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Full likelihood implementations of the multispecies coalescent with introgression (MSci) model takes the genea-
logical fluctuation across the genome as a major source of information to infer the history of species divergence
and gene flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues,
whereby different models or parameters make the same predictions about the data and cannot be distinguished by
the data. Previous studies have focused on heuristic methods based on gene trees, and does not make an efficient
use of the information in the data. Here we study the unidentifiability of MSci models under the full likelihood
methods. We characterize the unidentifiability of the bidirectional introgression (BDI) model, which assumes that
gene flow occurs in both directions. We derive simple rules for arbitrary BDI models, which create unidentifiability
of the label-switching type. In general, an MSci model with k BDI events has 2k unidentifiable modes or towers
in the posterior, with each BDI event between sister species creating within-model parameter unidentifiability and
each BDI event between non-sister species creating between-model unidentifiability. We develop novel algorithms
for processing Markov chain Monte Carlo (MCMC) samples to remove label-switching problems and implement
them in the BPP program. We analyze real and synthetic data to illustrate the utility of the BDI models and the new
algorithms. We discuss the unidentifiability of heuristic methods and provide guidelines for the use of MSci models
to infer gene flow using genomic data.
Multispecies coalescent | introgression | unidentifiability | BPP | MSci | label-switching

INTRODUCTION

Genomic sequences sampled from modern species
contain rich historical information concerning species
divergences and cross-species gene flow. In the past
two decades, analysis of genomic sequence data has
demonstrated the widespread nature of cross-species5

hybridization or introgression (Baack and Rieseberg,
2007; Harrison and Larson, 2014; Mallet et al., 2016).
A number of statistical methods have been developed
to infer introgression using genomic data, most of
which use data summaries such as the estimated gene10

trees or genome-wide site-pattern counts (Degnan,
2018; Elworth et al., 2019; Jiao et al., 2021). Full-
likelihood methods applied directly to multi-locus
sequence alignments (Wen and Nakhleh, 2018; Zhang
et al., 2018; Flouri et al., 2020) allow estimation15

of evolutionary parameters including the timing and
strength of introgression, as well as species divergence
times and population sizes for modern and extinct
ancestral species. These have moved the field beyond
simply testing for the presence of cross-species gene20

flow.
Models of cross-species introgression are known

to cause unidentifiability issues, whereby different
introgression models make the same probabilistic pre-
dictions about the data, and cannot be distinguished by25
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the data (Yu et al., 2012; Pardi and Scornavacca, 2015;
Zhu and Degnan, 2017; Solis-Lemus et al., 2020). If
the probability distributions of the data are identical
under model m with parameters Θ and under model m′

with parameters Θ′, with 30

f (X |m,Θ) = f (X |m′,Θ′) (1)

for essentially all possible data X , the models are
unidentifiable by data X . Here we use the term within-
model unidentifiability if m = m′ and Θ ̸= Θ′, or
cross-model unidentifiability if m ̸= m′. In the former
case, two sets of parameter values in the same model 35

are unidentifiable, whereas in the latter, two distinct
models are unidentifiable. In Bayesian inference, the
prior f (m,Θ) may be used to favour a particular model
or set of parameters. However, if the prior is only
vaguely informative and the posterior is dominated by 40

the likelihood, there will be multiple modes in the
posterior that are not perfectly symmetrical.

Several studies examined the unidentifiability of
introgression models when gene tree topologies (either
rooted or unrooted) are used as data (Pardi and Scor- 45

navacca, 2015; Zhu and Degnan, 2017; Solis-Lemus
et al., 2020), and the results apply to heuristic methods
based on (reconstructed) gene trees. The issue has not
been studied when full-likelihood methods are applied,
which operate on multilocus sequence alignments dire- 50

ctly. Note that unidentifiability depends on the data
1
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and the method of analysis. An introgression model
unidentifiable given gene tree topologies alone may be
identifiable given gene trees with coalescent times Zhu
and Degnan (2017). Similarly, a model unidentifiable55

using heuristic methods may be identifiable when full
likelihood methods are applied to the same data. It is
thus important to study the problem when full like-
lihood methods are applied, because unidentifiability
by a heuristic method may reflect its inefficient use of60

information in the data while unidentifiability by full
likelihood methods reflects the intrinsic difficulty of
the inference problem (Zhu and Yang, 2021).

Here we focus on models of episodic introgression
that assume that gene flow occurs between species65

at fixed time points (Wen and Nakhleh, 2018; Zhang
et al., 2018; Flouri et al., 2020). These are known
as multispecies coalescent with introgression model
(MSci; Flouri et al., 2020), hybrid species phyloge-
nies (Kubatko, 2009), network multispecies coalescent70

model (NMSC; Zhu and Degnan, 2017), or multi-
species network coalescent model (MSNC; Wen and
Nakhleh, 2018; Zhang et al., 2018). Another class of
models of between-species gene flow is the continuous
migration model which assumes that migration occurs75

at a certain rate every generation. This is known as
the isolation-with-migration (IM; Hey and Nielsen,
2004; Hey et al., 2018; Zhu and Yang, 2012; Dalquen
et al., 2017) or multispecies coalescent with migration
(MSC+M; Jiao et al., 2021) models. The IM model has80

very different properties concerning identifiability and
is not dealt with in this study.

The bulk of the paper concerns the bidirectional-
introgression (BDI) model (fig. 1), which was noted
to have an unidentifiability issue (Flouri et al., 2020).85

The BDI model posits that two species coming into
contact at a certain time in the past exchange genes,
while the other MSci models assume introgression
only in one direction. Whether gene flow tends to
occur in one direction or in both directions is an90

interesting empirical question that may be answered by
real data analyses. Here we note that recent analyses
of genomic data from North-American horned lizards
(Finger et al., 2021), the erato-sara group of Heliconius
butterflies (Thawornwattana et al., 2021), and North-95

American chipmunks (Ji et al., 2021) have identified
BDI events, both between sister species and betw-
een nonsister species (see also an example later). In
the Anopheles gambiae group of African mosquitoes,
introgressions between A. gambiae and A. arabiensis100

in both directions were suspected, but detailed analyses
detected gene flow from A. arabiensis to A. gambiae
only but not in the opposite direction (Thawornwat-
tana et al., 2018). At any rate, BDI is one of the
most plausible introgression models and appears to105

be one of the most common forms of cross-species
gene flow. The unidentifiability of MSci models with
unidirectional introgression (UDI) is simpler, and we
defer its discussion to the Discussion section. Similarly

we discuss unidentifiability of heuristic methods later. 110

The basic BDI model between two species (fig. 1)
involves nine parameters, with Θ = (θA, θB, θX , θY , θR,
τR, τX , ϕX , ϕY ). An introgression model is similar to a
species tree except that it includes horizontal branches
representing lateral gene flow across species. Besi- 115

des speciation nodes representing species divergences,
there are hybridization nodes representing introgres-
sion events as well. While a speciation node has one
parent and two daughters, a hybridization node has two
parents and one daughter. The ‘introgression probabi- 120

lities’ or ‘admixture proportions’ (ϕ and 1−ϕ) specify
the contributions of the two parental populations to the
hybrid species. When we trace the genealogical history
of a sample of sequences from the modern species
backwards in time and reach a hybridization node, each 125

of the sequences takes the two parental paths with
probabilities ϕ and 1−ϕ . There are thus three types
of parameters in an introgression (or MSci) model: the
times of species divergence and introgression (τs), the
(effective) population sizes of modern and ancestral 130

species (θs), and the introgression probabilities (ϕs).
Both the divergence times (τs) and population sizes
(θs) are measured in the expected number of mutations
per site.

The BDI model, in the case of two species (fig. 1), is 135

noted to have an unidentifiability issue (Flouri et al.,
2020). Let Θ′ be a set of parameters with the same
values as Θ except that ϕ ′

X = 1−ϕX , ϕ ′
Y = 1−ϕY , θ ′

X =
θY , and θ ′

Y = θX . Then f (G|Θ) = f (G|Θ′) for any gene
tree G (fig. 1b&c). Here G represents both the gene tree 140

topology and branch lengths (coalescent times). We
assume multiple sequences sampled per species at the
same locus (see Discussion for unidentifiability caused
by sampling only one sequence per species). Thus for
every point Θ in the parameter space, there is a ‘mirror’ 145

point Θ′ with exactly the same likelihood. With Θ, the
A sequences take the left (upper) path at X and enter
population RX with probability 1−ϕX , coalescing at
the rate 2

θX
, while with Θ′, the same A sequences may

take the right (horizontal) path and enter population RY 150

with probability ϕ ′
X = 1 − ϕX , coalescing at the rate

2
θ ′

Y
= 2

θX
. The differences between Θ and Θ′ are in the

labelling, with ‘left’ and X under Θ corresponding to
‘right’ and Y under Θ′, but the probabilities involved
are the same. The same argument applies to sequences 155

from B going through node Y , and to any numbers
of sequences from A and B considered jointly. Thus
f (G|Θ) = f (G|Θ′) for essentially all G. If the priors
on ϕX and ϕY are symmetrical, say ϕ ∼ beta(α,α), the
posterior density will satisfy f (Θ|X) = f (Θ′|X) for all 160

X . Otherwise the “twin towers” in the posterior may
not have exactly the same height.

The situation is very similar to the label-switching
problem in Bayesian clustering (Richardson and
Green, 1997; Celeux et al., 1998; Stephens, 2000; Jasra 165

et al., 2005). Consider data X = {xi} as a sample from

2
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a mixture of two normal distributions, N(µ1,1) and
N(µ2,1), with the mixing proportions p1 and p2 =
1− p1. Let Θ = (p1, µ1, µ2) be the parameter vector.
Then Θ′ = (p2, µ2, µ1) with p2 = 1 − p1 will have170

exactly the same likelihood, so that f (X |Θ) = f (X |Θ′)
for essentially all data X . In effect, the labels ‘group 1’
and ‘group 2’ are switched between Θ and Θ′.

As an example, we fit the BDI model of figure 2a to
the first 500 noncoding loci on chromosome 1 in the175

genomic data from three Heliconius butterfly species:
H. melpomene, H. timareta, and H. numata (Edelman
et al., 2019; Thawornwattana et al., 2021). Figure 3a
shows the trace plots for parameters ϕX and ϕY from a
Markov chain Monte Carlo (MCMC) run. The Markov180

chain moves between two peaks, centered around
(ϕX ,ϕY ) = (0.35,0.1) and (0.65,0.9), respectively. In
effect, the algorithm is switching between Θ and Θ′

and changing the definition of parameters during the
same MCMC run. This is a label-switching problem,185

as occurs in Bayesian clustering. The usual practice of
estimating parameters by their posterior means calcula-
ted using the MCMC sample (0.54 for ϕX and 0.62 for
ϕY in fig. 3a) and constructing the credibility intervals
is inappropriate. Indeed the posterior distribution of190

Θ is exactly symmetrical with twin towers, and if
the chain is run long enough, the sample means of
ϕX and ϕY will be exactly 1

2 , irrespectively of what
values may fit the data well. The results are similar
when the first 500 exonic loci are analyzed, in which195

the Markov chain moves between two towers centered
around (0.3,0.1) and (0.7,0.9) (fig. S1a).

Unidentifiable models cannot be applied to real data
as they are trying to “distinguish the indistinguisha-
ble” (Pardi and Scornavacca, 2015). Results such as200

those of figures 3a & S1a raise two questions. First,
what are the rules concerning the unidentifiability of
general BDI models, for example, if there are more
than two species on the species tree, more than one
BDI event, or if the BDI event involves non-sister205

species (fig. 1). Second how do we deal with the
problem of label-switching and make the models useful
for real data analyses? We address those problems.
We study the unidentifiability issue of BDI models
for an arbitrary number of species with an arbitrary210

species tree, when a full-likelihood method is applied
to multilocus sequence data. It has been conjectured
that an MSci model is identifiable by full likelihood
methods using data of multi-locus sequence alignments
if and only if it is identifiable when the data consist of215

gene trees with coalescent times (Flouri et al., 2020).
We make use of this conjecture and consider two BDI
models to be unidentifiable if and only if they generate
the same distribution of gene trees with coalescent
times. We emphasize that the unidentifiability discus-220

sed here affects all methods of inference using genomic
sequence data, including heuristic methods based on
summary statistics as well as full likelihood methods

(see Discussion). We identify general rules for the
unidentifiability of the BDI models. We then develop 225

new algorithms for post-processing the MCMC sam-
ples generated from a Bayesian analysis under the BDI
model to remove the label-switching. Those efforts
make the BDI models usable for real data analysis
despite their unidentifiability. We use the BPP program 230

(Flouri et al., 2018) to analyze synthetic datasets as
well as genomic data from Heliconius butterflies to
demonstrate the utility of the BDI models and the new
algorithms. After we have dealt with the BDI models,
we discuss the unidentifiability of UDI models and of 235

heuristic methods.

THEORY

The rule of unidentifiability of BDI models
In full likelihood implementations of the MSci model,
the gene tree G for any given sample of sequences from
the modern species represents the complete history of 240

coalescence and introgression events for the sample,
including the gene tree topology, the coalescent times,
as well as the parental path taken by each sequence
at each hybridization node (e.g., Jiao et al., 2021,
eq. 14). The probability distribution of the gene tree 245

G depends on the species tree, species divergence
times (τs), the population sizes (θs) which determine
the coalescent rates in the different populations ( 2

θ
),

and the introgression probabilities at the hybridization
nodes (ϕ). It does not depend on the labels attached to 250

the internal nodes in the species tree.
Consider a part of the species tree or MSci model

where species A and B exchange migrants at time τX =
τY (fig. 4). To study the backwards-in-time process of
coalescent and introgression, which gives the proba- 255

bility density of the gene tree f (G|S,Θ), we can treat
nodes X and Y as one node, XY . When sequences from
A reach node XY , each of them has probability 1−ϕX
of taking the left parental path (RX) and probability
ϕX of taking the right parental path (SY ). Similarly 260

when sequences from B reach node XY , they have
probabilities ϕY and 1 − ϕY of taking the left (RX)
and right (Y S) parental paths, respectively. If we swap
branches A and B, carrying with them their population
size parameters (θ ) and introgression probabilities (ϕ), 265

the probability density of the gene-trees remains unch-
anged. Thus the species tree-parameter combinations
(S,Θ) and (S′,Θ′) of figure 4b&c give exactly the same
probability distribution,

f (G|S,Θ) = (G|S′,Θ′), for every gene tree G. (2)

In other words, (S,Θ) and (S′,Θ′) are unidentifiable 270

(eq. 1).
Note that the processes of coalescent and introgres-

sion before reaching nodes A and B (with time running
backwards) are identical between Θ and Θ′, as are the
processes past nodes X and Y . Thus the rule applies if 275
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each of A and B is a subtree, with introgression events
inside, or if there are introgression events involving a
descendant of A and a descendant of B.

If A and B are sister species or the parents R and
S are one node in the species tree, the species trees280

(A,B) and (B,A) will be the same so that S= S′ in eq. 2.
Then Θ and Θ′ (fig. 4) will be two sets of parameter
values in the same model and we have a case of within-
model unidentifiability. Otherwise the unidentifiability
is cross-model.285

Canonical cases of BDI models
Here we study major BDI models to illustrate the
rule of unidentifiability and to provide reference for
researchers who may apply those models to analyze
genomic datasets.290

If we add subtrees onto branches XA, Y B, or the
root branch R in the two-species tree of figure 1a, so
that the BDI event remains to be between two sister
species, the model will exhibit within-model parameter
unidentifiability (fig. S2), just like the basic model of295

figure 1a.
If the BDI event is between non-sister species, the

model exhibits cross-model unidentifiability. Figures
S3a&a′ show a model with a BDI event between cou-
sins, while in figures S3b&b′, the two species involved300

in the BDI event are more distantly related.
Figures S4a, b &c show three models each with a

BDI event between non-sister species. In figure S4a,
X and Y are non-sister species on the original binary
species tree. In figure S4b&c, X and Y are non-305

sister species because there are introgression events
involving branches RX and/or RY . In all three cases,
there is cross-model unidentifiability, with the twin
towers shown in S4a′, b′&c′.

The case of two non-sister BDI events for three spe-310

cies is illustrated in figure S5. According to our rule,
there are four unidentifiable models in the posterior,
with parameter mappings shown in figure S5. One way
of seeing that the four models are equivalent or uniden-
tifiable is to assume that the introgression probabilities315

(ϕX , ϕY , ϕZ , and ϕW ) are all < 1
2 , and then work out

the major routes taken when we trace the genealogical
history of sequences sampled from modern species. In
such cases, all four models of figure S5 predict the
following: most sequences from A will take the route320

ZR at node ZW with probability 1− γ; most sequences
from B will take the route X-W at node XY (with
probability 1 − α), then the route WS at node ZW
(with probability 1−δ ), before reaching SR; and most
sequences from C will take the route Y S at node XY325

(with probability 1−β ), before reaching SR. Of course
the four models are unidentifiable whatever values the
introgression probabilities take. Those models have
been used to analyze genomic data from Texas Horned
Lizards (Phrynosoma cornutum) (Finger et al., 2021).330

Figure 5 shows two models for five species, each

model involving three BDI events. In figure 5a, all
three BDI events involve sister species, so that there
are 23 = 8 unidentifiable within-model towers in the
posterior. In figure 5b, one BDI event involves non- 335

sister species while two involve sister species, so that
there are two unidentifiable models, each of which
has four unidentifiable within-model towers in the
posterior.

In general, if there are m BDI events between sister 340

species and n BDI events between non-sister species,
there will be 2n unidentifiable models, each having 2m

within-model unidentifiable towers.

Unidentifiability of double-DBI models
Figure 6a shows two BDI events between species A 345

and B, which occurred at times τX = τY and τZ = τW ,
respectively. To apply the rule of figure 4, we treat
Z and W as one node so that X and Y are conside-
red sister species. There are then four within-model
unidentifiable towers in the posterior space, shown as 350

Θ1-Θ4 in fig. 6. The parameter mappings are given in
the following table

Θ ϕX ϕY θX θY ϕZ ϕW θZ θW

Θ1 : ϕX < 1
2 ,ϕZ < 1

2 α β θX θY γ δ θZ θW
Θ2 : ϕX < 1

2 ,ϕZ > 1
2 α β θX θY 1− γ 1−δ θW θZ

Θ3 : ϕX > 1
2 ,ϕW < 1

2 1−α 1−β θY θX δ γ θW θZ
Θ4 : ϕX > 1

2 ,ϕW > 1
2 1−α 1−β θY θX 1−δ 1− γ θZ θW

(3)
In general, with k BDI events between two species,

which occurred at different time points in the past,
there will be 2k unidentifiable within-model towers 355

in the posterior. There may be little information in
practical datasets to estimate so many parameters: if all
sequences have coalesced before they reach the ancient
introgression events near the root of the species tree,
the introgression probabilities (ϕs) and the associated 360

population sizes (θs) will be nearly impossible to
estimate. Thus we do not consider more than two BDI
events between two species. Note that even the model
with one BDI event is not identifiable by heuristic
methods that use gene tree topologies only. A small 365

simulation is conducted to illustrate the feasibility of
applying the double-BDI model (fig. 6) to genomic
datasets; see Results.

Addressing unidentifiability issues and difficulties
with identifiability constraints 370

According to our rule, MSci models with BDI events
can create both within-model and cross-model uniden-
tifiability. Cross-model unidentifiability is relatively
simple to identify and deal with. If the MCMC is run
with the MSci model fixed (Flouri et al., 2020), only 375

one of the models (e.g., model S1 with parameters Θ1
in fig. S5) is visited in the chain. One can then summa-
rize the posterior distribution for parameters under that
model (which may be smooth and single-moded), and

4
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the posterior summary may be mapped onto the other380

unidentifiable models according to the rule. See Finger
et al. (2021) for such an application of BDI models
of figure S5. If the MCMC is trans-model and visits
different models in the chain (Zhang et al., 2018; Wen
and Nakhleh, 2018), the posterior space is symmetrical385

between the unidentifiable models (such as models S1–
S4 of fig. S5). However, such symmetry is unlikely to
be achieved in the MCMC sample due to well-known
mixing difficulties of trans-model MCMC algorithms.
One may choose to focus on one of the models (e.g., S1390

of fig. S5) and post-process the MCMC sample to map
the sample onto the chosen model before producing
the within-model posterior summary. Oftentimes the
MCMC may explore the within-model posterior space
very well, despite difficulties of moving from one395

model to another. In all cases, the researcher has to be
aware of the unidentifiable models which are equally
good explanations of the data (see Discussion).

Our focus here is on within-model unidentifiability
created by BDI events between sister species. When400

there are multiple modes in the posterior, each mode
may offer a sensible interpretation of the data, but it is
inappropriate to merge MCMC samples from different
modes, or to construct posterior summaries such as the
posterior means and CIs using MCMC samples that405

traverse different modes. It is instead more appropriate
to summarize the samples for each mode.

A common strategy for removing label-switching
is to apply so-called identifiability constraints. In the
simple BDI model of figure 1, any of the following410

constraints may be applicable: ϕX < 1
2 , ϕY < 1

2 , and
θX < θY . Such identifiability constraints may be impo-
sed during the MCMC or during post-processing of
the MCMC samples. As discussed previously (Celeux
et al., 1998; Stephens, 2000), such a constraint may415

be adequate if the posterior modes are well separated,
but may not work well otherwise. For example, if ϕX
is far away from 1

2 in all MCMC samples, it will be
simple to post-process the MCMC sample to impose
the constraint ϕX < 1

2 . This is the case in analyses420

of the large datasets in this paper, for example, when
all noncoding and exonic loci from chromosome 1
of the Heliconius data are analyzed (table 1). Howe-
ver, when the posterior modes are not well-separated
(either because the true parameter value is close to the425

boundary defined by the inequality or because the data
lack information so that the CIs are wide), different
identifiability constraints can lead to very different
parameter posteriors (Richardson and Green, 1997),
and an appropriate constraint may not exist. A serious430

problem in such cases is that imposing an identifiability
constraint may generate posterior distributions over-
represented near the boundary, with seriously biased
posterior means (Celeux et al., 1998; Stephens, 2000).
For example, ϕX may have substantial density mass435

both below and above 1
2 , and imposing the constraint

ϕX < 1
2 will artificially generate high density mass

close to ϕX = 1
2 . Similarly the posterior distributions of

θX and θY may overlap, so that the constraint θX < θY
may not be appropriate. 440

New algorithms to process MCMC samples from
the BDI model to remove label switching
One approach to dealing with label-switching pro-
blems in Bayesian clustering is relabelling. The
MCMC is run without any constraint, and the MCMC 445

sample is then post-processed to remove label switch-
ing, by attempting to move each point in the MCMC
sample to its alternative unidentifiable positions in
order to, as far as possible, make the marginal poste-
rior distributions smooth and unimodal (Celeux et al., 450

1998; Stephens, 2000). The processed sample is then
summarized to generate the posterior of the para-
meters. Here we follow this strategy and implement
three relabelling algorithms to post-process the MCMC
samples generated under the BDI model. 455

Let Θ = (ϕX ,ϕY ,θX ,θY ), which has a mirror
point Θ′ = (ϕ ′

X ,ϕ
′
Y ,θ

′
X ,θ

′
Y ) = (1−ϕX ,1−ϕY ,θY ,θX)

(fig. 1). The other parameters in the model are not
involved in the unidentifiability and are simply copied
along. Let Θt , t = 1, · · · ,N, be the N samples of 460

parameters generated by the MCMC algorithm. Each
sample is a point in the 4-D space. Let zt be a transform
for point t, with zt(Θt) = Θt to be the original point,
and zt(Θt) = Θ′ to be the transformed or mirror point
(fig. 1b&c). With a slight abuse of notation, we also 465

treat zt as an indicator, with zt = 0 and 1 representing
Θt and Θ′

t , respectively. For each sample t, we choose
either the original point or its mirror point, to make
the posterior of the parameters look smooth and single-
moded as far as possible. The first two algorithms, 470

called center-of-gravity algorithms CoG0 and CoGN ,
loop through two steps.

Algorithms CoG0 and CoGN . Initialize. For each
point t, t = 1, · · · ,N, pick either the original point (Θt)
or its mirror point (Θ′

t). We set zt to 0 (for the original 475

point Θt) if ϕX +ϕY < 1 or 1 (for the mirror point Θ′
t)

otherwise.

• Step 1. Determine the center of gravity, given
by the sample means of the parameters, µ =
(ϕ̄X , ϕ̄Y , θ̄X , θ̄Y ). 480

• Step 2. For each point t = 1, · · · ,N, compare the
current and its mirror positions and choose the one
closer to the center of gravity (µ).

In step 2, we use the Euclidean distance

d0(Θt ,µ) =

[ 4

∑
j
(ξ j −µ j)

2
]1/2

, (4)

where ξ j are the four parameters in Θt : ϕX ,ϕY ,θX ,θY . 485

This is algorithm CoG0.
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If we consider different scales in the different dimen-
sions (for example, ϕX and θX may have very different
posterior variances), we can calculate the sample vari-
ances ν (in addition to the sample means µ) in step 1490

and use them as weights to normalize the differences
in step 2, with

dN(Θt ,µ) =

[ 4

∑
j

1
ν j

(ξ j −µ j)
2
]1/2

. (5)

We refer to this as algorithm CoGN .
Note that each MCMC sample point Θt can be in

either of two positions (represented by zt = 0 or 1).495

Step 1 calculates the center of attraction (µ), which
represents the current ‘location of most points’. Given
the center of attraction, step 2 moves each point to
the position closer to the center of attraction. If the
posterior has two modes due to label switching but500

no other modes, all points will be moved to the same
neighborhood around the center of attraction. Which
of the two unidentifiable modes becomes the center of
attraction is arbitrary, influenced by the initial positions
when the algorithm runs.505

The third algorithm, called the β–γ algorithm, fol-
lows the relabelling algorithm for Bayesian clustering
of Stephens (2000). We use maximum likelihood (ML)
to fit the sample {Θt} to independent beta distributions
for ϕX and ϕY and gamma distributions for θX and θY :

f (Θ;ω) = b(ϕX ; pX ,qX) ·b(ϕY ; pY ,qY )

×g(θX ;aX ,bX) ·g(θY ;aY ,bY ), (6)

where

b(ξ ; p,q) =
1

B(p,q)
ξ

p−1(1−ξ )q−1,

g(ξ ;a,b) =
ba

Γ(a)
ξ

a−1 e−bξ

(7)

are the beta and gamma densities and where ω = (pX ,
qX , pY , qY , aX ,bX ,aY ,bY ) is the vector of parameters
in those densities.

The log likelihood, as a function of the parameters510

ω and the transforms z = {zt}, is

ℓ(ω,z) =
N

∑
t
ℓt(ω,zt(Θt)) =

N

∑
t

log f (zt(Θt);ω). (8)

We have implemented the following iterative algorithm
to estimate ω and z by maximizing ℓ.

Algorithm β–γ . Initialize zt , t = 1, · · · ,N. As
before, we set zt to 0 (for Θt) if ϕX +ϕY < 1 or 1 (for515

Θ′
t) otherwise.

• Step 1. Choose ω̂ to maximize the log likelihood ℓ
(eq. 8) with the transforms z fixed.

• Step 2. For t = 1, · · · ,N, choose zt = 0 or 1 to
maximize ℓt(ω̂,zt(Θt)) with ω = ω̂ fixed. In other520

words compare Θt and Θ′
t and choose the one that

better fits the beta and gamma distributions.

Step 1 fits two beta and two gamma distributions
by ML and involves four separate 2-D optimization
problems. The maximum likelihood estimates (MLEs) 525

of p and q for the beta distribution b(ξ ; p,q) are
functions of ∑t logξt and ∑t log(1− ξt), whereas the
MLEs of a and b for the gamma distribution g(ξ ;a,b)
are functions of ∑t ξt and ∑t logξt . These optimization
problems are simple, which we solve using the BFGS 530

algorithm in the PAML program (Yang, 2007). Step 2
involves N independent optimization problems, each
comparing two points (zt = 0 and 1), with ω fixed. It
is easy to see that the algorithm is nondecreasing (that
is, the log likelihood ℓ never decreases) and converges, 535

as step 1 involves ML estimation of parameters in
the beta and gamma distributions, and step 2 involves
comparing two points.

Note that the β–γ algorithm becomes the CoG0
and CoGN algorithms if the beta and gamma densities 540

are replaced by normal densities (with the same or
different variances for CoG0 and CoGN , respectively).

For illustration we applied the CoGN0 algorithm to
a ‘thinned’ sample of 1000 points from the MCMC
sample of figure 3a generated in the BPP analysis of the 545

500 noncoding Heliconius loci. We used three initial
conditions (three rows in fig. S6). The last plot on
each row is a summary of the final processed sample.
Thus the first two runs produced the same posterior,
while the third run produced its mirror image. Note that 550

the relabelling algorithms remove the label-switching
problems, but do not remove unidentifiability.

Algorithms CoG0, CoGN , and β–γ for the double-
BDI model. Under the double-BDI model (fig. 6a),
there are four within-model unidentifiable towers, spe- 555

cified by eight parameters. Thus zt takes four values
(0,1,2,3), and Θ = (ϕX ,ϕY ,θX ,θY ,ϕZ,ϕW ,θZ,θW ).
We use the same strategy and fit four beta distributions
to the ϕs and four gamma distributions to the θs, so
that there are 16 parameters in ω . We implement the 560

three algorithms (β–γ , CoGN , and CoG0) as before.
We prefer the tower in which the introgression probabi-
lities are small and initialize the algorithm accordingly.
The transforms (zt = 0, 1, 2, 3) are as follows (eq. 3)

• zt = 0: if the parameters are in Θ1, do nothing. 565

• zt = 1: if in Θ2, let ϕZ = 1−ϕZ , ϕW = 1−ϕW , and
swap θZ and θW .

• zt = 2: if in Θ3, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap
θX and θY , swap ϕZ and ϕW , swap θZ and θW ;

• zt = 3: if in Θ4, let ϕX = 1−ϕX , ϕY = 1−ϕY , swap 570

θX and θY , and let ϕZ = 1−ϕW and ϕW = 1−ϕZ .

The algorithm similarly loops through two steps. In
step 1 we calculate the center of gravity (represented
by the means) or estimate parameters ω̂ to fit the beta
and gamma densities, with the transforms z fixed. For 575

CoG0 and CoGN , this step involves calculating the
sample means and variances for the eight parameters
in Θ, while for β–γ , it involves a 16-D optimization
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problem (or eight 2-D optimization problems) for fit-
ting the beta and gamma distributions by ML. In step580

2, we compare the four positions for each sample point
when the center of gravity or parameters ω̂ are fixed.

To apply the rule and the algorithms develo-
ped here, we need to identify the BDI event
and the parameters involved in the unidentifiabi-585

lity, that is, (ϕX ,ϕY ,θX ,θY ) under the BDI model,
or (ϕX ,ϕY ,θX ,θY ,ϕZ,ϕW ,θZ,θW ) under double-BDI.
The algorithm is then used to process the MCMC
sample. If there are multiple BDI or double-BDI events
between sister species, one may simply apply the590

post-processing algorithm multiple times. For instance,
three rounds of post-processing may be applied for
the model of figure 5a (for the BDI events between
A and B, between D and E, and between S and
U , respectively), while the model of 5b requires two595

rounds (for the BDI between D and E, and between S
and U).

The algorithms are implemented in C and require
minimal computation and storage. Processing 5 ×
105 samples takes several rounds of iteration and a600

few seconds of running time, mostly spent on rea-
ding and writing files. The algorithms are integrated
into the BPP program (Flouri et al., 2018) so that
MCMC samples from various BDI models are post-
processed and summarized automatically. We also605

provide a stand-alone program in the github repository
abacus-gene/bpp-msci-D-process-mcmc/.

RESULTS

Introgression between Heliconius melpomene and
H. timareta
We fitted the BDI model of figure 2 to the genomic610

sequence data from three species of Heliconius but-
terflies: H. melpomene, H. timareta, and H. numata
(Edelman et al., 2019; Thawornwattana et al., 2021).
When we used the first 500 loci, either noncoding
or exonic, there was substantial uncertainty in the615

posterior of ϕX and ϕY , and the MCMC jumped
between the twin towers, and the marginal posteriors
had multiple modes, due to label switching (figs. 3a &
S1a). Post processing of the MCMC sample using the
new algorithms led to single-moded marginal poste-620

rior distributions (figs. 3b–d & S1b–d). The three
algorithms produced extremely similar results for both
datasets. For example, the posterior mean and 95% CI
for ϕX from the noncoding data were 0.356 (0.026,
0.671) by CoG0, 0.357 (0.026, 0.674) by CoGN , and625

0.354 (0.022, 0.664) by β–γ , while those for ϕY were
0.103 (0.000, 0.304) by CoG0 and CoGN , and 0.104
(0.000, 0.306) by β–γ .

We then analyzed all the 2592 noncoding and 3023
exonic loci on chromosome 1. With the large datasets,630

the parameters were better estimated with narrower
CIs and the unidentifiable towers were well-separated.

In fact, the MCMC visited only one of the two
towers, but the visited tower was well explored so
that multiple runs produced highly consistent results 635

after label-switching was removed using the relabelling
algorithms. When we started the MCMC with small
values for ϕX and ϕY , post-processing of the MCMC
samples often had no effect.

Estimates of all parameters from the small (with 640

L = 500) and large datasets are summarized in table
1. In the small datasets, the introgression probabilities
were ϕX ≈ 0.354 (with the CI 0.022–0.664) for the
noncoding data and 0.280 (with CI 0.002–0.547) for
the coding loci, while ϕY was 0.104 (CI 0.000–0.306) 645

for the noncoding data and 0.116 (CI 0.000–0.318) for
the exonic data. When all loci from chromosome 1
were used, ϕX was 0.124 (with the CI 0.007–0.243)
for the noncoding data and 0.161 (with CI 0.070–
0.264) for the exonic loci, while ϕY was 0.048 (CI 650

0.000–0.139) for the noncoding data and 0.019 (CI
0.000–0.056) for the exonic data. The estimates were
similar between the noncoding and exonic data, with
greater proportions of migrants in H. timareta from
H. melpomene than in the opposite direction. This was 655

so despite the fact that H. melpomene had a smaller
effective population size than H. timareta. Note that
H. melpomene has a widespread geographical distri-
bution whereas H. timareta is restricted to the Eastern
Andes; the small θM estimates are most likely due to 660

the fact that the H. melpomene sample was from a
partially inbred strain to avoid difficulties with genome
assembly. Estimates of θs and τs were smaller for the
coding loci than for the noncoding loci, due to purif-
ying selection removing deleterious nonsynonymous 665

mutations.
Estimates of ϕX and ϕY were different between

the small and large datasets, but they involved large
uncertainties, with the CIs for large datasets mostly
inside the CIs for the small datasets. Another reason 670

for the differences may be the variable rate of gene flow
across the genome or chromosome. Note that ϕ in the
MSci model reflects the long-term effects of gene flow
and selection purging introgressed alleles, influenced
by linkage to gene loci under natural selection (Martin 675

and Jiggins, 2017). As a result, the introgression rates
may be expected to vary across the genome.

Analysis of data simulated under the double-BDI
model of figure 6a
We conducted a small simulation to illustrate the fea- 680

sibility of the double-BDI model (fig. 6), simulating
10 replicate datasets of L = 500, 2000, and 8000 loci.
The three algorithms were used to process the MCMC
samples, before they were summarized. A typical case
is shown in figure 7 for the case of L = 500. While 685

there are four unidentifiable towers in the 8-D posterior
space (eq. 3), the MCMC visited only two of them,
with different values for parameters around the BDI
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event at the node ZW . The dataset of L = 500 loci
are very informative about the parameters for the BDI690

event at node XY (ϕX , ϕY , θX , θY ), so that these
had highly concentrated posteriors with well separated
towers. We started the Markov chains with small values
(e.g., 0.1 and 0.2) for ϕX and ϕY , so that the sampled
points were all around the correct tower for those695

parameters. If the chain started with large ϕX and ϕY ,
it would visit a ‘mirror’ tower. Thus post-processing
of the MCMC samples in the case of L = 500 mostly
affected parameters around the BDI event at ZW (ϕZ ,
ϕW , θZ , θW ). Figure 7 shows the effects on parameters700

ϕZ and ϕW using the β–γ algorithm. The CoG0 and
CoGN algorithms produced nearly identical results,
and all algorithms were effective in removing label
switching. The post-processed samples were summa-
rized to calculate the posterior means and the HPD CIs705

(fig. 8).
At L = 2000 or 8000 loci, the four towers were well-

separated and the MCMC visited only one of them.
Applying the post-processing algorithms either had no
effect or, in rare occasions, moved all sampled points710

from one tower to another.
Posterior means and the 95% highest-probability-

density (HPD) credibility intervals (CI) for all parame-
ters were summarized in figure 8. Parameters around
the BDI event at ZW (ϕZ , ϕW , θZ , θW ) are the most715

difficult to estimate. Nevertheless, the CIs for all
parameters were smaller at L = 8000 than at L = 500
or 200, and the posterior means were converging to
the true values. Note that while the simulation was
conducted using one set of correct parameter values720

(say, Θ1 of fig. 6), we considered the estimates to be
good if they were close to any of the four unidentifiable
towers (say, Θ2, Θ3, or Θ4). This is analogous to
treating the estimate as correct in Bayesian clustering
if the true model includes two groups in proportions725

p1 = 10% and p2 = 90% with means µ1 = 100 and
µ2 = 1, while the method of analysis infers two groups
in proportions p′1 = 90% and p′2 = 10% with means
µ ′

1 = 1 and µ ′
2 = 100. Just as Θ = (p1,µ1,µ2) and

Θ′ = (p2,µ2,µ1) are unidentifiable towers and equally730

correct answers in the clustering problem, here Θ1, Θ2,
Θ3, and Θ4 are equally correct answers.

Analysis of data simulated with one BDI event with
poorly separated modes
We simulated a more challenging dataset for the rela-735

belling algorithms, with L = 500 loci, under the BDI
model of figure 1a with (ϕX ,ϕY ) = (0.7,0.2) (see
table S1). As ϕX and ϕY were not too far away
from 1

2 and the dataset is small, the posterior modes
were poorly separated, with considerable mass near740

(1
2 ,

1
2). In the unprocessed MCMC sample, ϕX had two

modes around 0.8 and 0.2 and the chain was switching
between them (fig. S7a). The posterior means were
at 0.51 for ϕX and 0.50 for ϕY , close to 1

2 (fig. S7a).

These were misleading summaries, as the sample was 745

affected by label switching. In the processed samples
(fig. S7b-d), label switching was successfully removed
and both ϕX and ϕY were single-moded. The three
algorithms (β–γ , CoGN , and CoG0) produced similar
results, with single-moded posterior, around the tower 750

(ϕX ,ϕY ) = (0.7, 0.2). The posterior means of (ϕX ,ϕY )
were (0.755, 0.447), (0.766, 0.461), and (0.765, 0.462)
for the three algorithms, β–γ , CoGN , and CoG0,
respectively (table S1). The estimates from β–γ were
slightly closer to the true values than those from CoGN 755

and CoG0. The three relabelling algorithms wor-
ked well even when the posterior modes were poorly
separated.

The parameters in the model not involved in the
label-switching, such as the species divergence and 760

introgression times (τR,τX ) and the population sizes
for the modern species and for the root (θA,θB,θR),
were well estimated, with the posterior means close
to the true values and with narrow CIs (table S1).
However, the parameters involved in the label switch- 765

ing (ϕX ,ϕY ,θX ,θY ) were poorly estimated at this data
size (with L = 500 loci), because of the difficulty to
separate the two towers and the influence of the priors.
The estimates should improve if more loci are used in
the data. To confirm this expectation, we simulated 770

two more datasets with L = 2000 and 8000 loci,
respectively. In those two larger datasets, parameters
not involved in label switching (τR,τX ,θA,θB,θR) had
very narrow CIs (table S1). The posterior means of Θ=
(ϕX ,ϕY ) were closer to the true values (0.7, 0.2), and 775

the 95% CIs were narrower than in the small dataset
of L = 500 (table S1). Note that ancestral population
sizes (such as θX and θY ) are hard to estimate even
in models of unidirectional introgression which do not
have label-switching issues (Huang et al., 2020). 780

DISCUSSION

Data size, precision of parameter estimation,
MCMC convergence, and the utility of the
relabelling algorithms
We have observed three kinds of behaviors of the
MCMC algorithm and the relabelling algorithms 785

depending on the data size. In small datasets, the para-
meters are poorly estimated with large uncertainties,
and the posterior modes (the unidentifiable towers) are
not well separated. In such cases, applying simple
constraints (such as ϕX < 1

2 ) is problematic because 790

the truncation distorts the marginal summaries of the
posterior, with different constraints producing different
posterior summaries (Richardson and Green, 1997;
Celeux et al., 2000; Stephens, 2000). The relabelling
algorithms are preferable. An example is the small 795

dataset of L = 500 loci simulated under the model of
one BDI event (fig. S7, table S1).

In intermediate datasets, the parameters are well
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estimated, the posterior modes are well separated,
but the MCMC algorithm jumps between the modes,800

switching labels. In such cases, any of the relabelling
algorithms will work well. If the posterior modes are
far away from the boundary defined by the constraints
(such as ϕX < 1

2 ), even simple constraints will work
well. Examples include two small butterfly datasets805

(figs. 3 & S1), and the datasets simulated under the
double BDI model (fig. 7).

Finally, in very large datasets, the parameters are
extremely well estimated with very narrow CIs, and
the posterior modes are so sharply concentrated that810

the MCMC algorithm stays on one of the unidenti-
fiable towers and never moves to the mirror towers.
Furthermore, in multiple runs of the same analysis
the MCMC may be ‘stuck’ on different towers. In
such cases, the relabelling algorithms will either not815

move any sample points at all or move all points from
one tower to another, and any of the algorithms will
work well. This scenario is common in analyses of
large genomic datasets with thousands of loci, such
as the large noncoding and exonic datasets from the820

Heliconius butterflies (fig. 2); See Finger et al. (2021)
and Thawornwattana et al. (2021) for many more
examples.

We note that in all three scenarios, the relabelling
algorithms (in particular, the β–γ algorithm) were825

either better or not worse than the alternatives such as
imposing simple constraints. Given that even the β–γ

algorithm involves minimal computation, we recom-
mend its automatic use in all cases. Samples from dif-
ferent runs visiting different unidentifiable modes may830

be merged before post-processing using the relabelling
algorithm.

In theory, if the MCMC has converged and is
mixing well and the algorithm is run long enough,
it should visit the unidentifiable towers with exactly835

the same probability and the means of introgression
probabilities from the unprocessed samples should
be 1

2 . One might expect this expectation to provide
a useful criterion for diagnosing the convergence of
such MCMC algorithms. Indeed Jasra et al. (2005)840

regarded it “a minimum requirement of convergence
for a mixture posterior to be such that we have explo-
red all possible labellings of the parameters”. Here
the labellings correspond to the unidentifiable towers.
We suggest that this requirement is too stringent and845

unnecessary. As discussed above, in large genomic
datasets, the posterior may be highly concentrated,
and the chain may never jump between the towers
even in very long MCMC runs. While the chain may
be visiting different mirror towers in different runs850

of the same analysis, each chain may be exploring
the space around the visited tower thoroughly, and
after label switching is removed, the MCMC samples
from the different runs may produce nearly identical
posterior summaries, suggesting that reliable inference855

is entirely possible. In simulations of large datasets, the
posterior estimates after label switching problems are
removed converge to the true values (e.g., Flouri et al.,
2020, fig. S10A). We suggest that exploration of all
unidentifiable towers is unnecessary for correct infere- 860

nce and should not be used as a criterion for diagnosing
MCMC convergence. Instead convergence diagnosis
should be applied after the MCMC sample is processed
to remove label switching. For example, one should
run the same analysis multiple times and confirm that 865

the posterior summaries when the MCMC samples
are processed and mapped onto the same tower are
consistent between runs. The efficiency of the MCMC
algorithm or the effective sample size (ESS) (Yang and
Rodrı́guez, 2013) should also be calculated using the 870

processed samples.

Identifiability of MSci models with unidirectional
introgressions
The identifiability of MSci models involving unidi-
rectional introgression (UDI) events appears to be 875

simpler than for BDI models (Flouri et al., 2020; Jiao
et al., 2021). MSci model A (Flouri et al., 2020)
is consistent with three different biological scenarios
(fig. 9a-c). In scenario A1, two species SH and T H
merge to form a hybrid species HC, but the two 880

parental species become extinct after the merge. This
scenario may be rare. In scenario A2, species SUX
contributes migrants to species T HC at time τH and
has since become extinct or is unsampled in the data.
In scenario A3, TUX is the extinct or unsampled ghost 885

species. The three scenarios are unidentifiable using
genomic data. Model B1 assumes introgression from
species RA to TC at time τS = τH (fig. 9d). This is
distinguishable using genetic data from the alternative
model B2 in which there is introgression from RB to SC 890

(fig. 9e). Note that models B1 and B2 are both special
cases of model A1 with different constraints (that is,
τS = τH < τT for model B1 and τS > τH = τT for model
B2).

Note that the sampling configuration may affect 895

the identifiability of parameters in the model (Yu
et al., 2012; Zhu and Degnan, 2017). The simplest
such example may be the population size parameter
(θ ). If at most one sequence per locus is sampled
from a species, the population size for that species 900

will be unidentifiable. Similarly, if no more than one
sequence per locus can enter an ancestral population
when we trace the genealogy of the sampled sequences
backwards in time, θ for that ancestral species will be
unidentifiable. Such unidentifiability disappears when 905

multiple sequences per species are sampled. Note
that a diploid sequence is equivalent to two haploid
sequences. Similarly introgression models that are
unidentifiable with one sampled sequence per species
may become identifiable when multiple sequences per 910

species are sampled (Zhu and Degnan, 2017).
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Even if the model is mathematically identifiable with
one sequence per species per locus, including multiple
samples per species (in particular, species that are
descendants of a hybridization node in the species tree)915

can boost the information content in the data dramati-
cally. Thus we recommend the use of multiple samples
per species in studies of cross-species gene flow, and
suggest that the most interesting scenario for studying
unidentifiability of models of gene flow should be full920

likelihood analysis of multilocus sequence data, with
multiple sequences sampled per species.

It is noteworthy that many parameter settings and
data configurations exist in which some parameters are
hard to estimate, because the data lack information925

about them. For example, ancestral population sizes
for short and deep branches in the species tree are hard
to estimate, because most sequences sampled from
modern species may have coalesced before reaching
that population when we trace the genealogy of the930

sample backwards in time (Huang et al., 2020). Simi-
larly, if few sequences reach a hybridization node,
there will be little information in the data about the
introgression probabilities at that node. In such cases,
even if the model is identifiable mathematically, it may935

be nearly impossible to estimate the parameters with
any precision even with large datasets.

In some cases, certain parameters may be nearly at
the boundary of the parameter space, and this may
create near unidentifiability with multiple modes in940

the posterior. For example, two speciation events that
occur in rapid succession will generate a very short
branch in the species tree with a near trichotomy in
the species tree. Then MSci models that posit the same
introgression events but different histories of species945

divergences will fit the data nearly equally well and
become multiple modes in the posterior space (see
Finger et al., 2021 for an example). Similarly intro-
gression probabilities near 0 or 1 can also create nearly
equally good explanations of the data and become950

multiple modes in the posterior. In such situations,
the MCMC samples around different modes should be
summarized separately.

Unidentifiability of heuristic methods
As mentioned in Introdution, the unidentifiability955

discussed in this paper concerns the intrinsic nature of
the inference problem when introgression models are
applied to genomic sequence data, and thus applies
to not only full likelihood methods but also heuristic
methods based on summaries of the sequence data.960

Indeed a model that is unidentifiable by a full likeli-
hood method must be unidentifiable by any heuristic
method. In contrast, a model that is identifiable by a
full likelihood method may still be unidentifiable by
a heuristic method as the heuristic method may not965

be using all information in the data. Here we briefly
discuss a few heuristic methods, focusing on their

common features. Interested readers may consult the
recent reviews by Elworth et al. (2019) and Hibbins
and Hahn (2021). Heuristic methods developed up to 970

now are mostly of two kinds, based on either genome-
wide averages or estimated gene trees for genomic
segments (loci).

The popular ABBA-BABA test (Durand et al., 2011)
uses the parsimony-informative site patterns across the 975

genome to detect gene flow. Consider three popula-
tions/species S1,S2, and S3, with the given phylo-
geny ((S1,S2),S3), plus an outgroup species O. There
are three parsimony-informative site patterns: BBAA,
ABBA, and BABA. Here A and B represent any two 980

distinct nucleotides and BBAA means S1 and S2 have
the same nucleotide while S3 and O have another.
For very closely related species, one may consider
nucleotide A in the outgroup as the ancestral allele and
B the derived allele. Site pattern BBAA matches the 985

species tree, while ABBA and BABA are the misma-
tching patterns. Given the species tree with no gene
flow, the two mismatching patterns have the same
probability, but when there is gene flow between S1 (or
S2) and S3, they will have different probabilities. The 990

difference between the two mismatching site-pattern
counts can then be used to test for the presence of gene
flow (Durand et al., 2011):

D =
nABBA −nBABA

nABBA +nBABA
. (9)

The D-statistic may also be seen as a comparison
between the number of derived alleles shared by S2 995

and S3 with that shared by S1 and S3. The test has
more power to detect inflow (gene flow from S3 → S2)
than outflow (from S2 → S3) (Hibbins and Hahn, 2021,
fig. S3). It can test for the presence of gene flow, but
provides no information about its direction, timing or 1000

strength.
A number of variants or extensions of the D-

statistic have been proposed. Instead of the parsimony-
informative site patterns, the average sequence dista-
nce between species may be used to construct a similar 1005

test (Hahn and Hibbins, 2019). The site pattern counts
can also be used to estimate the introgression probabi-
lity, as in the program HYDE (Blischak et al., 2018;
Kubatko and Chifman, 2019):

ϕ̂ =
nBBAA −nBABA

nBBAA −2nBABA +nABBA
. (10)

This is based on the hybrid speciation model (with 1010

τS = τH = τT and θS = θT in model A1 of fig. 9). The
estimate may be biased if this symmetry assumption
does not hold.

The D-statistic has been extended to the case of five
species, with a symmetric species tree assumed, in the 1015

so-called DFOIL test, with the aim to detect the dire-
ction of gene flow (Pease and Hahn, 2015). Another
extension is by Hamlin et al. (2020), to include the site
pattern BBAA to form

10
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Dp =
nABBA −nBABA

nBBAA +nABBA +nBABA
. (11)

Interpreted as an estimate of the genome-wide intro-1020

gression proportion (ϕ), Dp has a negative bias, which
is more serious for outflow (from S2 → S3) than for
inflow (with gene flow from S3 → S2) (Hamlin et al.,
2020, fig. 3).

Note that both the site-pattern counts and between-1025

species distances are genome-wide averages. If the
data consist of multi-locus sequence alignments, they
can be merged (concatenated) into a super-alignment
to calculate those statistics. A great advantage of
those methods is that they involve minimal compu-1030

tation. A serious drawback is that they do not make
use of information in genealogical variations across
the genome. Like the coalescent process, gene flow
between species creates stochastic fluctuations in the
genealogical history (gene tree topology and coale-1035

scent times) across the genome, with the probability
distribution given by the parameters in the multispecies
coalescent model with gene flow, including species
divergence times, effective population sizes for modern
and ancestral species, and the directions and rates of1040

gene flow. As a result, there is important information
about those parameters in such genomic variation, but
this information is ignored by those methods. Under
the assumption of strong linkage among sites in the
same genomic segment (locus), all sites at the same1045

locus share the genealogical history while differences
among sites of the same locus reflect the stochastic
fluctuations of the mutation process. In calculations of
genome-wide averages, those two sources of variation
are confounded, and the information on coalescent flu-1050

ctuations among loci is lost (Shi and Yang, 2018; Zhu
and Yang, 2021). As a result, most parameters in the
coalescent model with introgression are unidentifiable
by the heuristic methods mentioned above. None of
them can detect signals of gene flow between sister1055

species, and for non-sister species, none of them can
estimate the introgression probabilities when gene flow
occurs in both directions (e.g., ϕX and ϕY in fig. 1a or
α and β in fig. S3a).

The second kind of heuristic methods use reconstru-1060

cted gene tree topologies for multiple loci as the input
data. Consider again the species quartet S1,S2,S3, and
O (outgroup), with the given phylogeny ((S1,S2),S3),
and one sampled sequence per species. The two
mismatching gene trees ((S2,S3),S1) and ((S3,S1),S2)1065

have the same probability if there is coalescence but
no gene flow, but different probabilities if there is
in addition gene flow between the non-sister species
(between S1 and S3 or between S2 and S3). Thus the
frequencies of gene tree topologies can be used to1070

estimate the introgression probability, as in the SNAQ
method (Solis-Lemus and Ane, 2016, see also Yu
et al., 2012). As there are only two free quantities
(frequencies of three gene trees with the sum to be 1),

the approach can estimate the internal branch length in 1075

coalescent units and the introgression probability, but
not any other parameters in the model.

In the general case, the probabilities of gene tree
topologies under any introgression model can be calcu-
lated by summing over the compatible coalescent 1080

histories (Yu et al., 2012, 2014). The probability
distribution of gene tree topologies can then be used to
distinguish among different introgression models and
to estimate the parameters in the introgression model
by ML (as in PhyloNet; Cao et al., 2019), treating 1085

gene tree topologies as the data. A concern with the
two-step method is that the estimated gene trees may
involve uncertainties or errors, in particular when the
species are closely related. Similarly, including gene-
tree branch lengths (coalescent times) makes many 1090

introgression models that are unidentifiable based on
gene tree topologies alone become identifiable (Yu
et al., 2012; Zhu and Degnan, 2017). However, two
step methods that make use of estimated branch lengths
do not have good performance as the large uncertain- 1095

ties and errors in the estimated branch lengths can have
a major impact on inference of species divergence and
cross-species gene flow (Degnan, 2018).

Pardi and Scornavacca (2015) studied the uniden-
tifiability of network models using data of gene tree 1100

topologies ‘displayed’ by the network (fig. 10). Binary
species trees generated by taking different parental
paths at hybridization nodes are called “displayed spe-
cies trees” (Pardi and Scornavacca, 2015) or “parental
species trees” (Kubatko, 2009). For example, the two 1105

network models N1 and N2 of figure 10a are uniden-
tifiable because they induce the same three displayed
species trees with the same branch lengths (Pardi and
Scornavacca, 2015). However, as pointed out by Zhu
and Degnan (2017), N1 and N2 are identifiable using 1110

gene tree topologies if multiple sequences are sampled
from B.

Previously (Kubatko, 2009, eq. 3) formulated the
probability distribution of gene trees (topology alone
or topology with coalescent times) as a mixture over 1115

the displayed species trees. To simulate gene trees or
sequence data at a locus, one samples a displayed
species tree first and then simulates the gene tree
and sequence alignment according to the simple MSC
model (Gerard et al., 2011). This formulation is correct 1120

only in the special case where each hybridization node
on the species tree has at most one sequence from all
its descendant populations (Zhu and Degnan, 2017).
In general it is incorrect, as it forces all sequences
at the locus to take the same parental path at each 1125

hybridization node, whereas correctly there should
be a binomial sampling process when two or more
sequences reach a hybridization node. In model N1 of
figure 10a, when multiple B sequences reach species
X , it should be possible for some sequences to take the 1130

left parental path while the others take the right path.
Even though the notion that gene trees are displayed

11
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by a phylogenetic network has played a central role in
many studies that attempt to use gene tree topologies
to construct the phylogenetic network, examination of1135

the displayed gene trees is not a reliable approach to
studying the unidentifiability of phylogenetic network
models (Zhu and Degnan, 2017). The most probable
gene tree may even have a topology that is different
from all of the displayed trees (Zhu and Degnan,1140

2017). As suggested by Zhu and Degnan (2017), one
should instead explicitly treat the biological process
of coalescent and introgression in the model. We also
suggest that multiple sequences be sampled per species
(in particular from species involved in hybridization or1145

from descendant species of hybridization nodes) when
genomic data are used to infer gene flow. Note that
both MSci models corresponding to networks N1 and
N2 are identifiable when genomic sequence data with
multiple samples per species are analyzed using full1150

likelihood methods (fig. 10d&e), as are all parameters
in each models (fig. 10a′&b′).

We note that there is currently a wide gap between
likelihood and heuristic methods. Heuristic methods
are computationally orders-of-magnitude faster than1155

likelihood methods, which in particular do not scale
well for large genomic datasets. The statistical proper-
ties of heuristic methods are also incomparably poorer
than those of likelihood methods: heuristic methods
are simply unable to provide any estimates for many1160

fundamental population parameters for characterizing
the evolutionary history of the species, such as the
species divergence/introgression times, the population
sizes of extant and extinct species, the introgression
probabilities, etc. There is an acute need for improving1165

the statistical performance of the heuristic methods
and the computational efficiency of the full likelihood
methods.

Given the limitations of the heuristic methods, one
should apply caution when using them to draw biologi-1170

cal conclusions concerning gene flow between species.
For example, does gene flow occur more often between
sister species or between non-sister species? When
gene flow occurs between two species, does it often
involve one direction (UDI) or both directions (BDI)?1175

Most heuristic methods cannot identify or detect gene
flow between sister species or gene flow in both
directions, but it may be erroneous to conclude that
such gene flow never occurs in nature. Whether BDI
or UDI is more common is an interesting empirical1180

question, but both models provide important biological
hypotheses testable using genomic sequence data. In
a recent analysis of genomic sequence data from the
North American chipmunks (Tamias quadrivittatus),
the use of the D-statistic and HYDE detected no1185

evidence of gene flow affecting the nuclear genome
despite widespread mitochondrial gene flow (Sarver
et al., 2021). However a reanalysis of the same data
using BPP revealed robust evidence for multiple ancient

introgression events, involving both sister and nonsi- 1190

ster species (Ji et al., 2021).

Estimation of introgression probabilities despite
unidentifiability
The three algorithms for post-processing MCMC sam- 1195

ples under the BDI model produced very similar results
in the applications in this study. In particular the
simple center-of-gravity algorithms produced results
that appear to be as good as the more elaborate β–γ

algorithm, despite the fact that the normal distribution 1200

is a poor approximation to the posterior of introgres-
sion probabilities (ϕX and ϕY ). This is due to the
fact that the distributions (or the distances in the CoG
algorithms) are used to compare the unidentifiable
mirror positions of sample points only, but are not 1205

used to approximate the posterior distribution of those
parameters, which are estimated by using the pro-
cessed samples. For the same reasons, if there exist
multiple modes in the posterior that are not due to
label switching, such genuine multimodality will not 1210

be removed by the relabelling algorithms (Stephens,
2000). Similarly, while we fit independent distributions
for parameters in the algorithms (eq. 6), there is no
need to assume independence in the posterior for the
algorithms to work. 1215

A model with a label-switching type of unidenti-
fiability can still be applied in real data analysis. In
the clustering problem, the Bayesian analysis may
reveal the existence of two groups, in proportions p1
and p2 = 1− p1 with means µ1 and µ2, and it does 1220

not matter if it cannot decide which group should be
called ‘group 1’. The twin towers Θ and Θ′ under
the BDI model of figure 1 constitute a mathematically
similar label-switching problem. However, Θ and Θ′

may represent different biological scenarios or hypo- 1225

theses. Suppose that species A and B are distributed
in different habitats (dry for A and wet for B, say),
and suppose the ecological conditions have changed
little throughout the history of the species. Θ with
ϕX < 1

2 and ϕY < 1
2 may mean that species A has been 1230

in the dry habitat over the whole time period since
species divergence at time τR, while species B has
been in the wet habitat, and they came into contact
and exchanged migrants at time τX . In contrast, Θ′

with ϕ ′
X > 1

2 and ϕ ′
Y > 1

2 may mean that species A 1235

was in the wet habitat and species B was in the dry
habitat since species divergence at time τR, but when
they came into contact at time τX they nearly replaced
each other, switching places, so that today species A
is found in the dry habitat while B in the wet habitat. 1240

The two sets of parameters Θ and Θ′ may thus mean
different biological hypotheses. As genomic data from
modern species provide information about the order
and timings of species divergences and cross-species
introgressions, but not about the geographical locations 1245

12
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and ecological conditions in which the divergences
and introgressions occurred, such biological scenarios
are unidentifiable using genomic data and become
unidentifiable towers in the posterior distribution in
Bayesian analysis of genomic data under the MSci1250

model. Unidentifiable models discussed in this paper
are all of this nature. The algorithms we developed
in this paper remove label switching in the MCMC
sample, but do not remove the unidentifiability of the
BDI models. The researcher has to be aware of the1255

unidentifiability and use external information to choose
between such equally supported explanations of the
genomic data.

In the above example, the scenario of near-complete
replacement represented by Θ′ may be implausible1260

for most systems, and in our relabelling algorithms,
we start with small ϕX and ϕY as much as possible
(through the initial condition ϕX + ϕY < 1). When
the introgression probabilities are intermediate, the
biological interpretations may not be so clear-cut, but1265

unidentifiability exists nevertheless. In the example of
figure S7 and table S1 for the simulated data with one
BDI event, the choice between the two unidentifiable
towers Θ = (ϕX ,ϕY ) = (0.7,0.2) and Θ′ = (0.3,0.8)
may not be easy.1270

In the current implementation of BDI models in BPP,
each branch in the species tree is assigned its own
population size parameter (Flouri et al., 2020). We
note that if all species on the species tree are assumed
to have the same population size (θ ), unidentifiability1275

persists. However, if we assume that the population
size remains unchanged by the introgression event:
e.g., θX = θA and θY = θB in figure 1, the model
becomes identifiable. The assumption of the same
population size before and after an introgression event1280

appears to be plausible biologically. It reduces the
number of parameters by two for each BDI event,
and removes unidentifiability. It may be worthwhile to
implement such models. At any rate, the relabelling
algorithms we have implemented makes it possible1285

to apply the BDI models to genomic sequence data
despite their unidentifiability.

METHODS AND MATERIALS

Introgression in Heliconius butterflies
We fitted the BDI model to the genomic sequence
data for three species of Heliconius butterflies: H. mel-1290

pomene, H. timareta, and H. numata (Consortium,
2012; Martin et al., 2013). The species tree or MSci
model assumed is shown in figure 2, with introgression
between H. melpomene and H. timareta. The two
species are known to hybridize, although no attempt1295

has yet been made to infer the direction or strength of
introgression (except for colour-pattern genes; Martin
et al., 2013). There are 31,166 autosomal noncoding
loci and 36,138 autosomal exonic loci, with one diploid

sequence sampled per species per locus. The sequence 1300

length ranges from 11 to 991 bps (median 93) for the
noncoding loci and from 11 to 10,672 bps (median
112) for the exonic loci. We used chromosome 1,
which has 2592 noncoding and 3023 exonic loci, and
analyzed either the first 500 loci or all the loci on 1305

the chromosome. Note that a diploid sequence from
each species is equivalent to two haploid sequences, so
that the population size parameter (θ ) for that species
is estimable. Heterozygotes in the diploid sequence
are represented by IUPAC ambiguity codes (e.g., with 1310

Y meaning a T/C heterozygote) and resolved into
compatible nucleotides in BPP using an analytical inte-
gration algorithm (Gronau et al., 2011; Yang, 2015;
Flouri et al., 2018), which averages over all possi-
ble genotypic phase resolutions of heterozygote sites, 1315

weighting them according to their likelihood based on
the sequence alignment at the locus. In simulations,
this approach had indistinguishable performance from
analyzing fully phased genomic sequences (Gronau
et al., 2011; Huang et al., 2021). 1320

We used gamma priors for the population sizes (θ )
and for the age of the root (τ0): θ ∼ G(2,400) with
the mean 0.005 substitution per site, and τ ∼ G(2,400)
with mean 0.005. The introgression probabilities were
assigned beta priors ϕX ,ϕY ∼ B(1,1), which is the 1325

uniform U(0,1). We used a burn-in of 16000 iterations,
and then took 2 × 105 samples, sampling every 5
iterations. Running time on a server using 9 threads
of Intel Xeon Gold 6154 CPU (3.0GHz) was about 1
hour for the small datasets and 10 hours for the large 1330

ones.
Convergence of the MCMC algorithms was assessed

by checking for consistency between independent runs,
taking into account possible label-switching issues.

Simulation under the double-BDI model 1335

We simulated and analyzed data to under the double-
BDI model of figure 6. Gene trees with branch lengths
(coalescent times) were simulated under the MSci
model and given the gene trees, sequences were evo-
lved along the branches on the gene tree under the 1340

JC model (Jukes and Cantor, 1969). The parameters
used were ϕX = 0.1,ϕY = 0.2, ϕZ = 0.2,ϕW = 0.3,
τR = 0.005, τZ = τW = 0.0025, τX = τY = 0.00125,
θR = θZ = θX = θA = 0.005, and θW = θY = θB = 0.02.
Each dataset consisted of L = 500,2000 and 8000 loci, 1345

with S = 16 sequences per species per locus, and with
the sequence length to be 500 sites. The number of
replicate datasets was 10.

The data were then analyzed using BPP under the
double-BDI model (fig. 6) to estimate the 14 parame- 1350

ters. We use gamma priors τ0 ∼ G(2,400) for the root
age with the mean to be the true value (0.005), and θ ∼
G(2,200) with the mean 0.01 (true values are 0.005
and 0.02). We used a burn-in of 32,000 iterations, and
then took 5×105 samples, sampling every 2 iterations. 1355
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Analysis of each dataset took ∼10hrs for L = 500 and
∼ 130hrs for L = 8000, using 8 threads on a server.
The MCMC samples were processed to remove label-
switching problems before they were summarized to
approximate the posterior distribution.1360

Simulation under a BDI model with poorly
separated towers
We simulated a small dataset, with L = 500 loci, under
the BDI model of figure 1a, with (ϕX ,ϕY ) = (0.7,0.2)
(see table S1 for the true values of all parameters).1365

As ϕX and ϕY were not far away from 1
2 and the

dataset was small, the posterior of the parameters was
expected to be diffuse, and the posterior modes for
parameters involved in the label-switching (or the two
unidentifiable towers) to be poorly separated, posing a1370

challenge to our relabelling algorithms.
We assigned gamma priors τ0 ∼ G(2,200) for the

root age with the mean to be the true value (0.01),
and θ ∼ G(2,400) with the mean 0.005 (true values
are 0.002 and 0.01). We used a burn-in of 32,0001375

iterations, and then took 2 × 105 samples, sampling
every 10 iterations. We run the same analysis twice
to confirm consistency between runs, after the MCMC
samples were processed to remove label switching.
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Table 1. Posterior means and 95% HPD CIs (in parenthees) for parameters in the BDI model of figure 2 for the Heliconius data

Noncoding, L = 500 Noncoding, L = 2592 Exonic, L = 500 Exonic, L = 3023

τR 4.73 (4.33, 5.13) 5.10 (4.89, 5.30) 4.39 (3.98, 4.81) 4.71 (4.54, 4.88)
τS 3.12 (2.05, 4.19) 2.58 (2.12, 3.05) 1.95 (1.07, 2.82) 1.78 (1.38, 2.19)
τX = τY 0.62 (0.21, 1.02) 0.25 (0.09, 0.40) 0.20 (0.03, 0.37) 0.13 (0.05, 0.24)
θM 1.50 (0.62, 2.34) 0.69 (0.35, 1.10) 0.38 (0.08, 0.70) 0.32 (0.14, 0.52)
θT 2.55 (1.40, 3.74) 1.23 (0.65, 1.84) 0.79 (0.13, 1.28) 0.63 (0.32, 0.94)
θN 15.1 (12.0, 18.5) 23.0 (20.3, 25.7) 11.2 (9.11, 13.5) 12.4 (11.4, 13.4)
θR 5.08 (4.12, 6.05) 5.74 (5.23, 6.24) 5.76 (4.83, 6.70) 6.68 (6.24, 7.11)
θS 4.62 (1.85, 7.40) 6.92 (5.48, 8.37) 5.31 (3.38, 7.36) 7.50 (6.51, 8.49)
θX 11.40 (2.83, 21.2) 12.90 (7.35, 19.6) 8.04 (1.67, 15.4) 5.80 (3.60, 8.36)
θY 6.78 (2.42, 11.6) 8.74 (5.69, 12.0) 4.03 (0.60, 7.51) 3.49 (2.56, 4.50)
ϕX 0.354 (0.022, 0.664) 0.124 (0.007, 0.243) 0.280 (0.002, 0.547) 0.161 (0.070, 0.264)
ϕY 0.104 (0.000, 0.306) 0.048 (0.000, 0.139) 0.116 (0.000, 0.318) 0.019 (0.000, 0.056)

Note.— Estimates of τs and θs are multiplied by 103. MCMC samples are processed using the β–γ algorithm
before they are summarized.
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Figure 1: (a) Species tree or MSci model for two species (A and B) with a bidirectional introgression at time
τX = τY , identifying nine parameters in the model. We refer to a branch by its daughter node, so that branch XA
is also branch A and is assigned the population size parameter θA. Both species divergence/introgression times
(τs) and population sizes (θs) are measured in the expected number of mutations per site. (b) and (c) Two sets of
unidentifiable parameters Θ and Θ′, with ϕ ′

X = 1−ϕX , ϕ ′
Y = 1−ϕY , θ ′

X = θY , and θ ′
Y = θX , while the other five

parameters (τR,τX = τY ,θA,θB, and θR) are identical between Θ and Θ′. The dotted lines indicate the main routes
taken by sequences sampled from species A and B, if both introgression probabilities α and β are ≪ 1

2 .
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(a) 2592 noncoding loci (b) 3023 exonic loci 

X = 0.161

Y = 0.019
X Y

R = 0.0047

S = 0.0018

X = 0.124

Y = 0.048
X Y

R = 0.0051

S = 0.0026

Figure 2: Species tree or BDI model for Heliconius melpomene, H. timareta, and H. numata. The branches are
drawn to represent the posterior means of divergence/introgression times obtained from BPP analysis of (a) the
2592 noncoding and (b) the 3023 exonic loci from chromosome 1, while the node bars represent the 95% HPD CIs.
See table 1 for estimates of all parameters. Photo of H. timareta courtesy of James Mallet.

Figure 3: Trace plots of MCMC samples and 2-D scatter plots for parameters ϕX (purple) and ϕY (green) (a) before
and (b–d) after the post-processing of the MCMC sample in the BPP analysis of the first 500 noncoding loci from
chromosome 1 of the Heliconius data under the MSci model of figure 2. The three algorithms used are (b) β–γ , (c)
CoGN , and (d) CoG0.
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Figure 4: A part of a species tree (MSci model) for illustrating the rule of BDI unidentifiability. (a) In the BDI
model, species RXA and SY B exchange migrants at time τX = τY . Treat X and Y as one node with left parent RX
with population size θX and right parent SY with population size θY . When a sequence from A reaches XY , it takes
the left and right parental paths with probabilities 1−ϕX and ϕX , respectively. When a sequence from B reaches
XY , it goes left and right with probabilities ϕY and 1−ϕY , respectively. (b & c) Placing the two daughters in the
order (A,B) as in Θ or (B,A) as in Θ′ does not affect the distribution of gene trees, and constitutes unidentifiable
towers in the posterior space. If X and Y are sister species and have the same mother node (with R and S to be the
same node), the unidentifiability is within-model; otherwise it is cross-model.
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Figure 5: Two species trees (MSci models) for five species each with three BDI events. (a) Three BDI events
between sister species create 23 = 8 within-model towers in the posterior. (b) Two BDI events between sister
species and one BDI event between non-sister species create two unidentifiable models each with four within-
model unidentifiable towers in the posterior space.
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Figure 6: Species trees (MSci models) for two species (A and B) with double DBI events creating four within-
model towers, represented by Θ1, Θ2, Θ3, and Θ4. (a) The model involves 14 parameters: 7 θs, 3 τs, and 4 ϕs, with
eight of them involved in the label-switching unidentifiability, Θ = (ϕX ,ϕY , θX ,θY , ϕZ,ϕW ,θZ,θW ). (b)-(e) Four
unidentifiable towers showing the mappings of parameters (eq. 3). To apply the rule of figure 4, we treat each pair
of BDI nodes as one node, so that X and Y have the same node ZW as the parent, and the unidentifiability caused
by the BDI event at nodes X-Y is within-model, as is the unidentifiability for the BDI event at nodes Z-W .
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Figure 7: Trace plots of MCMC samples and 2-D scatter plots for parameters ϕZ (purple) and ϕW (green) (a) before
and (b) after the post-processing of the MCMC samples for the double-DBI model of figure 6a. Post processing used
the β–γ algorithm (b), while CoGN and CoG0 produced nearly identical results (not shown). This is for replicate 2
for L = 500 loci (see fig. 8).
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Figure 8: Posterior means and the 95% HPD CIs in 10 replicate datasets of L = 500, 2000, and 8000 loci, simulated
and analyzed under the double-BDI model of figure 6a. The MCMC samples are post-processed using the β–γ

algorithm before they are summarized (see fig. 7 for an example). Eight parameters are involved in the label-
switching unidentifiability: ϕX ,ϕY ,θX ,θY , ϕZ,ϕW , θZ , and θW (see fig. 6).
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Figure 9: Species trees for three species (A, B, and C) illustrating MSci models of types A and B of Flouri et al.
(2020, fig. 1). (a-c)Three interpretations of MSci model A are indistinguishable/unidentifiable. (d, e) Two versions
of MSci model B are identifiable.
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Figure 10: (a&b) Two phylogenetic networks for four species (A,B,C,D), each with two hybridization events from
Pardi and Scornavacca (2015) that are unidentifiable using gene tree topologies with one sequence sampled per
species. (c) Network N1 gives rise to three ‘displayed species trees’ in probabilities α,(1−α)β , and (1−α)(1−β ),
while N2 gives rise to the same three displayed species trees with probabilities (1− γ)(1−δ ),(1− γ)δ , and γ . The
two networks thus give the same distribution of gene tree topologies, and are thus unidentifiable. However, N1 and
N2 are identifiable when multiple samples are taken from species B. (d&e) MSci models corresponding to networks
N1 and N2. With information from branch lengths (coalescent times) and using multilocus sequence data, those
models are identifiable by full likelihood method, as are the 18 parameters in each model, including five species
divergence/introgression times (τs), eleven population sizes (θs), and two introgression probabilities.
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Figure S1: Analysis of the first 500 exonic loci on chromosome 1 from the Heliconius data. See legend to figure 3.
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Figure S2: Three species trees (MSci models), each with a BDI event between sister species, exhibiting within-
model unidentifiability. (a & a′) Subtrees are added to branches A, B, and R in the basic model of figure 1a. (b &
b′) A BDI event between sister species X and Y with a unidirectional introgression involving descendant branches
of X and Y . (c and c′) A BDI event between sister species X and Y with a unidirectional introgression involving one
descendant branch and another branch that is not a descendant of X or Y . In all three cases, the parameter mapping
is ϕ ′

X = 1−ϕX , ϕ ′
Y = 1−ϕY , θ ′

X = θY , and θ ′
Y = θX .
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Figure S3: Two pairs of species trees or unidentifiable MSci models with a BDI event between non-sister species
creating cross-model unidentiability. (a & a′) A pair of unidentifiable models with a BDI event between non-
sister species. The dotted lines indicate the main routes taken by sequences sampled from species A and B, if the
introgression probabilities α and β are < 1

2 . (b & b′) Another pair of unidentifiable models with a BDI event
between non-sister species. The parameter mapping from Θ to Θ′ in both cases is ϕ ′

X = 1−ϕY and ϕ ′
Y = 1−ϕX ,

with all other parameters (such as θX , θY , θA, and θB) to be identical between Θ and Θ′.
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Figure S4: Three pairs of species trees (or unidentifiable MSci models) with one BDI event between non-sister
species, illustrating the mapping of parameters (Θ and Θ′). In (a), RXA and SY H are non-sister species. In (b) &
(c), nodes X and Y are non-sister species because of the unidirectional introgression event involving branches RX
and/or RY . In each of the three cases, the mirror model (S′ with Θ′) is generated by pruning off branches AX at X
and BY at Y , swapping places and reattaching, and applying the mapping ϕ ′

X = 1−ϕY and ϕ ′
Y = 1−ϕX .
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Figure S5: Four species trees for species A, B, and C representing four unidentifiable models each with two
BDI events between non-sister species. The cross-model parameter mappings concern only the introgression
probabilities ϕX ≡ α , ϕY ≡ β , ϕZ ≡ γ , and ϕW ≡ δ , while all other parameters are the same among the models.
The colored lines indicate the main routes taken by sequences sampled from A (red), B (blue), and C (purple), if
the introgression probabilities α , β , γ , and δ are all < 1

2 , from which the unidentifiability of the four models can be
seen easily. Based on figure S9 of Finger et al. (2021).
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Figure S6: The CoGN0 algorithm moves sampled points to their mirror positions to be as close as possible to the
center of gravity. Note that (ϕX ,ϕY ) and its mirror position (1−ϕX ,1−ϕY ) are mirror reflections of each other
around the point ( 1

2 ,
1
2 ). The ‘original’ sample consists of 1000 points, obtained from ‘thinning’ the MCMC sample

from the BPP analysis of the 500 noncoding Heliconius loci of figure 3a. The mean (ϕX ,ϕY ) = (0.544, 0.614) is
indicated by the red dot in a, a′ & a′′. The three rows illustrate three runs of the CoGN0 algorithm with different
starting positions: (a-c) ϕX +ϕY < 1, (a′-d′) ϕX < 1

2 or ϕY < 1
2 , and (a′′-c′′) ϕX > 1

2 or ϕY > 1
2 . In the first run, the

initialization (under the condition ϕX +ϕY < 1) moves 647 points above or right of the line ϕX +ϕY = 1 to their
mirror points below or left of the line, with the new mean (0.348, 0.111), indicated by the red dot (b). The algorithm
then attempts to move points to their mirror positions to be closer to the red dot. Ten such points are moved, with
the new mean (0.353, 0.107) (c). In the next iteration, no points move, so the algorithm terminates. In the second
run (a′-d′), the initialization (ϕX < 1

2 or ϕY < 1
2 ) moves 512 points from the upper right corner to their mirror points

in the lower bottom, with the new mean (0.327, 0.216) (b′). Round 1 moves 136 points, with the new mean (0.353,
0.107) (c′). Round 2 moves one point, with the new mean (0.353, 0.107) (d′). In the third run, the initialization
(ϕX > 1

2 or ϕY > 1
2 ) moves 275 points from the lower bottom corner to their mirror points in the upper right corner,

with the new mean (0.662, 0.832) (b′′). Round 1 moves 75 points, with the new mean (0.647, 0.892), and the next
round does not move any points, so the algorithm ends. Note that the first two runs converge to the same mean
(0.353, 0.107), while the third run converges to its mirror point (0.647, 0.892). If the original positions are taken
as the initial positions (i.e., without initialization), the algorithm converges, after one iteration, to (0.647, 0.892),
as in the second run. Note that the algorithm operates on four parameters Θ = (ϕX ,ϕY ,θX ,θY ) but only (ϕX ,ϕY ) is
shown here.
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Figure S7: Trace plots of MCMC samples for ϕX (purple) and ϕY (green) and 2-D scatter plots from BPP analysis of
a dataset of L = 500 loci simulated under the BDI model of figure 1a. See table S1 for the true parameter values and
posterior summaries. The plots are for, from top to bottom, (a) unprocessed sample and processed samples using
(b) the β–γ , (c) the CoGN , and (d) the CoG0 algorithms. The true parameter values are Θ = (ϕX ,ϕY ) = (0.7,0.2),
and the post-processing using all three algorithms mapped the samples to the mirror tower around Θ′ = (0.3,0.8).
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Table S1. Posterior means and 95% HPD CIs (in parenthees) for parameters in the MSci model of figure 1a from two simulated
datasets of L = 500 and 1000 loci

truth (Θ) mirror (Θ′) beta-gamma CoGN CoG0

L = 500 loci
τR 0.01 0.0098 (0.0088, 0.0108)
τX = τY 0.005 0.0050 (0.0045, 0.0055)
θA 0.002 0.0020 (0.0018, 0.0021)
θB 0.01 0.0101 (0.0093, 0.0108)
θR 0.002 0.0020 (0.0006, 0.0034)
θX 0.002 0.01 0.0063 (0.0005, 0.0130) 0.0066 (0.0005, 0.0133) 0.0066 (0.0005, 0.0133)
θY 0.01 0.002 0.0071 (0.0022, 0.0124) 0.0067 (0.0017, 0.0120) 0.0068 (0.0017, 0.0121)
ϕX 0.7 0.3 0.755 (0.472, 0.999) 0.764 (0.528, 0.999) 0.765 (0.530, 0.999)
ϕY 0.2 0.8 0.447 (0.209, 0.670) 0.461 (0.214, 0.695) 0.462 (0.212, 0.695)

L = 2000 loci
τR 0.01 0.0101 (0.0094, 0.0108)
τX = τY 0.005 0.0051 (0.0048, 0.0054)
θA 0.002 0.0020 (0.0019, 0.0021)
θB 0.01 0.0100 (0.0097, 0.0104)
θR 0.002 0.0018 (0.0009, 0.0027)
θX 0.002 0.01 0.0037 (0.0008, 0.0062) 0.0037 (0.0009, 0.0062) 0.0050 (0.0006, 0.0097)
θY 0.01 0.002 0.0076 (0.0049, 0.0108) 0.0076 (0.0048, 0.0108) 0.0064 (0.0019, 0.0104)
ϕX 0.7 0.3 0.545 (0.178, 0.903) 0.545 (0.178, 0.903) 0.656 (0.449, 0.887)
ϕY 0.2 0.8 0.398 (0.198, 0.598) 0.398 (0.198, 0.598) 0.450 (0.205, 0.684)

L = 8000 loci
τR 0.01 0.0098 (0.0094, 0.0102)
τX = τY 0.005 0.0049 (0.0048, 0.0051)
θA 0.002 0.0020 (0.0019, 0.0020)
θB 0.01 0.0100 (0.0098, 0.0102)
θR 0.002 0.0021 (0.0017, 0.0025)
θX 0.002 0.01 0.0045 (0.0003, 0.0083) 0.0044 (0.0003, 0.0081) 0.0051 (0.0003, 0.0106)
θY 0.01 0.002 0.0095 (0.0059, 0.0129) 0.0096 (0.0060, 0.0130) 0.0089 (0.0041, 0.0128)
ϕX 0.7 0.3 0.645 (0.442, 0.848) 0.645 (0.436, 0.848) 0.645 (0.436, 0.846)
ϕY 0.2 0.8 0.334 (0.128, 0.632) 0.336 (0.129, 0.639) 0.310 (0.123, 0.539)

Note.— Empty values for Θ′ mean the same values as for Θ. MCMC samples are processed using the three
algorithms and then summarized. See figure S7 for the tracecatter plots for the dataset of L = 500. The datasets,

with each locus consisting of four sequences per species (or eight sequences per locus) and 500 sites per sequence,
are simulated using the true parameter values (Θ).
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