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The mechanical structure of pollen grains, typically characterized by soft apertures in an otherwise
stiff exine shell, guides their response to changes in the humidity of the environment. These changes
can lead both to infolding but also to excessive swelling and even bursting of pollen grains. We use
an elastic model to explore the mechanics of pollen grain swelling and the role that soft, circular
apertures (pores) play in this process. We identify and explore a mechanical weakness of the pores,
which are prone to a rapid inflation once the grain swells to a critical extent. This transition leads
to the bursting of the grain and the release of its content. Our results shed light on the inactive
part of the mechanical response of pollen grains to hydration once they land on a stigma as well as
on bursting of airborne pollen grains during rapid changes in air humidity.

I. INTRODUCTION

The ability of pollen grains to adapt to physical and
(bio-)chemical changes in their environment is essential
for their survival. Once pollen grains leave the environ-
ment of the anther, they start to lose water, and this pro-
cess activates a variety of protective mechanisms [1, 2].
Upon landing on a stigma, they take in exudate from its
cells, swell, and eventually germinate, forming a pollen
tube through which they fertilize the flower [3, 4]. While
the growth of the pollen tube is an active response of
the pollen grain, which requires coherent mobilization
of numerous cellular mechanisms, a precise regulation of
osmotic forces [5], and deposition of bio-polymers in the
growing tube [6, 7], the response of the pollen grains to
changes in their water content is, to a large degree, in-
active and a consequence of their mechanical constitu-
tion [8–10]. This mechanical makeup has its drawbacks,
however, as it can induce an extreme response of the
grains in non-reproductive context—for instance, when
the grains have not yet reached the stigma and the del-
icate chemical balance required for pollen tube growth
has not been established. When the conditions in the
environment change suddenly, e.g., when the relative hu-
midity of the atmosphere increases significantly, such a
response may lead to the bursting of pollen grains [9, 11].
This typically occurs in wind-borne pollen grains once
they have been lifted up from the anthers into the atmo-
sphere. For instance, it has been demonstrated that the
concentration of grass allergens in non-pollen-containing
fraction of ambient air correlates with air humidity [12],
which has in turn been related to the bursting of pollen
grain [11].

Understanding pollen bursting is thus important not
only from the perspective of grain viability and plant
fertilization but also in the context of human health, as
ruptured airborne grains can release respirable fragments
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which can provoke allergic reactions in exposed sensitive
individuals [13–15]. In regions of intense agricultural
activity, for example, some monocultures—particularly
those pollinated by wind—can produce huge quantities
of pollen which is prone to bursting [16], and similar
problems occur in urban horticultural planning [13, 17].
While grain bursting and consequential release of the
pollen grain interior is not characteristic only of aller-
genic pollen—being a general feature of pollen which
hydrates sufficiently rapidly [9]—it is a necessary pro-
cess for the realization of the allergenic potential of a
species [11, 16]. Pollen allergens released in the atmo-
sphere when the grains burst can impact human health
for a long time, even when the pollen grains are destroyed
and no longer viable [15]. The grains and in particular
the cytoplasmic fragments they release when they burst
can also act as effective nucleation sites for cloud con-
densation [18–20] which can influence precipitation [21].
The bursting of pollen grains in the atmosphere is thus
relevant both medically and meteorologically. Lastly, the
spatial distribution of stresses effected by the inactive me-
chanical response of the grain could tag the site where the
pollen tube originates from and trigger and guide the ac-
tive mechanisms for its growth [5, 22]. These examples
highlight the importance of a quantitative description of
pollen grain swelling and bursting in order to understand
a wide range of phenomena in different environments and
on very different scales.

Any model constructed to represent the influence of
changing water content on the pollen grain volume and
shape needs to account for the inhomogeneities in the
grain wall. Pollen grain walls of an overwhelming ma-
jority of gymnosperm and angiosperm species possess
discernible regions called apertures, which are known to
have chemical and structural composition different from
the rest of the wall [3]. The larger part of the pollen shell
contains a rigid layer which is mostly made of sporopol-
lenin and is called exine. The apertures are regions in the
shell where the exine layer is thinned or entirely absent
and mostly consist of cellulose and pectin, making them
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FIG. 1. Classes of porate pollen considered in this study: (a) inaperturate (N = 0), (b) monoporate (N = 1), (c) diporate
(N = 2), (d) triporate (N = 3), and (e) pantoporate (N ∼ 10; in this case, N = 12). Panel (b) also illustrates the parameters
of the pore geometry—its equilibrium, unstrained radius R0 and the pore opening angle θ0. Pore size in each schematic porate
pollen is θ0 = 0.2. The bottom part of each panel shows a SEM image of a pollen grain representative of the class: (a) Populus
alba, (b) Phleum pratense, (c) Besleria solanoides, (d) Betula pendula, and (e) Stellaria aquatica. Scale bars in each image
represent a length of 10 µm, and the arrows point to the grain pores. In panel (e), only one of the twelve pores is indicated.
Pollen images are reprinted with permission from the Society for the Promotion of Palynological Research in Austria; images
courtesy of PalDat (2000 onwards, www.paldat.org).

typically (much) softer than the exine [23, 24]. Apertures
thus act as flexible regions in an otherwise stiff pollen
shell. As the exchange of water between the pollen grain
and its surroundings takes place mostly through the aper-
tures [1, 25], their closure and concomitant infolding of
the pollen grain provides a mechanical response which
prevents further desiccation and destruction of the grain.
It has been recently shown that the success of this pro-
cess requires a tuned mechanical flexibility of the grain
wall, so that the closing of the apertures also pulls in the
hard, exine parts of the grain [8, 10] without inducing
rupture in the wall material.

Purely mechanical models thus successfully explain the
details of infolding and shape changes during the desic-
cation of pollen grains [8, 10]. Much less is known about
the influence of different features of pollen morphology
on the swelling and bursting of the grains, which can
happen by the rupture of either the apertures or the
exine [9]. Our aim is to investigate how pollen grains
passively respond to (re)hydration in humid conditions
and what role apertures play in this process. In partic-
ular, we focus on pollen grains with circular apertures
termed pores [3], which is the dominant type of pollen
of anemophilous (wind-pollinated) plants [26]. Experi-
ments have shown that the pores mechanically respond
to hydration [3, 9, 25], yet a theoretical description of
this process it still lacking. To describe the swelling and
possible rupture of porate pollen grains, we use an elastic
model of the grain established previously to describe the
shape changes in drying grains [10]. We examine how
the presence of the pores influences the swelling of pollen
grains as their volume increases due to the influx of fluid
from the environment. The increase in grain volume is

shown to eventually lead to a rapid inflation of the pores,
which results in huge elastic strains in the pore material
and most likely leads to the bursting of the pores. We ex-
plore how the size, number, and the distribution of pores
influence the deformation of the pollen grain and its re-
sistance to bursting. Our results provide quantitative
theoretical insight into the inactive mechanisms behind
the bursting of pollen grains, and the model we use can
be generalized to study the swelling of other types of
aperturate pollen grains as well.

II. RESULTS

Mechanical properties of porate pollen grains

Pollen species with porate grains are ubiquitous, par-
ticularly in anemophilous plants [26], and represent a
large proportion of allergenic pollen species [15]. Their
pollen grains can have different shapes with a more or
less pronounced asphericity. Here, we shall assume that
the grains are perfectly spherical in the equilibrium state
(thus neglecting any initial asphericity) with an equilib-
rium radius R0. Although the model we use allows for
different equilibrium grain shapes, the assumption of per-
fectly spherical grains reduces the number of parameters
and allows for a simpler identification and classification
of the important features of grain swelling. The porate
pollen grains can be further characterized by the number
N of identical (circular) pores they contain, their distri-
bution, and the angular span of each pore θ0 (see the
examples in Fig. 1).

Inaperturate pollen—pollen without any apertures—
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with N = 0 can be considered an extension of the ge-
ometric class of porate pollen and represents, at least
on the level of our modelling, mechanically the simplest
case of a (porate) pollen grain. The genus Populus, for
instance, contains many anemophilous species with in-
aperturate pollen, some of which are also moderately
allergenic (e.g., Populus alba) [27]. Monoporate pollen
(N = 1) is characteristic of most of the species in Poaceae
family (grasses) [3], to which some of the most aller-
genic anemophilous plant species belong (e.g., Phleum
pratense) [15]. Diporate pollen grains (N = 2) with the
two pores situated diametrically on the equator of the
grain can be found, for instance, in Morus alba, although
the grains of this species can also have three and four
pores. Triporate pollen (N = 3) with the three pores
arranged equidistantly on the equator of the grain are
typical for Ambrosia artemisiifolia and the majority of
species in the Betulaceae family, although some Betu-
laceae species also have five (N = 5) equatorially situ-
ated pores (e.g., Alnus glutinosa). Lastly, Amaranthus
species are typically pantoporate, i.e., they have many
pores (N ≈ 20 to 60), distributed nearly uniformly on
the grain surface [28]. The opening angles of the pores
can be estimated from microscopic images of fully hy-
drated grains [3] and in general depend on the species,
but they are typically about θ0 ∼ 0.1 [29, 30], such as
in Betula pendula (Fig. 1c) and Ulmus parvifolia [3]. In
two more extreme examples, the pore angles of Stellaria
aquatica (Fig. 1e) and Zea mays are about θ0 ≈ 0.18 [31]
and θ0 ≈ 0.05 to 0.07 [32], respectively.

The elastic properties of the pollen grain wall can be
roughly parametrized by the Föppl-von Kármán (FvK)
number γ which signifies the relative importance of the
stretching and bending energies. The FvK number of
pollen grains is typically in the range γ ∼ 103 to 104.
The pores represent softer regions in the wall compared
to the exine part, and we characterize them by a soft-
ness parameter f (as done previously by Katifori et al. [8]
and Božič and Šiber [10]) which represents the ratio of the
two-dimensional elastic moduli of the pore and the exine,
respectively. The ratios of the two-dimensional Young’s
moduli and the bending rigidities are thus assumed to be
the same, which is not a necessary assumption but con-
veniently simplifies the parametrization of the problem.
The softness parameter of the pores has been estimated
in our previous study [10] to be in the range of f ∼ 0.01
to 0.1. It is a relatively simple feat to measure the volume
of a pollen grain as it hydrates by measuring its dimen-
sions [33, 34], and we thus perform elastic calculations at
a given volume of the grain, treating it as a mechanical
constraint. The shape of the grain is found by minimiz-
ing its elastic energy, which also yields the distribution
of elastic strains in both the pore and the exine. Details
of the elastic model are given in Section IV.

Swelling of inaperturate pollen grains

As a pollen grain hydrates, its volume increases and
its shape changes depending on its elasticity and the
distribution, size, and shape of the pores. It is in-
structive to first consider the swelling of an inapertu-
rate pollen grain—a perfectly homogeneous and spherical
elastic shell of radius R0 enclosing the volume V0. Such
a shell responds to an increase in its interior volume V
by a simple isotropic increase of its radius R. The influ-
ence of the presence of pores on pollen grain deformation
can then be compared with this idealized case, which ap-
proximates a perfectly spherical inaperturate pollen grain
(N = 0; Fig. 1a).

The extensional strains ε0 in a homogeneous spherical
shell are the same everywhere and can be obtained from

ε0 =
∆l

l0
=

∆R

R0
=

(
1 +

∆V

V0

)1/3

− 1, (1)

where ∆l/l0 represents the relative increase of the arbi-
trarily oriented lengths in the surface of the shell as they
extend from l0 in the initial state to l0+∆l in the swollen
state [35]. Similarly, ∆R denotes the corresponding in-
crease of the radius of the shell when its volume increases
by ∆V = V −V0 [36]. For small values of additional vol-
ume v ≡ ∆V/V0, Eq. (1) reduces to ε0 = v/3. This can
be directly applied to the case of inaperturate pollen—
once the strain in the exine exceeds a critical value, i.e.,
once the additional volume v becomes large enough, the
grain wall will break. For example, if the rupture strain
of the exine is 10%, the inaperturate grain can increase
its volume by 30% before it ruptures. This estimate is in
fact of the correct order of magnitude—rupture strain of
∼ 20% has been measured in inaperturate pollen of Cryp-
tomeria japonica [37], and similar values are found in ex-
periments on exine deformation and rupture [38]. The
estimate effectively presumes that the fracture is brittle
and that the material deforms elastically all the way until
the fracture. This appears to be a good approximation
for both exine and cellulose films [38–40].

Swelling of monoporate pollen grains

Swelling of inaperturate pollen will lead to exine frac-
ture once the strains in the grain become large enough.
If there are pores in the pollen grain, they can relieve
some of these strains and thus change the nature of the
grain fracture. It is thus of interest to investigate how
the presence of a single soft pore (N = 1; Fig. 1b) in-
fluences the swelling of pollen grains. Fig. 2 illustrates
and quantifies this process of an increase in the volume
of a pollen grain with f = 0.02, θ0 = 0.15, and γ = 104.
The strain in the pore material is shown in Fig. 2a, which
shows the effect of increasing volume on the pore strain
averaged over the entire pore surface εp and scaled by
the strain which would be characteristic for an inapertu-
rate grain, ε0 of the same volume (i.e., when f = 1 or
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FIG. 2. (a) Pore strain averaged over the pore area εp and scaled by strain in a homogeneous grain ε0 (given by Eq. (1)) as a
function of additional volume v = V/V0 − 1. (b)–(e) Cross-sectional projections of the mesh points of the model for v = 0.04,
0.17, 0.256, and 0.265. In these panels, the pore and exine materials are denoted by red and black dots, respectively. (f)
Dimension of the bounding box of the exine part of the pollen grain in the direction perpendicular to the axis connecting the
centers of the grain and the pore (i.e., along the ordinate axis in panels (b) to (e)). Dashed line shows the increase in the radius

which would occur in an inaperturate, homogeneous grain, R/R0 = (1 + v)1/3. (g) Total energy of the mesh scaled by kR2
0

is shown by a black line with symbols. Dashed line shows the continuum limit of the stretching energy in the elastic discrete
model of an inaperturate grain, Es/kR

2
0 = 4π/(3

√
3) v2. Inset shows the magnified region of v where the hysteresis occurs.

Mechanical parameters of the pollen grain are f = 0.02, θ0 = 0.15, and γ = 104 throughout.

.

N = 0; Eq. (1)). The most notable feature of the mono-
porate grain hydration is the sudden jump in the pore
strain, which for this particular choice of elastic param-
eters occurs at an additional volume of vc = 0.263. At
this point, the average scaled pore strain increases from
εp/ε0 ≈ 15 to εp/ε0 ≈ 55. An even more drastic increase
is observed in the maximum scaled pore strain, which is

located at the outermost point of the pore and increases
from εp;max/ε0 ≈ 29 to εp;max/ε0 ≈ 196. Note here that
this is a scaled quantity where ε0 ≈ v/3 is about 0.09
at vc = 0.263, meaning that the maximum pore strain
jumps from about εp;max ≈ 2.6 just before the transition
to about εp;max ≈ 18 after the transition. The sudden
transition observed in the (averaged) pore strain exhibits
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hysteresis, as can be seen by the non-equivalence of the
forward and backward minimization paths of gradual in-
crease (hydration) and decrease (desiccation) of internal
volume, respectively (marked by arrows in Fig. 2a).

Panels (b) to (e) of Fig. 2 show the cross-sectional pro-
jections of the triangular mesh of the model grain at dif-
ferent additional volumes, v = 0.04, 0.17, 0.256 (just
before the transition), and 0.265 (just after the transi-
tion). The sudden inflation of the pore (shown in red
color) at the critical volume vc is very pronounced. The
mean radius of the exine region of the pollen grain (shown
in black color) increases all the way until the transi-
tion point at vc and suddenly decreases afterwards. This
change is quantified in Fig. 2f, which shows the effective
radius of the pollen grain in the direction perpendicular
to the line joining the centers of the grain and the pore
(ordinate axis in panels (b) to (e)). Dashed line shows
the increase in the exine radius which would be expected
in the case of an inaperturate grain, Re/R0 = (1 + v)1/3.
The mean radius of the exine part of the monoporate
grain follows this dependence quite closely for small v,
but the expected increase in Re slows down as v ap-
proaches vc and the exine abruptly deflates at the critical
volume, compensating in this way for the sudden infla-
tion of the pore.

The sudden inflation of the pore can also be traced in
the elastic energy of the pollen grain, shown in Fig. 2g,
where a sudden drop in energy is observed at vc. This cal-
culation also reveals two different energy behaviors which
represent two different states of the system. In one of
them, the pore still encloses a fairly small volume and
has not yet bulged out, whereas in the other, the pore
has bulged out and the exine has relaxed. Intriguingly,
the two energy behaviors cross at volume vx < vc, which
suggests that the true energy minimum of the system
cannot be reached for all volumes, i.e., the pore needs
to sufficiently deform before it can bulge out and transit
to a lower energy state. This is illustrated in the in-
set of Fig. 2g, which shows the magnified portion of the
forward and backward minimization paths near the in-
tersection of the two energy curves. The inflation of the
pore during grain swelling results in lower elastic ener-
gies of the grain compared to an inaperturate grain of
the same volume. The (stretching) elastic energy of the

latter, Es/kR
2
0 = 4π/(3

√
3) v2, which is the analytical

limit of the stretching energy encompassed by the micro-
scopic numerical model in such a situation, is shown by
a dashed line.

Mechanics of the bursting transition

When the increase in volume of a monoporate pollen
grain reaches a critical additional volume vc, the strains
in the pore increase manifold, which can easily cause it to
burst. It is therefore appropriate to term the sudden in-
flation as a bursting transition. Bursting of a monoporate
grain can be viewed as a transition of the pore through

a state when it is maximally curved—this is the state
when the inflated pore resembles a hemisphere, Fig. 2d.
Up to that point, the pore can resist the internal pres-
sure by increasing its curvature, since the reaction force
of the inflated pore is proportional to the inverse radius
of curvature (see Appendix A). Past that point, however,
the pore radius must increase due to the geometry of the
problem, and to resist the additional pressure, the ten-
sion in the pore material must increase to resist the same
pressure at a larger pore radius. This leads to a sudden
inflation of the pore.

The physical mechanism behind the bursting transition
can be quantified by equating the normal reaction forces
of the exine and the pore at the poles, as they must resist
the same internal pressure in the grain [35, 36]. When
this analysis is performed for the maximal curvature of
the pore, i.e., when the pore attains a (nearly) hemispher-
ical shape (see Appendix A for details of the derivation),
one obtains the following equation for the critical ad-
ditional volume of the grain at which the sudden pore
inflation occurs:

vc =

(
θ0 − f

θ0 − fπ/2

)3(
1 +

θ30
2

)
− 1. (2)

The relation was derived assuming a negligible influence
of the bending energies on the transition, which can be
seen by the lack of dependence of vc on γ in Eq. (2).
When f/θ0 � 1 and θ0 � 1, conditions likely to be ful-
filled by most pollen grains, the expression for the critical
volume reduces to

vc ≈ 1.71
f

θ0
. (3)

While Eq. (2) and Eq. (3) give only rough estimates of the
critical volume of the bursting transition, they are impor-
tant because they demonstrate that for the mechanical
parameters typical for pollen grains, the critical volume
should primarily depend on the ratio of the softness of
the pore (compared to the exine) and the pore size.

To fully inflate (and eventually burst), the pore must
pass through a hemispherical state. Yet even when the
pore has not yet sufficiently inflated to reach the hemi-
spherical shape, there might exist inflated states of the
pore (i.e. pores larger than a hemisphere) with lower
elastic energies. Such states are, however, not geomet-
rically accessible, as they can be reached only after the
pore passes through the hemispherical state. In this case,
the hemispherical state of the pore represents a geomet-
rical hindrance or a bottleneck and acts as an effective
energy barrier. This effect is somewhat similar to the
“blow-out” or bursting instability observed in the infla-
tion of flat circular membranes [41, 42]. In our numerical
simulations, the energy barrier can be most easily de-
tected by the hysteretic nature of the minimization, as
demonstrated in Fig. 2. It is also worth mentioning here
that the analogy between pore inflation and the blow-
ing a balloon confined in a rigid box has previously been
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FIG. 3. Cross-sectional projections of two states of the grain
with the same elastic energy at v = vx = 0.241 (as marked in
Fig. 2g). The insets show the magnified regions of the grain
cross-sections. Elastic parameters of the grain are f = 0.02,
θ0 = 0.15, and γ = 104.

noted by Matamoro-Vidal et al. [9] in discussion of ex-
periments on pollen swelling. With this insight, we can
now rationalize the two characteristic volumes vc and vx
which were detected in the dependence of elastic energy
of the pollen grain on volume (Fig. 2g). The first of
the characteristic volumes, vx, is the (scaled) additional
volume at which the state with the inflated pore (larger
than a hemisphere) becomes advantageous with respect
to the total elastic energy. The second characteristic vol-
ume, vc, is the critical volume when the internal pressure
becomes large enough to surmount the energy barrier of
the hemispherical shape and allows the pore to attain the
inflated shape. This critical volume, which can be iden-
tified in the forward minimization procedure, is relevant
for the hydration of pollen grains, during which their vol-
ume gradually increases. The analytical considerations
given by Eq. (2) also pertain to this volume. The vol-
ume where the energy curves cross (vx) can be detected
by combining the results of the forward and backward
minimization procedures (see Fig. 2g). At v = vx, there
thus exist two different states of the grain with the same
energy. In one of those states, denoted by 1 in Fig. 3,
the pore has not yet reached the critical, hemispherical
shape, whereas in the other state, denoted by 2 in Fig. 3,
the pore has inflated. These two shapes are obtained in
the forward and backward minimization paths at v = vx,
respectively.

Bursting transition and pore size and softness

To further corroborate the physical interpretation of
volumes vc and vx, we show in Fig. 4 how the criti-
cal volume vc (squares) and the volume corresponding
to the crossing of the energy curves vx (circles) change
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FIG. 4. Critical additional volume vc at which a pore rapidly
inflates (squares) and additional volume vx at which the state
with the inflated pore has a lower total energy (circles) as a
function of the pore opening angle θ0 for monoporate grains
with γ = 104. The results are shown for three different pore
softness parameters, (a) f = 0.01, (b) 0.02, and (c) 0.03.
Full lines show the prediction of Eq. (2).

with the pore opening angle θ0 and different values of
the pore softness parameter f . The analytical predic-
tion of Eq. (2) is shown by full lines, and one can ob-
serve that it becomes progressively worse as f increases.
This is to be expected, since the equation stops making
sense as f becomes comparable to θ0—which can hap-
pen for either small pore opening angles or sufficiently
large f—and it has a divergence at f = 2θ0/π. Nev-
ertheless, the simple physical reasoning behind Eq. (2)
explains the salient features of the numerical results in
the range of parameters f and θ0 typical for monoporate
pollen grains. It is worth noting that the critical volume
at which the pore inflates and bursts does not depend on
the elasticity of either the exine or the pore alone, but
only on the softness of the pore compared to the exine
(softness parameter f). When the pores are sufficiently
large (large opening angles θ0), the energy barrier for
pore inflation disappears and the two characteristic vol-
umes become identical, vx = vc. The rather rapid infla-
tion of the pore still persists, although it now becomes
a continuous phenomenon. Furthermore, the hysteresis
of the numerical calculation disappears, which indicates
the disappearance of the energy barrier for the burst-
ing transition—for f = 0.02, for instance, this happens
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maximal relative strains in the grains in panels (a) and (b) are ε/ε0 = 18.9 and 178, respectively, in both cases corresponding to
the brightest yellow color. Inset in panel (a) shows the cross-sectional profile of the relative strains in the plane which contains
the maximally strained point of the pore (its pole) and the grain center. The points corresponding to the pore and the exine
are shown by red and black circles, respectively. The x-axis in this diagram is the angular coordinate of the mesh points in the
chosen cross-section and is appropriately scaled to match the 3D representation. The elastic parameters of the pollen grain are
f = 0.02, θ0 = 0.15, and γ = 104.

for opening angles larger than θ0 ≈ 0.2 (Fig. 4b). The
increase in the strains in the pore during the bursting
transition becomes smaller as the pore gets larger.

Bursting of pollen grains with two or more pores

Swelling of monoporate grain eventually leads to an
inflation and bursting of the pore, unlike in the case of
inaperturate pollen, where swelling causes fracture of the
exine once the strains become too large. Pore size and
softness set the limit on the amount of swelling a grain
can tolerate before it ruptures. Analytical considerations
of the bursting transition suggest that the critical volume
vc is not significantly modified by the number of pores
in the grain, as long as these are sufficiently small. More
precisely, as long as Nθ30/2� 1, the critical volume of a
grain with N pores,

vc =

(
θ0 − f

θ0 − fπ/2

)3(
1 +N

θ30
2

)
− 1, (4)

should be essentially the same as in the case of monopo-
rate grain, N = 1. One could, however, argue that the
final state of the inflated pores is now less strained, as
the additional volume is distributed among several pores.

However, numerical calculations indicate that the infla-
tion past the critical point is always asymmetric. Even
the slightest difference between the pores leads to a situ-
ation in which one of the pores inflates much more than
the rest and thus bursts. This is shown in Fig. 5 for a
pantoporate pollen grain with N = 12 pores, where a
single pore suddenly inflates after the bursting transition
while the other 11 pores deflate. The surface of the pollen
grain is colored in accordance with the local strain in the
grain so that the darkest blue color and the brightest
yellow color represent the smallest and the largest values
of averaged strain when it is larger than it would be in
an inaperturate grain with the same additional volume.
One can observe that the regions with an increased strain
compared to the inaperturate grain are restricted exclu-
sively to the pores. On the other hand, the strains in the
exine are quite uniform and reach only about 71% of the
value that they would in an inaperturate grain (see the
inset of Fig. 5). This demonstrates that the pores act to
relieve some of the strain on the exine, the more so the
smaller the ratio f/θ0—the softer and larger the pores
are, the more stress on the exine they can relieve (see
also Appendix A).

In Fig. 6, we show the bursting volumes of pollen grains
with f = 0.02 and N = 2, 3, and 4 pores arranged
equidistantly along the equator of the grain as well as of
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FIG. 6. Critical volume vc for pollen grains with f = 0.02 and γ = 104 as a function of pore opening angle θ0 in grains with
(a) N = 2, (b) 3, (c) 4, and (d) 12 pores. Numerical results are denoted by symbols and full lines represent critical volumes
obtained numerically for monoporate grains. Dashed line in panel (d) show the results of Eq. (4) for N = 12. Thick light-blue
lines above the x-axes in panels (b), (c), and (d) indicate approximate regions of θ0 in which the pores interact with each other.

a pantoporate grain with N = 12 pores arranged on the
vertices of an icosahedron. Diporate pollen grains with
two diametrically positioned pores behave essentially the
same as monoporate grains (Fig. 6a): their critical vol-
umes differ very little, and the two pores in diporate
grains do not interact in the relatively wide range of pore
opening angles considered. However, as the number of
pores increases, critical volumes of such grains begin to
deviate from the values obtained in monoporate grains,
which can be interpreted as a consequence of an effective
elastic interaction between the pores. This effect occurs
only for sufficiently large pore opening angles, when the
pores themselves become large and approach closer to
each other. The region of θ0 where this effect becomes
noticeable is shown by thick light-blue lines on x-axes
in panels (b) to (d) of Fig. 6. As the number of pores
in pollen grains increases, the range of pore sizes where
pores interact with each other increases as well, and the
pores start to interact at ever smaller values of θ0. The ef-
fect of the pore-pore interaction cannot be accounted for
solely by the volume they share, as predicted by Eq. (4),
because this provides only a barely visible correction for
N = 3 and 4 pores (since θ30 is a rather small quantity).
In the case of N = 12 pores, Eq. (4) significantly under-
estimates the correction to the monoporate case, which
can be seen by comparing the dashed line in Fig. 6d with
the numerically obtained results.

These discrepancies can be understood by examining
the mean distance between the pores. In the case of
N pores distributed equidistantly along the equator, the
pores start to touch each other when θ0 = π/N . At this
point, the entire geometry of the problem fundamentally
changes and the N individual pores merge into a sin-
gle pore, forming an equatorial poral belt. Such pollen
grains with a ring-like aperture at the equator can indeed
be found in, e.g., Zamioculcas zamiifolia and Gonatopus
angustus in the Araceae family. Geometric aspects of the
problem—other than the volume occupied by the pores—
are not accounted for by Eq. (4), and the deviation of
the critical volume from the monoporate case indicates
an elastic interaction between the pores mediated by the

exine between them. A physical explanation of this ef-
fect requires considerations of the pore packing on the
grain surface, their mutual distance and the total area
they cover, which is a problem of characteristic lengths
and areas rather than volumes. For our purposes, it is
important to note that for pore sizes typical for aller-
genic grains, θ0 ∼ 0.1, the pores can be considered to
be independent even when they are numerous, since the
critical volumes below about θ0 ≈ 0.12 are quite similar
for N = 1 to 4 and even for N = 12. In this region, the
predictions of Eq. (4) are essentially fulfilled.

III. DISCUSSION

The mechanical model of the pollen grain adopted in
this study predicts that the pores deform significantly
more than the exine as the grain swells. The presence
of the pores relieves the stress on the exine and reduces
it below the values which it would attain if the pores
were not present (Fig. 5). At the same time, the pores
are also the weak parts of the grain wall which are likely
to rupture first once the grain reaches a certain level of
hydration, since they undergo a rapid inflation at a crit-
ical additional volume of the grain. This pore bursting
mechanism, where the pore bulges out and assumes a
hemispherical shape just before rupture, has been ob-
served in experiments [13, 43] and is similar to one of
the grain rupture mechanisms proposed by Matamoro-
Vidal et al. [9] for pollen grains with resistant exine and
delicate intine, which in our model corresponds to low
values of f . Another mechanism observed by Matamoro-
Vidal et al. [9], a swelling of the grain without either pore
or exine bursting and without significant bulging of the
pore, is also included in our model which indicates that
this might be typical for grains with smaller pores (i.e.,
small θ0). The pores are less prone to bursting as they
become smaller (see Fig. 4), and since the critical vol-
ume of bursting is inversely proportional to θ0 (Eq. (3)),
smaller pores do not undergo the bursting transition un-
til the grain swells to a large extent. In this case this also
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means that the exine becomes more strained and that it
can break before the pores do. Fracture of the exine was
also observed by Matamoro-Vidal et al. [9], however, only
in inaperturate pollen grains with a relatively thin exine.
These observations and our model therefore suggest that
the pores are, in general, indeed the weak spots of the
grain and that they will—if present—typically rupture
first.

The critical volumes predicted by our model can be
related to values observed in experiments. When the
increase in mass of pollen grains was measured at differ-
ent relative humidities (RH) [20], it was found that until
RH ≈ 85%, the grains absorb water internally, while for
even larger values of RH, a water layer forms on the ex-
ternal surface of the grains. At RH = 85%, mass of
pollen grains increases by about 50%, and this number
does not appear to vary much between different pollen
types [20]. Maximal volume expansion of pollen grains
in the atmosphere can be thus roughly estimated to be
about v ≈ 0.5, which is similar to the typical values of vc
obtained in our study. This suggest that our model covers
the salient aspects of pollen grain swelling and provides
a correct estimate of the characteristic energies involved.
In particular, the model supports the observation that
pollen grains in the atmosphere are in a critical surround-
ing where changes in humidity may easily lead to grain
bursting, depending on the structure of the grains [11].
Grains with sufficiently hard and small pores can sustain
a large volume increase without their pores bursting. Al-
though colpate pollen (pollen with elongated apertures)
is not the subject of our work, it is nevertheless of interest
to note that some colpate pollen, e.g., Petunia hybrida,
can swell to a huge extent, increasing its volume two or
three times upon hydration [33].

Diameters of pollen grains and the size of their pores
show a significant correlation across different species of
grasses [29, 30], which suggests that their pore open-
ing angles are approximately constant and can be esti-
mated to be in the range of θ0 ≈ 0.06 to 0.09 (at least
in the grass species studied). Such a low value of θ0
suggests that the pores of pollen grains of grasses are,
interestingly, not particularly prone to bursting. This
is partially confirmed by experiments [11], where it was
found that while 87% of Betula pendula pollen grains re-
lease the sub-pollen particles when hydrated for 10 min-
utes, only 40% of Phleum pratense pollen grains release
the sub-pollen particles under the same conditions. The
mean pore opening angle of monoporate grains of Phleum
pratense (see Fig. 1b) can be estimated to be about
θ0 ≈ 0.08, while the pores of triporate pollen grains of
Betula pendula have a significantly larger opening angle
of θ0 ≈ 0.13 [3] (see Fig. 1d). This fact alone might thus
explain the more frequent rupture of Betula pollen in a
humid atmosphere.

On the other hand, such simple reasoning does not ex-
plain the fact that triporate pollen grains of Parietaria
judaica with θ0 ≈ 0.09 [3] burst five times less frequently
than pollen grains of Phleum pratense, even though they

have similar pore opening angles. One should, however,
keep in mind that the argument depends on the assump-
tion of a similar value of aperture softness f and dif-
ferent values of f can be expected in different pollen
species [44]—not only because of the differences in aper-
tures and their thickness but also because of the differ-
ences in exine thickness and composition, since f is a
parameter which depends on the relative softness of the
apertures. While the values of f in porate pollen grains
are in general unknown, it is nevertheless possible to esti-
mate them in some cases. Rupture of pentoporate pollen
grains of Ulmus parvifolia has been recorded in a video
sequence by Miguel et al. [13], and individual frames can
be used to determine both θ0 and vc, since the volumes
right before and after pore rupture can be determined
from the sizes of the grain in different frames. This anal-
ysis gives θ0 ≈ 0.11 and vc ≈ 0.3, which enables one
to combine the two numbers and estimate the pore soft-
ness to be f ≈ 0.015 (see Fig. 4), in line with previous
estimates [10].

Pore sizes in pollen of grasses appear to be particularly
small, which could signify an evolutionary path which on
the one hand allows for a soft spot in the grain to ease
the pollen tube growth and on the other hand maximally
reduces its size to retain the mechanical consistency of
the grain. The minimal pore size is constrained by the by
the size of sperm cell which has to pass through the pore
into the pollen tube, and a comparison of typical sizes
indeed suggests that the pores in grasses are maximally
reduced. There, however, also exist pollen grains with a
number of quite large pores—such are, for example, the
pantoporate grains of Gypsophila perfoliata and Stellaria
aquatica (Fig. 1e). Such an evolutionary solution enables
accommodation of large additional volumes before one of
the pores bursts. This is manifested by the characteristic
shape of the dependence of vc on θ0 in Fig. 6d where vc
increases with θ0 for sufficiently large pores. This shows
that large critical volumes can be obtained not only by a
single small pore but also by many large pores (θ0 > 0.16
for the parameters used in Fig. 6). In this respect, it is
interesting to note that pantoporate pollen grains appear
to have evolved independently many times in different
clades of flowering plants [45].

Thinning of the pollen wall in the form of an aperture
enables an efficient initiation of the pollen tube growth
but at the same time also represents a mechanical weak-
ness of the pollen grain. The same mechanical devices
which would in proper conditions aid pollen tube ger-
mination can lead to grain rupture and the release of
cytoplasm if the grain hydrates in a surrounding with an
inadequate osmolarity and ionic content, as might hap-
pen in the atmosphere. We have shown that the ad-
ditional volume vc which can be sustained by a nearly
spherical porate grain and the potential of the grain to
rupture are determined predominantly by the ratio f/θ0
(Eq. (3)), which is a dimensionless parameter combining
the pore softness and its size. Other properties of the
grain, such as the number of pores, their precise distri-
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bution, and the contribution of bending in the process
of bursting, appear to be less important, as long as the
pores are sufficiently small.

IV. MATERIALS AND METHODS

Elastic model of the pollen grain

Construction of the elastic triangular mesh of the
pollen grain and the elastic energy functional assigned
to it mostly follows the method used previously by Božič
and Šiber [10]. We assume that there exists an unstrained
state of the pollen grain of volume V0 which is perfectly
spherical and represents the reference, equilibrium state
of the problem. The pollen grain can either desiccate,
which leads to a reduction of its volume V < V0, or it
can further hydrate, leading to an increase of its volume
V > V0. The second case is of interest to us in this work.

Elastic energy of the grain

The elastic energy of the pollen wall can be formulated
so that the microscopic energies effectively reside in the
edges of the triangular mesh,

E =
∑
i

ki
2

(li − li,0)
2

+
∑
i

ρi [1− cos(θi − θi,0)] . (5)

The first and the second term in Eq. (5) are the stretching
and the bending energy, respectively. The mesh (trian-
gle) edges i have lengths li, which, in general, differ from
their equilibrium lengths li,0 in the unstrained state. The
stretching energy of an edge is proportional to the square
of its extension ∆l = li − li,0; i.e., each edge i acts as a
Hookean spring with a spring constant ki. The bend-
ing energy associated with an edge can also be formally
tied to the angles θi between the two triangle faces which
share the edge i. The bending energy depends on the dif-
ference between the actual and the equilibrium angles θi
and θi,0, respectively.

The bending and stretching elastic constants of an edge
can take on two different values, depending on whether
the edge belongs to the exine or to the pore region of
the grain wall, since the two regions have different elastic
properties. For edges in the exine region, ki = kex and
ρi = ρex, while for edges in the pore region, ki = kp and
ρi = ρp. The values of the elastic constants in the pore
region are scaled by a softness parameter f < 1 [8] so that
kp = fkex and ρp = fρex. Edges which have bounding
vertices in different regions, one in the exine and the other
in the pore region, are assigned a stretching constant of
ki = (kex+kp)/2. Similarly, when the geometrical centers
of two faces sharing an edge are in different regions, the
edge is assigned a bending constant of ρi = (ρex + ρp)/2.

We also introduce a dimensionless quantity γ which
signifies the relative contributions of the bending and

stretching energies and is defined as

γ ≡ kexR
2
0

ρex
=
kpR

2
0

ρp
. (6)

This quantity, used also by Božič and Šiber [10], dif-
fers from the Föppl-von Kárman number of the exine (or
pore) sheet by a factor on the order of unity [46–48].

Mesh triangulation

The equilibrium mesh of triangles is preconditioned to
produce the isotropic stains in Eq. (1) as accurately as
possible. This is done by optimization of a mesh obtained
from marching triangulation [49]. The preconditioning
procedure effectively homogenizes the mesh so that the
local elastic behaviors are as uniform as possible for a
given initial marching triangulation. Once the mesh is
optimized, the resulting edge lengths and angles are de-
fined to be the equilibrium values of the edge lengths
and angles, and this produces the set of constants li,0
and θi,0 in the energy functional in Eq. (5). When such
a mesh is inflated for a grain without pores (ki = kex for
all edges i), the strains are checked to be nearly uniform
and isotropic throughout the mesh—as they must be ac-
cording to Eq. (1). Indeed, they differ from the analytical
prediction by at most ∼ 1%. For the results shown in this
work, the stress- and strain-free state is a spherical shell
of radius R0 = 38.4a, where a is the mean length of the
mesh edge. The mesh has V = 21644 vertices, E = 64926
edges, and F = 43284 faces, and V−E+F = 2, as it must
be according to the Euler formula for polyhedra [50].

Minimization procedure

The energy functional in Eq. (5) is minimized with re-
spect to the coordinates of the mesh vertices using conju-
gate gradient method described by Hager and Hongchao
[51]. The volume of the mesh is constrained by adding
an extra term to the energy functional of the form

Epenal = KV (V − V0)2, (7)

where KV is the volume penalization constant. The con-
stant must be chosen with care, as too small values do
not constrain the volume to a sufficient precision while
too large values may result in problems with the con-
jugate gradient minimization. The appropriate value
of the constant KV can be determined by a sequential
minimization procedure, i.e., by a sequence of minimiza-
tions in which the constant is multiplied by a factor of
F > 1 in each step, as described for instance by Šiber
[52]. When the minimization is finished, the penalty en-
ergy due to the constraint in Eq. (7) must be a negli-
gible percentage of the total elastic energy of the mesh.
Once the minimal shape for a given additional volume
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v = V/V0 − 1 is obtained, all the mesh vertices are ran-
domly jittered, typically by 0.1a, and the minimization
is repeated. The volume is then increased or decreased,
depending on whether the minimization proceeds along
the forward or the backward path, respectively.

Strains in the pollen grain

To effectively measure the magnitude of the strains in
the pollen grain, we define a suitably averaged strain εv
in each vertex of the mesh v. The averaged measure of
strain is obtained from the area of all the triangles around
the vertex Av,

εv =

√
Av

Av,0
− 1, (8)

where Av,0 is the area of all the triangles around the ver-
tex v in the strain-free state of the mesh. The averaged
strain in the entire pore εp is calculated by summing the
strains εv over all vertices v which belong to the pore
region and dividing the result by the total number of
vertices in the pore.
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Appendix A

Analytical approximations for critical volume at
bursting transition

Monoporate pollen grain at some additional volume v
can be approximated as a union of two spherical caps:
one, of radius Rex, representing the exine part of the
grain, and the other, of radius Rp, representing the pore.
Initially, Rp = Re, but as v increases and the pore in-
flates, Rp continuously decreases all the way until the
pore assumes the shape of a hemisphere, where Rp is the
smallest. After this point, any further inflation of the
pore requires an increase in Rp.

The internal pressure in the grain p is counteracted by
the forces in the pollen wall. Examination of the force
equilibrium in the two poles of the grain (one in the pore
and the other in the exine) when the pore has a hemi-
spherical shape yields

2Tp
Rp

=
2Tex
Rex

= p, (A1)

where Tp and Tex are the tension forces in the pore and
the exine, respectively [35]. In the hemispherical state
of the pore Rp = Rexθ0 and consequently Tex = Tp/θ0.

If the dominant contribution to the tension forces comes
from the stretching part of the elastic energy, the stretch-
ing stresses T are proportional to strains ε, which gives

εex =
f

θ0
εp, (A2)

where we have accounted for the fact that the 2D stretch-
ing modulus of the pore is softer by a factor of f with
respect to the corresponding 2D stretching modulus of
the exine. The stretching strains can be obtained by ex-
amining the distances between the two points in the wall
in the stress-free state of the grain and the corresponding
distances in the inflated state of the grain, which gives

εex =
Rex

R0
− 1,

εp =
Rex

R0

π

2
− 1. (A3)

When θ0 � 1, the scaled additional volume of the pollen
grain with a hemispherical pore is given by

vc =

(
Rex

R0

)3(
1 +

θ30
2

)
− 1. (A4)

From Eq. (A2) and Eq. (A3), we have

Rex

R0
=

θ0 − f
θ0 − fπ/2

, (A5)

and inserting Eq. (A5) into Eq. (A4), we obtain Eq. (2).
For a typical pollen grain, f/θ0 � 1 and θ0 � 1, and in
this limit we further obtain Eq. (3).

This derivation is only an approximation and is limited
in its scope. Eq. (2) predicts that the bursting transition
occurs only if θ0 > fπ/2, as vc → ∞ when θ0 = fπ/2.
This is mostly satisfied by pollen grains, but it should be
noted that the increase in volume in some pollen grains
at bursting is comparable to the volume of a fully hy-
drated grain, i.e., v ∼ 1. Furthermore, in the analytical
derivation, the characteristic curvatures are assumed to
be sphere-like, that is, the same in the two principal di-
rections both in the exine and in the pore. Numerically
determined shapes do not have this property, although
the principal curvatures do not differ much. The role of
the neck region where the pore contacts the exine is also
neglected in the approximation, even though it influences
the curvatures of the grain shape, even in the polar re-
gion of the pore. This is particularly important for larger
values of the softness parameter when the approximation
of sphere-like curvatures becomes less accurate.

Validity of analytical approximations for bursting transition

While the numerical results presented in Section II
mostly account for the geometry and elastic inhomogene-
ity which are to be expected in porate pollen grains (pa-
rameters θ0 and f), it is of interest to examine the burst-
ing transition for a wider range of parameters. This is
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FIG. 7. Critical volume at bursting transition vc for a mono-
porate pollen grain with θ0 = 0.15 and γ = 104 as a function
of the pore softness parameter f . Numerically obtained re-
sults are denoted by symbols. Full and dashed lines are the
predictions of Eq. (2) and Eq. (3), respectively. The thin ver-
tical dashed line indicates the value of f where the analytical
expression in Eq. (2) diverges, f = 2θ0/π. The gray area of
the plot indicates the range of (f, vc) parameter space relevant
to most pollen grains.

because the bursting transition should vanish once the
pore becomes hard enough. This will certainly be the
case when f = 1 and the grain becomes effectively inaper-
turate, with vc → ∞. The analytical model in Eq. (2),
however, predicts a divergence of vc when f = 2θ0/π. In
Fig. 7 we show how vc changes as a function of f for a
fixed θ0 = 0.15. Though large values of f (f > 0.05) are
not expected to be typical for pollen grains [8, 10], the
investigation of grains with larger f is nevertheless im-
portant in the more general context of the mechanics of
soft pore inflation. The results indicate that the analyti-
cal results serve as a reasonably accurate approximation
when vc < 0.8, which is a situation typically encountered
in pollen swelling and bursting. The approximations be-
come significantly less reliable when vc > 1. Somewhat
fortuitously, the functional dependence in Eq. (3) can be
used as a lower bound estimate for all the volumes vc
studied.

Internal pressure and bursting transition

The calculations in the main text were performed for
a given additional volume of the grain v. To each of
the grain states obtained with the volume constraint one
can also attribute an internal pressure P . The internal
pressure can be obtained from the normal forces acting
on the vertices of the shell in the absence of the volume
constraint [36]. Figure 8 shows how the internal pressure
in the pollen grain changes as its volume increases—this
calculation is performed for the same set of parameters
as those used in Fig. 2. A sufficient pressure, denoted by
Pc in Fig. 8, is required to overcome the energy barrier

for bursting and the pressure drops once the pore inflates.
This is similar to the phenomena observed in the inflation
of a circular membrane [41] and rubber balloons [53, 54].
Comparing these results with those obtained for thin ho-
mogeneous spherical shells by Božič and Šiber [36], we
observe that the values of pressure are quite similar at a
given increase of volume or exine radius. One can also
observe that the presence of a pore decreases the pressure
in the grain below the pressure which would act in an in-
aperturate grain at the same additional volume. This is
indicated by the dashed line in Fig. 8, which shows the
pressure obtained in the analytical limit of the micro-
scopic model in Eq. (5) for an inaperturate grain with the

stretching contribution only, P = 2kex/(
√

3R0) v [36].
We have also performed elastic energy minimization

at a fixed internal pressure instead of the grain volume.
In this case, the energy functional is augmented by an
addition of a term PV [36, 52], and the volume con-
straint is released—this approach can be of interest when
grain swelling is studied in solutions with different con-
centrations of non-metabolic sugars [9]. The calculations
perfectly reproduce the critical volumes obtained in the
fixed volume calculations, but the shapes obtained af-
ter the bursting transition (for P > Pc) have very large
volumes and are difficult to stabilize in the minimiza-
tion procedure. The large volumes of these shapes could
also have been guessed on the basis of the shape of the
pressure dependence in Fig. 8—the pressure decreases for
v > vc, which means that the pressure can eventually
return to its critical value of Pc only for large values of
additional volume v. The bursting transition thus figures
much more prominently in the calculations at a fixed in-
ternal pressure, although the shapes after the transition
are difficult to obtain. Both approaches strongly corrob-
orate the necessity of bursting (rupture) of the pore at

 0
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P [kex/R0]

Pc

FIG. 8. Internal pressure in the grain P as a function of
the additional grain volume v. The pressure is shown in re-
duced dimensionless units of kex/R0. Numerically obtained
results are denoted by symbols. The dashed line shows the
pressure obtained in the analytical limit of the microscopic
model for the homogeneous inaperturate shell with stretching
energy contribution only, P = 2kex/(

√
3R0) v. The forward

and backward minimization paths are indicated by arrows.
The elastic parameters of the calculation are the same as in
Fig. 2, f = 0.02, θ0 = 0.15, and γ = 104.
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P = Pc or v = vc (Pc = 0.232 k/R0 and vc = 0.26 for
the case shown in Fig. 8 and Fig. 2).

Influence of bending energy on bursting transition

All the results shown in the main text are calculated
for γ = 104. The range of γ typical for pollen grains was
estimated by Božič and Šiber [10] to be between 3000
and 10000. This interval of γ was obtained by requiring
that the colpate grains close regularly and completely
as they dry up, and might not be entirely relevant for
porate grains studied in this work. It is of interest to
examine how different values of γ influence the burst-
ing transition. Figure 9 shows how the critical volume
at the bursting transition depends on the pore opening
angle for three different values of γ. Smaller values of
γ indicate a larger contribution of the bending energy.
Figure 9 demonstrates that although the bending energy
influences the critical volumes (and pressures), the influ-
ence is relatively small and the results obtained in the
main text for γ = 104 can be considered to be repre-
sentative for pollen grains. The bursting transition is
smoother for smaller γ, so that the full expansion of the
pore occurs in a wider interval of volume.

Nonlinear stress-strain dependence and
(non-)universality of bursting transition

The calculated strains in the pore can become huge at
the bursting transition. For instance, in the example in
Fig. 2, the maximal extension of the pore material at the
bursting transition is 2.6. Such huge strains may require
a modification of the Hookean stress-strain relationship
employed in our simulations (see Section IV). While such
modifications can in principle be included in our model
by allowing the elastic constants to vary with the local
strain, in the situation where the elastic responses of the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.08  0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24

vc 

θ0 [rad]

FIG. 9. Critical volume at bursting transition vc as a function
of the pore opening angle θ0 for γ = 104 (squares), 5 × 103

(triangles), and 103 (diamonds). The pore softness parameter
is f = 0.02.

exine and the intine are poorly known such an undertak-
ing does not appear to be particularly enlightening. Nev-
ertheless, it is important to examine the robustness of the
predicted bursting transition and investigate whether it
persists in different elastic models of the pollen grain. To
this end, we modified the stretching part of the Hookean
elastic energy (Eq. (5)) to read

Estretch =
∑
i

kil
2
i,0

2

∣∣∣∣ lili,0 − 1

∣∣∣∣p , (A6)

where p is a real number, and performed calculations
analogous to those shown in Fig. 2 (which correspond
to the Hookean elasticity where p = 2). The formula-
tion in Eq. (A6) has the advantage that the microscopic
stretching and bending elastic constants of the edges ki
and ρi are kept the same for all p and have the same
units as in the Hookean case. The stretching energies of
the Hookean case and the p-power stretching elasticity
coincide in an edge of length li/li,0 = 2.

The pore bursting transition survives also in the
more general parametrization of the stretching energy of
Eq. (A6) for a range of values of p. There are, however,
some differences from the Hookean case with p = 2. In
particular, while the pores are visibly bulged out at the
bursting transition for all powers p studied, the shape
of the pore at the transition point is inflated a bit over
the hemispherical shape when p > 2. Furthermore, the
critical volumes of the transition sensitively depend on
the power p, as demonstrated in Fig. 10. For p > 2.4,
vc & 1 and the calculations become somewhat irrelevant
for most porate grains as they do not tend to swell to
such a high degree. It is also possible that for sufficiently
large p, the bursting transition becomes completely sup-
pressed and never takes place even for infinite increase
in volume. This means that the aperture does not im-
portantly modify the strains in the exine and that the
entire grain swells almost as if it were inaperturate; this

 0

 0.2

 0.4

 0.6

 0.8

 1.5  1.6  1.7  1.8  1.9  2  2.1  2.2  2.3

vc 

p

FIG. 10. Critical volume vc at which a pore rapidly inflates as
a function of the power p in the parametrization of the stretch-
ing energy in Eq. (A6). Dashed vertical line emphasizes the
point with p = 2 (Hookean dependence). The full line is a
guide to the eye. The elastic parameters of the monoporate
grain are f = 0.02, θ0 = 0.15, and γ = 104
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time not because the pore would be too small, but due
to the high power p in the nonlinear stress-strain rela-
tionship. A somewhat similar effect has been noted in
relation to the blowout phenomenon of circular mem-
branes and spherical patches, which takes place only for
sufficiently low powers p in the energy functional of the
problem [41].

A faithful modelling of pollen grain elasticity would

require different parametrizations of the elasticity of the
exine and the pores in a much more involved manner
than using a simple scaling through a softness constant
f . This is particularly relevant for large extensions of
the exine and the pores, which are likely to be governed
by quite different energy functionals and by an effective
superposition of several power laws with different values
of p [55].

[1] N. Firon, M. Nepi, and E. Pacini, Ann. Bot. 109, 1201
(2012).

[2] F. A. Hoekstra, in Desiccation and survival in plants:
Drying without dying, edited by M. Black and H. W.
Pritchard (CAB International: Wallingford, UK, 2002)
pp. 185–205.

[3] H. Halbritter, S. Ulrich, F. Grimsson, M. We-
ber, R. Zetter, M. Hesse, R. Buchner, M. Svojtka,
and A. Frosch-Radivo, Illustrated Pollen Terminology
(Springer, 2018).

[4] R. F. Evert and S. E. Eichhorn, Raven Biology of Plants
(W. H. Freeman and Company, New York, 2013).

[5] E. S. Hamilton, G. S. Jensen, G. Maksaev, A. Katims,
A. M. Sherp, and E. S. Haswell, Science 350, 438 (2015).

[6] C. Cameron and A. Geitmann, Curr. Op. Genet. Devel-
opment 51, 11 (2018).
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[29] C. Joly, L. Barillé, M. Barreau, and L. Visset, Rev.

Palaeobot. Palynol. 146, 221 (2007).
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