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Haplotype phasing is indispensable to study human genetics.1

The pervasiveness of large copy number variant segments in2

solid tumors brings possibilities to resolve long germline phas-3

ing blocks utilizing allele imbalance in tumor data. Although4

there exist such studies, none of them provide easy-use software5

based on availability and usability. Herein, we present a novel6

tool, CNAHap, to determine the allele-specific copy number in7

tumor and then phase germline variants according to the im-8

balanced alleles in tumor genomes. We also provide interactive9

web interfaces to visualize the copy number and phase land-10

scape from CNAHap. On in silico datasets, CNAHap demon-11

strates higher allele-specific copy number calling accuracy than12

the benchmark tool and generates long phasing blocks. As a13

case study on Hepatocellular carcinoma, CNAHap successfully14

generates huge phase blocks with the averages of N50 and N9015

as 25M and 7M, respectively, and finds the Olfactory receptor16

family is recurrent amplified. Our results illustrate the efficacy17

of CNAHap in determining tumor allele-specific copy numbers18

and their long germline haplotypes. CNAHap is available at19

https://github.com/bowentan/CNAHap and the CNA-20

Hap visualization web interfaces are hosted at bio.oviz.org.21

22

Introduction23

The human genome consists of pairs of paternal and ma-24

ternal chromosomes. The pairs of homologous chromo-25

somes differentiate with minute genomic variations, includ-26

ing single-nucleotide variations (SNVs), small insertions and27

deletions (InDels), short tandem repeats (STRs), etc. (1).28

High-throughput sequencing protocols profile reads from a29

mixture of two homologous chromosomes, thereby failing to30

determine the chromosome origin of a sequencing read. Ac-31

cordingly, for a couple of heterozygous loci whose genomic32

distance is farther apart than the sequencing read length and33

insertion size, whether the alleles are from identical chromo-34

somes is concealed (2). Haplotype phasings reveal heterozy-35

gous SNV and InDel loci to their corresponding paternal or36

maternal haplotype from the sequencing observation (3). Ac-37

curate whole genome wide phasing sheds light on medical38

genomics (4, 5) and population genetics (6, 7).39

Diverse methods exist for resolving haplotypes from wet-40

lab methods or sequencing data. Laboratory-based phasing41

methods are costly or impractical due to laborious efforts (8).42

Current popular computational approaches for phasing hap-43

lotypes employ two strategies (9). The first one utilizes the44

population database to phase while demonstrates the inabil-45

ity of handling rare and de novo variants (10). The latter46

strategy is to assemble the haplotype from the sequencing47

reads. Mainstream haplotype assembly tools catalog the ge-48

netic variants of the germline haplotype by incorporate the49

linkage information from high-throughput sequencing of nor-50

mal tissue (11–16). Nevertheness, the length of the phased51

block, and the number of phased SNVs/InDels rely on the52

read linkages.53

To further extend the phased block, some studies incorpo-54

rate tumor data to unveil germline haplotypes. Large somatic55

copy number aberration (SCNA) blocks are prevalent (almost56

90%) in solid tumors (17). Equipped with tumor allele fre-57

quency, now scientists can phase over the large copy number58

aberration (CNA) blocks and are free from the read length59

and insert size of a sequencing protocol, promoting a higher60

phase rate than merely adopting normal data (18). HATS (19)61

is a population-based approach that adopts a hidden Markov62

model to construct germline haplotypes in copy number vari-63

ation (CNV) gain regions. VAF phasing (18) forms germline64

haplotypes by distinguishing variant allele frequency (VAF)65

changes between paired tumor and normal tissues in areas of66

CNV gains. However, running these tools requires arduous67

user interventions as VAF phasing provides no open-source68

software and HATS necessitates a training process first.69

In this work, we spotlight germline phasing with tumor70

CNA, and propose a novel user-friendly tool, CNAHap71

(https://github.com/bowentan/CNAHap, Figure72

1), to phase SNVs/InDels as in normal cells by taking ad-73

vantage of allele imbalance from paired tumor CNV blocks.74

CNAHap also calls the allele-specific copy number aberra-75

tions in tumor cells. In addition, to visualize the CNA-76

Hap output vividly, we developed three online interactive77

visualization applications (CNV: Circos View, CNV: Fo-78

cal Cluster, and Phased: On Genes) hosted in Bio-Oviz79

bio.oviz.org (20) (Table 1). We validated the phasing80

efficacy of CNAHap in three in silico WGS data sets with81
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different tumor purity rates, and CNAHap exhibits a higher82

allele-specific copy number calling accuracy than the bench-83

mark tool and generates long phasing blocks. Then we con-84

ducted a case study in a Hepatocellular carcinoma (HCC)85

cohort. CNAHap successfully generates huge phase blocks86

with the average N50 and N90 as 25M and 7M, respectively,87

and finds the Olfactory receptor family is recurrent amplified.88

Materials and methods89

To estimate germline haplotypes from normal and tumor90

samples, CNAHap consists of two components. The first is91

to estimate allele-specific copy numbers, i.e., the copy num-92

bers of the two haplotypes of given segments in tumor cells.93

The second is to perform the SNV phasing on segments by94

the fact that SNVs along the same haplotype sharing a similar95

copy rate. When a CNV event occurs, the alleles with larger96

depths seem to be along one haplotype, and the alleles with97

smaller depth aligns with the other haplotype.98

Target SNV extraction. Given the sequencing data of nor-99

mal and tumor cell samples from a cancer patient, CNAHap100

is designed to find two haplotypes of SNV loci which are101

supposed to be originated from the germline, hence they are102

contained extensively in all types of cells, such as tissue and103

germline cells. Therefore, a shared set of heterozygous SNVs104

as the target SNVs loci are extracted from normal and tu-105

mor cell samples by selecting SNVs with the same identifiers106

including contig names, positions, reference alleles and al-107

ternative alleles between normal and tumor cells. All sub-108

sequent analysis will be performed merely on these target109

SNVs.110

Allele imbalance and copy number estimation. Before111

estimating haplotypes, CNAHap first needs to estimate allele-112

specific copy numbers of the given CNV segments. If a CNV113

event occurs in a genomic region or a genomic segment, three114

possible outcomes will arise. The first is segments with im-115

balanced copies, because of different numbers of copies two116

haplotypes are duplicated. The second is balanced segments117

with the same number of copies. The third outcome is that118

one of the haplotypes disappears due to deletion and the other119

haplotype remains one copy or changes to multiple copies.120

As a result, SNVs from the first outcomes have the potential121

to contribute imbalance characteristics for the haplotype es-122

timation and hence are possible to be phased. The segments123

from the other two outcomes are either unable to provide sig-124

nificant evidence to separate the two haplotypes because of125

comparable allele depths or possess only homozygous SNVs.126

For our concern, therefore, SNVs in segments of the first out-127

come are the targets to be phased.128

Parameters to be estimated. Assume there are N CNV seg-129

ments concerned. Here we aim to estimate the copy numbers130

of the major H and the minor h haplotypes in a tumor sam-131

ple; denote them as CH,i and Ch,i for segment i, 1≤ i≤N .132

Since normal and tumor cells may coexist in the samples,133

reads from normal and tumor cells may be mixed in sequenc-134

ing data. There arises a parameter, tumor purity rate ρ, to be135

concerned. The purity is the proportion of tumor cells in a136

mixed sample.137

We can extract different features from the input datasets, and138

these features would constrain the parameters.139

Constraints according to allele depths. From the tumor se-140

quencing data, we can calculate for sequencing depth DH,i141

andDh,i for the major and minor haplotypeH and h for each142

segment i, respectively. Moreover, we can estimate the am-143

plification factorD; that is, the number of times a single copy144

of a haplotype is sequenced in the tumor dataset. DH,i and145

Dh,i can be computed from the variant call format (VCF) file,146

as the average across the loci. We adopted K-means cluster-147

ing to estimate D. We normalize the depth of a segment by148

the depth of the whole tumor data set to calculate the copy149

numbers initially. Then we choose the number of integers150

from the rounded minimum copy numbers as the the number151

of clusters for the K-means. Finally, we pick half of the av-152

erage depth of the segments in the cluster with the minimum153

cluster centroid as D.154

Now, we can constrain DH,i and Dh,i as155

DH,i ≈ ((1−ρ) +ρCH,i)D
Dh,i ≈ ((1−ρ) +ρCh,i)D.

(1)

Constraints according to segment depth. From the input, we156

can calculate the average depth Di for segment i, hence, we157

can constrain the parameters as158

Di ≈ (2(1−ρ) +ρCH,i+ρCh,i)D (2)

Constraints according to depth differences. The average dif-159

ference Si can be computed from input between the two hap-160

lotypes for segment i, and it should be also comparable with161

the one calculated from ρ, CH,i and Ch,i, that is162

Si ≈ ρ(CH,i−Ch,i)D (3)

Constraints according to allele imbalance. We define Λi as163

the allele imbalance (AI) for segment i, which is a weighted164

average of the AI values at all the heterogeneous loci in the165

segment. Assume the segment i harbours heterogeneous lo-166

cus set Ki. Denote λk and wk as the AI value and weight of167

locus k, respectively. Then we have168

Λi =
∑
k∈Kiwkλk∑
k∈Kiwk

(4)

Below we specify how to obtain λk andwk. Denote the allele169

depths as dk,r and dk,a at the k-th locus for reference, and170

alternatives, respectively, then λk = |dk,r−dk,a|
max{dk,r,dk,a}

.171

Under the assumption that the reference and alternative alle-172

les will be sequenced by equal chance if the segment is bal-173

anced, i.e., qk,r = Pr(reference is sequenced) = 0.5, the al-174

lele depth of a variant should follow a binomial distribution175

(see Equation Eq. (5)).176
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Fig. 1. Overview of CNAHap. (a) The core principle of CNAHap to phase. (b) The workflow of CNAHap. (c) Three online interactive visualization interfaces hosted in
bio.oviz.org Oviz-Bio (20).

pk = Pr(dk,r,dk,a) = 2
(
dk,r +dk,a

dk,r

)
q
dk,r

k,r (1− qk,r)dk,a

(5)
Then we formulate the weight wk for the k-th variant as177

Equation Eq. (6). Phred quality scores Q are defined as a178

property which is logarithmically related to the base-calling179

error probability P180

wk =−10log10 pk (6)

Such a weight has a property that the more imbalanced the181

allele depths are, the larger the weight will be since the bi-182

nomial coefficient in pk will be smaller. The AI Λi values183

should be compatible from these calculated from the param-184

eters; that is,185

Λi ≈
ρ(CH,i−Ch,i)
(1−ρ) +ρCH,i

. (7)

Solving the parameters with integer programming. With the186

aforementioned constraints, we implement an integer pro-187

gramming (IP) to estimate CH,i and Ch,i for each segment.188

We replace the approximations by error variables ε, where we189

want to minimize the sum of errors.190

CH,i ≥ Ch,i, CH,i,Ch,i ∈ I (8)

where I is the integer set.191

Combining the constraints Eq. (1), Eq. (2), Eq. (3), Eq. (7)192

and Eq. (8), we summarize the model in Eq. (9).193

min
N∑
i=1

(
εi,D + εi,M + εi,m+ εi,S + εi,Λ

)
s.t. ∣∣(2(1−ρ) +ρCH,i+ρCh,i)D−Di

∣∣≤ εi,D
|((1−ρ) +ρCH,i)D−DH,i| ≤ εi,H∣∣((1−ρ) +ρCh,i)D−Dh,i

∣∣≤ εi,h∣∣ρ(CH,i−Ch,i)D−Si
∣∣≤ εi,S∣∣∣∣ ρ(CH,i−Ch,i)

(1−ρ) +ρCH,i
−Λi

∣∣∣∣≤ εi,Λ
CH,i ≥ Ch,i, CH,i,Ch,i ∈ I

(9)

Haplotype estimation. Having estimated the major and mi-194

nor copy numbers of segments in pure tumor cells, CNA-195

Hap will proceed to perform phasing. With CH,i’s and196

Ch,i’s, CNAHap will phase SNVs along the segments where197

CH,i > Ch,i. Before phasing, the allele depths of SNVs in198

each segment will be updated to the allele depth in pure tumor199

cells. For segment i, we first calculate the fractions of major200

and minor depths (fi,H and fi,h) contributed by tumor cells201

using the purity ρ and the major and minor copy numbers,202

CH,i and Ch,i (see Equation Eq. (10)).203
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fi,H =
ρCH,i

(1−ρ) +ρCH,i

fi,h =
ρCh,i

(1−ρ) +ρCh,i

(10)

Then we update the allele depths for all SNVs in the segment,204

multiplying the observed allele depths by the corresponding205

fraction.206

d′k,H = dk,Hfi,H

d′k,h = dk,hfi,h
(11)

Finally, we perform the phasing for the segment by compar-207

ing the updated depths for all SNVs and treating the major208

alleles of all SNVs as the variants from one haplotype and the209

minor alleles from the other. Therefore, the two haplotypes210

Hi and hi of a segment involving n SNVs can be obtained as211

Hi = {sk|sk = 0 if d′k,r > d′k,a, else sk = 1,k = 1 . . .n}
hi = {sk|sk = 0 if d′k,r < d′k,a, else sk = 1,k = 1 . . .n}

Results212

Overview of CNAHap. Each individual obtains two copies213

of chromosomes from parents separately. All genetic markers214

along the personal genome, such as single nucleotide variants215

(SNVs), small insertions and deletions (InDels), and short216

tandem repeats (STRs) should maintain the same across cells,217

except for somatic mutations occurring in tumor cells. Fur-218

thermore, the order and sequence of markers along local re-219

gions of chromosomes are the same as these inherited from220

parents. If copy number variations occur in some genome221

areas in tumor cells, these regions will gain extra copies.222

Hence, one or both haplotypes regarding these regions should223

be duplicated multiple times. Therefore, copies of two haplo-224

types in a genomic region in tumor cells may become imbal-225

anced, and variants of markers in such a region may have im-226

balanced sequencing depths, providing evidence for the orig-227

inal haplotypes (Figure 1a).228

Here, we produced a computation tool, CNAHap, that adopts229

the above mentioned principle as core to phase. The skeleton230

for CNAHap was illustrated in Figure 1b. First, with paired231

tumor and normal BAM files, CNV caller Accurity (21) is232

adopted to call the CNV blocks and tumor purity. CNAHap233

then estimates allele-specific copy numbers for segments of234

allele imbalance with an integer programming model and fil-235

ters out those which contain little SNV locus or are allele bal-236

anced. Then the phasing algorithm is then performed on each237

filtered CNV segment along each chromosome. Third, CNA-238

Hap outputs the resolved haplotype in VCF format, which239

benefits subsequent analysis and interpretation. Finally, with240

auxiliary annotation and downstream analysis scripts, the241

output of CNAHap can be interactively visualized in CNV:242

Circos View, CNV: Focal Cluster, and Phased: On Genes,243

hosted on bio.oviz.org Bio-Oviz (20) (Figure 1c).244

Evaluation of CNAHap on in silco data. To evaluate the245

sensitivity of CNAHap, we invested in silico mixtures of se-246

quencing reads from the normal-tumor pair with increased247

proportions to simulate different tumor purity ratios (20, 50,248

80, and 100% tumors). First of all, we evaluated the accuracy249

(ACC), sensitivity (SE), and specificity (SP) in determining250

whether to phase segments in Accurity and CNAHap (Fig-251

ure 2a, Supplementary Table S1a). CNAHap shows a higher252

accuracy and sensitivity than Accurity. Figure 2b and Sup-253

plementary Table S1b display that CNAHap has more cor-254

rectly called allele-specific CNVs than Accurity. Figure 2c is255

the histogram plot of phased block length in CNAHap. De-256

spite the purity, the majority (all > 93.88%) of phased CNV257

segments’ block length is larger than 100kbp (Supplemen-258

tary Table S1c). As illustrates in Figure 2d and Supplemen-259

tary Table S1d, CNAHap achieves high SNVs phase rates,260

all larger than 99.98 % regardless of the purities. The num-261

ber of phased SNVs in purity 1 for samples sim_1, sim_2,262

and sim_3 is 33740, 32477, and 34436, respectively. With263

the decrease of the tumor purity, the number of phased SNVs264

increased. The reason might be that the increase of normal265

reads in synthetic mixtures adds bias on the CNV segmenta-266

tion procedure, yielding longer CNV segments qualified for267

phase. The statistical difference of purity 0.2-0.5 vs. pu-268

rity 1 is much higher than purity 0.8 vs. 1. In Figure 2e-269

f and Supplementary Table S1e, we observe that the mean270

of switch error and mismatch error in purity 1 samples are271

0.0270 (SD: 0.0567, Median: 0, IQR: 0-0.0153) and 0.0294272

(SD: 0.0471, Median: 0, IQR: 0-0.0441). The switch er-273

ror and mismatch error on samples with purity 0.2 and 0.5274

are significantly higher than purity 1 samples (p-value of SE:275

6.7e-16 and 5.8e-05, p-value of mismatch error: <2.22e-16276

and 1.2e-05). In contrast, samples between purity 0.8 and 1277

tell no significant difference in error rate. To summarise, our278

synthetic experiments reveal that as long as the tumor purity279

larger than 0.5, CNAHap enables producing trustable copy280

numbers and phase profiles.281

Case study on a Hepatocellular carcinoma cohort.282

Hepatocellular carcinoma (HCC) is one of the leading causes283

of cancer death (24). Sung et al. have studied hepatitis B284

virus (HBV) integration in liver cancer genomes by leverag-285

ing the whole-genome sequencing of HCC tumors and adja-286

cent normal tissues (25). In the present case study, we applied287

CNAHap to reanalyzed the data focusing on putative cancer-288

related gene amplification with phased haplotypes.289

As experimented in in silico datasets, CNAHap is sensitive290

to tumor purity. Thus, we filtered out all samples smaller291

than or equal to 0.5 (Figure 3a). Then, we selected tumors292

with prevalent large copy number abberations across the293

genome (Figure 3b). As a result, 24 HCC samples remained.294

The circos plot Figure 3c demonstrates the 24 HCC samples295

are prevalent with copy number gains and allele imbalance296

across the genome. CNAHap also deciphered the major and297

minor copy number of each CNV segment. We run GIS-298

TIC2 (26), RAIG (22), and RUBIC (23) to check the focal299

CNV events. As illustrated in Figure3d and Supplementary300

Table S2a, RUBIC detected one significant (q-value < 0.25)301
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amplification region chr20:25849750-30020750; RAIG302

detected 10 significantly (q-value < 0.25) amplified region:303

chr1:15001-563000, chr4:14001-68500, chr5:1547501-304

1920500, chr5:17635001-17922500, chr8:12046001-305

12315500, chr8:1923001-2332000, chr10:38769001-306

38889000, chr12:1-148500, chr14:106785501-107289000,307

and chr14:19000001-19153000. We abandoned GISTIC2 as308

it produced lots of focal deletions in contrast with the truth309

of no deleted segment was called among 24 HCC samples310

(Figure 3c). Among the 11 focal CNV events, 53 genes311

were annotated (Supplementary Table S2a), and their total,312

major, and minor copy number are depicted in the heatmap313

Figure 3e. We found that 12 genes are previous reported to314

show focal CNV event in another Chinese HBV associated315

HCC cohort (27) (focal gains on DEFB109P1B, FAM138A,316

FAM138F, FAM66A, LOC100132062, LOC100132287,317

LOC100133331, OR4F16, OR4F29, OR4F3, OR4F5; focal318

loss on FAM86B2). (Supplementary Table S1b). Figure 3f319

demonstrates that focal amplified genes were significantly320

enriched (p-value < 0.05) in 18 GO pathway and 1 KEGG321

pathway. Olfactory transaction pathway/olfactory receptor322

activity (focal gains on OR4F16, OR4F3, OR4F29, OR4F5,323

OR11H12) are recognized as putative drivers of cancer (28).324

NADH dehydrogenase activities were associated with HCC325

(29). Kaszak et al. reported that cadherin binding associated326

with HCC (30).327

Figure 4 demonstrates the CNAHap phasing profiles among328

24 HCC samples. In Figure 4a, we observe that the phased329

CNV segments were dominant across the whole genome with330

the mean of genomic region proportion 78.78 (SD: 13.01,331

Median: 81.29, IQR: 75.23-87.97)% (Supplementary Ta-332

ble S3a-b). Despite the number of phased CNV segments333

(Mean: 377.17, SD: 282.34, Median: 288, IQR: 155-578.25)334

varying across samples, the ratio of phased CNV segments335

is on average at 49.56 (SD: 09.22, Median: 46.28, IQR:336

47.43-55.63)% (Figure 4b, Supplementary Table S3a-b). Fig-337
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Fig. 3. HCC CNV profiles. (a) The estimated purity. (b) The CNV Segments region genomic proportion. (c) The circos plot of total CN, allele imbalance, major CN, minor CN
across the genome, one circos layer represents one HCC sample. (d) The focal gains obtained from RAIG (22) and RUBIC (23). (e) The CNV heatmap of focal gain genes.
(f) The enriched GO and KEGG pathway of focal gain genes. In (c) and (e), allele imbalance larger than, equal to, and less than 0.5 is annotated in red, white, and blue,
respectively. Total CN larger than, equal to, and less than 2 is colored in red, white, and blue, respectively. Major/Minor CN larger than, equal to, and less than 1 is labeled in
red, white, and blue, respectively. HCC: Hepatocellular carcinoma, CN: Copy Number.

ure 4c-d demonstrate that CNAHap generates large phasing338

blocks. The average N50 and N90 among HCC corhot is339

around 25M and 7M, respectively. [N50 (Mean: 25,871,765,340

SD: 19,222,539, Median: 21,537,499, IQR: 9,630,624 -341

42,678,249) bp, N90 (Mean: 7,456,541, SD: 6,287,567, Me-342

dian: 5,764,999, IQR: 2,701,124 - 10,852,249) bp]. The av-343

erage number of phased SNVs is 1,763,850 (SD: 323,620.1,344

Median: 1,839,513, IQR: 1,695,264-2,006,223) and the av-345

erage phase rate is 78.83 (SD: 13.97, Median: 82.26, IQR:346

73.72-89.65)%. The long phasing block and high phasing347

rate are due to the phased CNV events occupying the ma-348

jority of genome (Figure 4a), and around 93.77 (SD: 3.16,349

Median: 93.98, IQR: 93.01-95.69)% phased CNV segments350

are longer than 100k and around 66.78 (SD:10.50, Median:351

66:31, IQR: 57.79-76.23)% longer than 1M (Figure 4e, Sup-352

plementary Figure S1a-b, Supplementary Table S3a-b), pro-353

viding extreme long allele imbalance linkage to phase.354

Then, we checked the phasing results of focal amplified355

genes. As demonstrated in Figure 4f, a total of 39 fo-356

cal gain genes harbor SNV variants. Supplementary Fig-357

ure S1c illustrates the scatter plot of focal gain gene mu-358

tation number and density, we can observe that CNAHap359

successfully phase genes with larger than 4,000 SNV vari-360

ants. 23 out of 39 genes are completely phased in the co-361

hort. Among them, LinkRNA LINC00221 are reported as a362

potential diagnostic and prognostic biomarker in HCC (31)363

(Figure 5a). FAM86B2 also shows focal CNV event in an-364

other Chinese HBV associated HCC cohort (27) (Supple-365

mentary Figure S2). 15 genes have less than four unphased366

samples, WASH7P has six unphased samples (Figure 5b).367

The mutation and phasing details for the rest of focal genes368

can be interactively visualized in web interface “Phased: On369

Genes” (https://bio.oviz.org/demo-project/370

analyses/Phased_on_genes, Demo File: “CNA-371

6 | bioRχiv Tan et al.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.27.437314doi: bioRxiv preprint 

https://bio.oviz.org/demo-project/analyses/Phased_on_genes
https://bio.oviz.org/demo-project/analyses/Phased_on_genes
https://bio.oviz.org/demo-project/analyses/Phased_on_genes
https://doi.org/10.1101/2021.03.27.437314
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

11
T

22
T

32
T

38
T

41
T

62
T

64
T

70
T

71
T

73
T

81
T

95
T

12
2T

13
1T

17
2T

18
0T

18
2T

19
3T

20
0T

26
0T

26
1T

26
6T

27
3T

27
4T

P
ha

se
d

C
N

V
 s

eg
m

en
ts

 
 le

ng
th

 r
at

ioa

32

4096

524288

67108864

11
T

22
T

32
T

38
T

41
T

62
T

64
T

70
T

71
T

73
T

81
T

95
T

12
2T

13
1T

17
2T

18
0T

18
2T

19
3T

20
0T

26
0T

26
1T

26
6T

27
3T

27
4T

lo
g2

 L
en

gt
h

c

10M

1M

N50

N90

100k

1M

0

250

500

750

1000

0.00

0.25

0.50

0.75

1.00

11
T

22
T

32
T

38
T

41
T

62
T

64
T

70
T

71
T

73
T

81
T

95
T

12
2T

13
1T

17
2T

18
0T

18
2T

19
3T

20
0T

26
0T

26
1T

26
6T

27
3T

27
4T

P
ha

se
d

C
N

V
 s

eg
m

en
ts

C
N

V
 segm

ents
phased rate

b

0

500000

1000000

1500000

2000000

0.00

0.25

0.50

0.75

1.00

11
T

22
T

32
T

38
T

41
T

62
T

64
T

70
T

71
T

73
T

81
T

95
T

12
2T

13
1T

17
2T

18
0T

18
2T

19
3T

20
0T

26
0T

26
1T

26
6T

27
3T

27
4T

P
ha

se
d

S
N

V

S
N

V
 phase rate

d

122 131 172 180 182 193 200 260 261 266 273 274

11 22 32 38 41 62 64 70 71 73 81 95

8192
262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456
8192

262144

8388608

268435456

0

20

40

60

0

20

40

60

Phased CNV segment length in log2 scale

P
ha

se
d 

C
N

V
 s

eg
m

en
t c

ou
nt

e

AC
TR

3B
P5

C
D

H
18

C
SM

D
1

D
EF

B1
09

P1
D

EF
B1

15
D

EF
B1

16
D

EF
B1

18
D

EF
B1

19
D

EF
B1

21
D

EF
B1

22
FA

M
13

8D
FA

M
18

2A
FA

M
66

A
FA

M
86

B1
FA

M
86

B2
FA

M
90

A2
5P

FR
G

1B
IR

X4
KB

TB
D

11
LI

N
C

00
22

1
LI

N
C

00
22

6
LO

C
10

01
34

86
8

LO
C

10
02

88
77

8
LO

C
10

05
06

99
0

LO
C

28
48

01
LO

C
39

97
44

LO
C

40
11

77
LO

C
72

86
13

LO
C

72
97

37
M

LL
T1

0P
1

M
R

PL
36

M
YO

M
2

N
C

O
R

1P
1

N
D

U
FS

6
O

R
11

H
12

SD
H

AP
3

W
AS

H
7P

ZN
F5

95
ZN

F7
18

S
am

pl
e Phased

True

False

f

Fig. 4. HCC phased profiles among HCC samples. (a) The purity of tumor samples. (b) The number and proportion (blue line) of phased CNV segments. (c) The number
and proportion (blue line) of phase SNVs. (d) The N50 and N90 of phased blocks, dashed and solid line indicates the length of 1M bp and 10M bp, respectively. (e) The
histogram plot of phased CNV block length. Dashed and solid blue line shows the length of 100k bp and 1M bp, respectively. (f) Overview of phase result of focal gain gene,
blue means phased gene, yellow otherwise. White tile indicates there is no SNVs in that gene. Genes colored in red are in enriched GO and KEGG pathway.

Hap_HCC”).372

CNAHap online visualization interfaces. The CNV pro-373

files and phasing profiles in text format are nonintuitive for374

users to perceive the landscape and differences within a pa-375

tient cohort. Thus, we developed three online web interfaces376

(CNV: Circos View, CNV: Focal Cluster, and Phased: on377

Genes) to visualize the output of CNAHap. Table 1 sum-378

marises the key features of the provided interfaces. CNV:379

Circos View, demonstrated as Figure 3a, displays the cir-380

cos plot of total CN, major CN, minor CN, allele imbalance,381

phased information, etc., across the patient cohort. CNV:382

Focal Cluster, showed as Figure 3b, shows the recurrent383

gains and losses detected by multiple tools, and supports En-384

sembl (32) annotation. Phased: On Genes, illustrated as Fig-385

ure 5 and Supplementary Figure S2, displays the mutation de-386

tail and phasing profile on genes, supporting transcript (En-387

sembl (32)) and protein (Pfam (33)) annotation. Generally,388

we offer the users an editor to upload the CNVHap outputs389

to the server and adjust the figure display settings. We pro-390

vide interactive tooltips to show the essential information of391

a sample, a CNV segment, an SNV variant, and so on, as-392

sisting users in seizing potential findings quickly. With one-393

button clicked, users can download high-quality figures for394

share or paper publishing. For demonstration, we have up-395

loaded the raw data of Figure 3a, Figure 3b, Figure 5, and396

Supplementary Figure S2 as demo data set “CNAHap_HCC”397

in the editor.398

Discussion399

Although the heterozygous allelic imbalance from tumor tis-400

sue is widely utilized to infer somatic copy number alter-401

ations (SCNAs) (21, 34, 35). Collaborating tumor allelic402

imbalance to phase germline variants has not been broadly403

adopted. Prepemariy studies on VAF phasing and HATS404

have established that this data attribute to the assembly of the405

germline haplotype. However, running these tools requires406

arduous efforts as VAF phasing provides no accessible source407

code (18), and HATS necessitates a training process first (19).408

Thus, we introduce CNAHap, an easy-use tool that leverages409

imbalance in SNV or InDel alleles in copy number gains re-410

gion to phase germline haplotype. Like haplotype assembly411

tools, CNAHap only demands sequencing data and can phase412

rare and de novo variants. Surpass the assembly-based ones,413

CNAHap is not constrained by the read length and insert size414

of particular sequencing protocols, thus yields much greater415

phasing blocks. CNAHap also calls the allele-specific copy416

number aberrations in tumor cells.417

The allele-specific CNV profiles and phasing profiles in text418
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a

b

Fig. 5. (a-b) Phasing profile on lincRNA LINC00221 and gene WASH7P among the HCC cohort.

CNAHap visualization web interface Key Functionalities
CNV: Circos View, e.g., Figure 3a Circos plot of total, major, and minor copy number
https://bio.oviz.org/demo-project/analyses/CNV_circos_view Circos plot of allele imbalance

Circos plot of phased information
CNV: Focal Cluster, e.g. Figure 3b Recurrent gains and losses
https://bio.oviz.org/demo-project/analyses/CNV_focal_cluster Gene annotation Ensembl (32)

Illustrates multiple tools results parallelly
Phased: On Genes, e.g. Figure 5, Supplementary Figure S2 Phasing profile on genes, mutation detail information
https://bio.oviz.org/demo-project/analyses/Phased_on_genes Genes, transcripts annotation Ensembl (32)

Protein annotation Pfam (33)

Table 1. Summary of CNAHap visualization interfaces in bio.oviz.org Oviz-Bio (20).

format are nonintuitive for users to perceive the landscape419

and differences within a patient cohort. To address this is-420

sue, we developed three online web interfaces (CNV: Circos421

View, CNV: Focal Cluster, and Phased: on Genes) to visual-422

ize the output of CNAHap. Equipped with interactive tooltips423

and editors, users can capture and share potential scientific424

discoveries without effort.425

Noteworthily, some caveats need to be addressed. (1) CNA-426

Hap now only phases over the SCNA segments with al-427

lele imbalance but does not assign haplotype order in a bal-428

anced or diploid genomic region. In other words, CNA-429

Hap heavily pivots on the popularity and proportion of im-430
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balanced somatic copy number alterations (SCNAs). Even431

though Compton et al. claimed that large CNV blocks are432

prevalent across the solid tumor genome (almost 90%) (17),433

and our HCC case study reported the average SCNA pro-434

portion as 78.78 (SD: 13.01, Median: 81.29, IQR: 75.23-435

87.97)%. There exist near-diploid colorectal cancer (CRC)436

tumors (36), diploid lymph node metastases (37), diploid en-437

dometrioid adenocarcinomas (38), etc. Thus, we recommend438

fitting the paired normal data to assembly-based tool such439

as SpecHap (16) simultaneously and combining the phasing440

results between CNAHap and SpecHap to achieve a com-441

plete germline haplotype. (2) Our experiments on synthetic442

datasets indicate CNAHap is sensitive to tumor purity. The443

switch error and mismatch error on samples with purity 0.2444

and 0.5 are significantly higher than purity 1 samples (p-445

value of SE: 6.7e-16 and 5.8e-05, p-value of mismatch er-446

ror: <2.22e-16 and 1.2e-05). In contrast, samples between447

purities 0.8 and 1 tell no significant difference in error rate.448

Thus, we advise practicing CNAHap only to tumors with pu-449

rity larger than 50%. (3) Currently, CNAHap requires SCNA450

segments as input. We suggest leveraging Patchwork (35) or451

Accurity (21) to identify SCNA segments first and then using452

CNAHap to refine the allelic specific copy numbers and the453

germline haplotypes in regions where demonstrate an imbal-454

anced SNV/InDel allele. (4) In this study, we only validated455

the efficacy of CNAHap in pair-end sequencing reads. In456

fact, CNAHap can apply to any normal-tumor pairs notwith-457

standing the sequencing technologies, as long as users have458

the CNV segmentation and point mutation VCF file of the459

normal-tumor pair. (5) CNAHap is unable to recognize the460

haplotype of somatic mutations. We are considering it as a461

future enhancement.462

Conclusion463

Haplotype phasing is significant in the study of human ge-464

netics. The pervasiveness of the large copy number variant465

segment in solid tumors brings possibilities to resolve long466

germline phasing blocks utilizing allele imbalance in tumor467

data. Although there are such studies, none of them provide468

easy-use software on the premise of availability and usability.469

Herein, we present a novel method, CNAHap, to determine470

the copy number in tumor and then phase germline variants471

in tumor copy number segments with the aid of allele imbal-472

ance. We also provide interactive web interfaces to visualize473

the copy number and phase landscape of CNAHap. On in474

silico datasets, CNAHap demonstrates higher copy number475

calling accuracy than the benchmark tool and generates long476

phasing blocks. On a Hepatocellular carcinoma case study,477

CNAHap successfully generates huge phase blocks with the478

average N50 and N90 at 25M and 7M, respectively, and find479

the Olfactory receptor family is recurrent and amplified. In480

all, our results illustrate the efficacy of CNAHap in determin-481

ing tumor copy numbers and their long germline haplotypes.482
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Supplementary Note 1: Supplementary Figures623
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Fig. S1. HCC phased profiles among HCC samples. (a) The purity of tumor samples. (b) The number and proportion (blue line) of phased CNV segments. (c) The number
and proportion (blue line) of phase SNVs. (d) The N50 and N90 of phased blocks, dashed and solid line indicates the length of 1M bp and 10M bp, respectively. (e) The
histogram plot of phased CNV block length. Dashed and solid blue line shows the length of 100k bp and 1M bp, respectively. (c) The scatter plot of focal gain gene mutation
number and density, blue means phased gene, yellow otherwise.

Tan et al. bioRχiv | 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.27.437314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.27.437314
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S2. Phasing profile on gene FAM86B2 among the HCC cohort.
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