- 1 Title: Evolution of andrenine bees reveals a long and complex history of faunal interchanges
- 2 between the Americas during the Mesozoic and Cenozoic
- 3
- 4 Authors: Kelli S. Ramos^{1*}, Aline C. Martins², Gabriel A. R. Melo³
- 5
- 6 ¹ Museu de Zoologia, Universidade de São Paulo, Av. Nazaré 481, CEP 04263-000, São
- 7 Paulo, Brazil.
- 8 ² Department of Zoology, University of Brasilia, 70910-900, Brasilia, Distrito Federal,
- 9 Brazil.
- ³ Department of Zoology, Federal University of Paraná, PB 19020, 81531-980, Curitiba,
- 11 Paraná, Brazil.
- 12 * Corresponding author: Museu de Zoologia, Universidade de São Paulo, Av. Nazaré 481,
- 13 CEP 04263-000, São Paulo, Brazil; E-mail: kellisramos@gmail.com
- 14

15 ABSTRACT

16 Bees are presumed to have arisen in the early to mid-Cretaceous coincident with the

17 fragmentation of the southern continents and concurrently with the early diversification of the

- 18 flowering plants. Among the main groups of bees, Andreninae sensu lato comprise about
- 19 3000 species widely distributed with greatest and disjunct diversity in arid areas of North
- 20 America, South America, and the Palearctic region. Here, we present the first comprehensive
- 21 dated phylogeny and historical biogeographic analysis for andrenine bees, including
- 22 representatives of all currently recognized tribes. Our analyses rely on a dataset of 106 taxa
- and 7952 aligned nucleotide positions from one mitochondrial and six nuclear loci.
- 24 Andreninae is strongly supported as a monophyletic group and the recovered phylogeny
- 25 corroborates the commonly recognized clades for the group. Thus, we propose a revised tribal

26 classification that is congruent with our phylogenetic results. The time-calibrated phylogeny 27 and ancestral range reconstructions of Andreninae reveal a fascinating evolutionary history 28 with Gondwana patterns that are unlike those observed in other subfamilies of bees. 29 Andreninae arose in South America during the Late Cretaceous around 90 Million years ago 30 (Ma) and the origin of tribes occurred through a relatively long time-window from this age to 31 the Miocene. The early evolution of the main lineages took place in South America until the 32 beginning of Paleocene with North American fauna origin from it and Palearctic from North 33 America as results of multiple lineage interchanges between these areas by long-distance 34 dispersal or hopping through landmass chains. Overall, our analyses provide strong evidence 35 of amphitropical distributional pattern currently observed in Andreninae in the American 36 continent as result at least three periods of possible land connections between the two 37 American landmasses, much prior to the Panama Isthmus closure. The andrenine lineages 38 reached the Palearctic region through four dispersal events from North America during the 39 Eocene, late Oligocene and early Miocene, most probably via the Thulean Bridge. The few 40 lineages with Afrotropical distribution likely originated from a Palearctic ancestral in the 41 Miocene around 10 Ma when these regions were contiguous, and the Sahara Desert was 42 mostly vegetated making feasible the passage by several organisms. Incursions of andrenine 43 bees to North America and then onto the Old World are chronological congruent with distinct 44 periods when open-vegetation habitats were available for trans-continental dispersal and at 45 the times when aridification and temperature decline offered favorable circumstances for bee 46 diversification. 47

Keywords: Amphitropical distribution, Andrenidae, diversity, biogeography, macroevolution,
phylogeny.

51 **1. Introduction**

52	Bees constitute a well-established clade of pollen-feeding Hymenoptera presumed to
53	have arisen during the Early to mid-Cretaceous approximately 113-132 Ma (million years
54	ago) (Cardinal and Danforth, 2013). Their origin coincides with the end of the Gondwana
55	breakup and the early diversification of eudicots, the major group of flowering plants
56	(Cardinal and Danforth, 2013). Currently presenting a worldwide distribution and about
57	20.000 described species (Ascher and Pickering, 2020), bees have been hypothesized to have
58	originated in the Southern Hemisphere, more specifically, in the xeric interior of Gondwana
59	(Michener, 1979; Litman et al., 2011; Hedtke et al., 2013). Over the last 20 years, much
60	progress has been made on our understanding of the origin and evolution of bees mainly due
61	to the use of molecular data and fossil information combined with statistical phylogenetic
62	methods to reconstruct bee phylogenies at different taxonomic levels (see Danforth et al.,
63	2013, for a review). Among the main groups of bees, the Andreninae remain the most poorly
64	understood lineage in terms of phylogenetic relationships of its supraspecific taxa and
65	biogeographic history (Danforth et al., 2013).
66	In the present work we focus on the phylogenetic and biogeographic history of
67	andrenine bees. This group provides an excellent system for exploring historical
68	biogeographic patterns of biotic interchanges that took place during the Cenozoic mainly
69	between the North and South America regions. Andreninae constitute a well-established clade
70	of bees with about 3,000 species that represent over 15% of all bee diversity (Ascher and
71	Pickering, 2020) and diverged from the clade (Halictinae (Stenotritinae + Colletinae)), around
72	90 Ma in the late Cretaceous (Cardinal and Danforth, 2013; Sann et al., 2018). The subfamily
73	is widely distributed on all continents, except Australia and tropical Asia, and are
74	exceptionally diverse in the temperate and xeric parts of the Western Hemisphere (Michener,
75	2007). Among the 61 known genera of andrenine, the New World fauna encompasses around

45 genera, with 31 of them found only in South America. Outside the Americas, Andreninae
have a smaller genus-level diversity, with 14 genera reported for the Palearctic region and 5 in
the Afrotropics.

79 Andreninae comprise typically slender medium-sized (6-10 mm long), black with some 80 yellow marks, and sparsely haired bees, but also robust and hairy bees such as Oxaeini 81 (Michener, 2007). It has been consistently recovered as a monophyletic group (Ascher, 2004; 82 Danforth et al., 2004, 2006a, 2006b; Cardinal and Danforth, 2013; Danforth et al., 2013; 83 Hedtke et al., 2013). The most distinctive morphological character is the subantennal area 84 defined by two subantennal sutures, with the presence of facial fovea in females and some 85 males, and the pointed glossa being also useful features in their recognition (Michener, 2007). 86 The subfamily is remarkable for the high proportion of pollen specialists (oligolectic) species, 87 each visiting a few species within the same plant family, such as Asteraceae, Cactaceae, 88 Fabaceae, Malvaceae, Melastomataceae, Onagraceae, Oxalidaceae, Passifloraceae, 89 Solanaceae, and Turneraceae (Michener, 2007). As far as we know, all andrenine species are 90 solitary, however, several groups also show communal nesting biology (such as Andrena, 91 Oxaea, Perditini, Panurgus, and some Protandrenini) (Michener, 2007). The nests are 92 excavated in the soil with one or a short series of cells at the end of each lateral burrow 93 radiating from the main burrow. Many species are uni- or bivoltine (i.e. producing one or two 94 generations per year), especially in seasonally dry areas, but many common polylectic species 95 are multivoltine. The cleptoparasitic associations of several species of nomadine bees with 96 andrenines are an interesting and complex system to be investigated (Rozen, 1989). In this 97 sense, resolution of the phylogenetic relationship among Andreninae lineages is an important 98 step for understanding the evolution of cleptoparasitism in bees (Rozen, 1992), as well as the 99 evolutionary history of bee-plant associations (Larkin et al., 2008; Danforth et al., 2013).

100	The classification of Andreninae has a complex history with variable number of
101	recognized internal taxa. For many years the Andreninae was treated as a slightly less-
102	inclusive group, excluding Oxaeini (Ascher et al., 2006; Engel, 2015). Members of this tribe
103	differs considerably from other Andreninae, what lead to its placement as a separate higher
104	taxon based on adult and larval morphology (e.g. Michener, 1944; Rozen, 1964, 1965, 1993;
105	Hurd and Linsley, 1976; Alexander and Michener, 1995). Ruz (1986, 1991) was the first to
106	investigate phylogenetic relationships among genera of the panurgine line, followed by Patiny
107	(1999), who analyzed the relationship among the Old-World members of panurgine based on
108	adult morphological characters proposing six tribes: Panurgini, "Camptopoeumini",
109	Panurginini, Mermiglossini, Melitturgini, and "Paramelittergini". The forms included in this
110	arrangement were classified into two tribes (Panurgini and Melitturgini) by Michener (2000,
111	2007), a proposal that was largely followed by subsequent authors. Later, Ascher (2004)
112	analyzed the whole Andreninae using morphological (adult and larvae) plus EF-1 α (F2 copy)
113	sequences, only partially published (in Rozen, 2003) in order to establish the phylogenetic
114	relationship of the enigmatic Nolanomelissini.
115	Our understanding of the phylogenetic relationships among andrenine bees remains
116	fragmented due to limited taxon sampling mainly from South America – the richest region in
117	diversity of supra specific taxa. Additionally, a global biogeographic analysis based on a well-
118	resolved fossil calibrated phylogeny of the subfamily has not yet been attempted thus far.
119	Thus, the primary goal of the work is to provide a solid phylogenetic framework with special
120	emphasis on the New World, as an important step to establish a stable classification of the
121	Andreninae and to the understanding of their evolution through the Cenozoic. This is the first
122	time the monotypic tribe Protomeliturgini has been included in a molecular phylogenetic
123	work. The current study provides information to understand the ancient diversification that
124	took place in South America and the complex biogeographic scenario and evolutionary

405	C ((1 (1	1 1.1	1 1	1 / /1	
175	tactors that have	nroduced the	hiofic interchange	hetween the warm	areas of the Americas
120		produced the	olone micremanze	between the warm	areas of the rancineas

- 126 during the Mesozoic and Cenozoic.
- 127

128 **2. Material and methods**

129 2.1. Taxon and molecular sampling

130 The taxon sampling comprises 91 species of the subfamily Andreninae sensu lato, 131 representing all currently recognized suprageneric taxa and the main geographical 132 occurrences within the subfamily. We follow the classification of Melo and Goncalves (2005) 133 for the main lineages of bees, treated as subfamilies of a single family (Apidae sensu lato), 134 and Moure et al. (2012) for American taxa of Andreninae; in the case of Old-World taxa, we 135 use the subtribes of Ascher and Engel (2017) at tribal level, as originally proposed by Patiny 136 (1999). According to the classification adopted here, Andreninae is subdivided into the 137 following extant tribes: Andrenini, Euherbstiini, Calliopsini, Neffapini, Melitturgini, 138 Mermiglossini, Nolanomelissini, Oxaeini, Panurgini, Panurginini, Perditini, Protandrenini, 139 and Protomeliturgini. The higher-level bee phylogenies indicate a large clade uniting all the 140 short-tongued subfamilies (except Melittinae) (Danforth et al., 2006a, 2006b; Cardinal and 141 Danforth, 2013; Danforth et al., 2013; Hedtke et al., 2013), thus we choose fifteen terminals 142 to represent the subfamilies from this clade: Colletinae (7 spp.), Halictinae (6 spp.) and 143 Stenotritinae (2 spp.). Attention to the choice of species was taken in order to more accurately 144 place fossil calibration points and to maximize morphological diversity and geographic 145 distribution for the ancestral area reconstruction. In total, 106 taxa were included in the 146 analyses, as described in Supplementary Tables S1-S2 along with taxonomy, collection site, 147 voucher information, and GenBank accession numbers (GenBank accession numbers will be 148 indicated upon this manuscript acceptance).

149	Molecular sequence data were generated for this study fulfilling a huge gap of South
150	American andrenine bees in GenBank. Most newly sequenced specimens were field-collected
151	by us or obtained through donation or loans from other researchers and institutions (see
152	Acknowledgments). In addition, sequence data were obtained from the databases of Genbank
153	and BOLD (Barcode of Life Data System) mostly from Ascher et al. (2001), Ascher (2003,
154	2004), Danforth et al. (2006a, 2006b), Larkin et al. (2006), Almeida and Danforth (2009),
155	Cardinal and Danforth (2013), and Packer and Ruz (2017). Total DNA was mostly isolated
156	from bees preserved in EtOH, but also from pinned museum specimens collected up to twelve
157	years before processing. Muscular tissue was taken from thorax or legs and the DNA was
158	extracted using the Qiagen DNeasy blood and tissue extraction kit, following the
159	manufacturer's protocol. In the case of museum species, the whole body was maintained in an
160	insect relaxing chamber for 24-48 hours prior to extraction following the protocol of
161	Evangelista et al. (2017) for museum specimens, using the same extraction kit. Voucher
162	specimens of the newly generated sequences are housed in the DZUP - Entomological
163	Collection "Jesus Santiago Moure" at Federal University of Paraná, Brazil, or at their home
164	institutions (Supplementary Tables S1-S2).
165	The selected regions comprise four nuclear protein-coding genes: elongation factor-1 F2
166	copy (EF-1a), long-wavelength rhodopsin (opsin), RNA polymerase (poly) and wingless
167	(wg); two nuclear ribosomal RNA loci: large subunit 28S rRNA (28S) and 18S rRNA (18S);
168	and one mitochondrial protein-coding gene: cytochrome c oxidase subunit I (COI). These
169	genes have provided robust results for several phylogenetic studies of bees at distinct levels of
170	relationships. Newly generated sequences refer only to EF-1a (650 base pairs (bp)), wingless
171	(500 bp), and 28S rRNA (700 bp). Primer information and PCR conditions can be found in
172	electronic supplementary material (Table S3). PCR success was examined by gel
173	electrophoresis on 1% agarose gel and PCR products were purified and sequenced in forward

174 and reverse directions by Macrogen Inc. (South Korea). Sequence assembling was generated 175 with the Staden Package (Staden et al., 2000). Chromatogram quality evaluation and 176 corrections were done in BioEdit v5.0.9 (Hall, 1999). 177 All genes were separately aligned in MAFFT v. 7 (Katoh et al., 2019) with default 178 parameters: gap opening penalty = 1.53; offset value = 0. The alignment of the protein coding 179 genes EF-1a and opsin relied on the LINS-i strategy, which is recommended for sequences 180 with multiple conserved domains and long gaps. The alignment of the 18S rRNA, wingless 181 and COI relied on the G-INS-i strategy, recommended for sequences with a global homology. 182 The ribosomal 28S rRNA was aligned based on its secondary structure using the Q-INS-i 183 algorithm. Minor adjustments were made by eye in Geneious, and we made sure that the 184 introns/exon boundaries of EF-1a and opsin were maintained. Sequences from the seven gene 185 fragments were concatenated in Sequence Matrix v. 1.7.8 (Vaidya et al., 2010). The final 186 number of aligned nucleotides used in the analyses was 7952 base pairs in length (EF-1a: 187 1946 bp; opsin: 1494 bp; wg: 512 bp; poly: 842 pb; 28S rRNA: 1714 bp; 18S rRNA: 786 bp; 188 COI: 658 bp).

189

190 2.2. Phylogenetic analysis and divergence time estimation

191 All genes were concatenated into a single matrix subdivided as follows: introns and 192 exons of the protein coding regions EF-1a and opsin, poly, wg, COI, 28S rRNA, and 18S 193 rRNA totalizing 16-character sets. The search for the best partitioning scheme and models of 194 DNA substitution was performed in PartitionFinder v. 2 (Lanfear et al., 2017) based on the 195 Bayesian Information Criterion and the algorithm greedy (see Supplementary Table S4 for 196 specific information of data partition and their best fit models). The phylogenetic tree 197 searches were carried out using the concatenated matrix with nine data partitions under 198 maximum likelihood and Bayesian inferences. Maximum likelihood analysis was performed

199	in RaxML (Stamatakis, 2006) in the CIPRES server (Miller et al., 2011). Simultaneous
200	bootstrap analyses with 1000 replicates were conducted to evaluate node support. Bayesian
201	phylogenetic tree searches were conducted in MrBayes v. 3.2. (Ronquist et al., 2012) in
202	CIPRES. The Markov chain Monte Carlo (MCMC) was run for 20 million generations
203	sampled every 1000 th generation. The stationarity of all parameters and convergence of both
204	runs were accessed in Tracer v. 1.7.1 (Rambaut et al., 2018). A 25% burn-in was applied and
205	a 50% majority rule consensus was computed with the remaining trees in TreeAnnotator (part
206	of BEAST 2.0 package, Bouckaert et al., 2014). Resulting ML and Bayesian trees were
207	visualized and edited in FigTree v. 1.4.4 (Rambaut, 2016).
208	Divergence times were estimated in a Bayesian framework using BEAST 2 (Bouckaert
209	et al., 2014) by employing the same partition \Box scheme and models of phylogenetic analyses.
210	Four bee fossils were used to calibrate the Andreninae tree, two belonging to this subfamily
211	and the others to Halictinae and Colletinae. Compression fossils attributed to Andrena from
212	the Eocene of Florissant, Colorado (Priabonian Age: 37.2-33.9 Ma) were used to calibrate the
213	node of extant Andrena species. There are four species from Florissant deposit attributed to
214	Andrena: A. grandipes Cockerell, 1911; A. hypolitha Cockerell, 1908; A. percontusa
215	Cockerell, 1914 and A. sepulta Cockerell, 1906. Since the descriptions by Cockerell, their
216	identity has not been much investigated, but all have been undoubtedly attributed to the
217	megadiverse genus Andrena. For this point, a lognormal distribution prior was applied with
218	offset = 34, stdev = 0.623 and Mean = 1.8 , corresponding to a minimum bound of 34 Ma,
219	median value of 40 and 95% quantile of 50. Heterosarus eickworti Rozen, 1996 from the
220	Miocene Dominican amber (20.43–13.65 Ma) was used to calibrate the node uniting the two
221	extant species included in our study. The crown group of Heterosarus was given a lognormal
222	distribution with offset 14, stdev = 0.432 and M = 1.8 , corresponding to a minimum bound of
223	14 Ma, median value of 20, and 95% quantile of 26.31. Two other species from Dominican

224	amber, Chilicola (Hylaeosoma) gracilis Michener and Poinar, 1996 and Chilicola
225	(Hylaeosoma) electrodominicana Engel, 1999, were attributed to the crown group of
226	Chilicola (Colletinae, Xeromelissini), following the same prior used in Heterosarus.
227	Electrolictus antiquus Engel, 2001 from the Eocene Baltic amber was used to calibrate the
228	stem group of Halictini (in Halictinae) given a lognormal distribution prior with the same
229	parameter as the Andrena fossils, since the Baltic amber has also a Priabonian age. All
230	geological ages attributed to the fossils mentioned here were retrieved from Fossilworks
231	(Behrensmeyer and Turner, 2013).
232	A normal prior distribution was attributed to the crown age of Andreninae+(Colletinae,
233	Halictinae) based on previous broader age estimates for Hymenoptera (Aculeata): from
234	Branstetter et al. (2018) (89.3 Ma, 95% HPD: 76.66-100.17 Ma) and Peters et al. (2017) (99,
235	95% HPD 82-118). An average value between these two estimates was calculated and the
236	calibration point was given a normal distribution, offset 94, sigma 2.5 and mean 1 (5%
237	quantile 90.1, 95% 99.9). The tribes Protandrenini and Mermiglossini were constrained to be
238	monophyletic based on the Maximum Likelihood and Bayesian analyses, which consistently
239	recovered these clades. Supplementary Figure S1 depicts all points of fossil calibration,
240	secondary calibration and monophyletic constraints. Substitution and clock models were
241	unlinked among partitions, but trees were linked. A Yule speciation model was used as tree
242	prior. Markov chain Monte Carlo (MCMC) searches were conducted for 100×10^6 generations
243	sampled every 10,000 generations with the first 25% discarded as burn-in. Convergence and
244	stationarity of the runs were accessed in Tracer v 1.7.1 (Rambaut et al., 2018) using the ESS
245	scores. The final tree was created in TreeAnnotator (both part of BEAST 2 package).
246	Resulting maximum clade credibility tree was visualized and edited in FigTree v. 1.4.4
247	(Rambaut, 2016). All trees with associated data matrix will be deposited in TreeBASE upon
248	manuscript acceptance.

249

250 2.3. Ancestral range estimation

251	We were interested in illuminating the biogeographic history of Andreninae and
252	identifying their most probable ancestral range and the events of dispersal between the New
253	World and the Old World and between North and South America. For achieving this purpose,
254	we conducted an ancestral range estimation analysis using five biogeographically relevant
255	regions representing the total distribution of Andreninae and outgroups: A. South America, B.
256	North America, C. Palearctic, D. Afrotropical and E. Australian. The Palearctic is here used in
257	broad sense, including some extralimital elements whose distributions extend to the Oriental
258	region. Geographical occurrences that could be assumed to be secondary were considered
259	biogeographically uninformative. For example, the species-rich genus Andrena was
260	considered here as occurring only in North America and in the Palearctic region, in spite of
261	known geographic records in the Neotropics, Afrotropics and Oriental region, since its
262	presence in these latter regions has been attributed to younger clades (Pisanty et al., 2021).
263	Biogeographic coding for Melitturga considered the known distribution of the whole genus,
264	even though we only sampled palearctic species.
265	Ancestral ranges of Andreninae were estimated using R package BioGeoBEARS
266	(Matzke, 2013, 2014) comparing different maximum likelihood versions of three classic
267	biogeographic methods: DEC (Dispersal-Extinction-Cladogenesis: Ree and Smith, 2008),
268	BayArea (Bayesian Inference of Historical Biogeography for Discrete Areas: Landis et al.,
269	2013) namely BAYAREALIKE, and DIVA (Dispersal-Vicariance Analysis: Ronquist, 1997)
270	namely DIVALIKE. The maximum clade credibility tree derived from the BEAST analysis
271	was used as input and each terminal taxon was coded for presence/absence in the five
272	geographic areas (Supplementary Table S5). We applied a dispersal multipliers matrix to give
273	different probabilities for different events of dispersal between continents. Dispersals

274	between, for example, South America and Africa, which is very implausible for Andreninae
275	bees after Gondwana breakup, were given a 0 probability; while reasonable events, for
276	example well-documented long-distance dispersals between South and North America, before
277	the closure of the Panama Isthmus, were given a 1 probability. We assessed the overall fitness
278	of the models with likelihood-ratio tests and AIC values.
279	
280	3. Results
281	3.1. Phylogenetic Relationships and Divergence Time Estimation
282	We assembled the largest molecular dataset for andrenine bees up to date: our final
283	matrix contains 7952 nucleotides and 106 taxa, comprising approximately 70% of the
284	currently recognized genera in Andreninae sensu lato. The monophyly of most tribes and
285	many of their relationships are well-supported based on bootstrap proportions and Bayesian
286	posterior probabilities (i.e. node supports higher than $\ge 70\%$ ML bootstrap and $\ge 98\%$
287	Bayesian posterior probability). Figure 1 and Supplementary Figure S2 depict the phylogeny
288	of Andreninae recovered by ML and Bayesian inference, respectively. Figure 2 and
289	Supplementary Figure S3 show the fossil-calibrated tree and ages for main nodes and related
290	95% highest posterior probability intervals are listed in Table 1.
291	All analyses recovered the monophyly of Andreninae sensu lato with high support. The
292	divergence time estimation indicates that Andreninae diverged from the clade Halictinae
293	(Colletinae, Stenotritinae) in the Late Cretaceous and evolved rapidly soon afterwards,
294	considering the age of 96 (91–101) Ma for the crown group. Most andrenine tribes were
295	recovered as monophyletic with maximum support, except for tribes Melitturgini (99 BPP,
296	72% BS) and Panurgini (100 BPP, 88% BS) and the not well supported Protandrenini and
297	Mermiglossini. Furthermore, the position of all tribes agrees between ML and BI, expect for
298	Panurginini and Mermiglossini.

299	The basalmost divergence within Andreninae involves two major clades, both
300	containing widespread species-rich subclades. The first split corresponds to a clade formed by
301	the mainly Holarctic species-rich tribe Andrenini and an endemic Chilean group, the
302	Euherbstiini originated around 73 (59-86) Ma, in the Late Cretaceous. The monophyly of
303	Andrenini is recovered encompassing the monospecific genus Alocandrena, endemic to Peru,
304	as sister group of the speciose Andrena, a genus widely distributed in the Holarctic region.
305	The second major clade in Andreninae contains a series of tribes, involving both New- and
306	Old-World elements. The base of this clade contains a grade with two New World tribes, the
307	Oxaeini and the Nolanomelissini, which have diverged from the remaining tribes quite early
308	in the Late Cretaceous. Oxaeini is an ancient lineage, having diverged in the Campanian
309	period (~85 Ma), but whose crown is estimated to be much younger. Nolanomelissini, a
310	monospecific group from Chile, is very distinctive and diverged from the panurgine line (see
311	below) around 77 (67–87) Ma.
312	The remaining tribes of this second major clade form a group treated as the Panurginae
313	in Michener's classification and that we refer here as the panurgine line. This large
314	assemblage contains Calliopsini, splitting at the base as sister group of the large clade formed
315	by Protandrenini, Protomeliturgini, Perditini, Melitturgini, Mermiglossini, Neffapini,
316	Panurginini and Panurgini. The divergence between Calliopsini and the other tribes of the
317	panurgine line is estimated to have occurred at 69 (60-79) Ma, while the crown age of
318	Calliopsini is 20 million years younger (Fig. 2 and Table 1). The relictual tribe
319	Protomeliturgini, endemic to the dry areas of northeastern Brazil, is recovered with strong
320	support as sister clade of Protandrenini. The monophyly of Protandrenini is confirmed,
321	although with low support, excluding the monotypic genus Neffapis which proved to be
322	phylogenetically related to the Panurgini. Within Protandrenini, the North American genera
323	Heterosarus, Protandrena, Pseudopanurgus and Pterosarus were shown to form a clade that

diverged from de South American genera in the early Oligocene, around 33 (26–41) Ma (Fig.

325 2).

FIGURE 1. Phylogenetic relationships among 91 species of Andreninae bees resulting
from a Maximum Likelihood analysis of concatenated data set of the following seven gene
loci: elongation factor-1a F2 copy, long wavelength rhodopsin, wingless, RNA polymerase II,
28S rRNA, 18S rRNA, and cytochrome c oxidase subunit I. Complete tree of Maximum
likelihood and Bayesian analysis are shown as Figure S1 and S2, respectively. Maximum
likelihood bootstrap support (BS) and Bayesian posterior probability (BPP) values are shown
at nodes. Clade support ≥98% BPP and ≥70% BS is indicated by asterisk on subtending node.

(a) Andrena vicina, female. (b) Oxaea sp., male. (c) Acamptopoeum prinii, male. (d)

334 Protomeliturga catimbaui, female. (e) Cephalurgus anomalus, male. (f) Panurginus sp.,

- female. (g) *Perdita rhois*, male. Photo credits: Tom Barnes (a, f, g); Julio Pupim and Adriana
- 336 Tiba (b, c, e); Clemens Schlindwein (d).
- 337

The remaining tribes of the panurgine line form a large clade distributed in the

339 Afrotropical (Mermiglossini), Nearctic (Perditini and Panurginini), and Palearctic (Panurgini,

340 Panurginini and Melitturgini) regions, except for Neffapini, a monotypic tribe known only

341 from northern Chile. Phylogenetic relationships among these tribes remain somewhat

342 uncertain, varying to some degree depending on the method used to analyze the data,

probably due to the short length of the involved branches (Fig. 1 and Supplementary Fig. S1).

344 The sister-group relationship between Neffapini and Panurgini is recovered in all analyses

345 (79% BS, 100 BPP) and their crown age estimates correspond to about 44 (28–50) Ma.

346 Our analyses recovered the monophyly of all non-monotypic genera, except *Calliopsis*

347 (Calliopsini) and *Heterosarus* (Protandrenini). This last one was placed in a trichotomy with

348 *Pterosarus* by the Bayesian analysis, but monophyletic in the ML results. *Calliopsis* is

349 paraphyletic, with the species endemic to South America forming a clade distantly related to

those from the Nearctic region. Most of the genera in Andreninae (~65%) had their origin in

the Miocene (Fig. 2).

352

TABLE 1. Divergence time estimates for crown and stem groups of most relevant clades
of Andreninae bees. Values in parentheses refers to 95% Highest Posterior Density intervals.
Ages in million years (My).

Clade	Crown age	Stem age
Andreninae	91 (82–99)	96 (91–101)
Andrenini + Euherbstiini	72 (59–86)	91 (82–99)
Andrenini	61 (51–74)	72 (59–86)
Alocandrena + Andrena	50 (40-58)	55 (45-65)
Euherbstiini	35 (11–61)	72 (59–86)

Oxaeini	11 (2–23)	84 (75–94)
Nolanomelissini	-	76 (67–86)
Calliopsini	48 (37–59)	69 (59–79)
Calliopsis (North America)	20 (12-31)	42 (32-53)
Protomeliturgini + Protandrenini	53 (43-62)	63 (53–72)
Protomeliturgini	20 (8-34)	53 (43–62)
Protandrenini	48 (39–57)	53 (43–62)
Protandrenini (North America)	28 (22–34)	33 (25–41)
Holarctic-Afrotropical clade*	56 (46-65)	63 (53–72)
Melitturgini	39 (26–51)	50 (38–58)
Mermiglossini	34 (21–47)	42 (32–52)
Neffapini	-	43 (28–50)
Neffapini + Panurgini	43 (28–50)	50 (38–58)
Panurgini	37 (19–40)	43 (28–50)
Panurginini	14 (7–21)	48 (38–59)
Perditini	23 (14-32)	42 (32–52)

* It includes also the Chilean tribe Neffapini; the whole group could be referred as the supertribe Panurgidi Leach

356

357 Ancestral Range Estimation

358 The model DEC yielded the highest likelihood and best AICc scores for ancestral range 359 estimation for the Andreninae phylogeny. Statistical results for all three applied models are 360 given in Supplementary Table S6. Ancestral range estimates plotted in the Maximum Clade 361 Credibility tree are show in Figure 2, for the most important nodes, and in Supplementary 362 Figure S3 for all nodes. The reconstructed scenario shows unequivocally that the most recent 363 common ancestor (MRCA) of the subfamily Andreninae originated in South America in the 364 Late Cretaceous. The early evolution of its main lineages took place in this continent until the 365 end of the Cretaceous, when the first event of dispersal to North America occurred in the 366 Maastrichtian involving the lineage that gave rise to the tribe Andrenini. Other incursions 367 from South to North America and vice-versa involved different lineages in the Eocene within 368 Andrenini and the panurgine line, and during the Oligocene within Protandrenini and 369 Calliopsini, with the last two tribes retaining a largely South American distribution. This

- 370 indicates at least three periods of long-distance dispersal or possible land connections between
- 371 the two continents, much prior to the closure of the Panama Isthmus.

374 FIGURE 2. Maximum likelihood ancestral range estimation in Andreninae, using the best 375 model DEC (dispersal-extinction-cladogenesis model) implemented in BioGeoBEARS. The 376 pie diagrams at nodes show the relative probability of the possible states (areas or 377 combinations of areas). Color boxes show the distribution of each taxa within the clade. Black 378 boxes represent nodes at which more than an ancestral area was recovered. Black circles

represent nodes at which lineage-interchange events may have occurred. Maps adapted from

380 Scotese (2014).

381

382

383 4. Discussion

- 384 4.1. Phylogeny and Higher Classification of Andrenine Bees
- 385 Andreninae is recovered as a well-supported monophyletic group, including the
- 386 Oxaeini, as previously proposed (Ascher, 2003, 2004; Danforth et al., 2006a, 2006b; Cardinal
- and Danforth, 2013; Hedtke et al., 2013). One of the earliest-branching lineages of
- 388 Andreninae corresponds to the already previously recognized clade uniting the tribes
- Andrenini and Euherbstiini (Pisanty et al., 2021). Our results show *Alocandrena*, a monotypic
- 390 genus from the Peruvian Andes, nested within Andrenini. Due to its unusual morphology in
- 391 relation to the other Andrenini, Michener (2000) placed Alocandrena in a separate higher
- taxon, a classificatory decision corroborated neither by the present study nor by previous
- 393 molecular phylogenies (Pisanty et al., 2021). The phylogenetic relationships among the
- 394 genera of Andrenini remain controversial. We found Ancylandrena (Megandrena
- 395 (Alocandrena, Andrena)), while Pisanty et al. (2021) recovered Andrena as sister to
- 396 Alocandrena (Ancylandrena, Megandrena).
- 397 In the other basalmost clade of Andreninae, we have Oxaeini recovered as sister to the
- remainder of this clade. This tribe is composed of 22 species of quite large and fast hover
- flying bees restricted to warmer regions of the Western Hemisphere (Ascher et al., 2006;
- 400 Engel, 2015). The tribe is considerably different morphologically from the other Andreninae,
- 401 what lead to its placement as a separated family of the traditional classification (e.g. Rozen,
- 402 1964, 1965, 1993; Hurd and Linsley, 1976), mainly on the basis of several distinct features of
- 403 their mature larvae and adults (Hurd and Linsley, 1976; Michener, 2007; Engel, 2015).
- 404 However, broader studies using both larval and adult morphological characters, strongly

405	support the position found here with the group nested within Andreninae sensu lato
406	(Michener, 1944; Graf, 1966; Rozen, 1993, 1994; Alexander and Michener, 1995; Ascher,
407	2003, 2004; Danforth et al., 2006a, 2006b; Hedtke et al., 2013; Engel, 2015).
408	The enigmatic species Nolanomelissa toroi, known only from the southern border of the
409	Atacama Desert in Chile, appears as sister to remaining tribes of the panurgine line. This
410	species is oligolectic on pollen of Nolana rostrata (Solanaceae) (Rozen, 2003; Michener,
411	2007), and has a number of morphological apomorphies, but also shares characteristics with
412	different tribes of Andreninae making it difficult to assign to a tribe unequivocally (Rozen,
413	2003). However, our results agree with the placement of Nolanomelissa in its own tribe,
414	Nolanomelissini, as proposed by Rozen and Ascher (in Rozen, 2003). Calliopsini, here
415	represented by all of its genera (except Xeranthrena) and including South American species
416	of Calliopsis is recovered as monophyletic. Phylogenetic relationships based in adult
417	morphology have recovered a clade containing the genera Callonychium, Spinoliella,
418	Xeranthrena and Arhysosage excluding Calliopsis, Acamptopoeum and Litocalliopsis (Ruz,
419	1991; Roig-Alsina and Compagnucci, 2003; Gonzalez et al., 2017). Data on larval
420	morphology have also supported a close relationship between Arhysosage, Callonychium and
421	Spinoliella (Rozen, 2013; referred by him as the Spinoliella group). Our results, however,
422	indicate that Calliopsis sensu lato belongs to this group and Spinoliella makes the large genus
423	Calliopsis paraphyletic.
424	Species of Calliopsis are classified in nine subgenera, three of them endemic to South
425	America and six to North America. Although Ruz (1991) evidenced the monophyly of
426	Calliopsis sensu lato, she highlighted the South American C. (Liopoeum) as one of the most
427	distinctive subgenera, with some species having the female metasomal terga with hair bands
428	and others with pigmented yellow bands. It seems clear that the genus Calliopsis still require
429	a more thorough phylogenetic investigation, with a broader taxonomic sampling to

430 understand the limits and definitions of the endemic South American subgenera in order to 431 define their taxonomic status. *Litocalliopsis* was corroborated as a distinct lineage sister to 432 Acamptopoeum, contradicting previous hypothesis proposing it as sister to Calliopsis (Roig-433 Alsina and Compagnucci, 2003). In fact, these authors have also indicated several 434 morphological features shared between Litocalliopsis and Acamptopoeum. 435 Our molecular phylogeny provides a novel sister-group relationship between 436 Protomeliturgini and Protandrenini with maximum support. Previous hypotheses suggested 437 Protomeliturgini as close to Perditini and Calliopsini (Ruz, 1986, 1991). Protomeliturgini 438 contains a single genus with two described species distributed in semiarid areas of 439 northeastern Brazil and oligolectic in flowers of Turneraceae (Medeiros and Schlindwein, 440 2003). Protomeliturga is easily distinguished from other lineages by the very elongated first two articles of the labial palpus, strongly curved 2nd abscissa of the vein M (basal vein), and 441 442 tergum 7 of male strongly curved forward, with a pair of apicolateral teeth (Schlindwein and 443 Moure, 2005; Michener, 2007). 444 Protandrenini is morphologically heterogenous, therefore not obviously monophyletic, 445 but was recovered by the present molecular dataset. Our results unequivocally exclude 446 Neffapis from Protandrenini. The placement of Austellurgus avulsus (Ramos & Melo, 2006) 447 as sister to the North American Protandrenini is here reinforced. Michener (2007) gave 448 Protandrena an overly broad scope, recognizing as subgenera the South American species of 449 Austropanurgus and Parasarus and North American species of Heterosarus, Metapsaenythia, 450 and Pterosarus. Yet, Pseudopanurgus was also previously recognized in a much broader 451 sense synonymizing the genera *Heterosarus*, *Pterosarus*, and *Xenopanurgus*, but based on an 452 incomplete sampling of those lineages. Our results do not provide support to these 453 propositions, showing *Protandrena* sensu Michener (2007) as polyphyletic with respect to 454 genera from South America and *Pseudopanurgus* sensu Ascher (2004) paraphyletic in

455 relation to *Protandrena*. We have also found out *Protandrena* sensu stricto paraphyletic to

456 *Metapsaenythia* as already indicated by both morphological and molecular data (Ascher,

457 2004; Michener, 2007).

458 Within the panurgine line, we also found a large clade formed by the tribes Neffapini, 459 Perditini, Mermiglossini, Melitturgini, Panurgini and Panurginini (see below for decision on 460 classification system). Relationships within this large and heterogeneous clade, containing 461 both New and Old World taxa, differed somewhat between the analyses, with the alternative 462 arrangements involving mainly Panurginini and Mermiglossini. The monospecific Neffapini, 463 the only South American element in this clade, came out as sister-group to the Old World 464 Flavipanurgus and Panurgus (Panurgini). Neffapis, endemic to Coquimban desert in Chile, 465 exhibits many unique characters such as the extremely long glossa and third labial palpus and 466 a minute maxillary palpus with only two palpomeres (Rozen and Ruz, 1995), which led to 467 difficulties in positioning it within existing tribes. Proposal of a separate tribe for *Neffapis* by 468 Ascher (in Engel, 2005) is corroborated here, although in a rather different phylogenetic 469 scenario. 470 Monophyly of Perditini and its two genera, *Perdita* and *Macrotera*, corroborates

471 morphological phylogenies (Danforth, 1996) and recognition of *Macrotera* as a valid genus

distinct from *Perdita*. This tribe is close to Palearctic and Afrotropical tribes (Patiny, 1999;

473 Ascher, 2003). The phylogenetic relationships of *Camptopoeum* with *Melitturga* and

474 Meliturgula with Plesiopanurgus corroborate the establishment of the tribes Melitturgini and

475 Mermiglossini, respectively. It is possible that this large clade may also include the intriguing

476 species *Simpanurgus phyllopodus* (Warncke, 1972), endemic to the Iberian Peninsula and

477 known only from males. Previous treatments indicated *Simpanurgus* as a subgenus of

478 Panurgus (Michener, 2007) or as incertae sedis in relation to the Old-World tribes (Ascher

and Engel, 2017). The inclusion of molecular data from this species, as well as a broader

480 sampling of Old-World elements, would improve our understanding of its position in the481 phylogeny of Andreninae.

482	The classification system adopted here for this large clade of the panurgine line gives
483	tribal status to the main lineages. The systematic position of the genera within this large clade
484	varies in different papers and differs according to the suprageneric-level classification
485	adopted (Table 2). A comprehensive background about the distinct classification systems
486	adopted for these taxa is provided by Ascher and Engel (2017). Here we propose the
487	following taxonomic arrangements: Mermiglossini include Plesiopanurgus and Meliturgula,
488	represented here by a total of three species, and the non-represented genera Flavomeliturgula,
489	Gasparinahla and Mermiglossa; Melitturgini include Camptopoeum, Melitturga and the
490	genera not sampled here Avpanurgus and Borgatomelissa; Panurgini include Panurgus and
491	Flavipanurgus; Panurginini include only Panurginus; and Perditini comprise Macrotera and
492	Perdita. We disagree from previous classifications that give status of subtribe to these
493	lineages, as proposed by Ascher (2004), Engel (2005), and Ascher and Engel (2017), based
494	on the following reasons: (1) We found no evidence for a monoplyletic Panurgini sensu lato;
495	Neffapini would have to be included to make it monophyletic; (2) Use of tribal level
496	preserves the status of well-known groups, as the Perditini; (3) There is a large amount of
497	heterogeneity within the clade, surpassing that found in other andrenine lineages, to assemble
498	them under a single tribe; (4) The first divergences within the clade, dated from the early
499	Eccene, have ages comparable to those of other lineages given tribal status within the
500	Andreninae. The classification system adopted here is summarized in Table 2.
501	
502	4.2. Early evolution of the Andreninae

503 Our fossil calibrated tree and ancestral area estimation indicate that Andreninae arose in
504 South America during the Turonian, around 90 Ma in the Late Cretaceous, an age consistent

with previous estimates (Cardinal and Danforth, 2013; Sann et al., 2018). The biogeographic
history of Andreninae involved multiple northward transcontinental dispersal events, from
South to North America, with subsequent incursions to the Palearctic region and from there to
the Afrotropics, as a result of lineage interchanges between these landmasses. Our results,
therefore, suggest that the breakup of Gondwana seem to have had minor impact on the early
evolution of Andreninae.

511 Distribution, relationships, and divergence times among andrenine tribes suggest a 512 pattern of diversification mainly related to historical connections between North and South 513 America. The andrenine tribes originated during a relatively long time-window between the 514 Maastrichtian in the Late Cretaceous (crown age of Andrenini: 72 Ma) and the Miocene 515 (crown age of Oxaeini: 11 Ma). These exchanges between the land masses of the Western 516 Hemisphere gave rise to what is known as the amphitropical distributional pattern (see 517 Michener, 1979), which is exhibited by several lineages of Andreninae, as well as many other 518 New World bee groups.

519 Aside from land connections, dispersal of andrenine bees across Mesoamerica would 520 have required the availability of suitable habitats. Here we were able to reconstruct a more 521 specific biogeographic scenario showing the early differentiation of Andreninae taking place 522 under conditions similar to those prevalent today in the xeric regions of western South 523 America. Although a large diversity is currently distributed in open vegetation of the 524 American continent, arid and semiarid regions with Mediterranean climate played an 525 important role in the diversification of andrenine bees, especially the western portion of South 526 America (Chile and Argentina) and southwestern North America (Californian deserts and the 527 desertic regions of the southwestern United States and northern Mexico). The importance of 528 these areas to the evolution of Andreninae is supported by the occurrence of many endemic 529 taxa (Michener, 1979; Simpson and Neff, 1985; Turchetto-Zolet et al., 2013). Occurrence of

530	the ancient relictual lineages Euherbstiini, Nolanomelissini and Neffapini west of the Andes			
531	in the southern Atacama and Coquimban deserts of Chile is a further evidence of these areas			
532	as refugia for bees. The complex geological scenario of Andean orogeny, a long process			
533	beginning in the Paleogene, has affected the climate and biodiversity in South America			
534	(Hoorn et al., 2010), favoring a progressive formation of xeric habits along western portions			
535	of South America (Armijo et al., 2015) and acting as a barrier to bee dispersal. This picture of			
536	Andean formation is consistent with our data that shows that the first mountain chain may			
537	have acted as isolation barrier for earlier andrenine lineages as Euherbstiini, Nolanomelissa,			
538	Neffapis, and Alocandrena, and also as a strong barrier that prevented the spread of eastern			
539	taxa such as the Oxaeini.			
540				
541	4.3. Bee faunal interchanges between South and North America			
542	The evolutionary history of the Andreninae involves multiple faunal interchanges			
543	between the South and North Americas in at least three different periods suggesting the			
544	existence of land connections prior to the final closure of the Panama Isthmus in the Miocene.			
545	The time range of the events estimated in our dating analyses is chronologically consistent			
546	with different hypotheses of the geological history of connections between the two large			
547	landmasses of the American continent from the Late Cretaceous onward. Contrary to			
548	Michener's (1979) hypotheses, we found evidence that south-to-north dispersal of bees is			
549	older than the reverse direction.			
550	The early divergence between the tribes Andrenini and Euherbstiini in the Late			
551	Cretaceous involved a geodispersal to North America (Fig. 2, Clade 1). Examples of similar			
552	exchanges during this period have been reconstructed in other insect groups, such as riodinid			
553	butterflies (Espeland et al., 2015), melanopline grasshoppers (Chintauan-Marquier et al.,			
554	2011), and in bees of both eucerine and apine lines (see Martins and Melo, 2016). This			

- 555 exchange event between the Americas, during the Campanian and the Maastrichtian, has been
- named as the First American Biotic Interchange (FABI), and has been originally proposed
- from patterns found in vertebrates (Goin et al., 2012).
- 558
- 559

 TABLE 2. A comparison of suprageneric-level treatments for Andreninae classification.

Patiny (1999)	Ascher (2004)	Michener (2007)	Ascher and Engel (2017)	Present study
NT	Andrenini	Andreninae ¹	NT	Andrenini
NT	Euherbstiini	Andreninae	NT	Euherbstiini
NT	Oxaeinae	Oxaeinae	NT	Oxaeini
then undescribed	Nolanomelissini	Nolanomelissini	Nolanomelissini	Nolanomelissini
Calliopsini	Calliopsini	Calliopsini	Calliopsini	Calliopsini
Protandrenini	Protandrenini	Protandrenini	Protandrenini	Protandrenini
NT	Panurgini: Protomeliturgina	Protomeliturgini	Protomeliturgini	Protomeliturgini
NT	Panurgini: Neffapina	Protandrenini	Neffapini	Neffapini
Camptopoeumini* ² , Melitturgini*	Panurgini: Camptopoeumina* ² , Melitturgina*	Panurgini*, Melitturgini*	Panurgini: Camptopoeina*, Melitturgina*	Melitturgini
Mermiglossini*, Paramelitturgini* ³	Panurgini: Mermiglossina*, Meliturgulina*	Melitturgini Panurgini: Mermiglossina*, Meliturgulina*		Mermiglossini
Panurgini	Panurgini: Panurgina	Panurgini	Panurgini: Panurgina	Panurgini
Panurginini	Panurgini: Panurginina	Panurgini	Panurgini: Panurginina	Panurginini
Perditini	Panurgini: Perditina	Perditini	Panurgini: Perditina	Perditini

560 NT: not treated. * In part. ¹*Alocandrena* excluded. ²*Nomen imperfectum* (Engel 2005).

562

563 Distinct relative periods of isolation and contact of these landmasses from the 564 Cretaceous to the Pleistocene, and its impact on the amphitropical fauna and flora diversity 565 have long been a subject of discussion. In this way, the disjunct distribution in the American 566 continent implies that Central America served as an important setting for diversification of 567 such taxa in the past. Historical connections between North and South America involve a 568 complex geodynamic of the Caribbean plate that modulated the relative isolation of such 569 areas during distinct geological periods (Iturralde-Vinent and MacPhee, 1999; Ortiz-570 Jaureguizar and Pascual, 2007; Pindell and Kennan, 2009; Woodburne, 2010; Cody et al.,

³Invalid name (Engel, 2001)

2010; Farris et al., 2011; Giunta and Orioli, 2011; Coates and Stallard, 2013; Bacon et al.,
2013, 2015; Montes et al., 2012, 2015; Cione et al., 2015). Since there is no evidence for an
arid corridor through Central America or a full connection of the North and South landmasses
before the closure of the Panama Isthmus, geodispersal events should be invoked to explain
the diversification of the andrenine bees in the Americas, which perhaps have been facilitated
by transient arid conditions in the Central America terrains.

577 The sister relationships between the Peruvian genus *Alocandrena* and the Holarctic 578 Andrena represent another trans-Caribbean geodispersal event, but estimated here to have 579 occurred in the Eocene (~50 Ma) (Fig. 2, Clade 2). Pisanty et al. (2021) also recovered an 580 early Eocene age for the split between Alocandrena and their North American relatives and 581 explained this pattern by long distance wind dispersal through the Central American Seaway, 582 possibly aided by island hopping. Our results also indicate another ancient dispersal event 583 taking place at the beginning of the Eocene and involving the South American lineage that 584 gave rise to a large clade presently distributed in the Nearctic, Palearctic and Afrotropical 585 regions, but also containing a single South American genus, the Chilean Neffapis, nested 586 within it (Fig. 2, Clade 6). The distribution pattern exhibited by this clade implies 587 biogeographic scenarios invoking a direct dispersal from South America to the Palearctic 588 region. Such direct connections are unlike to have occurred during this timeframe and 589 considering the presence of some elements in the Nearctic region, as well the Chilean lineage, 590 we presuppose that this ancestral lineage also entered the Old World following a route 591 through North America. This South America-Palearctic disjunct scenario, however, 592 presupposes some extinctions in the Nearctic region since only a few lineages of this clade 593 have North American representatives. Inter-American exchanges during the same time period 594 in the early Eocene have previously been documented for the bee tribes Halictini and 595 Sphecodini (Danforth et al., 2004).

596	Additional inter-American exchanges occurring under younger ages have been also
597	recovered in our study. Within the tribes Calliopsini and Protandrenini, we found a repeated
598	biogeographic pattern with incursions to North America occurring between 42-28 Ma (late
599	Eocene to early Oligocene) and 33-20 Ma (early Oligocene to early Miocene), respectively
600	(Fig. 2, Clades 4 and 5). The tribe Oxaeini also exhibits an amphitropical distribution and
601	likely represents another dispersal event within this scenario (Fig. 2), but whose divergence
602	estimation needs further investigation with a more comprehensive taxon sampling.
603	The majority of the most recent and well-documented episodes of multitaxon
604	interchanges between North and South America occurred after formation of a permanent land
605	corridor in the Pliocene (~3 Ma). This biogeographic event – the Great American Biotic
606	Interchange (GABI) – resulted from the rise of the Isthmus of Panama and climatic changes
607	(mainly glaciations) that allowed many animal groups to cross the Panamanian connection
608	(Simpson and Neff, 1985; Cody et al., 2010; Goin et al., 2012; Wilson et al., 2014; Cione et
609	al., 2015). On the other hand, our results support that andrenine bees have migrated during
610	Oligocene and Miocene along Central America around times when patches of open habitats
611	might have been available. Similar to the Andreninae, species in the bee genera Diadasia and
612	Centris are also associated with arid regions and their evolutionary history endorses a
613	scenario with prevailing climatic conditions and plant formations adapted to dry conditions in
614	the connecting areas between the American landmasses (Wilson et al., 2014; Martins and
615	Melo, 2016). Hines (2008) also suggested that bumblebees may have arrived in South
616	America in the Miocene crossing Central America when favorable patches of temperate
617	habitats arose.
618	The GABI was initially characterized by the movement of land mammals between
619	North and South America which requires a contiguous area for overland migration (reviewed

620 by Goin et al., 2012, 2015). Several studies suggest that inter-American connections and

621	interchange of organisms, after Eocene age, could have happened earlier than the final closure			
622	of the Isthmus of Panama. Cody et al. (2010) reveal the asynchrony between the evolutionary			
623	history of several animal taxa related to GABI and plant migrations from South to North			
624	America (at least 20 Ma earlier). As observed for plants, northward transcontinental dispersal			
625	events around this same time window have been reconstructed here for the Calliopsini and the			
626	Protandrenini, and have also been found in other bee groups [see Ramírez et al. (2010) for			
627	early Miocene divergences within the orchid-bee genera Euglossa and Eufriesea, Almeida et			
628	al. (2012) for the colletine Caupolicana and Eulonchopria, Wilson et al. (2014) for the			
629	emphorine genus <i>Diadasia</i> and Martins and Melo (2016) for the oil-bee genus <i>Centris</i>].			
630	Geological favorable scenarios invoked to understand the biotic movements through the			
631	American continent around Oligocene-Miocene include overwater long-distance dispersal			
632	(Michener, 1979; Cody et al., 2010), volcanic island hopping (Iturralde-Vinent and MacPhee,			
633	1999; Sturge et al., 2009) or through emergent peninsulas formed in Central America (Kirby			
634	et al., 2008; Monte et al., 2012, 2015). Although there is still little evidence for an earlier age			
635	for the closure of the Isthmus of Panama sensu stricto as highlighted by O'Dea et al. (2016),			
636	the current biological evidence, including that brought in the present contribution, endorse a			
637	pattern of early interchanges across Central America much before the closure of the Isthmus			
638	of Panama has been completed.			

639

640 *4.4. Into the Palearctic and Afrotropical regions*

The evolutionary history of the Andreninae occurring in the Old World is explained by our data through four dispersal events from North America to the Palearctic region in two distinct historical periods. Most ancient dispersal movements occurred in the Eocene and involve the evolutionary history of Mermiglossini, which seems to have derived from a North American ancestor common to Perditini, and also of the lineage that gave rise to the clade

646 containing Melitturgini, Panurgini and Neffapini. In both cases, the incursions to the 647 Palearctic region imply a North American MRCA. We also find evidence of a biotic 648 connection between North America and the Palearctic region during the late Oligocene (~24 649 Ma) and early Miocene (~14 Ma) indicated by diversification episodes within of the Holarctic 650 genera Andrena and Panurginus (Fig. 2, Clades 3 and 8, respectively). The presence of 651 Panurgini and Panurginini in Eurasia via North America was also early inferred by Michener 652 (1979) and Ruz (1986). 653 Evidence for these two dispersal pulses among the Northern Hemisphere landmasses

has been previously advocated by Praz and Packer (2014) for the long-tongued bee tribes

Ancylaini and Eucerini. These authors reconstructed a first geodispersal event involving the

origin of the clade composed by the genera *Ancyla* and *Tarsalia* reaching the Old World from

the New World during the early Eocene, and a second distinct period of exchanges between

the Eastern and Western Hemispheres in the Miocene involving some eucerine genera.

659 Intercontinental dispersal events in the opposite direction, i.e. from the Palearctics to the

660 Nearctics, during Miocene age is also inferred to explain the evolutionary history of

bumblebees (Hines 2008) and honeybees (Engel et al., 2009).

670

662 Expansion of New World terrestrial biotic elements onto the Old World, through a 663 North American route, suggests the existence of Northern Hemisphere land bridges with 664 suitable environmental conditions in distinct ages, such as the Beringia, Thulean and De Geer 665 land bridges (Sanmartín et al., 2001; Brikiatis, 2014). The Bering route functioned in warm 666 periods connecting East Asia and North America. The De Geer Bridge chronologically 667 coincides with the Bering route but connected Eastern North America to Eurasia through the 668 Greenland to Fennoscandia (Sanmartín et al., 2001). The Thulean Bridge was also an 669 intercontinental land bridge that connected the Northern Hemisphere via Greenland but

became established well after the interruption of the De Geer route, offering a southerly

connection through Greenland, Iceland, Faroe Islands and Scotland. In addition to land
connections, the progressive aridification and temperature decline documented during the
middle Eocene to early Oligocene led to favorable circumstances for bee diversification. This
particular climatic condition that caused the displacement of tropical and subtropical forests
led also to further expansion of temperate savanna-like vegetation to as far north as the
Beringian and North Atlantic Land bridges in North America (Graham, 1999; Cardinal,
2018).

As similarly inferred by Praz and Packer (2014) for the tribe Ancylaini, the incursion of andrenine bees into the Old Word during the Eocene possibly occurred through the Thulean route, taking into account that it implies warmer environmental conditions, due its more southern position, and its connections to the western Palaearctics where the andrenine bees are more diverse today. Additional examples of geodispersals related to the Thulean route in the same period and invoking similar environmental conditions are known from other groups of organisms (see Praz and Packer, 2014).

685 Afrotropical distribution of *Melitturga* (Melitturgini) and *Meliturgula* (Mermiglossini)

are estimated by our analyses as deriving from two distinct events involving Palearctic

ancestral groups. While the event involving the Melitturgini seems to have taken place during

the Tortonian age in the Miocene (around 10 Ma; 3-18 HPD 95%), that in the Mermiglossini

occurred at a much older age (Fig. 2, Clade 8). Indeed, the scenario within the Mermiglossini

690 is more complex and involves the Afrotropical genus *Mermiglossa*, not sampled here, known

from Namibia to central East Africa (Ascher and Engel, 2017). *Mermiglossa* is closely related

to *Plesiopanurgus* based on morphological data (Ruz, 1986; Patiny, 1999; Ascher, 2004;

Michener, 2007; Ascher and Engel, 2017) what indicates that its presence in the Afrotropics

derives from an ancient occupation of Palearctic arid areas in northern Africa and the Middle

East by the ancestral lineage of the Mermiglossini.

696 5. Conclusions

697 In the current study we present the first most comprehensive dated phylogeny to 698 understanding of the complex evolutionary history of Andreninae bees. We provide molecular 699 phylogenetic evidence that corroborate the monophyly of several tribes currently recognized 700 based on morphological evidence. The relationships within the large clade containing the 701 tribes Neffapini, Melitturgini, Mermiglossini, Perditini, Panurgini and Panurginini remain 702 poorly resolved and will require further investigation. The reconstructed evolutionary 703 scenario for the Andreninae sensu lato also provided new insights into the biogeographic 704 patterns and revealed repeated biotic interchanges between the major landmasses. The early 705 evolution of the main lineages took place in South America, during the Late Cretaceous, and 706 extended to the beginning of the Paleocene, with North American lineages originating from 707 South American relatives. Presence of the clade in the Palearctic region results from multiple 708 exchanges with North America by long-distance dispersal or hopping through landmass 709 chains. Our analyses provide strong support for the amphitropical pattern currently observed 710 in the American continent resulting from at least three periods of possible land connections 711 between the two American landmasses. The last incursion from South to North America is 712 reported in the Miocene, much prior to the well documented Panama Isthmus closure. 713

714 CRediT authorship contribution statement

Kelli Ramos: designed research, data analysis, writing - original draft. Aline Martins: data
analysis, writing - review & editing. Gabriel Melo: designed research, data analysis, writing review & editing.

718

719 Acknowledgments

720	We are indebted to several colleagues and museum curators for providing access to bee
721	specimens used for DNA extraction and assistance on several aspects of this research:
722	Antonio J. C. Aguiar, Airton T. Carvalho, Arturo Roig-Alsina, Bryan N. Danforth, Danuncia
723	Urban, Eduardo A. B. Almeida, Gabriel A. R. de Paula, Graziele Weiss, John L. Neff, Julia C.
724	Almeida, Luciana Patella, Luis Compagnucci, Olivia Evangelista, Paulo Milet-Pinheiro,
725	Santiago Plischuk, Simone C. Cappellari, and Walter Boeger. Our thanks to Adriana Tiba,
726	Clemens Schlindwein, and Julio Pupim for generously allowing us to use their excellent bee
727	photographs. KSR is very grateful to Daniela M. Takiya, Luis R. R. Faria Jr. and Vitor
728	Kanamura for their invaluable help and companionship in field expeditions. Special thanks to
729	Luisa Ruz for all support during KSR visits in Chile and invaluable support to the
730	development of this research. This work was supported by Coordenação de Aperfeiçoamento
731	de Pessoal de Nível Superior - CAPES (Finance Code 001 to KSR); National Council for
732	Scientific and Technological Development - CNPq (grant 158862/2014-7 to KSR,
733	304053/2012-0 and 309641/2016-0 to GARM); São Paulo Research Foundation - FAPESP
734	(Grant 2010/17046-5 to KSR); Programa de Capacitação em Taxonomia - PROTAX (Grant
735	numbers CNPq 440574/2015-3 and FAPESP 2016/50378-8 to KSR); CNPq posdoc
736	fellowship to ACM.

737

738 Data availability

- 739 Supplementary data are provided in Appendix A.
- 740 Phylogenetic matrix are provided in Appendix B.

741

742 **References**

- 743 Alexander B.A., Michener C.D. 1995. Phylogenetic studies of the families of short-tongued
- bees (Hymenoptera: Apoidea). U. Kansas Sci. Bul. 55: 377–424.

- 745 Almeida E.A.B., Danforth B.N. 2009. Phylogeny of colletid bees (Hymenoptera: Colletidae)
- inferred from four nuclear genes. Mol. Phylogenet. Evol. 50: 290–309.
- 747 https://doi.org/10.1016/j.ympev.2008.09.028
- Almeida E.A.B., Pie M.R., Brady S.G., Danforth B.N. 2012. Biogeography and
- 749 diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the
- southern end of the world. J. Biogeogr. 39: 526–544. https://doi.org/10.1111/j.1365-
- 751 2699.2011.02624.x
- Ascher J.S. in Rozen J.R. Jr. 2003. Appendix: Evidence for the phylogenetic position of
- 753 Nolanomelissa from nuclear EF-1a sequence data. In: Melo G.A.R., Alves-dos-Santos I.,
- editors. Apoidea Neotropica: Homenagem aos 90 Anos de Jesus Santiago Moure.
- 755 Criciúma: UNESC. p. 107–108.
- Ascher J.S. 2004. Systematics of the bee family Andrenidae (Hymenoptera: Apoidea). Ithaca:
- 757 Cornell University, PhD Thesis. 333 p.
- Ascher J.S., Danforth B.N., Ji S. 2001. Phylogenetic utility of the major opsin in bees
- 759 (Hymenoptera: Apoidea): a reassessment. Mol. Phylogenet. Evol. 19(1): 76–93.
- 760 https://doi.org/10.1006/mpev.2001.0911
- 761 Ascher J.S., Engel M.S. 2017. A new species of Mermiglossa from Kenya, with comments on
- the arrangement of Old World Panurginae (Hymenoptera: Andrenidae). J. Melittol. 75: 1–
- 763 11. http://dx.doi.org/10.17161/jom.v0i75.6717
- Ascher J.S., Pickering J. 2020. Discover life bee species guide and world checklist
- 765 (Hymenoptera, Apoidea, Anthophila).
- 766 <u>http://www.discoverlife.org/mp/20q?guide=Apoidea_species</u> (accessed 10 November
- 767 2020).

- 768 Bacon C.D., Mora A., Wagner W.L., Jaramillo C.A. 2013. Testing geological models of
- revolution of the Isthmus of Panama in a phylogenetic framework. Bot. J. Linn. Soc. 171:
- 770 287–300. https://doi.org/10.1111/j.1095-8339.2012.01281.x
- 771 Bacon C.D., Silvestro D., Jaramillo C., Smith B.T., Chakrabarty P., Antonelli A. 2015.
- 772 Biological evidence supports an early and complex emergence of the Isthmus of Panama.
- 773 Proc. Natl. Acad. Sci. 112: 6110–6115. https://doi.org/10.1073/pnas.1423853112
- 774 Behrensmeyer A.K., Turner A. 2013. Taxonomic occurrences of Suidae recorded in the
- Paleobiology Database. Fossilworks. <u>http://fossilworks.org</u> (accessed 20 February 2020).
- 776 Brikiatis L. 2014. The De Geer, Thulean and Beringia routes: key concepts for understanding
- early Cenozoic biogeography. J. Biogeog. 41: 1036–1054.
- 778 https://doi.org/10.1111/jbi.12310
- 779 Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.H., Xie D., Suchard M.A., Rambaut
- A., Drummond A.J. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary
- 781 Analysis. PLoS Comput. Biol. 10(4): e1003537.
- 782 https://doi.org/10.1371/journal.pcbi.1003537
- 783 Cardinal S. 2018. Bee (Hymenoptera: Apoidea: Anthophila) diversity through time. Insect
- 784 Biodivers.: Sci. Soc. 2: 851–867. https://doi.org/10.1002/9781118945582.ch28
- 785 Cardinal S., Buchmann S.L., Russell A.L. 2018. The evolution of floral sonication, a pollen
- foraging behavior used by bees. Evol. 72: 590–600. https://doi.org/10.1111/evo.13446
- 787 Cardinal S., Danforth B.N. 2013. Bees diversified in the age of eudicots. Proc. Biol. Sci. 280:
- 788 20122686. https://doi.org/10.1098/rspb.2012.2686
- 789 Case J.A., Goin F.J., Woodburne M.O. 2005. "South American" marsupials from the Late
- 790 Cretaceous of North America and the origin of marsupial cohorts. J. Mamm. Evol. 12:
- 791 461–494. https://doi.org/10.1007/s10914-005-7329-3

- 792 Chintauan-Marquier I.C., Jordan S., Berthier P., Amédégnato C., Pompanon F. 2010.
- Evolutionary history and taxonomy of a Short-horned grasshopper subfamily: the
- Melanoplinae (Orthoptera: Acrididae). Mol. Phylogenet. Evol. 58: 22–32.
- 795 https://doi.org/10.1016/j.ympev.2010.07.003
- 796 Cione L., Gasparini G.M., Soibelzon E., Soibelzon L.H., Tonni E.P. 2015. The Great
- 797 American Biotic Interchange: A South American Perspective. Springer Verlag, London.
- 798 Coates A.G., Stallard R.F. 2013. How old is the Isthmus of Panama? Bull. Mar. Sci. 89: 801–
- 799 813. https://doi.org/10.5343/bms.2012.1076
- 800 Cody S., Richardson J.E., Rull V., Ellis C., Pennington R.T. 2010. The Great American Biotic
- 801 Interchange revisited. Ecogr. 33: 326–332. https://doi.org/10.1111/j.1600-
- 802 0587.2010.06327.x
- 803 Compagnucci L.A. 2015. Revisión del género Spinoliella Ashmead (Apoidea, Andrenidae) en
- la Argentina, con descripción de cuatro nuevas especies. Rev. del Mus. Arg. Cie. Nat. 17:
- 805 77–86.
- 806 Danforth B.N. 1996. Phylogenetic analysis and taxonomic revision of the Perdita subgenera
- 807 *Macrotera, Macroteropsis, Macroterella* and *Cockerellula*. Univ. Kansas Sci. Bull. 55:
- 808 635–692.
- 809 Danforth B.N., Brady S.G., Sipes S.D., Pearson A. 2004. Single-copy nuclear genes recover
- 810 Cretaceous-age divergences in bees. Syst. Biol. 53: 309–326.
- 811 https://doi.org/10.1080/10635150490423737
- 812 Danforth B.N., Fang J., Sipes S. 2006a. Analysis of family-level relationships in bees
- 813 (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD
- and RNA polymerase II. Mol. Phylogenet. Evol. 39: 358–372.
- 815 https://doi.org/10.1016/j.ympev.2005.09.022

- 816 Danforth B.N., Sipes S., Fang J., Brady S.G. 2006b. The history of early bee diversification
- based on five genes plus morphology. Proc. Nat. Acad. Sci., USA. 103: 15118–15123.
- 818 https://doi.org/10.1073/pnas.0604033103
- 819 Danforth B.N., Cardinal S., Praz C., Almeida E.A.B., Michez D. 2013. The Impact of
- 820 Molecular Data on Our Understanding of Bee Phylogeny and Evolution. Ann. Rev.
- 821 Entomol. 58: 57–78. https://doi.org/10.1146/annurev-ento-120811-153633
- deMenocal P., Ortiz J., Guilderson T., Adkins J., Sarnthein M., Baker L., Yarusinsky M.
- 823 2000. Abrupt onset and termination of the African humid period: rapid climate responses
- to gradual insolation forcing. Quat. Sci. Rev. 19: 347–361. https://doi.org/10.1016/S0277-
- 825 3791(99)00081-5
- 826 Dubitzky A., Plant J., Schonitzer K. 2010. Phylogeny of the bee genus Andrena Fabricius
- based on morphology. Mitt. Munch. Entomol. Ges. 100: 137–202.
- 828 Edler D., Klein J., Antonelli A., Silvestro D. 2020. raxmlGUI 2.0 beta: a graphical interface
- and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 2020: 1–5.
- 830 http://dx.doi.org/https://doi.org/10.1111/2041-210X.13512
- 831 Engel M.S. 2005. Family-group names for bees (Hymenoptera: Apoidea). Am. Mus. Nat. His.
- 832 3476: 1–33. https://doi.org/10.1206/0003-0082(2005)476[0001:FNFBHA]2.0.CO;2
- 833 Engel M.S, Hinojosa-Díaz I.A., Rasnitsyn A.P. 2009. A honey bee from the Miocene of
- 834 Nevada and the biogeography of *Apis* (Hymenoptera: Apidae: Apini). Proc. Calif. Acad.
- 835 Sci. 60: 23–38.
- 836 Engel M.S. 2015. A review of the genera and subgenera of Oxaeinae (Hymenoptera:
- 837 Andrenidae). J. Melittology. 52: 1–18. https://doi.org/10.17161/jom.v0i52.4902
- 838 Espeland M., Hall J.P.W., DeVries P.J., Lees D.C., Cornwall M., Hsu Y., Wu L., Campbell
- B39 D.L., Talavera G., Vila R., Salzman S., Ruehr S., Lohman D.J., Pierce N.E. 2015. Ancient
- 840 Neotropical origin and recent recolonization: phylogeny, biogeography and diversification

- of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93: 296–306.
- 842 https://doi.org/10.1016/j.ympev.2015.08.006
- 843 Evangelista O., Sakakibara A.M., Cryan J.R., Urban J.M. 2017. A phylogeny of the
- treehopper subfamily Heteronotinae reveals convergent pronotal traits (Hemiptera:
- 845 Auchenorrhyncha: Membracidae). Syst. Entomol. 42: 410–428.
- 846 https://doi.org/10.1111/syen.12221
- 847 Farris D., Jaramillo C., Bayona G., Restrepo-Moreno S.A., Montes C., Cardona A., Mora A.,
- 848 Speakman R., Glascock M., Valencia V. 2011. Fracturing of the Panamanian Isthmus
- during initial collision. Geol. 39: 1007–1010. https://doi.org/10.1130/G32237.1
- 850 Giunta G., Orioli S. 2011. The Caribbean Plate Evolution: Trying to Resolve a very
- 851 Complicated Tectonic Puzzle. In: Sharkov, E. (Ed.). New Frontiers in Tectonic Research -
- 852 General Problems, Sedimentary Basins and Island Arcs. Rijeka, Croatia: InTech, pp. 221–
- 853 248.
- 854 Goin F.J., Gelfo J.N., Chornogubsky L., Woodburne M.O., Martin T. 2012. Origins,
- radiations, and distribution of South American mammals: from greenhouse to icehouse
- worlds. In: Patterson, B.D., Costa, L.P. (Eds.) Bones, Clones, and Biomes: The History
- and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago,
- 858 pp. 20–50.
- 859 Gonzalez V.H., Engel M.S. 2016. A new species of *Callonychium* Brèthes from Argentina
- 860 (Hymenoptera: Andrenidae). Euroasian Entomol. J. 15: 31–34.
- 861 Gonzalez V.H., Smith-Pardo A.H., Engel M.S. 2017. Phylogenetic relationships of a new
- genus of callipsine bees from Peru, with a review of *Spinoliella* Ashmead (Hymenoptera,
- 863 Andrenindae). Bul. Am. Mus. Nat. Hist. 412: 1–71. https://doi.org/10.1206/0003-0090-
- 864 412.1.1

- 865 Graf V. 1966. A posição sistemática de Oxaeinae (Hymenoptera-Apoidea). Cienc. Cult. 18:
- 866 137–138.
- Graham A. 1999. Late Cretaceous and Cenozoic History of North American Vegetation.
- 868 Oxford University Press, New York.
- 869 Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
- 870 program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98
- Hedtke S., Patiny S., Danforth B.N. 2013. The bee tree of life: A supermatrix approach to
- apoid phylogeny and biogeography. BMC Evol. Biol. 13: 138.
- 873 https://doi.org/10.1186/1471-2148-13-138
- Hines H.M. 2008. Historical biogeography, divergence times, and diversification patterns of
- bumble bees (Hymenoptera: Apidae: *Bombus*). Syst. Biol. 57: 58–75.
- 876 https://doi.org/10.1080/10635150801898912
- 877 Hurd P.D. Jr, Linsley E.G. 1976. The bee family Oxaeidae with a revision of the North
- American species (Hymenoptera: Apoidea). Smithson. Contrib. Zool. 220: 1–75.
- 879 Iturralde-Vinent M.A., MacPhee R.D.E. 1999. Paleogeography of the Caribbean region:
- implications for Cenozoic biogeography. Bull. Am. Mus. Nat. Hist. 238: 1–95.
- 881 Katoh K., Rozewicki J., Yamada K.D. 2019. MAFFT online service: multiple sequence
- alignment, interactive sequence choice and visualization. Brief. Bioinform. 20: 1160–1166.
- 883 https://doi.org/10.1093/bib/bbx108
- 884 Kirby M.X., Jones D.S., MacFadden B.J. 2008. Lower Miocene stratigraphy along the
- Panama Canal and its bearing on the Central American Peninsula. PLoS One 3(7): e2791.
- 886 https://doi.org/10.1371/journal.pone.0002791
- 887 Larkin L., Neff L.J., Simpson B.B. 2006. Phylogeny of the Callandrena subgenus of Andrena
- 888 (Hymenoptera: Andrenidae) based on mitochondrial and nuclear DNA data: Polyphyly and

- convergent evolution. Mol. Phylogenet. Evol. 38: 330–343.
- 890 https://doi.org/10.1016/j.ympev.2005.10.003
- Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P. 2013. Bayesian analysis of
- biogeography when the number of areas is large. Syst. Biol. 62(6): 789–804.
- 893 https://doi.org/10.1093/sysbio/syt040
- Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017. PartitionFinder 2: New
- 895 methods for selecting partitioned models of evolution for molecular and morphological
- phylogenetic analyses. Mol. Biol. Evol. 34(3): 772–773.
- 897 https://doi.org/10.1093/molbev/msw260
- 898 Litman J.R., Danforth B.N., Eardley C.D., Praz C.J. 2011. Why do leafcutter bees cut leaves?
- New insights into the early evolution of bees. Proc. R. Soc. B. 278: 3593–600.
- 900 https://doi.org/10.1098/rspb.2011.0365
- 901 Martins A.C., Melo G.A.R. 2016. The New World oil-collecting bees Centris and Epicharis
- 902 (Hymenoptera, Apidae): Molecular phylogeny and biogeographic history. Zool. Scr. 45:
- 903 22–33. https://doi.org/10.1111/zsc.12133
- 904 Matzke N.J. 2013. BioGeoBEARS: BioGeography with Bayesian (and Likelihood)
- 905 Evolutionary Analysis in R Scripts. <u>http://cran.r-project.org/package=BioGeoBEARS</u>
- 906 (accessed 15 February 2021).
- 907 Matzke N.J. 2014. Model selection in historical biogeography reveals that founder-event
- 908 speciation is a crucial process in island clades. Syst. Biol. 63(6): 951–970.
- 909 https://doi.org/10.1093/sysbio/syu056
- 910 Melo G.A.R., Gonçalves R.B. 2005. Higher-level bee classifications (Hymenoptera, Apoidea,
- 911 Apidae sensu lato). Rev. Bras. Zool. 22(1): 153–159. https://doi.org/10.1590/S0101-
- 912 81752005000100017

- 913 Michener C.D. 1944. Comparative External Morphology, Phylogeny, and a Classification of
- 914 the Bees (Hymenoptera). Bull. Am. Mus. Nat. Hist. 82: 151–326.
- 915 Michener C.D. 1979. Biogeography of the bees. Ann. Mo. Bot. Garden. 66: 277–347.
- 916 https://doi.org/10.2307/2398833
- 917 Michener C.D. 2000. The Bees of the World. The Johns Hopkins University Press, Baltimore.
- 918 Michener C.D. 2007. The Bees of the World. 2nd Edition. The Johns Hopkins University
- 919 Press, Baltimore.
- 920 Miller M.A., Pfeiffer W., Schwartz T. 2011. Creating the CIPRES Science Gateway for
- 921 Inference of Large Phylogenetic Trees. Gateway Computing Environments. New Orleans.
- 922 p. 1–8. https://doi.org/10.1145/2016741.2016785
- 923 Montes C., Cardona A., McFadden R., Morón S.E., Silva C.A., Restrepo-Moreno S., Ramírez
- 924 D.A., Hoyos N., Wilson J., Farris D., Bayona G.A., Jaramillo C.A., Valencia V., Bryan J.,
- 925 Flores J.A. 2012. Evidence for middle Eocene and younger land emergence in central
- 926 Panama: implications for Isthmus closure. Geol. Soc. Am. Bull. 124: 780–799.
- 927 https://doi.org/10.1130/B30528.1
- 928 Montes C., Cardona A., Jaramillo C., Pardo A., Silva J.C., Valencia V., Ayala C., Pérez-
- 929 Angel L.C., Rodriguez-Parra L.A., Ramirez V., Niño H. 2015. Middle Miocene closure of
- 930 the Central American Seaway. Sci. 348: 226–229. https://doi.org/10.1126/science.aaa2815
- 931 Moure, J.S., Urban D., Melo G.A.R. 2012. Andreninae Latreille, 1802. Catalogue of Bees
- 932 (Hymenoptera, Apoidea) in the Neotropical Region online version.
- 933 <u>http://www.moure.cria.org.br/catalogue</u> (accessed 10 March 2021).
- 934 O'Dea A., Lessios H.A., Coates A.G., Eytan R.I., Restrepo-Moreno S.A., Cione A.L., Collins
- 935 L.S., Queiroz A., Farris D.W., Norris R.D., Stallard R.F., Woodburne M.O., Aguilera O.,
- Aubry M.P., Berggren W.A., Budd A.F., Cozzuol M.A., Coppard S.E., Duque-Caro H.,
- 937 Finnegan S., Gasparini G.M., Grossmann E.L., Johnson K.G., Keigwin L.D., Knowlton N.,

938	Leigh E.G. 1	eonard-Pingel J	S Marko P B	Pvenson N D	Rachello-Dolmen P G
550	LUIZII L.U., I	Loonara-i mgoi j	.0, marko 1.0.		

- 939 Soilbelzon E., Soilbelzon L., Todd J.A., Vermeij G.J., Jackson J.B.C. 2016. Formation of
- 940 the Isthmus of Panama. Sci. Adv. 2(8): e1600883. https://doi.org/10.1126/sciadv.1600883
- 941 Ortiz-Jaureguizar E., Pascual R. 2007. The Tectonic Setting of the Caribbean Region: Key in
- 942 the Radical Late Cretaceous-Early Paleocene South American Land Mammal Turnover. In:
- 943 Díaz-Martínez E., Rábano I., (Eds.). Fourth European Meeting on the Palaeontology and
- 944 Stratigraphy of Latin America. Instituto Geológico y Minero de España, Cuadernos del
- 945 Museo Geominero n $^{\circ}$ 8, Madrid, pp. 301–307.
- 946 Packer L., Ruz L. 2017. DNA barcoding the bees (Hymenoptera: Apoidea) of Chile: species
- 947 discovery in a reasonably well-known bee fauna with the description of a new species of
- 948 *Lonchopria* (Colletidae). Genome 60: 414–430. https://doi.org/10.1139/gen-2016-0071
- 949 Patiny S. 1999. Etude Phylogénétique des Panurginae de l'ancien monde (Hymenoptera,
- 950 Andrenidae). Linzer Biolog Beiträge 31: 249-275.
- 951 Peters R.S., Krogmann L., Mayer C., Donath A., Gunkel S., Meusemann K., Kozlov A.,
- 952 Podsiadlowski L., Petersen M., Lanfear R., Diez P.A., Heraty J., Kjer K.M., Klopfstein S.,
- 953 Meier R., Polidori C., Schmitt T., Liu S., Zhou X., Wappler T., Rust J., Misof B., Niehuis
- 954 O. 2017. Evolutionary history of the Hymenoptera. Curr. Biol. 27: 1013–1018.
- 955 https://doi.org/10.1016/j.cub.2017.01.027
- 956 Pindell J., Kennan L. 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern
- 957 South America in the mantle reference frame: an update. Geol. Soc. Spec. Publ. 328: 1-55.
- 958 https://doi.org/10.1144/SP328.1
- 959 Pisanty G., Richter R., Martin T., Dettman J., Cardinal S. 2021. Molecular phylogeny,
- 960 historical biogeography and revised classification of andrenine bees (Hymenoptera:
- 961 Andrenidae) (Hymenoptera: Andrenidae). Mol. Phylogenet. Evol. In press: 107151.
- 962 https://doi.org/10.1016/j.ympev.2021.107151

- 963 Praz C.J., Packer L. 2014. Phylogenetic position of the bee genera Ancyla and Tarsalia
- 964 (Hymenoptera: Apidae): a remarkable base compositional bias and an early Paleogene
- geodispersal from North America to the Old World. Mol. Phylogenet. Evol. 81: 258–270.
- 966 https://doi.org/10.1016/j.ympev.2014.09.003
- 967 Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. 2018. Posterior summarization
- in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5): 901–904.
- 969 https://doi.org/10.1093/sysbio/syy032
- 970 Rambaut A. 2016. FigTree: Tree figure drawing tool, version 1.4.3.
- 971 <u>http://tree.bio.ed.ac.uk/software/gtree</u>. (accessed 10 February 2020)
- 972 Ramírez S.R., Roubik D.W., Skov C.E., Pierce N.E. 2010. Phylogeny, diversification patterns
- and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J.
- 974 Linn. Soc. 100: 552–72. https://doi.org/10.1111/j.1095-8312.2010.01440.x
- 975 Ramos K.S. 2013. The bee genus Arhysosage Brèthes (Apidae: Andreninae: Calliopsini): new
- 976 species, taxonomic notes and new distribution records from Brazil. J. Nat. Hist. 47(43–44):
- 977 2735–2747. https://doi.org/10.1080/00222933.2013.791887
- 978 Ree R.H., Smith S.A. 2008. Maximum likelihood inference of geographic range evolution by
- dispersal, local extinction, and cladogenesis. Syst. Biol. 57(1): 4–14.
- 980 https://doi.org/10.1080/10635150701883881
- 981 Roig-Alsina A., Compagnucci L.A. 2003. Description, phylogenetic relationships, and
- 982 biology of *Litocalliopsis adesmiae*, a new genus and species of South American calliopsine
- bees (Hymenoptera, Andrenidae). Rev. Mus. Arg. Cie. Nat. 5(1): 99 \Box 112.
- 984 Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of
- historical biogeography. Syst. Biol. 46(1): 195-203.
- 986 https://doi.org/10.1093/sysbio/46.1.195

- 987 Ronquist F., Teslenko M., Van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu
- 988 L., Suchard M.A., Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
- 989 inference and model choice across a large model space. Syst. Biol. 61: 539–542.
- 990 https://doi.org/10.1093/sysbio/sys029
- 991 Rozen, J.G. Jr. 1965 The biology and immature stages of *Melitturga clavicornis* (Latreille)
- and of *Sphecodes albilabris* (Kirby) and the recognition of the Oxaeidae at the family level
- 993 (Hymenoptera, Apoidea). Am. Mus. Nov. 2224: $1 \square 18$.
- 994 Rozen, J.G. Jr. 1989. Life history studies of the "primitive" panurgine bees (Hymenoptera:
- 995 Andrenidae: Panurginae). Am. Mus. Novit. 2962: 1 □ 27.
- 996 Rozen, J.G. Jr. 1993. Phylogenetic relationships of *Euherbstia* with other short-tongued bees
- 997 (Hymenoptera: Apoidea). Am. Mus. Novit. $3060: 1 \square 17$.
- 998 Rozen, J.G. Jr. 1994. Biologies of the bee genera Ancylandrena (Andrenidae: Andreninae)
- 999 and *Hexepeolus* (Apidae: Nomadinae), and phylogenetic relationships of *Ancylandrena*
- based on its mature larvae (Hymenoptera: Apoidea). Am. Mus. Novit. 3108: 1□19.
- 1001 Rozen J.G. Jr 2003. A new tribe, genus, and species of South American panurgine bee
- 1002 (Andrenidae, Panurginae), oligolectic on Nolana (Nolanaceae). In Melo G.A.R. & Alves-
- 1003 dos-Santos I. (Eds.). Apoidea Neotropica: Homenagem aos 90 Anos de Jesus Santiago
- 1004 Moure. Editora UNESC, Criciúma, pp. 93 🗆 108.
- 1005 Rozen J.G. Jr. 2013. Mature larvae of calliopsine bees: Spinoliella, Callonychium, and
- 1006 *Arhysosage* including biological notes, and a larval key to calliopsine genera
- 1007 (Hymenoptera: Apoidea: Andrenidae: Panurginae). Am. Mus. Novit. 3782: 1 27.
- 1008 https://doi.org/10.1206/3782.2
- 1009 Rozen J.G. Jr. 1964 [1965]. Phylogenetic-taxonomic significance of last instar of Protoxaea
- 1010 gloriosa Fox, with descriptions of first and last instars (Hymenoptera: Apoidea). J. New
- 1011 York Entomol. Soc. 72: 223 230.

- 1012 Rozen J.G. Jr. 1965. The biology and immature stages of *Melitturga clavicornis* (Latreille)
- and of *Sphecodes albilabris* (Kirby) and the recognition of the Oxaeidae at the family level
- 1014 (Hymenoptera, Apoidea). Am. Mus. Novit. 2224: 1–18.
- 1015 Rozen J.G. Jr. 1993. Phylogenetic relationships of *Euherbstia* with other short-tongued bees
- 1016 (Hymenoptera: Apoidea). Am. Mus. Novit. 3060: 1–17.
- 1017 Rozen J.G. Jr. 1994. Biologies of the bee genera Ancylandrena (Andrenidae: Andreninae) and
- 1018 *Hexepeolus* (Apidae: Nomadinae), and phylogenetic relationships of *Ancylandrena* based
- 1019 on its mature larvae (Hymenoptera: Apoidea). Am. Mus. Novit. 3108: 1 19.
- 1020 Rozen, J.G. Jr and Ruz L. 1995. South American Panurgine bees (Andreninae: Panurginae),
- 1021 Part. II. Adults, immature stages and biology of *Neffapis longilingua*, a new genus and
- species with elongated glossa. Am. Mus. Novit. 3136: 1–15.
- 1023 Ruz L. 1986. Classification and phylogenetic relationships of the panurgine bees
- 1024 (Hymenoptera Andrenidae). University of Kansas, PhD dissertation, Lawrence.
- 1025 Ruz L. 1991. Classification and phylogenetic relationships of the panurgine bees: The
- 1026 Calliopsini and allies (Hymenoptera: Andrenidae). Univ. Kans. Sci. Bull. 54: 209–256.
- 1027 Sann M., Niehuis O., Peters R.S., Mayer C., Kozlov A., Podsiadlowski L., Bank S.,
- 1028 Meusemann K., Misof B., Bleidorn C., Ohl M. 2018. Phylogenomic analysis of Apoidea
- sheds new light on the sister group of bees. BMC Evol. Biol. 18(1): 71.
- 1030 https://doi.org/10.1186/s12862-018-1155-8
- 1031 Sanmartín I., Enghoff H., Ronquist F. 2001. Patterns of animal dispersal, vicariance and
- 1032 diversification in the Holarctic. Biol. J. Linn. Soc. 73: 345–390.
- 1033 https://doi.org/10.1111/j.1095-8312.2001.tb01368.x
- 1034 Schlindwein C., Moure J.S. 2005. Protomeliturga catimbaui sp. nov. (Hymenoptera,
- 1035 Andrenidae), a segunda espécie da tribo Protomeliturgini. Rev. Bras. Zool. 22: 833–835.
- 1036 https://doi.org/10.1590/S0101-81752005000400004

- 1037 Scotese C.R. 2014. Atlas of Neogene Paleogeographic Maps (Mollweide Projection), Maps 1-
- 1038 7, Volume 1, The Cenozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project,
- Evanston.
- 1040 Simpson B.B., Neff J.L. 1985. Plants, their pollinating bees, and the great American
- 1041 interchange. In: Stehli F.G, Webb S.D. (Eds.). The Great American Biotic Interchange:
- 1042 Plenum Publishing Corporatio, pp. 427–452.
- 1043 Shanahan T.M., McKay N.P., Hughen K.A., Overpeck J.T., Otto-Bliesner B., Heil C.W.,
- 1044 King J., Scholz C.A., Peck J. 2015. The time-transgressive termination of the African
- 1045 Humid Period. Nat. Geosci. 8: 140–144. https://doi.org/10.1038/ngeo2329
- 1046 Staden R., Beal K.F., Bonfield J.K. 1998. The Staden package, 1998. Methods Mol Biol. 132:
- 1047 115-130. https://doi.org/10.1385/1-59259-192-2:115
- 1048 Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
- 1049 with thousands of taxa and mixed models. Bioinform 22: 2688–2690.
- 1050 https://doi.org/10.1093/bioinformatics/btl446
- 1051 Sturge R.J., Jacobsen F., Rosensteel B.B., Neale R.J., Omland K.E. 2009. Colonization of
- 1052 South America from Caribbean islands confirmed by molecular phylogeny with increased
- 1053 taxon sampling. Condor 111(3): 575–579. https://doi.org/10.1525/cond.2009.080048
- 1054 Taylor D.W. 1991. Paleobiogeographic relationships of Andean angiosperms of Cretaceous to
- 1055 Pliocene age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88: 69–84.
- 1056 https://doi.org/10.1016/0031-0182(91)90015-J
- 1057 Turchetto Zolet A.C., Pinheiro F., Salgueiro F., Palma Silva C. 2013. Phylogeographical
- 1058 patterns shed light on evolutionary process in South America. Mol. Ecol. 22: 1193–1213.
- 1059 https://doi.org/10.1111/mec.12164

- 1060 Vaidya G., Lohman D.J., Meier R. 2011. SequenceMatrix: concatenation software for the fast
- assembly of multi gene datasets with character set and codon information. Cladistics 27:
- 1062 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
- 1063 Wilson J.S., Carril O.M., Sipes S.D. 2014. Revisiting the Great American Biotic Interchange
- through analyses of amphitropical bees. Ecog. 37: 791–796.
- 1065 https://doi.org/10.1111/ecog.00663
- 1066 Woodburne M.O. 2010. The Great American Biotic Interchange: dispersals, tectonics,
- 1067 climate, sea level and holding pens. J. Mamm. Evol. 17: 245–264.
- 1068 https://doi.org/10.1007/s10914-010-9144-8