mathrm{df}=23 ; P=0.016$). By contrast, no differentiation between the evolved populations or the ancestor was observed during other phases of the growth cycle or for cell yield.To identify the mutations responsible for the observed increase in fitness, every 100 generations we Illumina-sequenced DNA isolated from each population to greater than ~30X coverage (Supplementary file 3; NCBI BioProject ID \#\#\#\#\#\#\#\#\#\#.). Most detected mutations were IS transposition events (Figure 2B; 75-92\% of mutations within each population). As predicted, this is a greater fraction than what has been previously observed in laboratory evolution experiments with E. coli, which has fewer IS elements [19,20]. However, the overall evolutionary rate of the Acaryochloris populations was similar to what has been observed for E. coli over a comparable number of generations [19,20]; at the end of the experiment, individual CCMEE 5410 cells were expected to have $\sim 1-3$ mutations. We detected 39 distinct insertion alleles that were not found in the ancestor. Many of these were observed in multiple populations (Figure 2 - source data 1) and are probably the result of convergent evolution (see below). Nearly two-thirds of these insertions ($N=25$) were in coding regions and are therefore likely null mutations, in accord with the idea that loss-offunction mutations can play an important role in adaptation [12].

Remarkably, the overwhelming majority of these transposition events ($\geq 80 \%$)
involved an unclassified IS element (ISAm1) that consists of a single DDE transposase gene with a 14-bp inverted repeat (Figure 2B; Figure 2 - source data 1). The direct repeats flanking the detected ISAm1 insertion sites have an average GC content of 27\% (Figure 2 source data 1), suggesting a bias toward AT-rich sites (genome-wide GC content is 47.5% in coding regions versus 41.5% in non-coding regions; Figure 2 - figure supplement 1). ISAm1 appears to have recently invaded the CCMEE 5410 genome, since it is not observed in the other A. marina strains. It is, however, homologous to a transposase gene from the cyanobacterium Moorea sp. (NCBI accession number NEP53674.1; 68\% amino acid identity).

The genome of the CCMEE 5410 ancestor has nine nearly identical ISAm1 copies (Figure 2 - figure supplement 2). However, only one copy (genome coordinates 6:360606:37572) is complete; the others appear to be pseudogenes based on one or more premature
stop codons resulting from frameshift mutations. Only the complete ISAm1 copy has 100% nucleotide identity with the reconstructed mRNA transcript (Figure 2 - figure supplement 2), suggesting that it (and potentially its descendant copies) is the only transpositionally active copy; the other copies may be nonautonomous but possibly mobilized by this copy. ISAm1 transposition was by a copy-and-paste mechanism, and, at the end of the experiment, the number of ISAm1 copies segregating within populations had increased by 1-5 copies. In the ancestor, ISAm1 was transcribed throughout the batch growth cycle but exhibited highest expression (and highest ratio of sense versus anti-sense transcripts) during lag phase (Supplementary file 4).

Repeatability of adaptation and the resolution of clonal interference. Drift is expected to be weak compared with selection under our experimental conditions $\left(\mathrm{N}_{\mathrm{e}}\right.$ is $>10^{5}$ in the evolving populations). Consequently, mutations that rise to a detectable frequency in the population are likely either selectively favored or genetically linked to a beneficial mutation. The observation of identical or parallel mutations in the same target among populations is typically considered to be strong evidence that the locus itself was the target of positive selection. Evolution was highly repeatable among populations and characterized by: (1) the purging of ancestral polymorphism; (2) the subsequent emergence of high frequency ISAm1 insertion alleles in the carbon regulatory operon $s b t A B$; and (3) the resolution of clonal interference among sbt $A B$ alleles as additional, often convergent beneficial mutations arose on different genetic backgrounds. We discuss these dynamics in more detail below.

Illumina sequencing of the ancestral population to $>\sim 250$ X coverage (range: 246356X ; Supplementary file 3) revealed several polymorphisms (Supplementary file 5). These included two derived nonsynonymous SNPs: one in lipoate synthase lipA (66% frequency) and the other in argC of the arginine biosynthesis pathway (7.5\%). Structural variants
included a low frequency, 3-bp in-frame insertion in a glycine dehydrogenase gene and two ISAm1 insertion polymorphisms at low ($\sim 5 \%$) frequency. All of this ancestral variation was eventually lost in all of the evolved populations, most by generation 100. After 100 generations, we also detected an identical ISAm1 insertion between the urease accessory protein coding genes ureF and ureG in all populations (Figure 3; Figure 2 - source data 1). This mutation was not detected in the ancestral population and may reflect an insertion hot spot, but we cannot rule out that it was segregating in the ancestral population at very low frequency. This mutation was also lost in all populations later in the experiment (Figure 3).

By generation 200, between one and three different ISAm1 transposition-mediated alleles were detected in the $s b t A B$ operon in all populations (Figure 3). All three alleles were intergenic (a fourth ISAm1 insertion event in $s b t B$ emerged in a single population late in the experiment), and two (Sbt-1, Sbt-2) were observed in all populations. For multiple reasons, we believe that these mutations were convergent rather than standing variation. None of the alleles were observed in any population prior to generation 200 (despite sequencing populations to greater than $\sim 250 \mathrm{X}$ coverage in generation 100; Supplementary file 3), yet one or more increased rapidly in frequency once detected (Figure 3; Figure 3 - figure supplement 1). This suggests that they were under strong positive selection and would have been detected earlier in the experiment if they had been present in the ancestral population. In addition, we would expect to have observed similar evolutionary trajectories across populations if they were derived from standing variation.

Together, $s b t A$ and $s b t B$ are involved in cellular acclimation to low carbon. The $s b t A$ gene encodes a sodium-dependent, high-affinity bicarbonate transporter that is a part of the cyanobacterial carbon-concentrating mechanism [31], and the $s b t B$ product is a $P_{\text {II }}$ like cAMP-binding signaling protein involved in sensing cellular inorganic carbon $\left(\mathrm{C}_{\mathrm{i}}\right)$ status [32] and regulating SbtA activity. Synechocystis PCC 6803 mutants with a sbtB deletion are constitutively in a low carbon-adapted state and sensitive to sudden changes in C_{i} supply
[32]. In the CCMEE 5410 ancestor, $s b t A B$ genes are co-expressed as a single $\sim 1.8 \mathrm{~kb}$ bicistronic transcript that is upregulated to 10 -fold higher levels during carbon limitation (Supplementary file 6). Whether the sbt $A B$ insertions impact C acquisition (e.g., via changes in the stoichiometry of SbtA and SbtB) remains to be determined.

A number of other detected mutations were also associated with C_{i} uptake (Figure 2 - source data 1). These included identical ISAm1 insertions into a sbt A homolog (45% amino acid identity to SbtA) that was observed in seven of the populations. We also identified an ISAm1 insertion upstream of the NDH-1MS complex in three populations (Figure 2 source data 1; Figure 3). NDH-1MS is a cyanobacterial NAD(P)H:Quinone oxidoreductase complex specialized for high affinity CO_{2}-uptake under low C_{i} conditions [33]. Similar to what was previously reported for Synechocystis PCC 6803 [34], ancestral CCMEE 5410 exhibited increased transcription of these genes in a low C_{i} environment, as were other carbon concentrating mechanism genes (Supplementary file 6). None of these mutations were detected until generation 200 or later, which indicates that they were independently acquired in the individual populations.

The emergence of multiple co-occurring Sbt alleles is expected to produce clonal interference dynamics [35], whereby competition between competing beneficial alleles slows the loss of variation from the population. Still, by the end of the experiment, Sbt diversity was lost in six of the eight populations (1-3 detected alleles versus a maximum of 3-4 alleles), and a single allele had attained high frequency (Figure 3; Figure 3 - figure supplement 1). Four of the five Sbt alleles became dominant in at least one population. This included the ancestral allele, which appeared to be generally selected against, since it was either undetectable or at a low frequency by the end of the experiment in most populations. However, in two populations (C, G; Figure 3), there was a substantial increase in the ancestral allele's frequency between generations 300-400 as a result of new beneficial mutations that overcame this deleterious genetic background.

The evolutionary outcome of Sbt clonal interference depended upon the genetic background of subsequent beneficial mutations. In three populations, sweeps of a particular Sbt allele (Sbt-1 in the D and E populations, Sbt-2 in H; Figure 3) were associated with mutations either within or upstream of a diguanylate cyclase gene (peg.4655; Figure 4; Figure 2 - source data 1). Mutations at this locus were very common following the emergence of Sbt variation. We observed a total of eight distinct alleles in seven of the populations (Figure 4); the majority of these interrupted the coding region and are therefore expected to be null mutations. Seven of the mutations were due to the transposition of IS elements (five by ISAm1 activity); the other (the D population allele) was a C-to-T mutation resulting in a premature stop codon. Diguanylate cyclases are involved in the production of the secondary messenger molecule cyclic diguanylate, which activates specific effector proteins to impact a number of cellular processes, including biofilm formation and stress responses [36]. Evolutionary changes in cyclic diguanylate signaling have been previously shown to be central to diversification in biofilms of Pseudomonas aeruginosa [37]. In CCMEE 5410, peg. 4655 is constitutively expressed (Supplementary file 6), and its ortholog in A. marina MBIC11017 is upregulated under microoxic conditions [38]. Its effector protein and the downstream consequences of its inactivation remain to be determined.

In four populations, by contrast, late-arising mutations in a bacterial tyrosine kinase (BYK) gene (peg.5255) had attained high frequency (53-100\%) by the end of the experiment (Figure 3; Figure 2 - source data 1). We detected three nonsynonymous SNPs and two transposition events involving IS families ISAm1 and ISAcma36, respectively. BYKs are signaling proteins that regulate traits such as virulence, stress responses and exopolysaccharide production by both autophosphorylation and substrate phosphorylation of tyrosine residues [39]. The insertions, which are located at sites eight nucleotides apart at the 3^{\prime} end of the gene, are expected to disrupt the C-terminal tyrosine cluster autophosphorylation sites of the protein. This could potentially disrupt interactions with its
target substrate proteins. This gene also possesses a N-terminal GumC domain, which suggests that it is involved in exopolysaccharide biosynthesis. We predicted that mutations at this locus are associated with the loss of the ability to form biofilm. The results of an adherence assay [38] demonstrated that this was indeed the case. Evolved populations with a BYK mutation produced less biofilm than either evolved populations without a BYK mutation ($F_{1,37}=23.6, \mathrm{p}<0.0001$) or the ancestral population $\left(F_{1,19}=5.51, \mathrm{p}=0.03\right)$. Evolution of a more planktonic lifestyle consequently appears to be advantageous, possibly due to agitation in the selected environment. By contrast, populations lacking a BYK mutation had not diverged from the ancestral value $(p=0.74)$.

Discussion

Here, we have shown that a single active copy of a TE can fuel the initial stages of adaptation over hundreds of generations. Copy number of the ISAm1 element expanded during laboratory evolution and was responsible for about 75% of beneficial mutations. This greatly increased the rate of adaptive mutations compared with nucleotide substitutions alone, as has been observed for an IS transposition burst during E. coli adaptation to a change in osmolarity [40].

Many of the ISAm1 insertions were in or near genes involved in C_{i} concentration and acquisition (Figure 3; Figure 2 - source data 1). The phenotypic consequences of these mutations will be investigated in detail elsewhere. However, we can identify at least two ways in which C_{i} acquisition may have been under selection during laboratory evolution. First, our experimental treatment imposed a general reduction in the ratio of gas exchange surface area to culture volume compared with the ancestral maintenance conditions. Therefore, environmental C_{i} availability is expected to be lower. C_{i} availability is also expected to fluctuate during the course of a growth cycle, with higher availability during
early growth at low cell densities, followed by C-limitation later in the cycle. The nature of selection likely varied temporally as a result.

The predominance of a single TE for adaptation was striking in light of the fact that multiple IS families are actively expressed by A. marina CCMEE 5410 (Supplementary file 4). The reasons why we did not observe a more equitable contribution to adaptation from different IS families (including other recently acquired elements that are unlikely to have been domesticated) are not clear. Potentially, insertion site targets are more restricted or saturated for other highly expressed elements. Our study also illustrates the ecological differences among IS elements, which may transpose during different phases of the experimental growth cycle (Supplementary file 2). For example, the ISAm1 element appeared to be particularly transcriptionally active during lag phase, whereas the IS630 family exhibited highest expression during exponential growth (Supplementary file 4). Consequently, the spectrum of IS-mediated mutations available to a bacterium may depend on its current or predominant physiological state [41].

The long term fate of the ISAm1 element is not clear. Simulation studies of both sexual diploid and asexual populations have indicated that an invading TE is more likely to be stably maintained in a genome following an initial transposition burst if its activity is subsequently regulated $[42,43]$. Otherwise, it is ultimately expected to go extinct, provided that deleterious transpositions are much more common than adaptive insertions. In our experiment, beneficial ISAm1 transposition mutations with a large selective effect were sufficiently frequent to co-occur within a population (Figure 3), corresponding to a strongselection strong-mutation regime [44]. However, we did not observe any compelling evidence for potentially deleterious ISAm1 transposition mutations hitchhiking to high frequency. Rather, the rare cases of multiple ISAm1 transposition events sweeping together often involved insertions that convergently occurred in multiple populations and were plausibly adaptive. For example, in the G population, there was a rapid sweep of three

ISAm1 transposition events between generations 300 and 400 at loci that convergently rose to high frequency in other populations (bacterial tyrosine kinase, coproporphyrinogen III oxidase, and the NDH-1MS complex; Figure 3; Figure 2 - source data 1). Therefore, while beneficial ISAm1 transpositions were frequent enough to compete with each other, the probability of a deleterious transposition event hitchhiking along appears to be low. This suggests that deleterious transposition events may cause strong fitness effects and be effectively purged from the population, preventing the accumulation of a substantial deleterious ISAm1 load that might lead to extinction.

Materials and Methods

Strain maintenance. A. marina strain stocks were maintained at $30^{\circ} \mathrm{C}$ in 125 ml Erlenmeyer flasks containing 50 mL of HEPES-buffered (10mM final @ 8.0pH) FeMBG-11 medium (IOBG-11 supplemented with iron(III) monosodium salt; [45]). Cultures were grown with constant shaking (92 rpm) on a VWR Advanced Digital Shaker and illuminated with 25 $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ of cool white fluorescent light on a $12 \mathrm{~h}: 12 \mathrm{~h}$ light:dark cycle.

Genome data and analysis. Both short-read (Illumina) and long-read (PacBio) genome sequence data were acquired for A. marina strains CCMEE 5410 and S15. For CCMEE 5410, cells for Illumina sequencing were obtained directly from the ancestral stock culture used to inoculate the laboratory evolution population cultures (see below). For PacBio sequencing, 1 mL each of the ancestral stock was inoculated into two flasks of FeMBG-11/HEPES and harvested after ~ 10 generations of growth.

For Illumina sequencing, $120 \mu \mathrm{l}$ of lysozyme $(10 \mathrm{mg} / \mathrm{mL})$ were added to a microfuge tube containing approximately 0.1 g of pelleted culture. The tube was next vortexed and
incubated at $37^{\circ} \mathrm{C}$ for 30 min . Following this, DNA was extracted with the Qiagen DNeasy PowerBiofilm kit according to manufacturer instructions. DNA was Qubit quantified and sent to the University of Pittsburgh Microbial Genome Sequencing Center for library preparation and 151-bp paired-end sequencing on an Illumina NextSeq 500 flow cell.

In addition, high molecular weight DNA was extracted for PacBio sequencing from 100 mL of culture split into two pellets. Each pellet was resuspended in 4.7 mL of TE buffer (pH 8.0). We next added $100 \mu \mathrm{l}$ of $200 \mathrm{mg} / \mathrm{mL}$ lysozyme to each tube and incubated at $37^{\circ} \mathrm{C}$ for 45 minutes. Following this, $50 \mu \mathrm{l}$ of Proteinase K were added, and the tubes were incubated at $55^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .900 \mu \mathrm{l}$ of 5 M NaCl were then added to each tube, followed by 750 μl of $\mathrm{CTAB} / \mathrm{NaCl}(10 \mathrm{~g}$ cetyl trimethylammonium bromide) and 4.09 g NaCl$)$. After incubation at $65^{\circ} \mathrm{C}$ for 20 min , cell debris was pelleted at $5,000 \times g$ for 10 min at room temperature. The supernatant was transferred to a new tube to which an equal volume of chloroform was next added. The tube was then centrifuged at $5,000 \times g$ for 30 min . Following this, the aqueous phase was harvested, and DNA was precipitated with 2 X volume of 100% ethanol and then pelleted at $5,000 \times g$ for $30 \mathrm{~min} .200 \mu \mathrm{l}$ TE was added to dissolve the pellet, and the solution was transferred to a clean microfuge tube. $200 \mu \mathrm{l}$ of phenol / chloroform (1:1) was added to the tube, mixed well by repeated inversion, followed by centrifugation for 10 min at $17,000 \times g$. The aqueous layer was then transferred to a clean microfuge tube and extracted with chloroform an additional time as above. DNA was reprecipitated with ethanol as above, and then, after removing the supernatant, resuspended in $50 \mu \mathrm{l}$ of 3 M sodium acetate (pH 5.2). We next added $10 \mu \mathrm{l}$ of glycogen and 3.5 X volume of 100% ethanol, followed by incubation at $-80^{\circ} \mathrm{C}$ for 30 min . The sample was then centrifuged at $17,000 \mathrm{xg}$ and $4^{\circ} \mathrm{C}$ for 15 min . Following this, the supernatant was removed, and the sample was air-dried, resuspended in 10 mM Tris and stored at $-80^{\circ} \mathrm{C}$.

Sample quality was assessed with an Agilent Tapestation and by Qubit and Nanodrop. Sequencing was conducted with a PacBio Sequel System at the University of Maryland Institute for Genome Sciences. Genomes for A. marina strains CCMEE 5410 and S15 were de novo assembled with Canu v1.7 [46], and these assemblies were improved with Pilon [47] using Illumina data. Genome data acquired for this study are available at NCBI BioProject ID PRJNA16707 (CCMEE 5410) and PRJNA649288 (S15).

Phylogenetic analysis. Orthologous protein-coding genes were identified for the outgroup strain Cyanothece PCC7425 (NCBI accession: GCA_000022045.1) and for A. marina strains MBIC11017 (GCA_000018105.1), CCMEE 5410 and S15 using OrthoFinder v2.2.7 [48]. A maximum likelihood amino acid phylogeny with 1,000 ultrafast bootstrap replicates [49] was constructed with IQ-TREE v2.0 [50] using the JTT substitution matrix with empirical amino acid frequencies (+F) and five estimated free rate categories of rate heterogeneity among sites (+R5). The model was selected by the Akaike information criterion (AIC) with ModelFinder [51].

IS element analyses. Genome-wide estimates of transposase gene copy number were obtained by parsing annotation data with a custom Python script. To identify which transposase genes were related by gene duplication and to measure the amounts of synonymous and nonsynonymous nucleotide divergence between pairs of transposase duplicates, we developed a novel bioinformatics software, ParaHunter, which is freelyavailable on GitHub: https:/ / github.com / Arkadiy-Garber/ParaHunter. ParaHunter identifies homologs by clustering genes using mmseqs2 v6.f5a1c [52], based on user-chosen parameters of minimum amino acid identity and coverage. After gene clusters are identified, each cluster is aligned using Muscle v3.8.1551 [53]. ParaHunter then uses codeml in PAML to generate codon alignments (pal2nal.pl) and estimate rates of synonymous (dS)
and nonsynonymous ($\mathrm{d} N$) divergence [54]. The resulting $\mathrm{d} N$ and $\mathrm{d} S$ values are then extracted from the output files and $\mathrm{d} N / \mathrm{d} S$ values calculated directly from these estimates.

To identify gene duplicates in Acaryochloris strains, clustering by mmseqs required coverage of at least 50% over the length of the target sequence, with a minimum amino acid identity of at least 50% over the length of the shorter sequence. Genes were annotated by comparison with the annotated genome of Acaryochloris MBIC 11017 [24] using DIAMOND BLASTp v0.9.24.125 [55]. Annotation data were also used to confirm the accuracy of gene clustering, where all members of each cluster of homologous genes are annotated with the same function.

To estimate the amount of nonsynonymous ($\mathrm{d} N$) and synonymous ($\mathrm{d} S$) nucleotide divergence between pairs of paralogous IS genes, we ran codeml on the codon alignments generated using the pal2nal.pl script with the following parameters: runmode = pairwise, seqtype $=$ codons \rightarrow AAs, model $=$ empirical, NSsites $=0$, icode $=$ universal, fix_kappa $=$ kappa to be estimated, fix_omega $=$ estimate, fix_alpha $=$ fix it to alpha, RateAncestor $=1$, Small_Diff $=0.5 \mathrm{e}-6$, fix_blength $=$ random, method $=$ simultaneous. Regression analysis of $\mathrm{d} N$ and $\mathrm{d} S$ values was performed in RStudio (R Core Team, 2013). Analysis of variance (ANOVA) was performed using the base R function $\operatorname{aov}($). In our analyses, we also used the packages tidyverse (https: / / cran.r-project.org / web / packages/tidyverse /index.html) and reshape [56].

Pseudogenes were identified using the Pseudofinder software (https:/ / github.com/filip-husnik/pseudofinder) with default parameters and four cyanobacterial reference genomes (A. marina strain S15, Cyanothece sp. PCC 7425, Thermosynechococcus elongatus BP-1 and Synechococcus sp. PCC 6312). Frameshifts and insertions / deletions in identified pseudogenes were determined using a custom Python script to parse alignments of duplicated transposase genes for sequence lengths and alignment gaps that are not multiples of three.

RNASeq read data obtained for A. marina strains CCMEE 5410 and MBIC11017 [57;
NCBI BioProject ID PRJNA681975] were quality-trimmed using Trimmomatic v0.39 (ILLUMINACLIP:TruSeq3-PE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) [58]. Given the heavy load of IS gene duplicates (including nearly-identical duplicates) in the Acaryochloris strains MBIC11017 and CCMEE 5410 genomes, we performed read mapping using a custom approach that allowed us to keep accurate track of which reads map ambiguously. To estimate expression of genes present in multiple copies in each genome, we utilized a combination of bowtie2 and BLASTn. Bowtie2 v2.3.4.3 (default settings) [59] was used to recruit reads separately to each cluster of paralogous genes. To accurately estimate expression levels from each gene within each cluster, while keeping track of ambiguously-mapping reads, the subset of reads mapping to each gene cluster was then queried against its respective gene cluster using BLASTn v2.9.0+ (qcov_hsp_perc $=$ 100%, perc_identity $=100 \%$) [60]. A custom Python script was then used to process the results and estimate total read counts from each gene cluster, as well as unambiguous read counts from each individual gene within each cluster. Gene expression from single copy genes was estimated using only bowtie2 (default settings), and the read count estimates were generated using $h t s e q-c o u n t ~ v 0.11 .2$ [61]. Gene expression values were generated by normalizing the read count estimates to transcripts per million (TPM) [62]. The TPM values reported for each gene/gene cluster and each time point represent the mean and standard deviation from five replicates. Transcriptomes from each time point were assembled using the default settings in Trinity v2.8.4 software [63]. All custom Python scripts used here are available in Supplementary file 7.

Laboratory evolution experiment. We established eight replicate populations (A-H) descended from an ancestral stock culture. Experimental populations were initiated by inoculating 1 mL each from the ancestral stock into 250 mL longneck flasks containing 150
mL of FeMBG-11/HEPES (10mM final, pH 8.0) medium. Experimental medium, temperature and light regime were identical to the ancestral maintenance conditions. Every three weeks (approximately seven generations), 1 mL of culture ($\sim 450,000$ cells) was transferred into 150 mL of fresh medium. Every six weeks, 25 mL of each population were collected prior to transfer, pelleted and stored at $-80^{\circ} \mathrm{C}$ for DNA analysis. Every ~ 100 generations, DNA samples were extracted with the Qiagen DNeasy PowerBiofilm kit and then sent to the University of Pittsburgh Microbial Genome Sequencing Center for library construction and Illumina sequencing, as above. Sequence data have been deposited in the SRA under NCBI BioProject number \#\#\#\#\#\#\#\#\#\#.

Mutation detection. We used breseq v 0.33 .2 [64] to identify mutations and their frequencies in the ancestral and experimental populations with the strain CCMEE 5410 ancestral genome assembly as reference. FASTQ data were first quality-trimmed using Trimmomatic v0.39 (ILLUMINACLIP:TruSeq3-PE:2:30:10 HEADCROP:15 CROP:135 SLIDINGWINDOW:4:20 MINLEN:135; [58]). breseq analyses were performed in polymorphism mode with the default mutation frequency detection cut-off of 5%. For each candidate mutation, we used Fisher's exact tests to test for biased strand representation and Kolmogorov-Smirnov tests to evaluate whether bases supporting a mutation had lower quality scores than those supporting the reference. We also confirmed candidate mutations by manually inspecting the alignments of reads to the reference genome.

Phenotypic assays. After 400 generations of laboratory evolution, we assayed growth of the ancestral and evolved populations. Cells of the ancestral population were revived from a frozen stock stored at $-80^{\circ} \mathrm{C}$. Cells of each population were rinsed with fresh medium and then used to inoculate triplicate flasks (each containing 150 mL of fresh FeMBG-11/HEPES
medium) to a starting OD_{750} of ~ 0.015. Every 48 h , culture optical density at $750 \mathrm{~nm}\left(\mathrm{OD}_{750}\right)$ was measured with a Beckman Coulter DU 530 spectrophotometer (Indianapolis, IN). Generation times were estimated from the exponential growth phase of each culture.

Cell sizes of the ancestral and experimental populations were measured by imaging cells at 400X magnification with a Leica Model DME Microscope (Buffalo, NY). Images were then input into ImageJ 1.52 (National Institutes of Health) and 20 cells were measured after setting the appropriate pixel scale to obtain an average cell size for each culture.

To monitor cell aggregation, we modified the crystal violet adherence assay of Hernández-Prieto et al. [38]. Briefly, 2 mL of cell culture were inoculated in individual wells of 24 well-microplates at an OD_{750} about 0.13 (mid-exponential phase) at the start of the experiment. These immobile culture plates were grown for 10 days in cool white light at $30^{\circ} \mathrm{C}$. After incubation, the medium containing no adherent cells was decanted from each of the wells, and wells were rinsed gently with fresh FeMBG-11 media. To measure the number of adherent cells, each well was stained with 0.5 mL of 0.1% crystal violet (CV) in $\mathrm{ddH}_{2} \mathrm{O}$ for approximately 1 hr . Once the CV solution was removed, wells were gently rinsed with $\mathrm{ddH}_{2} 0$. The adherent cells were then resuspended in $2 \mathrm{~mL} 70 \%$ ethanol for 15 min. Absorbance at 595 nm was used as a measurement of the number of cells adhered to the surface. Two technical replicates were performed for each biological replicate $(N=3)$.

Acknowledgements

This work was supported by award NNA15BB04A from the National Aeronautics and Space Administration to S.R.M. S.R.M. thanks the Instituto Gulbenkian de Ciência for its support and hospitality during the analysis and writing of this project, and we thank Isabel

Gordo, Massimo Amicone, Paulo Durão and Nelson Frazão for their insightful comments on an earlier version of the manuscript.

Competing Interests Statement

The authors declare no competing interests.

References

1. Kidwell MG, Lisch DR. Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution. 2001;55: 1-24.
2. Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284: 601-603.
3. Orgel LE, Crick FHC. Selfish DNA: the ultimate parasite. Nature. 1980;284: 604-607.
4. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371: 215-220.
5. Nuzhdin SV. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Transposable Elements and Genome Evolution. Dordrecht: Springer, Dordrecht; 2000. pp. 129-137.
6. Mahillon J, Chandler M. Insertion Sequences. Microbiol Mol Biol Rev. 1998;62: 725774.
7. Bichsel M, Barbour AD, Wagner A. Estimating the fitness effect of an insertion sequence. J Math Biol. 2012;66: 95-114.
8. Iranzo J, Gómez MJ, López de Saro FJ, Manrubia S. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes. PLoS Comput Biol. 2014;10: e1003680-11.
9. Hall BG. Transposable elements as activators of cryptic genes in E. coli. Transposable Elements and Genome Evolution. Dordrecht: Springer, Dordrecht; 2000. pp. 181-187.
10. Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol. 2004;155: 319-327.
11. Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D. Insertion sequence-driven evolution of Escherichia coli in chemostats. J Mol Evol. 2011;72: 398412.
12. Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC, Tavazoie S. Bacterial adaptation through loss of function. PLoS Genet. 2013;9: e1003617-13.
13. Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43: 709-730.
14. Sawyer SA, Dykhuizen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, et al. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics. 1987;115: 51-63.
15. Bobay L-M, Ochman H. The evolution of bacterial genome architecture. Front Genet. 2017;8: 829-6.
16. Touchon M, Rocha EPC. Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol. 2007;24: 969-981.
17. Nzabarushimana E, Tang H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mobile DNA. 2018;9: 1-5.
18. Feher T, Bogos B, Mehi O, Fekete G, Csorgo B, Kovacs K, et al. Competition between transposable elements and mutator genes in bacteria. Mol Biol Evol. 2012;29: 31533159.
19. Barroso-Batista J, Sousa A, Lourenço M, Bergman M-L, Sobral D, Demengeot J, et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 2014;10: e1004182-12.
20. Deatherage DE, Traverse CC, Wolf LN, Barrick JE. Detecting rare structural variation in evolving microbial populations from new sequence junctions using breseq. Front Genet. 2015; 5: 468.
21. Wood AM, Miller SR, Li WKW, Castenholz RW. Preliminary studies of cyanobacteria, picoplankton, and virioplankton in the Salton Sea with special attention to phylogenetic diversity among eight strains of filamentous cyanobacteria. Hydrobiologia. 2002; 473: 77-92.
22. Miller SR, Augustine S, Le Olson T, Blankenship RE, Selker J, Wood AM. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/ cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA. 2005;102: 850-855.
23. Miller SR, Wood AM, Blankenship RE, Kim M, Ferriera S. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: Implications for the ecological niche. Genome Biol Evol. 2011;3: 601-613.
24. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, et al. Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA. 2008;105: 2005-2010.
25. Dekel E, Alon U. Optimality and evolutionary tuning of the expression level of a protein. Nature. 2005;436: 588-592.
26. Wagner A. Energy constraints on the evolution of gene expression. Mol Biol Evol. 2005;22: 1365-1374.
27. Jangam D, Feschotte C, Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 2017;33: 817-831.
28. Kuo C-H, Ochman H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 2010;6: e1001050-7.
29. Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14: 627-633.
30. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2011;10: 13-26.
31. Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, et al. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. J Biol Chem. 2002;277: 18658-18664.
32. Selim KA, Haase F, Hartmann MD, Hagemann M, Forchhammer K. P PI-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proc Natl Acad Sci USA. 2018;115: E4861-E4869.
33. Battchikova N, Eisenhut M, Aro E-M. Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles. BBA - Bioenergetics. 2011;1807: 935-944.
34. Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro E-M. Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell. 2004;16: 3326-3340.
35. Gerrish PJ, Lenski RE. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102: 127-144.
36. Dahlstrom KM, O'Toole GA. A symphony of cyclases: Specificity in diguanylate cyclase signaling. Annu Rev Microbiol. 2017;71: 179-195.
37. Flynn KM, Dowell G, Johnson TM, Koestler BJ, Waters CM, Cooper VS. Evolution of ecological diversity in biofilms of Pseudomonas aeruginosa by altered cyclic diguanylate signaling. J Bacteriol. 2016;198: 2608-2618.
38. Hernández-Prieto MA, Lin Y, Chen M. The complex transcriptional response of Acaryochloris marina to different oxygen levels. G3. 2017;7: 517-532.
39. Grangeasse C, Nessler S, Mijakovic I. Bacterial tyrosine kinases: evolution, biological function and structural insights. Phil Trans R Soc B. 2012;367: 2640-2655.
40. Stoebel DM, Dorman CJ. The effect of mobile element IS10 on experimental regulatory evolution in Escherichia coli. Mol Biol Evol. 2010;27: 2105-2112.
41. Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol. 2017;15: e2001477-22.
42. Le Rouzic A, Capy P. The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics. 2005;169: 1033-1043.
43. Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist? BMC Evol Biol. 2015;15: 1-12.
44. Gillespie JH. The causes of molecular evolution. 1991. New York: Oxford University Press.
45. Swingley WD, Hohmann-Marriott MF, Le Olson T, Blankenship RE. Effect of iron on growth and ultrastructure of Acaryochloris marina. Appl Environ Microbiol. 2005;71: 8606-8610.
46. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27: 722-736.
47. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9: e112963-14.
48. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20: 238.
49. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30: 1188-1195.
50. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32: 268-274.
51. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14: 587589.
52. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotech. 2017;35: 1026-1028.
53. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792-1797.
54. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformat. 1997;13: 555-556.
55. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12: 59-60.
56. Wickham H. Reshaping data with the reshape package. J Stat. 2007;21: 1-20.
57. Gallagher AL, Miller SR. Expression of novel gene content drives adaptation to low iron in the cyanobacterium Acaryochloris. Genome Biol Evol. 2018;10: 1484-1492.
58. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114-2120.
59. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357-359.
60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403-410.
61. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with highthroughput sequencing data. Bioinformatics. 2015;31: 166-169.
62. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131: 281285.
63. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494-1512.
64. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Engineering and Analyzing Multicellular Systems. New York, NY: Humana Press, New York, NY; 2014. pp. 165-188.

Figures

Figure 1. IS element expansion in Acaryochloris marina strain CCMEE 5410. (A) Maximum likelihood amino acid phylogeny of A. marina strains CCMEE 5410, MBIC11017 and S15, outgroup-rooted with Cyanothece strain PCC 7425. The tree was reconstructed from a concatenated alignment of 1468 orthologous proteins using a JTT+F+R5 substitution model. All nodes had 100\% bootstrap support for 1,000 bootstrap replicates (indicated by closed circles). Scale bar is in units of expected number of amino acid substitutions per site. (B) Genome-wide number of transposase genes for each of the four strains. Color coding as in (A). (C) Exponential growth and stationary phase expression (transcripts per kilobase million) of sense (dark shading) and anti-sense (light shading) transposase gene transcripts for A. marina strains CCMEE 5410 and MBIC11017. Error bars are standard deviations. Color coding as in (A). (D) Scatter plot of nonsynonymous (dN) versus synonymous (dS) nucleotide divergence between recent, non-identical transposase gene duplicate pairs for
the four strains. For regression analyses, data were pooled from the four strains (excluding 11 duplicate pairs in strain CCMEE 5410 with $\mathrm{dN} / \mathrm{d} S>0.3$, for which a separate regression line was estimated; see main text). Least-squares regression slopes for the individual strains were as follows: CCMEE $5410\left(\mathrm{~d} N / \mathrm{d} S=0.12\right.$; adjusted $R^{2}=0.65 ; N=60$ duplicated copy pairs); MBIC11017 ($\mathrm{d} N / \mathrm{d} S=0.13$; adjusted $\left.R^{2}=0.88 ; N=63\right) ; \mathrm{S} 15(\mathrm{~d} N / \mathrm{d} S=0.10 ;$ adjusted $\left.R^{2}=0.97 ; N=32\right)$; Cyanothece PCC $7425\left(\mathrm{~d} N / \mathrm{d} S=0.09\right.$; adjusted $\left.R^{2}=1.0 ; N=10\right)$. Color coding as in (A).

Figure 1 - figure supplement 1. Relative frequencies of different IS families in Acaryochloris and Cyanothece genomes. The total number of transposase genes in each genome are indicated in parentheses.

Figure 1 - figure supplement 2. Log2 expression (TPM) of sense and antisense transcripts for high $\mathrm{d} N / \mathrm{d} S$ (orange) and low $\mathrm{d} N / \mathrm{d} S$ (blue) classes of IS elements in the A. marina strain CCMEE 5410 genome during log, stationary and lag phases of the population batch growth cycle. Sense transcripts from the high $\mathrm{d} N / \mathrm{d} S$ class were significantly more highly expressed than the low $\mathrm{d} N / \mathrm{d} S$ class in both \log phase $\left(F_{1,159}=4.43, \mathrm{p}=0.037\right)$ and lag phase $\left(F_{1,159}=\right.$ $6.29, \mathrm{p}=0.013$).

Figure 1 - source data 1 . This file contains the data used in figure supplement 1.
Distribution of IS element families in Acaryochloris and Cyanothece PCC 7425 genomes.
Figure 1 - source data 2. This file contains the expression data used in Figure 1 panel C.

B

Figure 2. Fitness data and distribution of mutations for laboratory evolved populations of A. marina strain CCMEE 5410. (A) Relative exponential growth rates of experimental populations after 400 generations of laboratory evolution, compared with the ancestral population (Anc). In this experiment, a relative fitness of 1 corresponded to a population growth rate of 0.26 doublings per day. Error bars are standard errors for biological triplicate cultures. (B) Distribution of mutations detected in the populations during the course of the experiment shows the massive contribution of ISAm1 insertions.

Figure 2 - figure supplement 1. GC content of coding and intergenic regions of the A. marina strain CCMEE 5410 genome. Coding regions included all CDS, tRNA, rRNA, and tmRNA genes. Intergenic GC content was calculated only for those intergenic regions that are longer than 100bp.

Figure 2 - figure supplement 2. Nucleotide sequence alignment of the ISAm1 element reconstructed transcript and gene copies in the A. marina strain CCMEE 5410 genome (labels are genome coordinates). The transcript sequence is identical to the single complete copy of the element (6:36060).

Figure 2 - source data 1. This file contains the mutation data used in Figure 2 panel B.

Figure 3. Fish plots of major evolutionary changes during 400 generations of laboratory evolution of the eight populations. The majority of the featured mutations that were detected during the experiment are ISAm1 insertion events. The exceptions are DGC mutations in the A and D populations and $B Y K$ mutations in the B, C, and F populations. Figure 3 - figure supplement 1. Relative frequencies of the ancestral Sbt allele (blue) and ISAm-1 insertion mediated mutations (see inset) in the eight populations during laboratory evolution. Inset: Location and frequencies of the four mutations in $s b t A B$ detected during

400 generations of laboratory evolution. Shown is a 728 bp region of the CCMEE 5410 genome including the 3^{\prime} end of $s b t A$, intergenic DNA and $s b t B$.

Figure 3 - source data 1. This file contains the allele frequency data used in the fish plots.

Figure 4. Location and frequencies of mutations detected during laboratory evolution in and near the annotated diguanylate cyclase gene peg. 4655 . Shown is a 1 kb region of the CCMEE 5410 genome (genome coordinates 0:4457436-0:44578436) including peg. 4655 (blue rectangle) and upstream non-coding DNA. All mutations are IS transposition events, with the exception of the D allele, which is a nonsense mutation at amino acid position 207 (Figure 2 - source data 1).

Generation

Figure supplements, source data files and supplementary files

Figure 1 - figure supplement 1. Relative frequencies of different IS families in Acaryochloris and Cyanothece genomes. The total number of transposase genes in each genome are indicated in parentheses.

Figure 1 - figure supplement 2. Log2 expression (TPM) of sense and antisense transcripts for high $\mathrm{d} N / \mathrm{d} S$ (orange) and low $\mathrm{d} N / \mathrm{d} S$ (blue) classes of IS elements in the A. marina strain CCMEE 5410 genome during log, stationary and lag phases of the population batch growth cycle. Sense transcripts from the high $\mathrm{d} N / \mathrm{d} S$ class were significantly more highly expressed than the low $\mathrm{d} N / \mathrm{d} S$ class in both \log phase $\left(F_{1,159}=4.43, \mathrm{p}=0.037\right)$ and lag phase $\left(F_{1,159}=\right.$ 6.29, $\mathrm{p}=0.013$).

Figure 1 - source data 1. This file contains the data used in figure supplement 1.
Distribution of IS element families in Acaryochloris and Cyanothece PCC 7425 genomes.
Figure 1 - source data 2. This file contains the expression data used in Figure 1 panel C.
Figure 2 - figure supplement 1. GC content of coding and intergenic regions of the A. marina strain CCMEE 5410 genome. Coding regions included all CDS, tRNA, rRNA, and tmRNA genes. Intergenic GC content was calculated only for those intergenic regions that are longer than 100bp.

Figure 2 - figure supplement 2. Nucleotide sequence alignment of the ISAm1 element reconstructed transcript and gene copies in the A. marina strain CCMEE 5410 genome (labels are genome coordinates). The transcript sequence is identical to the single complete copy of the element (6:36060).

Figure 2 - source data 1. This file contains the mutation data used in Figure 2 panel B.
Figure 3 - figure supplement 1. Relative frequencies of the ancestral Sbt allele (blue) and ISAm-1 insertion mediated mutations (see inset) in the eight populations during laboratory
evolution. Inset: Location and frequencies of the four mutations in $s b t A B$ detected during 400 generations of laboratory evolution. Shown is a 728 bp region of the CCMEE 5410 genome including the 3^{\prime} end of $s b t A$, intergenic DNA and $s b t B$.

Figure 3 - source data 1. This file contains the allele frequency data used in the fish plots.
Supplementary file 1. Summary of frameshifted transposase genes in A. marina genomes.
Supplementary file 2. Representative batch culture growth curve for A. marina CCMEE 5410 during laboratory evolution. Growth was monitored by the increase in optical density at 750 nm , which is proportional to cell density.

Supplementary file 3. Genome sequence coverage for laboratory evolved populations. Supplementary file 4 . Sense and anti-sense gene expression at different batch culture growth phases in the A. marina strain CCMEE 5410 ancestor for representative IS elements that contributed to laboratory evolution.

Supplementary file 5. Polymorphisms in the A. marina strain CCMEE 5410 ancestral population.

Supplementary file 6. Gene expression in the A. marina CCMEE 5410 ancestor under different growth conditions for mutated genes and select carbon-concentrating mechanism genes.

Supplementary file 7. Custom Python scripts used in this study.

Figure 1 - figure supplement 1. Relative frequencies of different IS families in Acaryochloris and Cyanothece genomes. The total number of transposase genes in each genome are indicated in parentheses.

Figure 1 - figure supplement 2. Log2 expression (TPM) of sense and antisense transcripts for high dN/dS (orange) and low $\mathrm{dN} / \mathrm{dS}$ (blue) classes of IS elements in the A. marina strain CCMEE 5410 genome during log, stationary and lag phases of the population batch growth cycle. Sense transcripts from the high dN/dS class were significantly more highly expressed than the low $\mathrm{d} N / \mathrm{d} S$ class in both log phase ($F_{1,159}=4.43, p=0.037$) and lag phase ($F_{1,159}=6.29, p=0.013$).

Figure 2 - figure supplement 1. GC content of coding and intergenic regions of the A. marina strain CCMEE 5410 genome. Coding regions included all CDS, tRNA, rRNA, and tmRNA genes. Intergenic GC content was calculated only for those intergenic regions that are longer than 100bp.

Figure 2 - figure supplement $\mathbf{2}$. Nucleotide sequence alignment of the ISAm1 element reconstructed transcript and gene copies in the A. marina strain CCMEE 5410 genome (labels are genome coordinates). The transcript sequence is identical to the single complete copy of the element $(6: 36060)$.
$11: 5896$
$41: 22642$
$0: 1118074$
$0: 4207749$
$1: 828563$
$5: 9073$
$5: 307000$
$5: 2970377$
$6: 36060$
mRNA

$11: 5896$
$41: 22642$
$0: 1118074$
$0: 4207749$
$1: 828563$
$5: 9073$
$5: 307000$
$5: 2970377$
$6: 36060$
mRNA

$11: 5896$
$41: 22642$
$0: 1118074$
$0: 4207749$
$1: 828563$
$5: 9073$
$5: 307000$
$5: 2970377$
$6: 36060$
mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

Abstract

ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc ctggagtctggcaaaactgcttgattggccatcaaagaccacaccgtagtaaattcaggc CTGGAGTCTGGCAAAACTGCTTGATTGGCCATCAAAGACCACACCGTAGTAAATTCAGGC

60

60
60
60
60
60
60
60
60
60
cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaa-aagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac cattaaccatcgtgtttgcccaaaggtgtagtcattctaaaaagcatcatccatccagac CATTAACCATCGTGTTTGCCCAAAGGTGTAGTCATTCTAAAAAGCATCATCCATCCAGAC
caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag caggctctaaaacagtacctctcacacttgagcatcccgttatctaaacctcaacagcag CAGGCTCTAAAACAGTACCTCTCACACTTGAGCATCCCGTTATCTAAACCTCAACAGCAG
11:5896
41:22642
0:1118074
020774
:82856
5:307000
5:2970377
6. 36060
$\star \star \star \star \star *$
catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaa-acccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac catgtgctgcgtattgttgaaggattgattgtgggcaatggccgcaaaacccttagccac CATGTGCTGCGTATTGTTGAAGGATTGATTGTGGGCAATGGCCGCAAAACCCTTAGCCAC
ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactt-ttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg ttgtatgctcagtgggttgatgctccagatgccagtgcagtggctgactttttacgagtg TTGTATGCTCAGTGGGTTGATGCTCCAGATGCCAGTGCAGTGGCTGACTTTTTACGAGTG

agtacctggtctgagcaatctctcgacaaacgccttggggaaatc-acctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420380; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

0:4207749
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074 $0: 4207749$
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896 41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc agtacctggtctgagcaatctctcgacaaacgccttggggaaatcaacctggccgatgtc AGTACCTGGTCTGAGCAATCTCTCGACAAACGCCTTGGGGAAATCAACCTGGCCGATGTC
atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg atagagcgcgtgcagcgaggaggaagttctcctgtggtgtatgtgagtattgatgactcg ATAGAGCGCGTGCAGCGAGGAGGAAGTTCTCCTGTGGTGTATGTGAGTATTGATGACTCG
accagtagcaaagataaggatacccatgccttggaaggggtggattggcagcatgaccac $\star \star *$
aatgccagtggtcgca-tactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg aatgccagtggtcgcaatactcccaagtacaagaaagggatggtgcatgtgagttgtcgg AATGCCAGTGGTCGCAATACTCCCAAGTACAAGAAAGGGATGGTGCATGTGAGTTGTCGG
gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg gttcaaattggcaaccacagtgttcccttcgcctatcggctctatttacgggcaaaaacg GTTCAAATTGGCAACCACAGTGTTCCCTTCGCCTATCGGCTCTATTTACGGGCAAAAACG
gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttcca-accaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat gttcgcaacttgaaccggggacgtgccaaggaggagcgattgcgcttccaaaccaagtat GTTCGCAACTTGAACCGGGGACGTGCCAAGGAGGAGCGATTGCGCTTCCAAACCAAGTAT $\star \star \star *$
caactggtccgggagatgcttcagcagctccagcctctatacccaaagaat-ggc-gggt caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420380; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

0:4207749
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg caactggtccgggagatgcttcagcagctccagcctctattacccaaagaatggcgggtg CAACTGGTCCGGGAGATGCTTCAGCAGCTCCAGCCTCTATTACCCAAAGAATGGCGGGTG $\star \star \star \star * \quad * * * * \quad * \quad * * * * *$
gtacgtttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgt-ttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa tacgttttattcgatagctggtatgcctccgccaaactactcaagtttgttcggcggcaa TACGTTTTATTCGATAGCTGGTATGCCTCCGCCAAACTACTCAAGTTTGTTCGGCGGCAA
ggcaagcgatggttttg-ttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggtt-tgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatca-atccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt ggcaagcgatggttttgtttgggcgctatcaaatccaatcgcattcttgatggcaagcgt GGCAAGCGATGGTTTTGTTTGGGCGCTATCAAATCCAATCGCATTCTTGATGGCAAGCGT
ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaa-aaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaa-aaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca ctgagtcaatggaacaaagacctcaagcacaaacactacgactcagttgagttaaaaaca CTGAGTCAATGGAACAAAGACCTCAAGCACAAACACTACGACTCAGTTGAGTTAAAAACA
gtgacaggctcaaagca-acctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg gtgacaggctcaaagcacacctacctaacgcgctcgattacgggccgattaaatgaggtg GTGACAGGCTCAAAGCACACCTACCTAACGCGCTCGATTACGGGCCGATTAAATGAGGTG
ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat ccttttgacgtctgtgtggtcatctccaagcggcaccctcgggattctcacccgaagtat CCTTTTGACGTCTGTGTGGTCATCTCCAAGCGGCACCCTCGGGATTCTCACCCGAAGTAT
tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggcca-aatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc

720 720
720
720
720
720
720

775 777
780
780
779
780
780
780
780
780

834
837
839
840
838
840
840
840
840
840

894
897
898
899
898
900
900
900
900
900

953
957
958
959
958
960

960

960
960

960

1013

1017
1018
1019
1018
1020
1020
1020
1020
1020
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420380; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

0:4207749
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
$0: 4207749$
1:828563
5:9073
5:307000
5:2970377 6:36060 mRNA

11:5896
41:22642
0:1118074
0:4207749
1:828563
5:9073
5:307000
5:2970377
6:36060 mRNA

11:5896
41:22642
0:1118074
tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc tacctgtgcacagacacctcattgtctgcggccaaaatactgaaacgctactcaaagcgc TACCTGTGCACAGACACCTCATTGTCTGCGGCCAAAATACTGAAACGCTACTCAAAGCGC
tggtccattga-acagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattg-gggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc tggtccattgaaacagattattggtatctcaagcaatgtttgggattgggggagtttcgc TGGTCCATTGAAACAGATTATTGGTATCTCAAGCAATGTTTGGGATTGGGGGAGTTTCGC

gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatttt gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatt-t gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatt-t gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatttt gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatttt gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatt-t gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatt-t gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatt-t gtccaacactatgaagcgattcacaagtggtactctttggtgcatttagcgttgcatttt GTCCAACACTATGAAGCGATTCACAAGTGGTACTCTTTGGTGCATTTAGCGTTGCATTTT $\star \star \star *$
ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcc-ca ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa ttgtatgctcaactgcgctgttctcaacagagggatgatccattcatttcaattgcccaa TTGTATGCTCAACTGCGCTGTTCTCAACAGAGGGATGATCCATTCATTTCAATTGCCCAA gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag gtgattgaacatcaccgacagcaacaggctcaagcggtcttaatggctgcttgtgagcag GTGATTGAACATCACCGACAGCAACAGGCTCAAGCGGTCTTAATGGCTGCTTGTGAGCAG
gccatcacggatggcaatacgcaaggagtcgtgaagcgcttcattctaccaactcggatt $\star \star \star \star \star * ~$
gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact

1079 1078
1080
1080
1080
1080
1080

1132
1136
1138
1138
1138
1140
1140
1140
1140
1140

1192
1195
1197
1198
1198
1199
1199
1199
1200
1200
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.10.420380; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

0:4207749	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1438
1:828563	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1438
5:9073	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1439
5:307000	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1439
5:2970377	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1439
6:36060	gcagcctaatggcttgagaaacattagctgaattcgagttactgctctgaggcacacact		1440
mRNA	GCAGCCTAATGGCTTGAGAAACATTAGCTGAATTCGAGTTACTGCTCTGAGGCACACACT		1440
11:5896	tcagagtaggttac	tgttc	1491
41:22642	tcagagtaggttac	tgttc	1495
0:1118074	tcagagtaggttac	tgttc	1497
0:4207749	tcagagtaggttac	tgttc	1498
1:828563	tcagagtaggttac	tgttc	1498
5:9073	tcagagtaggttac	tgttc	1499
5:307000	tcagagtaggttac	tgttc	1499
5:2970377	tcagagtaggttac	tgttc	1499
6:36060	tcagagtaggttac	tgttc	1500
mRNA	$\begin{aligned} & \text { TCAGAGTAGGTTAC } \\ & * * * * * * * * * * \end{aligned}$	$\begin{aligned} & \mathrm{TGTTC} \\ & =* * * * * \end{aligned}$	1500
11:5896	tgccagactccag	1504	
41:22642	tgccagactccag	1508	
0:1118074	tgccagactccag	1510	
0:4207749	tgccagactccag	1511	
1:828563	tgccagactccag	1511	
5:9073	tgccagactccag	1512	
5:307000	tgccagactccag	1512	
5:2970377	tgccag-------	1505	
6:36060	tgccagactccag	1513	
mRNA	TGCCAGACTCCAG	1513	

Figure 3 - figure supplement 1. Relative frequencies of the ancestral Sbt allele (blue) and ISAm-1 insertion mediated mutations (see inset) in the eight populations during laboratory evolution. Inset: Location and frequencies of the four mutations in sbtAB detected during 400 generations of laboratory evolution. Shown is a 728 bp region of the CCMEE 5410 genome including the 3 ' end of $s b t A$, intergenic DNA and $s b t B$.

