# Estimation of Cross-Species Introgression Rates using Genomic Data Despite Model Unidentifiability 

Ziheng Yang (orcid: 0000-0003-3351-7981) ${ }^{1, *}$ and Tomáš Flouri (orcid: 0000-0002-8474-9507) ${ }^{1}$<br>${ }^{1}$ Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK

## Received on $x x x x$, revised on $x x x x$, accepted on $x x x x$


#### Abstract

Full likelihood implementations of the multispecies coalescent with introgression (MSci) model takes the genealogical fluctuation across the genome as a major source of information to infer the history of species divergence and gene flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues, whereby different models or parameters make the same predictions about the data and cannot be distinguished by the data. Previous studies have focused on heuristic methods based on gene trees, and does not make an efficient use of the information in the data. Here we study the unidentifiability of MSci models under the full likelihood methods. We characterize the unidentifiability of the bidirectional introgression (BDI) model, which assumes that gene flow occurs in both directions. We derive simple rules for arbitrary BDI models, which create unidentifiability of the label-switching type. In general, an MSci model with $k$ BDI events has $2^{k}$ unidentifiable modes or towers in the posterior, with each BDI event between sister species creating within-model parameter unidentifiability and each BDI event between non-sister species creating between-model unidentifiability. We develop novel algorithms for processing Markov chain Monte Carlo (MCMC) samples to remove label-switching problems and implement them in the BPP program. We analyze real and synthetic data to illustrate the utility of the BDI models and the new algorithms. We discuss the unidentifiability of heuristic methods and provide guidelines for the use of MSci models to infer gene flow using genomic data. Multispecies coalescent $\mid$ introgression $\mid$ unidentifiability $\mid$ BPP $\mid$ MSci $\mid$ label-switching


## INTRODUCTION

Genomic sequences sampled from modern species contain rich historical information concerning species divergences and cross-species gene flow. In the past two decades, analysis of genomic sequence data has 5 demonstrated the widespread nature of cross-species hybridization or introgression (Baack and Rieseberg, 2007; Harrison and Larson, 2014; Mallet et al., 2016). A number of statistical methods have been developed to infer introgression using genomic data, most of which use data summaries such as the estimated gene trees or genome-wide site-pattern counts (Degnan, 2018; Elworth et al., 2019; Jiao et al., 2021). Fulllikelihood methods applied directly to multi-locus sequence alignments (Wen and Nakhleh, 2018; Zhang et al., 2018; Flouri et al., 2020) allow estimation of evolutionary parameters including the timing and strength of introgression, as well as species divergence times and population sizes for modern and extinct ancestral species. These have moved the field beyond simply testing for the presence of cross-species gene flow.

Models of cross-species introgression are known to cause unidentifiability issues, whereby different introgression models make the same probabilistic predictions about the data, and cannot be distinguished by

[^0]the data (Yu et al., 2012; Pardi and Scornavacca, 2015; Zhu and Degnan, 2017; Solis-Lemus et al., 2020). If the probability distributions of the data are identical under model $m$ with parameters $\Theta$ and under model $m^{\prime}$ with parameters $\Theta^{\prime}$, with
\[

$$
\begin{equation*}
f(X \mid m, \Theta)=f\left(X \mid m^{\prime}, \Theta^{\prime}\right) \tag{1}
\end{equation*}
$$

\]

for essentially all possible data $X$, the models are unidentifiable by data $X$. Here we use the term withinmodel unidentifiability if $m=m^{\prime}$ and $\Theta \neq \Theta^{\prime}$, or cross-model unidentifiability if $m \neq m^{\prime}$. In the former case, two sets of parameter values in the same model are unidentifiable, whereas in the latter, two distinct models are unidentifiable. In Bayesian inference, the prior $f(m, \Theta)$ may be used to favour a particular model or set of parameters. However, if the prior is only vaguely informative and the posterior is dominated by the likelihood, there will be multiple modes in the posterior that are not perfectly symmetrical.

Several studies examined the unidentifiability of introgression models when gene tree topologies (either rooted or unrooted) are used as data (Pardi and Scornavacca, 2015; Zhu and Degnan, 2017; Solis-Lemus et al., 2020), and the results apply to heuristic methods based on (reconstructed) gene trees. The issue has not been studied when full-likelihood methods are applied, which operate on multilocus sequence alignments directly. Note that unidentifiability depends on the data in both directions were suspected, but detailed analyses detected gene flow from A. arabiensis to A. gambiae only but not in the opposite direction (Thawornwattana et al., 2018). At any rate, BDI is one of the 105 most plausible introgression models and appears to be one of the most common forms of cross-species gene flow. The unidentifiability of MSci models with unidirectional introgression (UDI) is simpler, and we defer its discussion to the Discussion section. Similarly
we discuss unidentifiability of heuristic methods later.
The basic BDI model between two species (fig. 1) involves nine parameters, with $\Theta=\left(\theta_{A}, \theta_{B}, \theta_{X}, \theta_{Y}, \theta_{R}\right.$, $\left.\tau_{R}, \tau_{X}, \varphi_{X}, \varphi_{Y}\right)$. An introgression model is similar to a species tree except that it includes horizontal branches representing lateral gene flow across species. Besides speciation nodes representing species divergences, there are hybridization nodes representing introgression events as well. While a speciation node has one parent and two daughters, a hybridization node has two parents and one daughter. The 'introgression probabilities' or 'admixture proportions' ( $\varphi$ and $1-\varphi$ ) specify the contributions of the two parental populations to the hybrid species. When we trace the genealogical history of a sample of sequences from the modern species backwards in time and reach a hybridization node, each of the sequences takes the two parental paths with probabilities $\varphi$ and $1-\varphi$. There are thus three types of parameters in an introgression (or MSci) model: the times of species divergence and introgression ( $\tau \mathrm{s}$ ), the (effective) population sizes of modern and ancestral species $(\theta \mathrm{s})$, and the introgression probabilities $(\varphi \mathrm{s})$. Both the divergence times ( $\tau \mathrm{s}$ ) and population sizes $(\theta \mathrm{s})$ are measured in the expected number of mutations per site.

The BDI model, in the case of two species (fig. 1), is noted to have an unidentifiability issue (Flouri et al., 2020). Let $\Theta^{\prime}$ be a set of parameters with the same values as $\Theta$ except that $\varphi_{X}^{\prime}=1-\varphi_{X}, \varphi_{Y}^{\prime}=1-\varphi_{Y}, \theta_{X}^{\prime}=$ $\theta_{Y}$, and $\theta_{Y}^{\prime}=\theta_{X}$. Then $f(G \mid \Theta)=f\left(G \mid \Theta^{\prime}\right)$ for any gene tree $G$ (fig. 1b\&c). Here $G$ represents both the gene tree topology and branch lengths (coalescent times). We assume multiple sequences sampled per species at the same locus (see Discussion for unidentifiability caused by sampling only one sequence per species). Thus for every point $\Theta$ in the parameter space, there is a 'mirror' point $\Theta^{\prime}$ with exactly the same likelihood. With $\Theta$, the $A$ sequences take the left (upper) path at $X$ and enter population $R X$ with probability $1-\varphi_{X}$, coalescing at the rate $\frac{2}{\theta_{X}}$, while with $\Theta^{\prime}$, the same $A$ sequences may take the right (horizontal) path and enter population $R Y$ with probability $\varphi_{X}^{\prime}=1-\varphi_{X}$, coalescing at the rate $\frac{2}{\theta_{Y}^{\prime}}=\frac{2}{\theta_{X}}$. The differences between $\Theta$ and $\Theta^{\prime}$ are in the labelling, with 'left' and $X$ under $\Theta$ corresponding to 'right' and $Y$ under $\Theta^{\prime}$, but the probabilities involved are the same. The same argument applies to sequences from $B$ going through node $Y$, and to any numbers of sequences from $A$ and $B$ considered jointly. Thus $f(G \mid \Theta)=f\left(G \mid \Theta^{\prime}\right)$ for essentially all $G$. If the priors on $\varphi_{X}$ and $\varphi_{Y}$ are symmetrical, say $\varphi \sim \operatorname{beta}(\alpha, \alpha)$, the posterior density will satisfy $f(\Theta \mid X)=f\left(\Theta^{\prime} \mid X\right)$ for all $X$. Otherwise the "twin towers" in the posterior may not have exactly the same height.

The situation is very similar to the label-switching problem in Bayesian clustering (Richardson and Green, 1997; Celeux et al., 1998; Stephens, 2000; Jasra et al., 2005). Consider data $X=\left\{x_{i}\right\}$ as a sample from
a mixture of two normal distributions, $\mathbb{N}\left(\mu_{1}, 1\right)$ and $\mathbb{N}\left(\mu_{2}, 1\right)$, with the mixing proportions $p_{1}$ and $p_{2}=$ $1-p_{1}$. Let $\Theta=\left(p_{1}, \mu_{1}, \mu_{2}\right)$ be the parameter vector. Then $\Theta^{\prime}=\left(p_{2}, \mu_{2}, \mu_{1}\right)$ with $p_{2}=1-p_{1}$ will have exactly the same likelihood, so that $f(X \mid \Theta)=f\left(X \mid \Theta^{\prime}\right)$ for essentially all data $X$. In effect, the labels 'group 1' and 'group 2' are switched between $\Theta$ and $\Theta^{\prime}$.

As an example, we fit the BDI model of figure 2a to genomic data from three Heliconius butterfly species: H. melpomene, H. timareta, and H. numata (Edelman et al., 2019; Thawornwattana et al., 2021). Figure 3a shows the trace plots for parameters $\varphi_{X}$ and $\varphi_{Y}$ from a
${ }_{80}$ Markov chain Monte Carlo (MCMC) run. The Markov chain moves between two peaks, centered around $\left(\varphi_{X}, \varphi_{Y}\right)=(0.35,0.1)$ and $(0.65,0.9)$, respectively. In effect, the algorithm is switching between $\Theta$ and $\Theta^{\prime}$ and changing the definition of parameters during the same MCMC run. This is a label-switching problem, as occurs in Bayesian clustering. The usual practice of estimating parameters by their posterior means calculated using the MCMC sample ( 0.54 for $\varphi_{X}$ and 0.62 for $\varphi_{Y}$ in fig. 3a) and constructing the credibility intervals is inappropriate. Indeed the posterior distribution of $\Theta$ is exactly symmetrical with twin towers, and if the chain is run long enough, the sample means of $\varphi_{X}$ and $\varphi_{Y}$ will be exactly $\frac{1}{2}$, irrespectively of what values may fit the data well. The results are similar when the first 500 exonic loci are analyzed, in which the Markov chain moves between two towers centered around $(0.3,0.1)$ and $(0.7,0.9)$ (fig. S1a).

Unidentifiable models cannot be applied to real data as they are trying to "distinguish the indistinguishable" (Pardi and Scornavacca, 2015). Results such as those of figures 3a \& S1a raise two questions. First, what are the rules concerning the unidentifiability of general BDI models, for example, if there are more than two species on the species tree, more than one BDI event, or if the BDI event involves non-sister species (fig. 1). Second how do we deal with the problem of label-switching and make the models useful for real data analyses? We address those problems. We study the unidentifiability issue of BDI models for an arbitrary number of species with an arbitrary species tree, when a full-likelihood method is applied to multilocus sequence data. It has been conjectured that an MSci model is identifiable by full likelihood methods using data of multi-locus sequence alignments if and only if it is identifiable when the data consist of gene trees with coalescent times (Flouri et al., 2020). We make use of this conjecture and consider two BDI models to be unidentifiable if and only if they generate the same distribution of gene trees with coalescent times. We emphasize that the unidentifiability discussed here affects all methods of inference using genomic sequence data, including heuristic methods based on summary statistics as well as full likelihood methods
(see Discussion). We identify general rules for the unidentifiability of the BDI models. We then develop new algorithms for post-processing the MCMC samples generated from a Bayesian analysis under the BDI model to remove the label-switching. Those efforts make the BDI models usable for real data analysis despite their unidentifiability. We use the BPP program (Flouri et al., 2018) to analyze synthetic datasets as well as genomic data from Heliconius butterflies to demonstrate the utility of the BDI models and the new algorithms. After we have dealt with the BDI models, we discuss the unidentifiability of UDI models and of heuristic methods.

## THEORY

## The rule of unidentifiability of BDI models

In full likelihood implementations of the MSci model, the gene tree $G$ for any given sample of sequences from the modern species represents the complete history of coalescence and introgression events for the sample, including the gene tree topology, the coalescent times, as well as the parental path taken by each sequence at each hybridization node (e.g., Jiao et al., 2021, eq. 14). The probability distribution of the gene tree $G$ depends on the species tree, species divergence times $(\tau \mathrm{s})$, the population sizes $(\theta \mathrm{s})$ which determine the coalescent rates in the different populations $\left(\frac{2}{\theta}\right)$, and the introgression probabilities at the hybridization nodes $(\varphi)$. It does not depend on the labels attached to the internal nodes in the species tree.

Consider a part of the species tree or MSci model where species $A$ and $B$ exchange migrants at time $\tau_{X}=$ $\tau_{Y}$ (fig. 4). To study the backwards-in-time process of coalescent and introgression, which gives the probability density of the gene tree $f(G \mid S, \Theta)$, we can treat nodes $X$ and $Y$ as one node, $X Y$. When sequences from $A$ reach node $X Y$, each of them has probability $1-\varphi_{X}$ of taking the left parental path ( $R X$ ) and probability $\varphi_{X}$ of taking the right parental path $(S Y)$. Similarly when sequences from $B$ reach node $X Y$, they have probabilities $\varphi_{Y}$ and $1-\varphi_{Y}$ of taking the left $(R X)$ and right $(Y S)$ parental paths, respectively. If we swap branches $A$ and $B$, carrying with them their population size parameters $(\theta)$ and introgression probabilities $(\varphi)$, the probability density of the gene-trees remains unchanged. Thus the species tree-parameter combinations $(S, \Theta)$ and $\left(S^{\prime}, \Theta^{\prime}\right)$ of figure 4b\&c give exactly the same probability distribution,

$$
\begin{equation*}
f(G \mid S, \Theta)=\left(G \mid S^{\prime}, \Theta^{\prime}\right), \quad \text { for every gene tree } G \tag{2}
\end{equation*}
$$

In other words, $(S, \Theta)$ and $\left(S^{\prime}, \Theta^{\prime}\right)$ are unidentifiable (eq. 1).

Note that the processes of coalescent and introgression before reaching nodes $A$ and $B$ (with time running backwards) are identical between $\Theta$ and $\Theta^{\prime}$, as are the processes past nodes $X$ and $Y$. Thus the rule applies if
each of $A$ and $B$ is a subtree, with introgression events inside, or if there are introgression events involving a descendant of $A$ and a descendant of $B$.

If $A$ and $B$ are sister species or the parents $R$ and $S$ are one node in the species tree, the species trees $(A, B)$ and $(B, A)$ will be the same so that $S=S^{\prime}$ in eq. 2 . Then $\Theta$ and $\Theta^{\prime}$ (fig. 4) will be two sets of parameter values in the same model and we have a case of withinmodel unidentifiability. Otherwise the unidentifiability is cross-model.

## Canonical cases of BDI models

Here we study major BDI models to illustrate the rule of unidentifiability and to provide reference for researchers who may apply those models to analyze genomic datasets.

If we add subtrees onto branches $X A, Y B$, or the root branch $R$ in the two-species tree of figure 1a, so that the BDI event remains to be between two sister species, the model will exhibit within-model parameter unidentifiability (fig. S2), just like the basic model of figure 1a.

If the BDI event is between non-sister species, the model exhibits cross-model unidentifiability. Figures S3a\&a' show a model with a BDI event between cousins, while in figures S3b\&b', the two species involved in the BDI event are more distantly related.

Figures S4a, b \&c show three models each with a BDI event between non-sister species. In figure S4a, $X$ and $Y$ are non-sister species on the original binary species tree. In figure $\mathrm{S} 4 \mathrm{~b} \& \mathrm{c}, X$ and $Y$ are nonsister species because there are introgression events involving branches $R X$ and/or $R Y$. In all three cases, there is cross-model unidentifiability, with the twin towers shown in $\mathrm{S} 4 \mathrm{a}^{\prime}, \mathrm{b}^{\prime} \& \mathrm{c}^{\prime}$.

The case of two non-sister BDI events for three species is illustrated in figure S5. According to our rule, there are four unidentifiable models in the posterior, with parameter mappings shown in figure S5. One way of seeing that the four models are equivalent or unidentifiable is to assume that the introgression probabilities ( $\varphi_{X}, \varphi_{Y}, \varphi_{Z}$, and $\left.\varphi_{W}\right)$ are all $<\frac{1}{2}$, and then work out the major routes taken when we trace the genealogical history of sequences sampled from modern species. In such cases, all four models of figure S5 predict the following: most sequences from $A$ will take the route $Z R$ at node $Z W$ with probability $1-\gamma$; most sequences from $B$ will take the route $X-W$ at node $X Y$ (with probability $1-\alpha$ ), then the route $W S$ at node $Z W$ (with probability $1-\delta$ ), before reaching $S R$; and most sequences from $C$ will take the route $Y S$ at node $X Y$ (with probability $1-\beta$ ), before reaching $S R$. Of course the four models are unidentifiable whatever values the introgression probabilities take. Those models have been used to analyze genomic data from Texas Horned Lizards (Phrynosoma cornutum) (Finger et al., 2021).

Figure 5 shows two models for five species, each
model involving three BDI events. In figure 5a, all three BDI events involve sister species, so that there are $2^{3}=8$ unidentifiable within-model towers in the posterior. In figure 5b, one BDI event involves nonsister species while two involve sister species, so that there are two unidentifiable models, each of which has four unidentifiable within-model towers in the posterior.

In general, if there are $m$ BDI events between sister species and $n$ BDI events between non-sister species, there will be $2^{n}$ unidentifiable models, each having $2^{m}$ within-model unidentifiable towers.

## Unidentifiability of double-DBI models

Figure 6a shows two BDI events between species $A$ and $B$, which occurred at times $\tau_{X}=\tau_{Y}$ and $\tau_{Z}=\tau_{W}$, respectively. To apply the rule of figure 4 , we treat $Z$ and $W$ as one node so that $X$ and $Y$ are considered sister species. There are then four within-model unidentifiable towers in the posterior space, shown as $\Theta_{1}-\Theta_{4}$ in fig. 6. The parameter mappings are given in the following table

| $\Theta$ | $\varphi_{X}$ | $\varphi_{Y}$ | $\theta_{X}$ | $\theta_{Y}$ | $\varphi_{Z}$ | $\varphi_{W}$ | $\theta_{Z}$ | $\theta_{W}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Theta_{1}: \varphi_{X}<\frac{1}{2}, \varphi_{Z}<\frac{1}{2}$ | $\alpha$ | $\beta$ | $\theta_{X}$ | $\theta_{Y}$ | $\gamma$ | $\delta$ | $\theta_{Z}$ | $\theta_{W}$ |
| $\Theta_{2}: \varphi_{X}<\frac{1}{2}, \varphi_{Z}>\frac{1}{2}$ | $\alpha$ | $\beta$ | $\theta_{X}$ | $\theta_{Y}$ | $1-\gamma$ | $1-\delta$ | $\theta_{W}$ | $\theta_{Z}$ |
| $\Theta_{3}: \varphi_{X}>\frac{1}{2}, \varphi_{W}<\frac{1}{2}$ | $1-\alpha$ | $1-\beta$ | $\theta_{Y}$ | $\theta_{X}$ | $\delta$ | $\gamma$ | $\theta_{W}$ | $\theta_{Z}$ |
| $\Theta_{4}: \varphi_{X}>\frac{1}{2}, \varphi_{W}>\frac{1}{2}$ | $1-\alpha$ | $1-\beta$ | $\theta_{Y}$ | $\theta_{X}$ | $1-\delta$ | $1-\gamma$ | $\theta_{Z}$ | $\theta_{W}$ |

In general, with $k$ BDI events between two species, which occurred at different time points in the past, there will be $2^{k}$ unidentifiable within-model towers in the posterior. There may be little information in practical datasets to estimate so many parameters: if all sequences have coalesced before they reach the ancient introgression events near the root of the species tree, the introgression probabilities ( $\varphi$ s) and the associated population sizes $(\theta \mathrm{s})$ will be nearly impossible to estimate. Thus we do not consider more than two BDI events between two species. Note that even the model with one BDI event is not identifiable by heuristic methods that use gene tree topologies only. A small simulation is conducted to illustrate the feasibility of applying the double-BDI model (fig. 6) to genomic datasets; see Results.

## Addressing unidentifiability issues and difficulties with identifiability constraints

According to our rule, MSci models with BDI events can create both within-model and cross-model unidentifiability. Cross-model unidentifiability is relatively simple to identify and deal with. If the MCMC is run with the MSci model fixed (Flouri et al., 2020), only one of the models (e.g., model $S_{1}$ with parameters $\Theta_{1}$ in fig. S5) is visited in the chain. One can then summarize the posterior distribution for parameters under that model (which may be smooth and single-moded), and
the posterior summary may be mapped onto the other unidentifiable models according to the rule. See Finger et al. (2021) for such an application of BDI models of figure S5. If the MCMC is trans-model and visits different models in the chain (Zhang et al., 2018; Wen and Nakhleh, 2018), the posterior space is symmetrical between the unidentifiable models (such as models $S_{1}-$ $S_{4}$ of fig. S5). However, such symmetry is unlikely to be achieved in the MCMC sample due to well-known mixing difficulties of trans-model MCMC algorithms. One may choose to focus on one of the models (e.g., $S_{1}$ of fig. S5) and post-process the MCMC sample to map the sample onto the chosen model before producing the within-model posterior summary. Oftentimes the MCMC may explore the within-model posterior space very well, despite difficulties of moving from one model to another. In all cases, the researcher has to be aware of the unidentifiable models which are equally good explanations of the data (see Discussion).

Our focus here is on within-model unidentifiability created by BDI events between sister species. When there are multiple modes in the posterior, each mode may offer a sensible interpretation of the data, but it is inappropriate to merge MCMC samples from different modes, or to construct posterior summaries such as the posterior means and CIs using MCMC samples that traverse different modes. It is instead more appropriate to summarize the samples for each mode.

A common strategy for removing label-switching is to apply so-called identifiability constraints. In the simple BDI model of figure 1 , any of the following constraints may be applicable: $\varphi_{X}<\frac{1}{2}, \varphi_{Y}<\frac{1}{2}$, and $\theta_{X}<\theta_{Y}$. Such identifiability constraints may be imposed during the MCMC or during post-processing of the MCMC samples. As discussed previously (Celeux et al., 1998; Stephens, 2000), such a constraint may be adequate if the posterior modes are well separated, but may not work well otherwise. For example, if $\varphi_{X}$ is far away from $\frac{1}{2}$ in all MCMC samples, it will be simple to post-process the MCMC sample to impose the constraint $\varphi_{X}<\frac{1}{2}$. This is the case in analyses of the large datasets in this paper, for example, when all noncoding and exonic loci from chromosome 1 of the Heliconius data are analyzed (table 1). However, when the posterior modes are not well-separated (either because the true parameter value is close to the boundary defined by the inequality or because the data lack information so that the CIs are wide), different identifiability constraints can lead to very different parameter posteriors (Richardson and Green, 1997), and an appropriate constraint may not exist. A serious problem in such cases is that imposing an identifiability constraint may generate posterior distributions overrepresented near the boundary, with seriously biased posterior means (Celeux et al., 1998; Stephens, 2000). For example, $\varphi_{X}$ may have substantial density mass both below and above $\frac{1}{2}$, and imposing the constraint
$\varphi_{X}<\frac{1}{2}$ will artificially generate high density mass close to $\varphi_{X}=\frac{1}{2}$. Similarly the posterior distributions of $\theta_{X}$ and $\theta_{Y}$ may overlap, so that the constraint $\theta_{X}<\theta_{Y}$ may not be appropriate.

## New algorithms to process MCMC samples from the BDI model to remove label switching

One approach to dealing with label-switching problems in Bayesian clustering is relabelling. The MCMC is run without any constraint, and the MCMC sample is then post-processed to remove label switching, by attempting to move each point in the MCMC sample to its alternative unidentifiable positions in order to, as far as possible, make the marginal posterior distributions smooth and unimodal (Celeux et al., 1998; Stephens, 2000). The processed sample is then summarized to generate the posterior of the parameters. Here we follow this strategy and implement three relabelling algorithms to post-process the MCMC samples generated under the BDI model.

Let $\Theta=\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}\right)$, which has a mirror point $\Theta^{\prime}=\left(\varphi_{X}^{\prime}, \varphi_{Y}^{\prime}, \theta_{X}^{\prime}, \theta_{Y}^{\prime}\right)=\left(1-\varphi_{X}, 1-\varphi_{Y}, \theta_{Y}, \theta_{X}\right)$ (fig. 1). The other parameters in the model are not involved in the unidentifiability and are simply copied along. Let $\Theta_{t}, t=1, \cdots, N$, be the $N$ samples of parameters generated by the MCMC algorithm. Each sample is a point in the 4-D space. Let $z_{t}$ be a transform for point $t$, with $z_{t}\left(\Theta_{t}\right)=\Theta_{t}$ to be the original point, and $z_{t}\left(\Theta_{t}\right)=\Theta^{\prime}$ to be the transformed or mirror point (fig. $1 \mathrm{~b} \& \mathrm{c}$ ). With a slight abuse of notation, we also treat $z_{t}$ as an indicator, with $z_{t}=0$ and 1 representing $\Theta_{t}$ and $\Theta_{t}^{\prime}$, respectively. For each sample $t$, we choose either the original point or its mirror point, to make the posterior of the parameters look smooth and singlemoded as far as possible. The first two algorithms, called center-of-gravity algorithms $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$, loop through two steps.

Algorithms $\operatorname{CoG}_{0}$ and $\operatorname{CoG}_{N}$. Initialize. For each point $t, t=1, \cdots, N$, pick either the original point $\left(\Theta_{t}\right)$ or its mirror point $\left(\Theta_{t}^{\prime}\right)$. We set $z_{t}$ to 0 (for the original point $\Theta_{t}$ ) if $\varphi_{X}+\varphi_{Y}<1$ or 1 (for the mirror point $\Theta_{t}^{\prime}$ ) otherwise.

- Step 1. Determine the center of gravity, given by the sample means of the parameters, $\mu=$ $\left(\bar{\varphi}_{X}, \bar{\varphi}_{Y}, \bar{\theta}_{X}, \bar{\theta}_{Y}\right)$.
- Step 2. For each point $t=1, \cdots, N$, compare the current and its mirror positions and choose the one closer to the center of gravity $(\mu)$.

In step 2, we use the Euclidean distance

$$
\begin{equation*}
d_{0}\left(\Theta_{t}, \mu\right)=\left[\sum_{j}^{4}\left(\xi_{j}-\mu_{j}\right)^{2}\right]^{1 / 2}, \tag{4}
\end{equation*}
$$

where $\xi_{j}$ are the four parameters in $\Theta_{t}: \varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}$. 485 This is algorithm $\mathrm{CoG}_{0}$.

The third algorithm, called the $\beta-\gamma$ algorithm, follows the relabelling algorithm for Bayesian clustering of Stephens (2000). We use maximum likelihood (ML) to fit the sample $\left\{\Theta_{t}\right\}$ to independent beta distributions for $\varphi_{X}$ and $\varphi_{Y}$ and gamma distributions for $\theta_{X}$ and $\theta_{Y}$ :

$$
\begin{align*}
f(\Theta ; \omega)=b\left(\varphi_{X}\right. & \left.; p_{X}, q_{X}\right) \cdot b\left(\varphi_{Y} ; p_{Y}, q_{Y}\right) \\
& \times g\left(\theta_{X} ; a_{X}, b_{X}\right) \cdot g\left(\theta_{Y} ; a_{Y}, b_{Y}\right) \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& b(\xi ; p, q)=\frac{1}{B(p, q)} \xi^{p-1}(1-\xi)^{q-1}  \tag{7}\\
& g(\xi ; a, b)=\frac{b^{a}}{\Gamma(a)} \xi^{a-1} \mathrm{e}^{-b \xi}
\end{align*}
$$

are the beta and gamma densities and where $\omega=\left(p_{X}\right.$, $\left.q_{X}, p_{Y}, q_{Y}, a_{X}, b_{X}, a_{Y}, b_{Y}\right)$ is the vector of parameters in those densities.

The log likelihood, as a function of the parameters $\omega$ and the transforms $z=\left\{z_{t}\right\}$, is

$$
\begin{equation*}
\ell(\omega, z)=\sum_{t}^{N} \ell_{t}\left(\omega, z_{t}\left(\Theta_{t}\right)\right)=\sum_{t}^{N} \log f\left(z_{t}\left(\Theta_{t}\right) ; \omega\right) \tag{8}
\end{equation*}
$$

We have implemented the following iterative algorithm to estimate $\omega$ and $z$ by maximizing $\ell$.

Algorithm $\beta-\gamma$. Initialize $z_{t}, t=1, \cdots, N$. As before, we set $z_{t}$ to 0 (for $\Theta_{t}$ ) if $\varphi_{X}+\varphi_{Y}<1$ or 1 (for $\Theta_{t}^{\prime}$ ) otherwise.

- Step 1. Choose $\hat{\omega}$ to maximize the log likelihood $\ell$ (eq. 8) with the transforms $z$ fixed.
- Step 2. For $t=1, \cdots, N$, choose $z_{t}=0$ or 1 to maximize $\ell_{t}\left(\hat{\omega}, z_{t}\left(\Theta_{t}\right)\right)$ with $\omega=\hat{\omega}$ fixed. In other words compare $\Theta_{t}$ and $\Theta_{t}^{\prime}$ and choose the one that better fits the beta and gamma distributions.

Step 1 fits two beta and two gamma distributions by ML and involves four separate 2-D optimization problems. The maximum likelihood estimates (MLEs) of $p$ and $q$ for the beta distribution $b(\xi ; p, q)$ are functions of $\sum_{t} \log \xi_{t}$ and $\sum_{t} \log \left(1-\xi_{t}\right)$, whereas the MLEs of $a$ and $b$ for the gamma distribution $g(\xi ; a, b)$ are functions of $\sum_{t} \xi_{t}$ and $\sum_{t} \log \xi_{t}$. These optimization problems are simple, which we solve using the BFGS algorithm in the PAML program (Yang, 2007). Step 2 involves $N$ independent optimization problems, each comparing two points ( $z_{t}=0$ and 1 ), with $\omega$ fixed. It is easy to see that the algorithm is nondecreasing (that is, the $\log$ likelihood $\ell$ never decreases) and converges, as step 1 involves ML estimation of parameters in the beta and gamma distributions, and step 2 involves comparing two points.

Note that the $\beta-\gamma$ algorithm becomes the $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$ algorithms if the beta and gamma densities are replaced by normal densities (with the same or different variances for $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$, respectively).

For illustration we applied the $\mathrm{CoGN}_{0}$ algorithm to a 'thinned' sample of 1000 points from the MCMC sample of figure 3a generated in the BPP analysis of the 500 noncoding Heliconius loci. We used three initial conditions (three rows in fig. S6). The last plot on each row is a summary of the final processed sample. Thus the first two runs produced the same posterior, while the third run produced its mirror image. Note that the relabelling algorithms remove the label-switching problems, but do not remove unidentifiability.

Algorithms $\operatorname{CoG}_{0}, \operatorname{CoG}_{N}$, and $\beta-\gamma$ for the doubleBDI model. Under the double-BDI model (fig. 6a), there are four within-model unidentifiable towers, specified by eight parameters. Thus $z_{t}$ takes four values $(0,1,2,3)$, and $\Theta=\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}, \varphi_{Z}, \varphi_{W}, \theta_{Z}, \theta_{W}\right)$. We use the same strategy and fit four beta distributions to the $\varphi \mathrm{s}$ and four gamma distributions to the $\theta \mathrm{s}$, so that there are 16 parameters in $\omega$. We implement the three algorithms $\left(\beta-\gamma, \mathrm{CoG}_{N}\right.$, and $\left.\mathrm{CoG}_{0}\right)$ as before. We prefer the tower in which the introgression probabilities are small and initialize the algorithm accordingly. The transforms $\left(z_{t}=0,1,2,3\right)$ are as follows (eq. 3)

- $z_{t}=0$ : if the parameters are in $\Theta_{1}$, do nothing.
- $z_{t}=1$ : if in $\Theta_{2}$, let $\varphi_{Z}=1-\varphi_{Z}, \varphi_{W}=1-\varphi_{W}$, and swap $\theta_{Z}$ and $\theta_{W}$.
- $z_{t}=2$ : if in $\Theta_{3}$, let $\varphi_{X}=1-\varphi_{X}, \varphi_{Y}=1-\varphi_{Y}$, swap $\theta_{X}$ and $\theta_{Y}$, swap $\varphi_{Z}$ and $\varphi_{W}$, swap $\theta_{Z}$ and $\theta_{W}$;
- $z_{t}=3$ : if in $\Theta_{4}$, let $\varphi_{X}=1-\varphi_{X}, \varphi_{Y}=1-\varphi_{Y}$, swap $\theta_{X}$ and $\theta_{Y}$, and let $\varphi_{Z}=1-\varphi_{W}$ and $\varphi_{W}=1-\varphi_{Z}$.

The algorithm similarly loops through two steps. In step 1 we calculate the center of gravity (represented by the means) or estimate parameters $\hat{\omega}$ to fit the beta and gamma densities, with the transforms $z$ fixed. For $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$, this step involves calculating the sample means and variances for the eight parameters in $\Theta$, while for $\beta-\gamma$, it involves a 16-D optimization
problem (or eight 2-D optimization problems) for fitting the beta and gamma distributions by ML. In step 2 , we compare the four positions for each sample point when the center of gravity or parameters $\hat{\omega}$ are fixed.

To apply the rule and the algorithms developed here, we need to identify the BDI event and the parameters involved in the unidentifiability, that is, $\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}\right)$ under the BDI model, or $\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}, \varphi_{Z}, \varphi_{W}, \theta_{Z}, \theta_{W}\right)$ under double-BDI. The algorithm is then used to process the MCMC sample. If there are multiple BDI or double-BDI events between sister species, one may simply apply the post-processing algorithm multiple times. For instance, three rounds of post-processing may be applied for the model of figure 5 a (for the BDI events between $A$ and $B$, between $D$ and $E$, and between $S$ and $U$, respectively), while the model of 5 b requires two rounds (for the BDI between $D$ and $E$, and between $S$ and $U$ ).

The algorithms are implemented in C and require minimal computation and storage. Processing $5 \times$ $10^{5}$ samples takes several rounds of iteration and a few seconds of running time, mostly spent on reading and writing files. The algorithms are integrated into the BPP program (Flouri et al., 2018) so that MCMC samples from various BDI models are postprocessed and summarized automatically. We also provide a stand-alone program in the github repository abacus-gene/bpp-msci-D-process-mcmc/.

## RESULTS

Introgression between Heliconius melpomene and H. timareta

We fitted the BDI model of figure 2 to the genomic sequence data from three species of Heliconius butterflies: H. melpomene, H. timareta, and $H$. numata (Edelman et al., 2019; Thawornwattana et al., 2021). When we used the first 500 loci, either noncoding or exonic, there was substantial uncertainty in the posterior of $\varphi_{X}$ and $\varphi_{Y}$, and the MCMC jumped between the twin towers, and the marginal posteriors had multiple modes, due to label switching (figs. 3a \& S1a). Post processing of the MCMC sample using the new algorithms led to single-moded marginal posterior distributions (figs. 3b-d \& S1b-d). The three algorithms produced extremely similar results for both datasets. For example, the posterior mean and $95 \%$ CI for $\varphi_{X}$ from the noncoding data were 0.356 ( 0.026 , $0.671)$ by $\mathrm{CoG}_{0}, 0.357(0.026,0.674)$ by $\mathrm{CoG}_{N}$, and $0.354(0.022,0.664)$ by $\beta-\gamma$, while those for $\varphi_{Y}$ were $0.103(0.000,0.304)$ by $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$, and 0.104 ( $0.000,0.306$ ) by $\beta-\gamma$.

We then analyzed all the 2592 noncoding and 3023 exonic loci on chromosome 1 . With the large datasets, the parameters were better estimated with narrower CIs and the unidentifiable towers were well-separated.

In fact, the MCMC visited only one of the two towers, but the visited tower was well explored so that multiple runs produced highly consistent results after label-switching was removed using the relabelling algorithms. When we started the MCMC with small values for $\varphi_{X}$ and $\varphi_{Y}$, post-processing of the MCMC samples often had no effect.

Estimates of all parameters from the small (with $L=500$ ) and large datasets are summarized in table 1. In the small datasets, the introgression probabilities were $\varphi_{X} \approx 0.354$ (with the CI $0.022-0.664$ ) for the noncoding data and 0.280 (with CI 0.002-0.547) for the coding loci, while $\varphi_{Y}$ was 0.104 (CI 0.000-0.306) for the noncoding data and 0.116 (CI 0.000-0.318) for the exonic data. When all loci from chromosome 1 were used, $\varphi_{X}$ was 0.124 (with the CI $0.007-0.243$ ) for the noncoding data and 0.161 (with CI 0.0700.264 ) for the exonic loci, while $\varphi_{Y}$ was 0.048 (CI $0.000-0.139$ ) for the noncoding data and 0.019 (CI $0.000-0.056$ ) for the exonic data. The estimates were similar between the noncoding and exonic data, with greater proportions of migrants in $H$. timareta from H. melpomene than in the opposite direction. This was so despite the fact that $H$. melpomene had a smaller effective population size than $H$. timareta. Note that H. melpomene has a widespread geographical distribution whereas H. timareta is restricted to the Eastern Andes; the small $\theta_{M}$ estimates are most likely due to the fact that the $H$. melpomene sample was from a partially inbred strain to avoid difficulties with genome assembly. Estimates of $\theta \mathrm{s}$ and $\tau \mathrm{s}$ were smaller for the coding loci than for the noncoding loci, due to purifying selection removing deleterious nonsynonymous mutations.

Estimates of $\varphi_{X}$ and $\varphi_{Y}$ were different between the small and large datasets, but they involved large uncertainties, with the CIs for large datasets mostly inside the CIs for the small datasets. Another reason for the differences may be the variable rate of gene flow across the genome or chromosome. Note that $\varphi$ in the MSci model reflects the long-term effects of gene flow and selection purging introgressed alleles, influenced by linkage to gene loci under natural selection (Martin and Jiggins, 2017). As a result, the introgression rates may be expected to vary across the genome.

## Analysis of data simulated under the double-BDI model of figure $6 \mathbf{6}$

We conducted a small simulation to illustrate the feasibility of the double-BDI model (fig. 6), simulating 10 replicate datasets of $L=500,2000$, and 8000 loci. The three algorithms were used to process the MCMC samples, before they were summarized. A typical case is shown in figure 7 for the case of $L=500$. While there are four unidentifiable towers in the 8-D posterior space (eq. 3), the MCMC visited only two of them, with different values for parameters around the BDI
event at the node $Z W$. The dataset of $L=500$ loci event at node $X Y\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}\right)$, so that these had highly concentrated posteriors with well separated towers. We started the Markov chains with small values (e.g., 0.1 and 0.2 ) for $\varphi_{X}$ and $\varphi_{Y}$, so that the sampled points were all around the correct tower for those parameters. If the chain started with large $\varphi_{X}$ and $\varphi_{Y}$, it would visit a 'mirror' tower. Thus post-processing of the MCMC samples in the case of $L=500$ mostly affected parameters around the BDI event at $Z W\left(\varphi_{Z}\right.$, $\left.\varphi_{W}, \theta_{Z}, \theta_{W}\right)$. Figure 7 shows the effects on parameters $\varphi_{Z}$ and $\varphi_{W}$ using the $\beta-\gamma$ algorithm. The $\mathrm{CoG}_{0}$ and $\mathrm{CoG}_{N}$ algorithms produced nearly identical results, and all algorithms were effective in removing label switching. The post-processed samples were summarized to calculate the posterior means and the HPD CIs (fig. 8).

At $L=2000$ or 8000 loci, the four towers were wellseparated and the MCMC visited only one of them. Applying the post-processing algorithms either had no effect or, in rare occasions, moved all sampled points from one tower to another.

Posterior means and the 95\% highest-probabilitydensity (HPD) credibility intervals (CI) for all parameters were summarized in figure 8. Parameters around the BDI event at $Z W\left(\varphi_{Z}, \varphi_{W}, \theta_{Z}, \theta_{W}\right)$ are the most difficult to estimate. Nevertheless, the CIs for all parameters were smaller at $L=8000$ than at $L=500$ or 200 , and the posterior means were converging to the true values. Note that while the simulation was conducted using one set of correct parameter values (say, $\Theta_{1}$ of fig. 6), we considered the estimates to be good if they were close to any of the four unidentifiable towers (say, $\Theta_{2}, \Theta_{3}$, or $\Theta_{4}$ ). This is analogous to treating the estimate as correct in Bayesian clustering if the true model includes two groups in proportions $p_{1}=10 \%$ and $p_{2}=90 \%$ with means $\mu_{1}=100$ and $\mu_{2}=1$, while the method of analysis infers two groups in proportions $p_{1}^{\prime}=90 \%$ and $p_{2}^{\prime}=10 \%$ with means $\mu_{1}^{\prime}=1$ and $\mu_{2}^{\prime}=100$. Just as $\Theta=\left(p_{1}, \mu_{1}, \mu_{2}\right)$ and $\Theta^{\prime}=\left(p_{2}, \mu_{2}, \mu_{1}\right)$ are unidentifiable towers and equally correct answers in the clustering problem, here $\Theta_{1}, \Theta_{2}$, $\Theta_{3}$, and $\Theta_{4}$ are equally correct answers.

## Analysis of data simulated with one BDI event with poorly separated modes

We simulated a more challenging dataset for the relabelling algorithms, with $L=500$ loci, under the BDI model of figure 1a with $\left(\varphi_{X}, \varphi_{Y}\right)=(0.7,0.2)$ (see table S 1 ). As $\varphi_{X}$ and $\varphi_{Y}$ were not too far away from $\frac{1}{2}$ and the dataset is small, the posterior modes were poorly separated, with considerable mass near $\left(\frac{1}{2}, \frac{1}{2}\right)$. In the unprocessed MCMC sample, $\varphi_{X}$ had two modes around 0.8 and 0.2 and the chain was switching between them (fig. S 7 a ). The posterior means were at 0.51 for $\varphi_{X}$ and 0.50 for $\varphi_{Y}$, close to $\frac{1}{2}$ (fig. S7a).

These were misleading summaries, as the sample was affected by label switching. In the processed samples (fig. S7b-d), label switching was successfully removed and both $\varphi_{X}$ and $\varphi_{Y}$ were single-moded. The three algorithms $\left(\beta-\gamma, \mathrm{CoG}_{N}\right.$, and $\left.\mathrm{CoG}_{0}\right)$ produced similar results, with single-moded posterior, around the tower $\left(\varphi_{X}, \varphi_{Y}\right)=(0.7,0.2)$. The posterior means of $\left(\varphi_{X}, \varphi_{Y}\right)$ were ( $0.755,0.447$ ), ( $0.766,0.461$ ), and $(0.765,0.462)$ for the three algorithms, $\beta-\gamma, \mathrm{CoG}_{N}$, and $\mathrm{CoG}_{0}$, respectively (table S 1 ). The estimates from $\beta-\gamma$ were slightly closer to the true values than those from $\mathrm{CoG}_{N}$ and $\mathrm{CoG}_{0}$. The three relabelling algorithms worked well even when the posterior modes were poorly separated.

The parameters in the model not involved in the label-switching, such as the species divergence and introgression times $\left(\tau_{R}, \tau_{X}\right)$ and the population sizes for the modern species and for the root $\left(\theta_{A}, \theta_{B}, \theta_{R}\right)$, were well estimated, with the posterior means close to the true values and with narrow CIs (table S1). However, the parameters involved in the label switching $\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}\right)$ were poorly estimated at this data size (with $L=500$ loci), because of the difficulty to separate the two towers and the influence of the priors. The estimates should improve if more loci are used in the data. To confirm this expectation, we simulated two more datasets with $L=2000$ and 8000 loci, respectively. In those two larger datasets, parameters not involved in label switching ( $\tau_{R}, \tau_{X}, \theta_{A}, \theta_{B}, \theta_{R}$ ) had very narrow CIs (table S1). The posterior means of $\Theta=$ $\left(\varphi_{X}, \varphi_{Y}\right)$ were closer to the true values $(0.7,0.2)$, and the $95 \%$ CIs were narrower than in the small dataset of $L=500$ (table S1). Note that ancestral population sizes (such as $\theta_{X}$ and $\theta_{Y}$ ) are hard to estimate even in models of unidirectional introgression which do not have label-switching issues (Huang et al., 2020).

## DISCUSSION

## Data size, precision of parameter estimation, MCMC convergence, and the utility of the relabelling algorithms

We have observed three kinds of behaviors of the MCMC algorithm and the relabelling algorithms depending on the data size. In small datasets, the parameters are poorly estimated with large uncertainties, and the posterior modes (the unidentifiable towers) are not well separated. In such cases, applying simple constraints (such as $\varphi_{X}<\frac{1}{2}$ ) is problematic because the truncation distorts the marginal summaries of the posterior, with different constraints producing different posterior summaries (Richardson and Green, 1997; Celeux et al., 2000; Stephens, 2000). The relabelling algorithms are preferable. An example is the small dataset of $L=500$ loci simulated under the model of one BDI event (fig. S7, table S1).

In intermediate datasets, the parameters are well
estimated, the posterior modes are well separated, switching labels. In such cases, any of the relabelling algorithms will work well. If the posterior modes are far away from the boundary defined by the constraints (such as $\varphi_{X}<\frac{1}{2}$ ), even simple constraints will work well. Examples include two small butterfly datasets (figs. $3 \& \mathrm{~S} 1$ ), and the datasets simulated under the double BDI model (fig. 7).

Finally, in very large datasets, the parameters are extremely well estimated with very narrow CIs, and the posterior modes are so sharply concentrated that the MCMC algorithm stays on one of the unidentifiable towers and never moves to the mirror towers. Furthermore, in multiple runs of the same analysis the MCMC may be 'stuck' on different towers. In such cases, the relabelling algorithms will either not move any sample points at all or move all points from one tower to another, and any of the algorithms will work well. This scenario is common in analyses of large genomic datasets with thousands of loci, such as the large noncoding and exonic datasets from the Heliconius butterflies (fig. 2); See Finger et al. (2021) and Thawornwattana et al. (2021) for many more examples.

We note that in all three scenarios, the relabelling algorithms (in particular, the $\beta-\gamma$ algorithm) were either better or not worse than the alternatives such as imposing simple constraints. Given that even the $\beta-\gamma$ algorithm involves minimal computation, we recommend its automatic use in all cases. Samples from different runs visiting different unidentifiable modes may be merged before post-processing using the relabelling algorithm.

In theory, if the MCMC has converged and is mixing well and the algorithm is run long enough, it should visit the unidentifiable towers with exactly the same probability and the means of introgression probabilities from the unprocessed samples should be $\frac{1}{2}$. One might expect this expectation to provide a useful criterion for diagnosing the convergence of such MCMC algorithms. Indeed Jasra et al. (2005) regarded it "a minimum requirement of convergence for a mixture posterior to be such that we have explored all possible labellings of the parameters". Here the labellings correspond to the unidentifiable towers. We suggest that this requirement is too stringent and unnecessary. As discussed above, in large genomic datasets, the posterior may be highly concentrated, and the chain may never jump between the towers even in very long MCMC runs. While the chain may be visiting different mirror towers in different runs of the same analysis, each chain may be exploring the space around the visited tower thoroughly, and after label switching is removed, the MCMC samples from the different runs may produce nearly identical posterior summaries, suggesting that reliable inference
is entirely possible. In simulations of large datasets, the posterior estimates after label switching problems are removed converge to the true values (e.g., Flouri et al., 2020 , fig. S10A). We suggest that exploration of all unidentifiable towers is unnecessary for correct inference and should not be used as a criterion for diagnosing MCMC convergence. Instead convergence diagnosis should be applied after the MCMC sample is processed to remove label switching. For example, one should run the same analysis multiple times and confirm that the posterior summaries when the MCMC samples are processed and mapped onto the same tower are consistent between runs. The efficiency of the MCMC algorithm or the effective sample size (ESS) (Yang and Rodríguez, 2013) should also be calculated using the processed samples.

## Identifiability of MSci models with unidirectional introgressions

The identifiability of MSci models involving unidirectional introgression (UDI) events appears to be simpler than for BDI models (Flouri et al., 2020; Jiao et al., 2021). MSci model A (Flouri et al., 2020) is consistent with three different biological scenarios (fig. 9a-c). In scenario $\mathrm{A}_{1}$, two species $S H$ and $T H$ merge to form a hybrid species $H C$, but the two parental species become extinct after the merge. This scenario may be rare. In scenario $\mathrm{A}_{2}$, species $S U X$ contributes migrants to species $T H C$ at time $\tau_{H}$ and has since become extinct or is unsampled in the data. In scenario $\mathrm{A}_{3}, T U X$ is the extinct or unsampled ghost species. The three scenarios are unidentifiable using genomic data. Model $\mathrm{B}_{1}$ assumes introgression from species $R A$ to $T C$ at time $\tau_{S}=\tau_{H}$ (fig. 9 d ). This is distinguishable using genetic data from the alternative model $\mathrm{B}_{2}$ in which there is introgression from $R B$ to $S C$ (fig. 9e). Note that models $B_{1}$ and $B_{2}$ are both special cases of model $\mathrm{A}_{1}$ with different constraints (that is, $\tau_{S}=\tau_{H}<\tau_{T}$ for model $\mathrm{B}_{1}$ and $\tau_{S}>\tau_{H}=\tau_{T}$ for model $\mathrm{B}_{2}$ ).

Note that the sampling configuration may affect the identifiability of parameters in the model ( Yu et al., 2012; Zhu and Degnan, 2017). The simplest such example may be the population size parameter $(\theta)$. If at most one sequence per locus is sampled from a species, the population size for that species will be unidentifiable. Similarly, if no more than one sequence per locus can enter an ancestral population when we trace the genealogy of the sampled sequences backwards in time, $\theta$ for that ancestral species will be unidentifiable. Such unidentifiability disappears when multiple sequences per species are sampled. Note that a diploid sequence is equivalent to two haploid sequences. Similarly introgression models that are unidentifiable with one sampled sequence per species may become identifiable when multiple sequences per species are sampled (Zhu and Degnan, 2017).

Even if the model is mathematically identifiable with one sequence per species per locus, including multiple samples per species (in particular, species that are descendants of a hybridization node in the species tree) can boost the information content in the data dramatically. Thus we recommend the use of multiple samples per species in studies of cross-species gene flow, and suggest that the most interesting scenario for studying unidentifiability of models of gene flow should be full likelihood analysis of multilocus sequence data, with multiple sequences sampled per species.

It is noteworthy that many parameter settings and data configurations exist in which some parameters are hard to estimate, because the data lack information about them. For example, ancestral population sizes for short and deep branches in the species tree are hard to estimate, because most sequences sampled from modern species may have coalesced before reaching that population when we trace the genealogy of the sample backwards in time (Huang et al., 2020). Similarly, if few sequences reach a hybridization node, there will be little information in the data about the introgression probabilities at that node. In such cases, even if the model is identifiable mathematically, it may be nearly impossible to estimate the parameters with any precision even with large datasets.

In some cases, certain parameters may be nearly at the boundary of the parameter space, and this may create near unidentifiability with multiple modes in the posterior. For example, two speciation events that occur in rapid succession will generate a very short branch in the species tree with a near trichotomy in the species tree. Then MSci models that posit the same introgression events but different histories of species divergences will fit the data nearly equally well and become multiple modes in the posterior space (see Finger et al., 2021 for an example). Similarly introgression probabilities near 0 or 1 can also create nearly equally good explanations of the data and become multiple modes in the posterior. In such situations, the MCMC samples around different modes should be summarized separately.

## Unidentifiability of heuristic methods

${ }_{955}$ As mentioned in Introdution, the unidentifiability discussed in this paper concerns the intrinsic nature of the inference problem when introgression models are applied to genomic sequence data, and thus applies to not only full likelihood methods but also heuristic methods based on summaries of the sequence data. Indeed a model that is unidentifiable by a full likelihood method must be unidentifiable by any heuristic method. In contrast, a model that is identifiable by a full likelihood method may still be unidentifiable by a heuristic method as the heuristic method may not be using all information in the data. Here we briefly discuss a few heuristic methods, focusing on their
common features. Interested readers may consult the recent reviews by Elworth et al. (2019) and Hibbins and Hahn (2021). Heuristic methods developed up to now are mostly of two kinds, based on either genomewide averages or estimated gene trees for genomic segments (loci).
The popular ABBA-BABA test (Durand et al., 2011) uses the parsimony-informative site patterns across the genome to detect gene flow. Consider three populations/species $S_{1}, S_{2}$, and $S_{3}$, with the given phylogeny $\left(\left(S_{1}, S_{2}\right), S_{3}\right)$, plus an outgroup species $O$. There are three parsimony-informative site patterns: BBAA, $A B B A$, and $B A B A$. Here $A$ and $B$ represent any two distinct nucleotides and BBAA means $S_{1}$ and $S_{2}$ have the same nucleotide while $S_{3}$ and $O$ have another. For very closely related species, one may consider nucleotide $A$ in the outgroup as the ancestral allele and $B$ the derived allele. Site pattern $B B A A$ matches the species tree, while $A B B A$ and $B A B A$ are the mismatching patterns. Given the species tree with no gene flow, the two mismatching patterns have the same probability, but when there is gene flow between $S_{1}$ (or $S_{2}$ ) and $S_{3}$, they will have different probabilities. The difference between the two mismatching site-pattern counts can then be used to test for the presence of gene flow (Durand et al., 2011):

$$
D=\frac{n_{A B B A}-n_{B A B A}}{n_{A B B A}+n_{B A B A}} .
$$

The $D$-statistic may also be seen as a comparison between the number of derived alleles shared by $S_{2}$ and $S_{3}$ with that shared by $S_{1}$ and $S_{3}$. The test has more power to detect inflow (gene flow from $S_{3} \rightarrow S_{2}$ ) than outflow (from $S_{2} \rightarrow S_{3}$ ) (Hibbins and Hahn, 2021, fig. S3). It can test for the presence of gene flow, but provides no information about its direction, timing or strength.

A number of variants or extensions of the $D$ statistic have been proposed. Instead of the parsimonyinformative site patterns, the average sequence distance between species may be used to construct a similar test (Hahn and Hibbins, 2019). The site pattern counts can also be used to estimate the introgression probability, as in the program HYDE (Blischak et al., 2018; Kubatko and Chifman, 2019):

$$
\begin{equation*}
\hat{\varphi}=\frac{n_{B B A A}-n_{B A B A}}{n_{B B A A}-2 n_{B A B A}+n_{A B B A}} . \tag{10}
\end{equation*}
$$

This is based on the hybrid speciation model (with $\tau_{S}=\tau_{H}=\tau_{T}$ and $\theta_{S}=\theta_{T}$ in model $\mathrm{A}_{1}$ of fig. 9). The estimate may be biased if this symmetry assumption does not hold.

The $D$-statistic has been extended to the case of five species, with a symmetric species tree assumed, in the so-called $D_{\text {Foil }}$ test, with the aim to detect the direction of gene flow (Pease and Hahn, 2015). Another extension is by Hamlin et al. (2020), to include the site pattern BBAA to form

$$
\begin{equation*}
D_{p}=\frac{n_{A B B A}-n_{B A B A}}{n_{B B A A}+n_{A B B A}+n_{B A B A}} \tag{11}
\end{equation*}
$$

Interpreted as an estimate of the genome-wide introgression proportion $(\varphi), D_{p}$ has a negative bias, which is more serious for outflow (from $S_{2} \rightarrow S_{3}$ ) than for inflow (with gene flow from $S_{3} \rightarrow S_{2}$ ) (Hamlin et al., 2020, fig. 3).

Note that both the site-pattern counts and betweenspecies distances are genome-wide averages. If the data consist of multi-locus sequence alignments, they can be merged (concatenated) into a super-alignment to calculate those statistics. A great advantage of those methods is that they involve minimal computation. A serious drawback is that they do not make use of information in genealogical variations across the genome. Like the coalescent process, gene flow between species creates stochastic fluctuations in the genealogical history (gene tree topology and coalescent times) across the genome, with the probability distribution given by the parameters in the multispecies coalescent model with gene flow, including species divergence times, effective population sizes for modern and ancestral species, and the directions and rates of gene flow. As a result, there is important information about those parameters in such genomic variation, but this information is ignored by those methods. Under the assumption of strong linkage among sites in the same genomic segment (locus), all sites at the same locus share the genealogical history while differences among sites of the same locus reflect the stochastic fluctuations of the mutation process. In calculations of genome-wide averages, those two sources of variation are confounded, and the information on coalescent fluctuations among loci is lost (Shi and Yang, 2018; Zhu and Yang, 2021). As a result, most parameters in the coalescent model with introgression are unidentifiable by the heuristic methods mentioned above. None of them can detect signals of gene flow between sister species, and for non-sister species, none of them can estimate the introgression probabilities when gene flow occurs in both directions (e.g., $\varphi_{X}$ and $\varphi_{Y}$ in fig. 1a or $\alpha$ and $\beta$ in fig. S3a).

The second kind of heuristic methods use reconstructed gene tree topologies for multiple loci as the input data. Consider again the species quartet $S_{1}, S_{2}, S_{3}$, and $O$ (outgroup), with the given phylogeny $\left(\left(S_{1}, S_{2}\right), S_{3}\right)$, and one sampled sequence per species. The two mismatching gene trees $\left(\left(S_{2}, S_{3}\right), S_{1}\right)$ and $\left(\left(S_{3}, S_{1}\right), S_{2}\right)$ have the same probability if there is coalescence but no gene flow, but different probabilities if there is in addition gene flow between the non-sister species (between $S_{1}$ and $S_{3}$ or between $S_{2}$ and $S_{3}$ ). Thus the frequencies of gene tree topologies can be used to estimate the introgression probability, as in the SNAQ method (Solis-Lemus and Ane, 2016, see also Yu et al., 2012). As there are only two free quantities (frequencies of three gene trees with the sum to be 1 ),
the approach can estimate the internal branch length in coalescent units and the introgression probability, but not any other parameters in the model.

In the general case, the probabilities of gene tree topologies under any introgression model can be calculated by summing over the compatible coalescent histories (Yu et al., 2012, 2014). The probability distribution of gene tree topologies can then be used to distinguish among different introgression models and to estimate the parameters in the introgression model by ML (as in PhyloNet; Cao et al., 2019), treating gene tree topologies as the data. A concern with the two-step method is that the estimated gene trees may involve uncertainties or errors, in particular when the species are closely related. Similarly, including genetree branch lengths (coalescent times) makes many introgression models that are unidentifiable based on gene tree topologies alone become identifiable (Yu et al., 2012; Zhu and Degnan, 2017). However, two step methods that make use of estimated branch lengths do not have good performance as the large uncertainties and errors in the estimated branch lengths can have a major impact on inference of species divergence and cross-species gene flow (Degnan, 2018).

Pardi and Scornavacca (2015) studied the unidentifiability of network models using data of gene tree topologies 'displayed' by the network (fig. 10). Binary species trees generated by taking different parental paths at hybridization nodes are called "displayed species trees" (Pardi and Scornavacca, 2015) or "parental species trees" (Kubatko, 2009). For example, the two network models $N_{1}$ and $N_{2}$ of figure 10a are unidentifiable because they induce the same three displayed species trees with the same branch lengths (Pardi and Scornavacca, 2015). However, as pointed out by Zhu and Degnan (2017), $N_{1}$ and $N_{2}$ are identifiable using gene tree topologies if multiple sequences are sampled from $B$.

Previously (Kubatko, 2009, eq. 3) formulated the probability distribution of gene trees (topology alone or topology with coalescent times) as a mixture over the displayed species trees. To simulate gene trees or sequence data at a locus, one samples a displayed species tree first and then simulates the gene tree and sequence alignment according to the simple MSC model (Gerard et al., 2011). This formulation is correct only in the special case where each hybridization node on the species tree has at most one sequence from all its descendant populations (Zhu and Degnan, 2017). In general it is incorrect, as it forces all sequences at the locus to take the same parental path at each hybridization node, whereas correctly there should be a binomial sampling process when two or more sequences reach a hybridization node. In model $N_{1}$ of figure 10a, when multiple $B$ sequences reach species $X$, it should be possible for some sequences to take the left parental path while the others take the right path.

Even though the notion that gene trees are displayed
by a phylogenetic network has played a central role in many studies that attempt to use gene tree topologies to construct the phylogenetic network, examination of the displayed gene trees is not a reliable approach to studying the unidentifiability of phylogenetic network models (Zhu and Degnan, 2017). The most probable gene tree may even have a topology that is different from all of the displayed trees (Zhu and Degnan, 2017). As suggested by Zhu and Degnan (2017), one should instead explicitly treat the biological process of coalescent and introgression in the model. We also suggest that multiple sequences be sampled per species (in particular from species involved in hybridization or from descendant species of hybridization nodes) when genomic data are used to infer gene flow. Note that both MSci models corresponding to networks $N_{1}$ and $N_{2}$ are identifiable when genomic sequence data with multiple samples per species are analyzed using full likelihood methods (fig. 10d\&e), as are all parameters in each models (fig. $10 a^{\prime} \& b^{\prime}$ ).

We note that there is currently a wide gap between likelihood and heuristic methods. Heuristic methods are computationally orders-of-magnitude faster than likelihood methods, which in particular do not scale well for large genomic datasets. The statistical properties of heuristic methods are also incomparably poorer than those of likelihood methods: heuristic methods are simply unable to provide any estimates for many fundamental population parameters for characterizing the evolutionary history of the species, such as the species divergence/introgression times, the population sizes of extant and extinct species, the introgression probabilities, etc. There is an acute need for improving the statistical performance of the heuristic methods and the computational efficiency of the full likelihood methods.

Given the limitations of the heuristic methods, one should apply caution when using them to draw biological conclusions concerning gene flow between species. For example, does gene flow occur more often between sister species or between non-sister species? When gene flow occurs between two species, does it often involve one direction (UDI) or both directions (BDI)? Most heuristic methods cannot identify or detect gene flow between sister species or gene flow in both directions, but it may be erroneous to conclude that such gene flow never occurs in nature. Whether BDI or UDI is more common is an interesting empirical question, but both models provide important biological hypotheses testable using genomic sequence data. In a recent analysis of genomic sequence data from the North American chipmunks (Tamias quadrivittatus), the use of the $D$-statistic and HyDE detected no evidence of gene flow affecting the nuclear genome despite widespread mitochondrial gene flow (Sarver et al., 2021). However a reanalysis of the same data using BPP revealed robust evidence for multiple ancient
introgression events, involving both sister and nonsister species (Ji et al., 2021).

## Estimation of introgression probabilities despite unidentifiability

The three algorithms for post-processing MCMC samples under the BDI model produced very similar results in the applications in this study. In particular the simple center-of-gravity algorithms produced results that appear to be as good as the more elaborate $\beta-\gamma$ algorithm, despite the fact that the normal distribution is a poor approximation to the posterior of introgression probabilities ( $\varphi_{X}$ and $\varphi_{Y}$ ). This is due to the fact that the distributions (or the distances in the CoG algorithms) are used to compare the unidentifiable mirror positions of sample points only, but are not used to approximate the posterior distribution of those parameters, which are estimated by using the processed samples. For the same reasons, if there exist multiple modes in the posterior that are not due to label switching, such genuine multimodality will not be removed by the relabelling algorithms (Stephens, 2000). Similarly, while we fit independent distributions for parameters in the algorithms (eq. 6), there is no need to assume independence in the posterior for the algorithms to work.

A model with a label-switching type of unidentifiability can still be applied in real data analysis. In the clustering problem, the Bayesian analysis may reveal the existence of two groups, in proportions $p_{1}$ and $p_{2}=1-p_{1}$ with means $\mu_{1}$ and $\mu_{2}$, and it does not matter if it cannot decide which group should be called 'group 1'. The twin towers $\Theta$ and $\Theta^{\prime}$ under the BDI model of figure 1 constitute a mathematically similar label-switching problem. However, $\Theta$ and $\Theta^{\prime}$ may represent different biological scenarios or hypotheses. Suppose that species $A$ and $B$ are distributed in different habitats (dry for $A$ and wet for $B$, say), and suppose the ecological conditions have changed little throughout the history of the species. $\Theta$ with $\varphi_{X}<\frac{1}{2}$ and $\varphi_{Y}<\frac{1}{2}$ may mean that species $A$ has been in the dry habitat over the whole time period since species divergence at time $\tau_{R}$, while species $B$ has been in the wet habitat, and they came into contact and exchanged migrants at time $\tau_{X}$. In contrast, $\Theta^{\prime}$ with $\varphi_{X}^{\prime}>\frac{1}{2}$ and $\varphi_{Y}^{\prime}>\frac{1}{2}$ may mean that species $A$ was in the wet habitat and species $B$ was in the dry habitat since species divergence at time $\tau_{R}$, but when they came into contact at time $\tau_{X}$ they nearly replaced each other, switching places, so that today species $A$ is found in the dry habitat while $B$ in the wet habitat. The two sets of parameters $\Theta$ and $\Theta^{\prime}$ may thus mean different biological hypotheses. As genomic data from modern species provide information about the order and timings of species divergences and cross-species introgressions, but not about the geographical locations
and ecological conditions in which the divergences and introgressions occurred, such biological scenarios are unidentifiable using genomic data and become unidentifiable towers in the posterior distribution in algorithms we have implemented makes it possible to apply the BDI models to genomic sequence data despite their unidentifiability.

## METHODS AND MATERIALS

## Introgression in Heliconius butterflies

We fitted the BDI model to the genomic sequence data for three species of Heliconius butterflies: H. melpomene, H. timareta, and H. numata (Consortium, 2012; Martin et al., 2013). The species tree or MSci model assumed is shown in figure 2, with introgression between $H$. melpomene and $H$. timareta. The two species are known to hybridize, although no attempt has yet been made to infer the direction or strength of introgression (except for colour-pattern genes; Martin et al., 2013). There are 31,166 autosomal noncoding loci and 36,138 autosomal exonic loci, with one diploid
sequence sampled per species per locus. The sequence length ranges from 11 to 991 bps (median 93) for the noncoding loci and from 11 to 10,672 bps (median 112) for the exonic loci. We used chromosome 1 , which has 2592 noncoding and 3023 exonic loci, and analyzed either the first 500 loci or all the loci on the chromosome. Note that a diploid sequence from each species is equivalent to two haploid sequences, so that the population size parameter $(\theta)$ for that species is estimable. Heterozygotes in the diploid sequence are represented by IUPAC ambiguity codes (e.g., with Y meaning a T/C heterozygote) and resolved into compatible nucleotides in BPP using an analytical integration algorithm (Gronau et al., 2011; Yang, 2015; Flouri et al., 2018), which averages over all possible genotypic phase resolutions of heterozygote sites, weighting them according to their likelihood based on the sequence alignment at the locus. In simulations, this approach had indistinguishable performance from analyzing fully phased genomic sequences (Gronau et al., 2011; Huang et al., 2021).

We used gamma priors for the population sizes $(\theta)$ and for the age of the root $\left(\tau_{0}\right): \theta \sim G(2,400)$ with the mean 0.005 substitution per site, and $\tau \sim G(2,400)$ with mean 0.005 . The introgression probabilities were assigned beta priors $\varphi_{X}, \varphi_{Y} \sim B(1,1)$, which is the uniform $\mathbb{U}(0,1)$. We used a burn-in of 16000 iterations, and then took $2 \times 10^{5}$ samples, sampling every 5 iterations. Running time on a server using 9 threads of Intel Xeon Gold 6154 CPU (3.0GHz) was about 1 hour for the small datasets and 10 hours for the large ones.

Convergence of the MCMC algorithms was assessed by checking for consistency between independent runs, taking into account possible label-switching issues.

## Simulation under the double-BDI model

We simulated and analyzed data to under the doubleBDI model of figure 6 . Gene trees with branch lengths (coalescent times) were simulated under the MSci model and given the gene trees, sequences were evolved along the branches on the gene tree under the JC model (Jukes and Cantor, 1969). The parameters used were $\varphi_{X}=0.1, \varphi_{Y}=0.2, \varphi_{Z}=0.2, \varphi_{W}=0.3$, $\tau_{R}=0.005, \tau_{Z}=\tau_{W}=0.0025, \tau_{X}=\tau_{Y}=0.00125$, $\theta_{R}=\theta_{Z}=\theta_{X}=\theta_{A}=0.005$, and $\theta_{W}=\theta_{Y}=\theta_{B}=0.02$. Each dataset consisted of $L=500,2000$ and 8000 loci, with $S=16$ sequences per species per locus, and with the sequence length to be 500 sites. The number of replicate datasets was 10 .

The data were then analyzed using BPP under the double-BDI model (fig. 6) to estimate the 14 parameters. We use gamma priors $\tau_{0} \sim G(2,400)$ for the root age with the mean to be the true value (0.005), and $\theta \sim$ $G(2,200)$ with the mean 0.01 (true values are 0.005 and 0.02). We used a burn-in of 32,000 iterations, and then took $5 \times 10^{5}$ samples, sampling every 2 iterations.

Analysis of each dataset took $\sim 10 \mathrm{hrs}$ for $L=500$ and $\sim 130 \mathrm{hrs}$ for $L=8000$, using 8 threads on a server. The MCMC samples were processed to remove labelswitching problems before they were summarized to approximate the posterior distribution.

## Simulation under a BDI model with poorly separated towers

We simulated a small dataset, with $L=500$ loci, under the BDI model of figure 1a, with $\left(\varphi_{X}, \varphi_{Y}\right)=(0.7,0.2)$ (see table S 1 for the true values of all parameters). As $\varphi_{X}$ and $\varphi_{Y}$ were not far away from $\frac{1}{2}$ and the dataset was small, the posterior of the parameters was expected to be diffuse, and the posterior modes for parameters involved in the label-switching (or the two unidentifiable towers) to be poorly separated, posing a challenge to our relabelling algorithms.

We assigned gamma priors $\tau_{0} \sim G(2,200)$ for the root age with the mean to be the true value ( 0.01 ), and $\theta \sim G(2,400)$ with the mean 0.005 (true values are 0.002 and 0.01 ). We used a burn-in of 32,000 iterations, and then took $2 \times 10^{5}$ samples, sampling every 10 iterations. We run the same analysis twice to confirm consistency between runs, after the MCMC samples were processed to remove label switching.

## Acknowledgements

James Mallet and Fernando Seixas provided the genomic datasets for the Heliconius butterflies. We thank James Mallet, Yuttapong Thawornwattana, and Christopher Blair for comments on an earlier version of the paper, and Xiyun Jiao for discussions. This study has been supported by Biotechnology and Biological Sciences Research Council grant (BB/T003502/1) and a BBSRC equipment grant (BB/R01356X/1).

## REFERENCES

Baack, E. J. and Rieseberg, L. H. 2007. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev., 17(6): 513-518.
Blischak, P. D., Chifman, J., Wolfe, A. D., and Kubatko, L. S. 2018. HyDe: a Python package for genome-scale hybridization detection. Syst. Biol., 67(5): 821-829.
Cao, Z., Liu, X., Ogilvie, H. A., Yan, Z., and Nakhleh, L. 2019. Practical aspects of phylogenetic network analysis using phylonet.
Celeux, G., Hurn, M., and Robert, C. 1998. Bayesian inference for mixture: the label switching problem. In R. Payne and P. J. Green, editors, COMPSTAT, pages 227-232. Physica, Heidelberg.
Celeux, G., Hurn, M., and Robert, C. 2000. Computational and inferential difficulties with mixture posterior distribution. J. Amer. Statist. Assoc., 95: 957-970.
Consortium, H. G. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 487: 94-98.
Dalquen, D., Zhu, T., and Yang, Z. 2017. Maximum likelihood
implementation of an isolation-with-migration model for three species. Syst. Biol., 66: 379-398.
Degnan, J. H. 2018. Modeling hybridization under the network multispecies coalescent. Syst. Biol., 67(5): 786-799.
Durand, E. Y., Patterson, N., Reich, D., and Slatkin, M. 2011. Testing for ancient admixture between closely related populations. Mol. Biol. Evol., 28: 2239-2252.
Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R. B., Garcia-Accinelli, G., Van Belleghem, S. M., Patterson, N., Neafsey, D. E., Challis, R., Kumar, S., Moreira, G. R. P., Salazar, C., Chouteau, M., Counterman, B. A., Papa, R., Blaxter, M., Reed, R. D., Dasmahapatra, K. K., Kronforst, M., Joron, M., Jiggins, C. D., McMillan, W. O., Di Palma, F., Blumberg, A. J., Wakeley, J., Jaffe, D., and Mallet, J. 2019. Genomic architecture and introgression shape a butterfly radiation. Science, 366(6465): 594-599.
Elworth, R. A. L., Ogilvie, H. A., Zhu, J., and Nakhleh, L. 2019. Advances in computational methods for phylogenetic networks in the presence of hybridization. In Bioinformatics and Phylogenetics, volume 29, pages 317-360. Springer.
Finger, N., Farleigh, K., Bracken, J., Leache, A., Francois, O., Yang, Z., Flour, T., Charran, T., Jezkova, T., Williams, D., and Blair, C. 2021. Genome-scale data reveal deep lineage divergence and a complex demographic history in the texas horned lizard (Phrynosoma cornutum) throughout the southwestern and central USA. Genome Biol. Evol., page 10.1093/gbe/evab260.
Flouri, T., Jiao, X., Rannala, B., and Yang, Z. 2018. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol., 35(10): 2585-2593.
Flouri, T., Jiao, X., Rannala, B., and Yang, Z. 2020. A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol. Biol. Evol., 37(4): 1211-1223.
Gerard, D., Gibbs, H. L., and Kubatko, L. 2011. Estimating hybridization in the presence of coalescence using phylogenetic intraspecific sampling. BMC Evol. Biol., 11: 291.
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., and Siepel, A. 2011. Bayesian inference of ancient human demography from individual genome sequences. Nature Genet., 43: 1031-1034.
Hahn, M. W. and Hibbins, M. S. 2019. A three-sample test for introgression. Mol. Biol. Evol., 36(12): 2878-2882.
Hamlin, J. A. P., Hibbins, M. S., and Moyle, L. C. 2020. Assessing biological factors affecting postspeciation introgression. Evol. Lett., 4(2): 137-154.
Harrison, R. G. and Larson, E. L. 2014. Hybridization, introgression, and the nature of species boundaries. J. Hered., 105 (S1): 795-809.
Hey, J. and Nielsen, R. 2004. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics, 167: 747-760.

Hey, J., Chung, Y., Sethuraman, A., Lachance, J., Tishkoff, S., Sousa, V. C., and Wang, Y. 2018. Phylogeny estimation by integration over isolation with migration models. Mol. Biol. Evol., 35(11): 2805-2818.
Hibbins, M. S. and Hahn, M. W. 2021. Phylogenomic approaches to detecting and characterizing introgression. Genetics, page 10.1093/genetics/iyab173.

Huang, J., Flouri, T., and Yang, Z. 2020. A simulation study to examine the information content in phylogenomic datasets under the multispecies coalescent model. Mol. Biol. Evol., 37(11): 3211-3224.
Huang, J., Bennett, J., Flouri, T., and Yang, Z. 2021. Phase resolution of heterozygous sites in diploid genomes is important to phylogenomic analysis under the multispecies coalescent model. Syst. Biol., page 10.1093/sysbio/syab047.

Jasra, A., Holmes, C. C., and Stephens, D. A. 2005. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Stat. Sci., 1: 50-67.
Ji, J., Jackson, D. J., Leache, A. D., and Yang, Z. 2021. Significant cross-species gene flow detected in the Tamias quadrivittatus group of North American chipmunks. BioRxiv, page DOI: 10.1101/2021.12.07.471567.

Jiao, X., Flouri, T., and Yang, Z. 2021. Multispecies coalescent and its applications to infer species phylogenies and cross-species gene flow. Nat. Sci. Rev. DOI:10.1093/nsr/nwab127.
Jukes, T. and Cantor, C. 1969. Evolution of protein molecules. In Munro, H.N., ed. Mammalian Protein Metabolism, pages 21123. Academic Press, New York.

Kubatko, L. S. 2009. Identifying hybridization events in the presence of coalescence via model selection. Syst. Biol., 58(5): 478-488.
Kubatko, L. S. and Chifman, J. 2019. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. BMC Evol. Biol., 19(1): 112.
Mallet, J., Besansky, N., and Hahn, M. W. 2016. How reticulated are species? BioEssays, 38(2): 140-149.
Martin, S. H. and Jiggins, C. D. 2017. Interpreting the genomic landscape of introgression. Curr. Opin. Genet. Dev., 47: 69-74.
Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F., Blaxter, M., Manica, A., Mallet, J., and Jiggins, C. D. 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res., 23(11): 1817-1828.
Pardi, F. and Scornavacca, C. 2015. Reconstructible phylogenetic networks: do not distinguish the indistinguishable. PLoS Comput. Biol., 11(4): e1004135.
Pease, J. B. and Hahn, M. W. 2015. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol., 64(4): 651-662.
Richardson, S. and Green, P. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussions). J. R. Stat. Soc. B, 59: 731-792.

Sarver, B. A. J., Herrera, N. D., Sneddon, D., Hunter, S. S., Settles, M. L., Kronenberg, Z., Demboski, J. R., Good, J. M., and Sullivan, J. 2021. Diversification, introgression, and rampant cytonuclear discordance in Rocky Mountains chipmunks (Sciuridae: Tamias). Syst. Biol., 70(5): 908-921.
Shi, C. and Yang, Z. 2018. Coalescent-based analyses of genomic sequence data provide a robust resolution of phylogenetic relationships among major groups of gibbons. Mol. Biol. Evol., 35: 159-179.
Solis-Lemus, C. and Ane, C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet., 12(3): e1005896.
Solis-Lemus, C., Coen, A., and Ane, C. 2020. On the identifiability of phylogenetic networks under a pseudo-likelihood model. ArXive.
Stephens, M. 2000. Dealing with label switching in mixture models. J. R. Statist. Soc. B., 62: 795-809.
Thawornwattana, Y., Dalquen, D., and Yang, Z. 2018. Coalescent analysis of phylogenomic data confidently resolves the species relationships in the Anopheles gambiae species complex. Mol. Biol. Evol., 35(10): 2512-2527.
Thawornwattana, Y., Mallet, J., and Yang, Z. 2021. Complex introgression history of the erato-sara clade of heliconius butterflies. bioRxiv.
Wen, D. and Nakhleh, L. 2018. Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst. Biol., 67(3): 439-457.
Yang, Z. 2007. Paml 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol., 24: 1586-1591.

Yang, Z. 2015. The BPP program for species tree estimation and species delimitation. Curr. Zool., 61: 854-865.
Yang, Z. and Rodríguez, C. E. 2013. Searching for efficient Markov chain Monte Carlo proposal kernels. Proc. Natl. Acad. Sci. U.S.A., 110(48): 19307-19312.

Yu, Y., Degnan, J. H., and Nakhleh, L. 2012. The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genet., 8(4): e1002660.
Yu, Y., Dong, J., Liu, K. J., and Nakhleh, L. 2014. Maximum likelihood inference of reticulate evolutionary histories. Proc. Natl. Acad. Sci. U.S.A., 111(46): 16448-16453.
Zhang, C., Ogilvie, H. A., Drummond, A. J., and Stadler, T. 2018. Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evol., 35: 504-517.
Zhu, S. and Degnan, J. H. 2017. Displayed trees do not determine distinguishability under the network multispecies coalescent. Syst. Biol., 66(2): 283-298.
Zhu, T. and Yang, Z. 2012. Maximum likelihood implementation of an isolation-with-migration model with three species for testing speciation with gene flow. Mol. Biol. Evol., 29: 3131-3142.
Zhu, T. and Yang, Z. 2021. Complexity of the simplest species tree problem. Mol. Biol. Evol. DOI: 10.1093/molbev/msab009.

## ONLINE SUPPORTING INFORMATION (SI)

- Figure S1: Analysis of the first 500 exonic loci of the Heliconius data.
- Figure S2: Three models with a BDI event between sister species.
- Figure S3: Two models with a BDI event between nonsister species.
- Figure S4: Three models with a BDI event between nonsister species.
- Figure S5: Two BDI events between non-sister species creating four unidentifiable models.
- Figure S6: Scatterplots illustrating the $\mathrm{CoGN}_{0}$ algorithm.
- Figure S7: Tracecatter plots for $\varphi_{X}$ and $\varphi_{Y}$ in analysis of a dataset of $L=500$ loci simulated under the BDI model of figure 1.
- Table S1: Posterior means and 95\% HPD CIs for parameters in the BDI model from a simulated data of $L=500$ loci.

Table 1. Posterior means and $\mathbf{9 5 \%}$ HPD CIs (in parenthees) for parameters in the BDI model of figure $\mathbf{2}$ for the Heliconius data

|  | Noncoding, $L=500$ | Noncoding, $L=2592$ | Exonic, $L=500$ | Exonic, $L=3023$ |
| :--- | :---: | :---: | :---: | :---: |
| $\tau_{R}$ | $4.73(4.33,5.13)$ | $5.10(4.89,5.30)$ | $4.39(3.98,4.81)$ | $4.71(4.54,4.88)$ |
| $\tau_{S}$ | $3.12(2.05,4.19)$ | $2.58(2.12,3.05)$ | $1.95(1.07,2.82)$ | $1.78(1.38,2.19)$ |
| $\tau_{X}=\tau_{Y}$ | $0.62(0.21,1.02)$ | $0.25(0.09,0.40)$ | $0.20(0.03,0.37)$ | $0.13(0.05,0.24)$ |
| $\theta_{M}$ | $1.50(0.62,2.34)$ | $0.69(0.35,1.10)$ | $0.38(0.08,0.70)$ | $0.32(0.14,0.52)$ |
| $\theta_{T}$ | $2.55(1.40,3.74)$ | $1.23(0.65,1.84)$ | $0.79(0.13,1.28)$ | $0.63(0.32,0.94)$ |
| $\theta_{N}$ | $15.1(12.0,18.5)$ | $23.0(20.3,25.7)$ | $11.2(9.11,13.5)$ | $12.4(11.4,13.4)$ |
| $\theta_{R}$ | $5.08(4.12,6.05)$ | $5.74(5.23,6.24)$ | $5.76(4.83,6.70)$ | $6.68(6.24,7.11)$ |
| $\theta_{S}$ | $4.62(1.85,7.40)$ | $6.92(5.48,8.37)$ | $5.31(3.38,7.36)$ | $7.50(6.51,8.49)$ |
| $\theta_{X}$ | $11.40(2.83,21.2)$ | $12.90(7.35,19.6)$ | $8.04(1.67,15.4)$ | $5.80(3.60,8.36)$ |
| $\theta_{Y}$ | $6.78(2.42,11.6)$ | $8.74(5.69,12.0)$ | $4.03(0.60,7.51)$ | $3.49(2.56,4.50)$ |
| $\varphi_{X}$ | $0.354(0.022,0.664)$ | $0.124(0.007,0.243)$ | $0.280(0.002,0.547)$ | $0.161(0.070,0.264)$ |
| $\varphi_{Y}$ | $0.104(0.000,0.306)$ | $0.048(0.000,0.139)$ | $0.116(0.000,0.318)$ | $0.019(0.000,0.056)$ |

Note.— Estimates of $\tau \mathrm{s}$ and $\theta \mathrm{s}$ are multiplied by $10^{3}$. MCMC samples are processed using the $\beta-\gamma$ algorithm before they are summarized.


Figure 1: (a) Species tree or MSci model for two species ( $A$ and $B$ ) with a bidirectional introgression at time $\tau_{X}=\tau_{Y}$, identifying nine parameters in the model. We refer to a branch by its daughter node, so that branch $X A$ is also branch $A$ and is assigned the population size parameter $\theta_{A}$. Both species divergence/introgression times ( $\tau \mathrm{s}$ ) and population sizes $(\theta \mathrm{s}$ ) are measured in the expected number of mutations per site. (b) and (c) Two sets of unidentifiable parameters $\Theta$ and $\Theta^{\prime}$, with $\varphi_{X}^{\prime}=1-\varphi_{X}, \varphi_{Y}^{\prime}=1-\varphi_{Y}, \theta_{X}^{\prime}=\theta_{Y}$, and $\theta_{Y}^{\prime}=\theta_{X}$, while the other five parameters ( $\tau_{R}, \tau_{X}=\tau_{Y}, \theta_{A}, \theta_{B}$, and $\theta_{R}$ ) are identical between $\Theta$ and $\Theta^{\prime}$. The dotted lines indicate the main routes taken by sequences sampled from species $A$ and $B$, if both introgression probabilities $\alpha$ and $\beta$ are $<\frac{1}{2}$.


Figure 2: Species tree or BDI model for Heliconius melpomene, H. timareta, and $H$. numata. The branches are drawn to represent the posterior means of divergence/introgression times obtained from BPP analysis of (a) the 2592 noncoding and (b) the 3023 exonic loci from chromosome 1, while the node bars represent the $95 \%$ HPD CIs. See table 1 for estimates of all parameters. Photo of $H$. timareta courtesy of James Mallet.


Figure 3: Trace plots of MCMC samples and 2-D scatter plots for parameters $\varphi_{X}$ (purple) and $\varphi_{Y}$ (green) (a) before and (b-d) after the post-processing of the MCMC sample in the BPP analysis of the first 500 noncoding loci from chromosome 1 of the Heliconius data under the MSci model of figure 2. The three algorithms used are (b) $\beta-\gamma$, (c) $\mathrm{CoG}_{N}$, and (d) $\mathrm{CoG}_{0}$.


Figure 4: A part of a species tree (MSci model) for illustrating the rule of BDI unidentifiability. (a) In the BDI model, species $R X A$ and $S Y B$ exchange migrants at time $\tau_{X}=\tau_{Y}$. Treat $X$ and $Y$ as one node with left parent $R X$ with population size $\theta_{X}$ and right parent $S Y$ with population size $\theta_{Y}$. When a sequence from $A$ reaches $X Y$, it takes the left and right parental paths with probabilities $1-\varphi_{X}$ and $\varphi_{X}$, respectively. When a sequence from $B$ reaches $X Y$, it goes left and right with probabilities $\varphi_{Y}$ and $1-\varphi_{Y}$, respectively. (b \& c) Placing the two daughters in the order $(A, B)$ as in $\Theta$ or $(B, A)$ as in $\Theta^{\prime}$ does not affect the distribution of gene trees, and constitutes unidentifiable towers in the posterior space. If $X$ and $Y$ are sister species and have the same mother node (with $R$ and $S$ to be the same node), the unidentifiability is within-model; otherwise it is cross-model.


Figure 5: Two species trees (MSci models) for five species each with three BDI events. (a) Three BDI events between sister species create $2^{3}=8$ within-model towers in the posterior. (b) Two BDI events between sister species and one BDI event between non-sister species create two unidentifiable models each with four withinmodel unidentifiable towers in the posterior space.


Figure 6: Species trees (MSci models) for two species ( $A$ and $B$ ) with double DBI events creating four withinmodel towers, represented by $\Theta_{1}, \Theta_{2}, \Theta_{3}$, and $\Theta_{4}$. (a) The model involves 14 parameters: $7 \theta \mathrm{~s}, 3 \tau \mathrm{~s}$, and $4 \varphi \mathrm{~s}$, with eight of them involved in the label-switching unidentifiability, $\Theta=\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}, \varphi_{Z}, \varphi_{W}, \theta_{Z}, \theta_{W}\right)$. (b)-(e) Four unidentifiable towers showing the mappings of parameters (eq. 3). To apply the rule of figure 4 , we treat each pair of BDI nodes as one node, so that $X$ and $Y$ have the same node $Z W$ as the parent, and the unidentifiability caused by the BDI event at nodes $X-Y$ is within-model, as is the unidentifiability for the BDI event at nodes $Z-W$.


Figure 7: Trace plots of MCMC samples and 2-D scatter plots for parameters $\varphi_{Z}$ (purple) and $\varphi_{W}$ (green) (a) before and (b) after the post-processing of the MCMC samples for the double-DBI model of figure 6 a . Post processing used the $\beta-\gamma$ algorithm (b), while $\mathrm{CoG}_{N}$ and $\mathrm{CoG}_{0}$ produced nearly identical results (not shown). This is for replicate 2 for $L=500$ loci (see fig. 8).


Figure 8: Posterior means and the $95 \%$ HPD CIs in 10 replicate datasets of $L=500,2000$, and 8000 loci, simulated and analyzed under the double-BDI model of figure 6 . The MCMC samples are post-processed using the $\beta-\gamma$ algorithm before they are summarized (see fig. 7 for an example). Eight parameters are involved in the labelswitching unidentifiability: $\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}, \varphi_{Z}, \varphi_{W}, \theta_{Z}$, and $\theta_{W}$ (see fig. 6).


Figure 9: Species trees for three species $(A, B$, and $C)$ illustrating MSci models of types A and B of Flouri et al. (2020, fig. 1). (a-c)Three interpretations of MSci model A are indistinguishable/unidentifiable. (d, e) Two versions of MSci model B are identifiable.


Figure 10: ( $\mathbf{a \& b}$ ) Two phylogenetic networks for four species $(A, B, C, D)$, each with two hybridization events from Pardi and Scornavacca (2015) that are unidentifiable using gene tree topologies with one sequence sampled per species. (c) Network $N_{1}$ gives rise to three 'displayed species trees' in probabilities $\alpha,(1-\alpha) \beta$, and $(1-\alpha)(1-\beta)$, while $N_{2}$ gives rise to the same three displayed species trees with probabilities $(1-\gamma)(1-\delta),(1-\gamma) \delta$, and $\gamma$. The two networks thus give the same distribution of gene tree topologies, and are thus unidentifiable. However, $N_{1}$ and $N_{2}$ are identifiable when multiple samples are taken from species $B$. (d\&e) MSci models corresponding to networks $N_{1}$ and $N_{2}$. With information from branch lengths (coalescent times) and using multilocus sequence data, those models are identifiable by full likelihood method, as are the 18 parameters in each model, including five species divergence/introgression times ( $\tau \mathrm{s}$ ), eleven population sizes $(\theta \mathrm{s})$, and two introgression probabilities.


Figure S1: Analysis of the first 500 exonic loci on chromosome 1 from the Heliconius data. See legend to figure 3.


Figure S2: Three species trees (MSci models), each with a BDI event between sister species, exhibiting withinmodel unidentifiability. ( $\mathbf{a} \& \mathbf{a}^{\prime}$ ) Subtrees are added to branches $A, B$, and $R$ in the basic model of figure 1a. (b \& $\mathbf{b}^{\prime}$ ) A BDI event between sister species $X$ and $Y$ with a unidirectional introgression involving descendant branches of $X$ and $Y$. ( $\mathbf{c}$ and $\mathbf{c}^{\prime}$ ) A BDI event between sister species $X$ and $Y$ with a unidirectional introgression involving one descendant branch and another branch that is not a descendant of $X$ or $Y$. In all three cases, the parameter mapping is $\varphi_{X}^{\prime}=1-\varphi_{X}, \varphi_{Y}^{\prime}=1-\varphi_{Y}, \theta_{X}^{\prime}=\theta_{Y}$, and $\theta_{Y}^{\prime}=\theta_{X}$.


Figure S3: Two pairs of species trees or unidentifiable MSci models with a BDI event between non-sister species creating cross-model unidentiability. ( $\mathbf{a} \mathbf{a}^{\prime}$ ) A pair of unidentifiable models with a BDI event between nonsister species. The dotted lines indicate the main routes taken by sequences sampled from species $A$ and $B$, if the introgression probabilities $\alpha$ and $\beta$ are $<\frac{1}{2}$. ( $\mathbf{b} \& \mathbf{b}^{\prime}$ ) Another pair of unidentifiable models with a BDI event between non-sister species. The parameter mapping from $\Theta$ to $\Theta^{\prime}$ in both cases is $\varphi_{X}^{\prime}=1-\varphi_{Y}$ and $\varphi_{Y}^{\prime}=1-\varphi_{X}$, with all other parameters (such as $\theta_{X}, \theta_{Y}, \theta_{A}$, and $\theta_{B}$ ) to be identical between $\Theta$ and $\Theta^{\prime}$.


Figure S4: Three pairs of species trees (or unidentifiable MSci models) with one BDI event between non-sister species, illustrating the mapping of parameters $\left(\Theta\right.$ and $\left.\Theta^{\prime}\right)$. In (a), $R X A$ and $S Y H$ are non-sister species. In (b) \& (c), nodes $X$ and $Y$ are non-sister species because of the unidirectional introgression event involving branches $R X$ and/or $R Y$. In each of the three cases, the mirror model ( $S^{\prime}$ with $\Theta^{\prime}$ ) is generated by pruning off branches $A X$ at $X$ and $B Y$ at $Y$, swapping places and reattaching, and applying the mapping $\varphi_{X}^{\prime}=1-\varphi_{Y}$ and $\varphi_{Y}^{\prime}=1-\varphi_{X}$.


Figure S5: Four species trees for species $A, B$, and $C$ representing four unidentifiable models each with two BDI events between non-sister species. The cross-model parameter mappings concern only the introgression probabilities $\varphi_{X} \equiv \alpha, \varphi_{Y} \equiv \beta, \varphi_{Z} \equiv \gamma$, and $\varphi_{W} \equiv \delta$, while all other parameters are the same among the models. The colored lines indicate the main routes taken by sequences sampled from $A$ (red), $B$ (blue), and $C$ (purple), if the introgression probabilities $\alpha, \beta, \gamma$, and $\delta$ are all $<\frac{1}{2}$, from which the unidentifiability of the four models can be seen easily. Based on figure S9 of Finger et al. (2021).


Figure S6: The $\mathrm{CoGN}_{0}$ algorithm moves sampled points to their mirror positions to be as close as possible to the center of gravity. Note that $\left(\varphi_{X}, \varphi_{Y}\right)$ and its mirror position $\left(1-\varphi_{X}, 1-\varphi_{Y}\right)$ are mirror reflections of each other around the point $\left(\frac{1}{2}, \frac{1}{2}\right)$. The 'original' sample consists of 1000 points, obtained from 'thinning' the MCMC sample from the BPP analysis of the 500 noncoding Heliconius loci of figure 3a. The mean $\left(\varphi_{X}, \varphi_{Y}\right)=(0.544,0.614)$ is indicated by the red dot in $\mathbf{a}, \mathbf{a}^{\prime} \& \mathbf{a}^{\prime \prime}$. The three rows illustrate three runs of the $\mathrm{CoGN}_{0}$ algorithm with different starting positions: $(\mathbf{a}-\mathbf{c}) \varphi_{X}+\varphi_{Y}<1,\left(\mathbf{a}^{\prime}-\mathbf{d}^{\prime}\right) \varphi_{X}<\frac{1}{2}$ or $\varphi_{Y}<\frac{1}{2}$, and $\left(\mathbf{a}^{\prime \prime}-\mathbf{c}^{\prime \prime}\right) \varphi_{X}>\frac{1}{2}$ or $\varphi_{Y}>\frac{1}{2}$. In the first run, the initialization (under the condition $\varphi_{X}+\varphi_{Y}<1$ ) moves 647 points above or right of the line $\varphi_{X}+\varphi_{Y}=1$ to their mirror points below or left of the line, with the new mean $(0.348,0.111)$, indicated by the red dot (b). The algorithm then attempts to move points to their mirror positions to be closer to the red dot. Ten such points are moved, with the new mean $(0.353,0.107)(\mathbf{c})$. In the next iteration, no points move, so the algorithm terminates. In the second run $\left(\mathbf{a}^{\prime}-\mathbf{d}^{\prime}\right)$, the initialization $\left(\varphi_{X}<\frac{1}{2}\right.$ or $\left.\varphi_{Y}<\frac{1}{2}\right)$ moves 512 points from the upper right corner to their mirror points in the lower bottom, with the new mean $(0.327,0.216)\left(\mathbf{b}^{\prime}\right)$. Round 1 moves 136 points, with the new mean $(0.353$, $0.107)\left(\mathbf{c}^{\prime}\right)$. Round 2 moves one point, with the new mean $(0.353,0.107)\left(\mathbf{d}^{\prime}\right)$. In the third run, the initialization ( $\varphi_{X}>\frac{1}{2}$ or $\varphi_{Y}>\frac{1}{2}$ ) moves 275 points from the lower bottom corner to their mirror points in the upper right corner, with the new mean $(0.662,0.832)\left(\mathbf{b}^{\prime \prime}\right)$. Round 1 moves 75 points, with the new mean $(0.647,0.892)$, and the next round does not move any points, so the algorithm ends. Note that the first two runs converge to the same mean $(0.353,0.107)$, while the third run converges to its mirror point $(0.647,0.892)$. If the original positions are taken as the initial positions (i.e., without initialization), the algorithm converges, after one iteration, to $(0.647,0.892)$, as in the second run. Note that the algorithm operates on four parameters $\Theta=\left(\varphi_{X}, \varphi_{Y}, \theta_{X}, \theta_{Y}\right)$ but only $\left(\varphi_{X}, \varphi_{Y}\right)$ is shown here.


Figure S7: Trace plots of MCMC samples for $\varphi_{X}$ (purple) and $\varphi_{Y}$ (green) and 2-D scatter plots from BPP analysis of a dataset of $L=500$ loci simulated under the BDI model of figure 1 a. See table S 1 for the true parameter values and posterior summaries. The plots are for, from top to bottom, (a) unprocessed sample and processed samples using (b) the $\beta-\gamma,(\mathbf{c})$ the $\mathrm{CoG}_{N}$, and (d) the $\mathrm{CoG}_{0}$ algorithms. The true parameter values are $\Theta=\left(\varphi_{X}, \varphi_{Y}\right)=(0.7,0.2)$, and the post-processing using all three algorithms mapped the samples to the mirror tower around $\Theta^{\prime}=(0.3,0.8)$.

Table S1. Posterior means and 95\% HPD CIs (in parenthees) for parameters in the MSci model of figure 1a from two simulated datasets of $L=500$ and 1000 loci

|  | truth ( $\Theta$ ) | mirror $\left(\Theta^{\prime}\right)$ | beta-gamma | $\mathrm{CoG}_{N}$ | $\mathrm{CoG}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $L=500$ loci |  |  |  |  |  |
| $\tau_{R}$ | 0.01 |  | 0.0098 (0.0088, 0.0108) |  |  |
| $\tau_{X}=\tau_{Y}$ | 0.005 |  | 0.0050 (0.0045, 0.0055) |  |  |
| $\theta_{A}$ | 0.002 |  | 0.0020 (0.0018, 0.0021) |  |  |
| $\theta_{B}$ | 0.01 |  | $0.0101(0.0093,0.0108)$ |  |  |
| $\theta_{R}$ | 0.002 |  | 0.0020 (0.0006, 0.0034) |  |  |
| $\theta_{X}$ | 0.002 | 0.01 | 0.0063 (0.0005, 0.0130) | 0.0066 (0.0005, 0.0133) | 0.0066 (0.0005, 0.0133) |
| $\theta_{Y}$ | 0.01 | 0.002 | 0.0071 (0.0022, 0.0124) | 0.0067 (0.0017, 0.0120) | 0.0068 (0.0017, 0.0121) |
| $\varphi_{X}$ | 0.7 | 0.3 | 0.755 (0.472, 0.999) | 0.764 (0.528, 0.999) | 0.765 (0.530, 0.999) |
| $\varphi_{Y}$ | 0.2 | 0.8 | 0.447 (0.209, 0.670) | 0.461 (0.214, 0.695) | 0.462 (0.212, 0.695) |
| $L=2000$ loci |  |  |  |  |  |
| $\tau_{R}$ | 0.01 |  | $0.0101(0.0094,0.0108)$ |  |  |
| $\tau_{X}=\tau_{Y}$ | 0.005 |  | 0.0051 (0.0048, 0.0054) |  |  |
| $\theta_{A}$ | 0.002 |  | 0.0020 (0.0019, 0.0021) |  |  |
| $\theta_{B}$ | 0.01 |  | 0.0100 (0.0097, 0.0104) |  |  |
| $\theta_{R}$ | 0.002 |  | 0.0018 (0.0009, 0.0027) |  |  |
| $\theta_{X}$ | 0.002 | 0.01 | 0.0037 (0.0008, 0.0062) | 0.0037 (0.0009, 0.0062) | 0.0050 (0.0006, 0.0097) |
| $\theta_{Y}$ | 0.01 | 0.002 | 0.0076 (0.0049, 0.0108) | 0.0076 (0.0048, 0.0108) | 0.0064 (0.0019, 0.0104) |
| $\varphi_{X}$ | 0.7 | 0.3 | 0.545 (0.178, 0.903) | 0.545 (0.178, 0.903) | 0.656 (0.449, 0.887) |
| $\varphi_{Y}$ | 0.2 | 0.8 | 0.398 (0.198, 0.598) | 0.398 (0.198, 0.598) | 0.450 (0.205, 0.684) |
| $L=8000$ loci |  |  |  |  |  |
| $\tau_{R}$ | 0.01 |  | 0.0098 (0.0094, 0.0102) |  |  |
| $\tau_{X}=\tau_{Y}$ | 0.005 |  | 0.0049 (0.0048, 0.0051) |  |  |
| $\theta_{A}$ | 0.002 |  | 0.0020 (0.0019, 0.0020) |  |  |
| $\theta_{B}$ | 0.01 |  | 0.0100 (0.0098, 0.0102) |  |  |
| $\theta_{R}$ | 0.002 |  | 0.0021 (0.0017, 0.0025) |  |  |
| $\theta_{X}$ | 0.002 | 0.01 | 0.0045 (0.0003, 0.0083) | 0.0044 (0.0003, 0.0081) | 0.0051 (0.0003, 0.0106) |
| $\theta_{Y}$ | 0.01 | 0.002 | 0.0095 (0.0059, 0.0129) | 0.0096 (0.0060, 0.0130) | 0.0089 (0.0041, 0.0128) |
| $\varphi_{X}$ | 0.7 | 0.3 | 0.645 (0.442, 0.848) | 0.645 (0.436, 0.848) | 0.645 (0.436, 0.846) |
| $\varphi_{Y}$ | 0.2 | 0.8 | 0.334 (0.128, 0.632) | 0.336 (0.129, 0.639) | 0.310 (0.123, 0.539) |

Note.- Empty values for $\Theta^{\prime}$ mean the same values as for $\Theta$. MCMC samples are processed using the three algorithms and then summarized. See figure S 7 for the tracecatter plots for the dataset of $L=500$. The datasets, with each locus consisting of four sequences per species (or eight sequences per locus) and 500 sites per sequence, are simulated using the true parameter values $(\Theta)$.


[^0]:    *Correspondence: z.yang@ucl.ac.uk

