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Insects represent a large majority of biodiversity on Earth, yet only
20% of the estimated 5.5 million insect species are currently de-
scribed (1). While describing new species typically requires specific
taxonomic expertise to identify morphological characters that dis-
tinguish it from other potential species, DNA-based methods have
aided in providing additional evidence of separate species (2). Ma-
chine learning (ML) is emerging as a potential new approach in iden-
tifying new species, given that this analysis may be more sensitive to
subtle differences humans may not process. Existing ML algorithms
are limited by image repositories that do not include undescribed
species. We developed a Bayesian deep learning method for the
open-set classification of species. The proposed approach forms
a Bayesian hierarchy of species around corresponding genera and
uses deep embeddings of images and barcodes together to identify
insects at the lowest level of abstraction possible. To demonstrate
proof of concept, we used a database of 32,848 insect instances from
1,040 described species split into training and test data. The test
data included 243 species not present in the training data. Our re-
sults demonstrate that using DNA sequences and images together,
insect instances of described species can be classified with 96.66%
accuracy while achieving accuracy of 81.39% in identifying genera of
insect instances of undescribed species. The proposed deep open-
set Bayesian model demonstrates a powerful new approach that can
be used for the gargantuan task of identifying new insect species.
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D iversity of life is a central tenet to Biology, from the
process of speciation to the maintenance or prevention

of extinction (adaptation) and the ecosystem services biodi-
versity provides. Human activity threatens this, and as a
result, the well-being and economics of humans are threatened.
Biodiversity is important for health and medicine (3), drug
discovery (4), social equality (5), ecosystem services (6), food
security (7), and for life (8). The time is now for bold changes
to address the current and future losses of biodiversity, but
the problem that arises is how to describe the vast amounts
of existing biodiversity?

One of the largest groups of animals on the planet is the
insects, and they are the most diverse, yet, so few of them are
actually described, and they are likely disappearing faster than
we can identify them (9). Within Insecta, approximately 5.5
million insects species are thought to exist, yet only 20% are
actually described, leaving a very large swatch of unknown bio-
diversity (1). Describing biodiversity for insects comes down
to discovery and identification. Once an insect is collected,
an individual with ‘some’ knowledge will try and identify it
to the lowest taxonomic level. Higher level morphological
characteristics can be quite easy to identify, for example, if
it has one pair of wings with the second set of wings reduced

to small knob-like structures (halters), one would conclude
Diptera, then move on to the next taxonomic level by using
published available keys (10). From there, family specific
dichotomous keys would allow one to continue until species
level is reached, all of which are based on both continuous
and discrete characters on the insects. Here is the inherent
flaw: undescribed species would not be present in a key, and
only through the very thorough analysis of characters could
one conclude it may be a new, undescribed species and is
not attributed to plasticity or geographic isolation. The use
of newer technology, specifically, the DNA Barcode (2), has
really helped confirm the new species if the variation in se-
quence exceeds the traditional intraspecific variation or when
species have undistinguishable characteristics such as cryptic
species (11).

There are two paths to identifying biodiversity: discovery
and identification, and they are interrelated. Advances in
technology have addressed one of these to some extent (dis-
covery) through the use of the DNA barcode, however, the
species are flagged as unlikely to be an existing species, or
they simply exceed the typical intraspecific DNA variation
limits, but they have not been identified. One cursory look at
the DNA Barcode Database (BOLD) (12, 13)) will reveal that
a search of Diptera yields 2.4 million records (DNA sequences)
and 126,000 BINs (barcode indexed numbers), yet only 25,000
species have been identified, meaning DNA is facilitating the
possibility of new species discovery, but nothing is happening
to identify them. So even with DNA sequencing increasing the
rate of new species discoveries, we are not identifying them,
they are not being published, and the biology around these
new species is not being discovered. It just provides a baseline
for the approximate biodiversity but does not contribute to
the knowledge base.

The increasingly difficult challenge is the lack of experts in a
given taxonomic field owing to the vast diversity of the insects
themselves, and the art of traditional taxonomy continues
to decline, further contributing to the bottleneck (14–16).
Therefore, the only way to meaningfully scale the discovery
and identification of new species is to address that point, and
that is an expert that is carefully trained to recognize and
define differentiable characteristics of various insects. If we
have the ability to perform this function across a broad scale,
the insect identification problem becomes manageable, and this
is where machine learning (ML) algorithms can be leveraged
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Fig. 1. Deep Open-set Bayesian Classification with Unknown and Undescribed Species. a. Image embeddings of size 2048 are obtained using the pretrained ResNet-101
model. b. CNN architecture is trained using one-hot encoding representations of DNA barcodes (see Supp. Fig 4 for more details). c. Mapping from ResNet features to
CNN embeddings is learned by transductive Ridge regression. Training set for the CNN embeddings is augmented by the mapped versions of ResNet features. d. Open-set
Bayesian model is trained on the augmented training set and used for classification. A test sample is either assigned to one of the described species or identified as a new
species belonging to one of the described genera.

to find patterns from insect image databases and apply this
to identifying insect species. Although ML can potentially
exceed human recognition in exposing subtle morphological
features, existing ML paradigms will no doubt be challenged
by the scale of the insect identification problem.

Recent advances in ML have led to a surge of interest
among scientists in entomology and ML methods have been
lately used to provide potential solutions to many challenges
in the domain. Deep learning (DL) approaches, in particular
involving Convolutional Neural Networks (CNN), are utilized
in pest-detection (17, 18), digitalization of Natural History
Museum collections (19, 20), measuring invertebrate biodiver-
sity (21, 22), investigating the plant-insect interactions (23)
and many more applications (24). There are several studies
that explored the use of ML approaches on audio data to
classify bee and grasshopper species (25, 26). A recent study
also applied CNN on the acoustics of wingbeats to detect the
mosquito presence (27). ML methods have also been employed
in a more challenging task of automatic detection of species in
video and time-lapse images (28). Furthermore, recent studies
demonstrated that ML approaches can achieve human-expert
level accuracy on image-based taxonomic identification (29–
31).

Perhaps the most relevant studies to insect identification
and discovery are the ones dealing with open-set recognition.
Despite all these great accomplishments, there are very few
studies investigating DL methods in an open-set classification
setting (32). Furthermore, current open-set methods have
been employed on relatively small datasets and do not scale
well with a larger number of classes (32). This in turn limits
their usefulness in Entomology as insect datasets are very
fine-grained and contain a large number of similar classes.

Traditional supervised learning algorithms will be inher-
ently limited by the non-exhaustive nature of insect reposito-
ries available for training. It is impractical, often impossible,
to create a training repository with a complete set of insect
species for various reasons. For example, some of the insect
species are not yet described, and thus well-characterized

training images of insects from these species simply cannot
be obtained. Similarly, when insect species are either rare or
non-existent in a given geographical locale collecting samples
may become impractical. And finally, insects specifically pose
a challenge due to the morphologically distinct life stages of
the insect that may include egg, larval and pupal stages.

ML models for insect identification should be designed by
recognizing beforehand the non-stationary nature of the biolog-
ical and environmental processes governing insect emergence,
proliferation, and migration. An effective ML model should
not only identify future samples of species represented dur-
ing training (described species) but should also be capable of
detecting and identifying samples of unrepresented species (un-
described species). Identifying samples of undescribed species
is an ill-defined problem. Although ML models can be tai-
lored to operate in an open-set classification setting to detect
insect samples with no matching classes in the training data,
such approaches have only been restricted to detect an insect
sample as an outlier and cannot differentiate between different
types of outliers (33–35).

In this study, we seek to answer whether recent advances in
machine learning and computer vision can help extract subtle
yet potentially differentiable morphological characteristics,
when combined with the highly specific DNA Barcode data,
can help facilitate more accurate identification of insects of
described species while simultaneously discovering insects of
undescribed origin and identify them at the lowest level of
abstraction possible (See Fig 1). The core building block of
our open-set classification approach is a two-layer hierarchical
Bayesian model defined over both described and undescribed
species with two different types of priors: global and local.
Global prior is shared by all species whereas local priors are
only shared by species that are taxonomically more similar and
used as a surrogate class for undescribed species. Classification
is performed by maximizing posterior predictive likelihood over
both true and surrogate classes.
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Table 1. Open set classification results

Methods US S H

OSBC-IMG 35.88 39.11 37.42
BioInformatics (DNA) baseline 71.85 98.65 83.16
OSBC-DNA 73.39 96.15 83.24
OSBC-DIC 77.26 97.26 86.25
OSBC-DIL 81.95 98.21 89.35
OSBC-DIT (Tr + Tss + Tsus) 81.39 96.66 88.37
OSBC-DIT (Tr + 50%Tsus) 79.94 96.66 87.53
OSBC-DIT (Tr + 25%Tsus) 77.48 96.63 86.01

US and S represent unseen and seen class accuracies and H represents
the harmonic mean of these two scores. For both seen and unseen

classes, each class accuracy is calculated then the average of these class
accuracies is reported. Note that, these results are on genus level for
unseen classes. More precisely, during class accuracy calculation

different unseen classes belonging to the same genus are treated as the
same class. Best results are displayed in bold and the second-best
results are underlined. T r, T ss and T sus represents train, test seen

and unseen data, respectively.

Results

In this section, we first briefly discuss the predictive perfor-
mance of the Convolutional Neural Network (CNN) model we
developed to learn DNA embeddings. Then, open-set insect
classification results are reported and, finally, the section is
concluded with discussion and case studies.

Predictive accuracy of DNA Embeddings. We trained Convo-
lutional Neural Network (CNN) to optimize vector representa-
tions of the DNA barcodes in the Euclidean space. The model
yielded impressive 99.44% accuracy on the holdout validation
set that was created by reserving 20% of the training set. In
the deployment of Neural Network models, it is also important
to test the generalizability of the model to completely unseen
classes/ species. Towards this end, we trained a K-Nearest-
Neighbor (KNN) classifier (K = 1) on randomly sampled 80%
of the DNA embeddings of unseen classes (243 species) ob-
tained from our CNN model and tested on the remaining 20%.
The simple KNN classifier rendered 99.19% accuracy proving
the robustness of the CNN model to learning representation
for undescribed species.

Open-set Bayesian Classification with Un-
known/Undescribed Species (OSBC). No class information
can be defined for undescribed species as these species are
completely unrepresented in the training data. The only
data available for training are images and DNA barcodes
from described insect species (seen classes). The machine
learning task at test time involves identifying insect classes
originating from described species at the species level and
those from undescribed species at the genus level. The
Bayesian model is first trained and tested with CNN barcode
embeddings (OSBC-DNA) and then with ResNet101 (36)
image embeddings (OSBC-IMG). Finally, the CNN barcode
and ResNet image embeddings were investigated jointly to
determine if image information can improve the accuracy
of the DNA Barcode classifier in inductive as well as
transductive settings. As a standard approach to fusing DNA
and image information in the inductive setting, the DNA and
image embeddings were concatenated into a single feature

vector (OSBC-DIC). Another approach in the inductive
setting we tried was the summation of normalized likelihood
vectors generated by two Bayesian classifiers of CNN and
ResNet embeddings (OSBC-DIL). Finally, we developed
a transductive approach that optimizes a linear mapping
from image space to DNA sequence space by solving a ridge
regression problem using ResNet and CNN embeddings of all
available cases in test and train sets without using any class
labels (OSBC-DIT). Additionally, we also developed a simple
baseline using DNA sequences from the bioinformatics tool
present in Matlab. Technical details of the Bayesian classifier,
baseline method, and transductive approach are included in
the Methods Section.

Table 1 reports the results from open-set insect classifica-
tion. Once the number of classes reaches thousands, image
classifiers alone cannot offer high performance emphasizing
the need for high-quality 3D images. DNA data, on the other
hand, proves to be very informative for species classification.
The bioinformatics baseline method using DNA alone was
excellent at accurately classifying seen species (species that
are present in the database) while achieving an accuracy of
72% on unseen species, a significant reduction in comparison
to using OSBC-DIT. Although OSBC-DNA yields a better
unseen class accuracy, the performance on seen classes slightly
drops.

In all three scenarios, combining image and DNA data
clearly helps the Bayesian classifier harvesting a decent per-
formance boost, in particular for unseen classes. Transductive
and heuristic likelihood methods perform the best with above
88% harmonic mean and 81% unseen class accuracy. That be-
ing said, both inductive methods, OSBC-DIC and OSBC-DIL,
have an inherent flaw: they always require test samples to have
an accompanying image along with a DNA barcode. For the
transductive method (OSBC-DIT), however, only a fraction
of test data with image and DNA pair, without using any
labels, is enough to learn a robust mapping and still deliver a
remarkable performance increase. The main information flow
in learning the mapping in the transductive setting is coming
from unseen classes. The last two rows of Table 1 display
model performance while utilizing various fractions of image
and DNA test data pairs from unseen classes for learning
image to DNA embedding. Note that, we did not tune the
model for these configurations and employed the validation pa-
rameters used to produce OSBC-DIT results. Using only 25%
of image-DNA pairs from unseen classes to learn the Ridge
regression already improves the harmonic mean to 86%. This
finding clearly displays how the abundance of unlabeled image
and DNA pairs can be leveraged by the transductive method
to significantly boost the DNA alone classifier performance.

The transductive model (OSBC-DIT) yields 96.66% overall
accuracy of seen class classification with 4,827/4,965 correct
classifications (See Table 2). For unseen classes, the accuracy
declines, unsurprisingly, but is remarkably good for 3 of the 4
orders with >80% accuracy of assigning the unknown “species”
to the correct genus (with an overall accuracy of 81.01%). The
order Diptera is where a large portion of unseen classes was
misclassified to the incorrect genus (Table 2). When examining
the different family groups and their classification accuracy
(Table 2), the Culicidae (the mosquitos), Syrphidae (the hover
flies), and Tipulidae (the crane flies) had the greatest amount
of misclassifications, however, the number of possible species
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in the group is not accounting for the misclassifications, as
species in Chironomidae were classified with 100% accuracy.
With the Culicidae, 45/58 of the misclassifications were Aedes
vexans records that classified to the Culex genus. When taking
a random record and using the DNA sequence to BLASTn (37)
in Genbank as a semi-independent test of the data, there are
BOLD records that populate the hit list that are Culicinae sp.,
and therefore, these records may be obstructing the classifica-
tion due to the overlap in sequences. For the Syrphidae, 18
Platycheirus neoperpallidus records were misclassified to Platy-
cheirus clypeatus. When random P. neoperpallidus records
were aligned to other Platycheirus species, it was noted that
there was a great deal of similarity with P. quadratus, a species
not present in the training set, again, demonstrating the need
for a more representative training dataset to ensure accuracy
within certain groups. There was only one instance in which
every single individual was misclassified, wherein 14 records
of the Tipulidae, all belonging to a single species Tipula col-
oradensis, were completely misclassified. The majority of the
misclassifications were to the same subfamily (Tipulinae), but
misclassified to the Nephrotoma genus, and four of the 14 mis-
classified to Syrphidae. What is remarkable with this dataset
is that the training data contained three species of Tipula (T.
caliginosa, T. salicetorum, T. shirakii). Sequence similarities
were calculated between the three in the training set and T.
coloradensis, and what is apparent very quickly is that T.
salicetorum and T. caliginosa are closely related (interspecific
sequence differences 97% ), whereas the sequence similarity of
T. coloradensis with either T. salicetorum or T. caliginosa is
88%. Further, T. shirakii is perhaps the most different, with
85% sequence similarities from the remainder of the Tipula
species included in this analysis (data not shown). What this
is indicative of is quite the vast amount of sequence variation
that may exist in this genus.

Discussion

Deep learning methods are getting more and more integrated
into various fields and disciplines in the sciences. Here we
present a novel method for potential classification of new insect
species, with an eye on the future of identification through
image analysis and character extraction for the entomology
field explicitly, although this can be applied to any biological
organism. This is the first attempt where an open set classifica-
tion is done using the integration of DNA and image analysis
on a comparatively larger number of classes (in this case,
1,040 species in four large orders). The use of image analysis
alone, or DNA analysis alone, has had varying levels of success.
DNA is generally viewed as strong support for new species
if the sequence variation falls outside the normal bounds of
intraspecific variation, however, those normal bounds can vary
significantly. In some cases, the DNA barcode has been inte-
gral to differentiate between species that are morphologically
indistinguishable, confirmed through additional nuclear DNA
sequencing (38). Image analysis alone has provided some
gains in order to monitor (in real-time) insect species but
suffers when background extraction is necessary. Furthermore,
these methods are closed-set since the application is related
to monitoring for existing species (for example, when pest
management strategies are necessary) (39, 40). When using
deep learning methods with images to identify seen classes
of insects, accuracy gains can reach 90 percent or higher (29–

31, 41), in some cases, approaching or surpassing taxonomic
specialist accuracy’s (42). However, all these methods are
tested either on coarse-grained datasets or with a very limited
number of classes, generally less than 15 species. Further-
more, the lingering issue of identifying unseen classes and
the inherent data imbalance continue to plague the ability
of more efficient means of identifying new species, especially
within the Insecta class, where the majority of the species
continue to be unidentified and presents the most important
advancement to the field of entomology, but more broadly,
to better understanding ecosystems and their processes, of
which insects likely play a major role (43). The model trained
on DNA embeddings (OSBC-DNA) achieved a compelling
96.15% accuracy on seen classes where 670 out of 770 test
classes are perfectly classified to their true species. The model
performance dropped to 73.39% in a more challenging task of
identifying unseen species and assigning them to their true
genera. OSBC-DNA completely misclassified all samples of 24
unseen species (less than 10% of all unseen classes), yet it is
worth noting that 6 of these classes were perfectly assigned to
their true classes as the second-best option. Leveraging the
auxiliary image data, our transductive approach (OSBC-DIT)
significantly boosts the unseen class performance to 81.39%
(and 11% increase) with a modest increase on the seen class
accuracy over DNA alone (OSBC-DNA). OSBC-DIT classified
677 out of 770 seen classes with 100% accuracy. The model
also partially recovered 14 of 24 completely missed unseen
species under OSBC-DNA model (see Fig 2), where 9 out of
14 classes were recovered by more than 80%.

Striking morphological similarity between species belonging
to the same genus. As it is observed in Figure 2a, variation in
some insects is nearly invisible to the human eye, especially
if lacking specialized expertise, yet the models were able to
extract these subtle differences from images and aid DNA
embeddings to correctly classify these difficult cases. To il-
lustrate, we present a simple challenge in Fig 2d where one
sample from 4 different species belonging to Agabus genus
is displayed. The task is to correctly match the images with
the following species names: A. sturmii, A. bipustulatus, A.
uliginosus, and A. infuscatus. The true order can be found
in this footnote∗. Out of four species, A. infuscatus is re-
served as an unseen class. DNA classifier correctly classified
all test samples from 3 seen classes, however, it made a few
mistakes while assigning the samples of unseen class into its
true genus, Agabus. OSBC-TID model, on the other hand,
correctly classified with 100% accuracy all seen and unseen
class test samples.

This observation also reveals that 658bp of DNA sequence
(cytochrome oxidase subunit I) can miss some subtle features,
yet image representation can highlight these features as spot-
ted in the Lasioglossum and Sphecodes cases (column 3 of
Fig 2a). Both genera share very similar DNA sequences and
are members of the same tribe (Halictini), which makes it
quite difficult to differentiate using merely DNA barcodes in a
challenging open-set classification setup. In the transductive
approach (OSDB-DIT), these elusive morphological features
are successfully transferred from image space to DNA space
and fill the gap in the utility of DNA barcodes.

∗A. infuscatus, A. sturmii, A. bipustulatus, and A. uliginosus
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Table 2. Seen and unseen class accuracy by insect family for five or more species per family

Seen Classes Unseen Classes
Order Family # training # test samples Accuracy # test samples Accuracy

Coleoptera

Brentidae 94 18 100.00%
Cantharindae 226 43 93.02% 77 94.81%
Carabidae 1660 346 95.66% 128 95.31%
Cerambycinae 210 43 100.00%
Chrysomelidae 564 114 99.12% 37 89.19%
Coccinellidae 226 46 100.00%
Curculionidae 348 68 94.12% 55 96.36%
Dytisicidae 146 30 100.00% 18 88.89%
Elateridae 242 47 100.00% 12 100.00%
Scarabaeidae 106 23 91.30%
Staphylinidae 714 150 92.67% 47 100.00%
Tenebrionidae 186 24 100.00%

Summary (C) 37 5, 680 1, 143 95.80% 751 85.22%

Diptera

Calliphoridae 190 35 100.00% 13 92.31%
Chironomidae 464 96 97.92% 24 100.00%
Culicidae 496 107 89.72% 58 22.41%
Drosophilidae 392 85 84.71% 80 81.25%
Muscidae 104 22 90.91%
Sciaridae 150 33 100.00%
Syrphidae 342 71 97.18% 45 60.00%
Tipulidae 122 26 96.15% 14 0.00%

Summary (D) 20 2, 744 570 93.68% 273 61.17%

Hymenoptera

Andrenidae 192 39 100.00% 53 79.25%
Colletidae 190 32 100.00% 56 100.00%
Crabronidae 312 66 100.00% 60 96.67%
Eulophidae 226 47 100.00% 183 100.00%
Halictidae 344 70 98.57% 113 80.53%
Ichneumonidae 306 67 100.00% 12 100.00%
Megachilidae 296 55 100.00% 28 53.57%
Tenthredinidae 864 169 91.72% 261 66.28%
Vespidae 106 22 100.00% 22 77.27%

Summary (H) 19 3, 282 660 97.27% 872 82.22%

Lepidoptera

Coleophoridae 994 206 99.51% 170 82.35%
Crambidae 1054 176 99.43% 482 87.14%
Depressariidae 1836 269 100.00% 380 67.63%
Erebidae 4288 464 97.20% 694 74.78%
Gelechidae 268 59 96.61% 41 82.93%
Geometridae 1170 230 96.96% 328 89.63%
Hesperiidae 2294 14 85.71% 566 47.00%
Noctuidae 3246 570 98.95% 525 82.10%
Notodontidae 4068 257 100.00% 959 94.89%
Nymphalidae 554 37 100.00% 166 84.94%
Saturniidae 890 31 100.00% 111 99.10%
Tortricidae 968 170 100.00% 144 96.53%

Summary (L) 18 22, 564 2, 592 98.61% 6, 567 81.01%
Note that ‘Summary’ row reports the summary results from all families belonging to that order including families having less than five species in

our dataset.

Effect of image quality and background noise on model per-
formance. High-quality images are an integral part of any
successful machine learning approach and heavily impact the
model performance in computer vision tasks. It is well docu-
mented in the literature that due to cross-entropy loss they
have been trained with, many state-of-the-art pre-trained
CNN models are sensitive to the presence of subtle noises
such as Gaussian, background noises, or blurriness in the
image (44–46). The following interesting cases observed in
our experiments also verified these phenomena where a few
isolated instances were misclassified to unrelated species under
OSBC-DIT classifier.

Cases in Figure 2b illustrate the vulnerability of the CNN

models towards image manipulations. The first case is a
test sample from the seen class Drosophila putrida, which
is correctly classified by the DNA classifier, yet OSBC-TID
misclassified the sample to Steganopsis genus. Except for this
case, all the cases from seen classes where the DNA model
correctly classified but DNA+IMAGE model failed were either
misclassified to the true genus or to another species from the
corresponding genus. In the light of this statistic, this particu-
lar case stands out as the OSBC-TID model misclassified this
test sample (and only misclassified test case from D. putrida)
to another genus. Inspecting the image features reveals that
this figure is the only one being exposed to image manipulation
and has been trimmed by Adobe Photoshop CS (this infor-
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Genera
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Fig. 2. Discussion cases and phylogenetic tree. a. Unseen classes (14) that were completely missed by OSBC-DNA but discovered by OSBC-DIT (some species partially and
some fully). The first and third rows display the images that are covered by OSBC-DIT and the second and fourth rows show samples for the corresponding classes that they
are misclassified to under OSBC-DNA. Names containing "sp." means that this is a Genus class and the image is from the species of name in parenthesis belonging to that
genus. b. Misclassified cases due to image manipulation. c. Misclassified case due to background noise. d. Morphological resemblance between species belonging to the
same genus. e. Phylogenetic tree of the 4 orders from the dataset. Randomly chosen 2 species from each order with their full taxonomic order are illustrated.

mation can be accessed from image properties). In the same
fashion, the test case from P. ewardsii species in Figure 2b is
the only test sample that was misclassified by OSBC-TID, and
also the only sample exposed to a modification from a soft-
ware called CombineZP (47) (this information can be accessed
from image properties). These subtle alterations are most of
the time indistinguishable to human eyes yet can drastically
alter the CNN model embeddings. Recent research suggests
more robust image embeddings less sensitive to subtle alter-
ations can be obtained using backbone architectures trained
by self-supervised learning (44, 48). Background information
can sometimes dominate the relevant image features. The
aberrant misclassification of the test sample from Bembidion
minimum to a Drosophila genus (from different order) is an
example of this phenomenon (See Figure 2c). Many images
from Drosophila genus have "1mm" text attached next to the
species image to illustrate the scale, and that particular test
sample (the only misclassified sample from B. minimum) has
the same "1mm" text in the background.

Conclusion

All living beings, including plants, have a complex and in-
tertwined relationship contributing to the delicate balance
our planet has been maintaining. There have been drastic
changes observed in the last few decades, disturbing this bal-
ance. These alterations reflect their consequences first on
biodiversity, thus it has vital importance to measure and moni-
tor these effects. In this study, we developed a novel framework

to facilitate the discovery and identification of insect species,
a very large swatch of unknown biodiversity, at scale. The
proposed model is the first in the literature to tackle this prob-
lem by leveraging the image and DNA data together tested on
more than a thousand species. Unlike all the previous work,
our model does not simply cast aside the new insect species by
treating them as an outlier but classifies them to the lowest
level of abstraction in taxonomic order, the genus level. Our
transductive Bayesian classifier delivered 81% accuracy on
identifying the correct genus of new species that have no im-
age or DNA samples present in our training data, meanwhile
classified known species with more than 96% accuracy. Con-
sidering the transductive approach was built on regularized
linear mapping, it appears there is a great potential to achieve
better performance utilizing nonlinear and more sophisticated
approaches like Generative Adversarial Networks (49) or Vari-
ational Autoencoders (50) to learn this mapping. Integrating
GAN/ VAE would also allow training an end-to-end model
by self-supervised learning that can potentially mitigate the
shortcomings of supervised pre-trained models.

In this proof of concept, the focus of this paper was on new
species discovery, wherein the subclasses were species, and the
superclasses were genera. The Bayesian model can easily be
extended to be trained on where genera/species are considered
the subclasses and higher taxonomic levels are considered
superclasses (e.g., family). Such a classifier will readily deal
with missing/unobserved genera. However, a more extensive
dataset covering more genera and families would be necessary.
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Materials and Methods

In this section, we first introduce the dataset and how the split
is performed for machine learning training. Next, Convolutional
Neural Network (CNN) model for deriving DNA embeddings is
presented. Finally, we lay out the open-set Bayesian classifier
details along with the bioinformatics baseline classifier.

Barcode of Life Data System. Our study uses insect data from the
Barcode of Life Data System (BOLD) (12, 13). As other databases
exist of genetic data (for example, (51)), they require some identifi-
cation prior to depositing into the database. BOLD differs slightly
in that as it allows for unidentified organisms to be uploaded into the
database, and their algorithms, based on DNA sequence only, will
place the unknown into a barcode index number (BIN). This allows
for the quantification of the unknown and undescribed, however,
no identifications are made. This data repository does not contain
samples of truly undescribed species. The BOLD database using a
specific searching algorithm that translates the DNA sequence to
its protein sequence and searches its database. BOLD will make
a species identification if the queried sequence contains less than
1% divergence to a reference specimen located in the database. If
the sequence divergence is less than 3% (but greater than 1%), the
database will make a match to a genus.

All insect image and DNA sequence pairs in our dataset were
downloaded from the Barcode of Life Data System. Most insects
in the database had approximately 658bp of the DNA barcode
(cytochrome oxidase subunit I), as well as an image and additional
information such as country of origin, life-stage, order, family, sub-
family, and genus/species names.

BOLD is an open-access database in which users can upload DNA
sequences and other identifying information regarding any animal
on Earth. Because the majority of the uploads are not identified
species, they are classified into BINs (13). For example, as of
8/18/2021, the Insecta database had a total of 5,883,100 records
with sequences, and about half had species names (2,561,685),
meaning the remainder could not be identified to species. The data
are important for assessing biodiversity, distributions of species,
as well as collating other descriptive metadata and images. The
limitations of this database are that it is important for the discovery
of new species but does not allow for the identification of such, and
simply places the outliers in an interim position, not allowing for
any forward movement.

Data Collection. Data were collected based on a subset of insects
that originate from four major Insecta orders: Diptera (true flies),
Coleoptera (beetles), Lepidoptera (butterflies and moths), and Hy-
menoptera (sawflies, wasps, bees, and ants). While the dataset was
generally clean, manual effort was devoted to further curate the
dataset. Only non-teneral adults with images and matching DNA
barcodes were included with each species and manually inspected
so that images with low quality, duplicates, images with just in-
sect parts, or missing images (e.g. just a label is present) were
deleted. Only classes that had a minimum of 10 images within a
single BIN were included in the final dataset. Consequently, the
final dataset consisted of 1,040 insect species and a total of 32,848
insect instances (records). In the finalized dataset, we obtained 108
species of Diptera from 63 genera, 329 species of Coleoptera from
164 genera, 189 species of Hymenoptera from 59 genera, and 414
species of Lepidoptera from 82 genera (See Figure 2e)

A pre-trained ResNet101 model (36), 101-layered Convolutional
Neural Network, was used to embed images into Euclidean vector
space and represented them by information-rich 2048 dimensional
real-valued feature vectors. We utilized the ResNet101 model pa-
rameters that were optimized on ImageNet 1000 classes, hence
pre-trained, and we did not fine-tune the model on our dataset.
Images are first resized to 256×256, then center-cropped into the
ResNet model image dimension: 224×224. No other pre-processing
was applied to the images.

Split details. The BOLD database does not contain truly undescribed
species. To artificially create undescribed test classes, genera were
chosen that have a minimum of three species, and 33% of those
species were randomly chosen and set aside as undescribed species.
These pseudo-undescribed species are referred to as unseen classes

and described species as seen classes. For example, the genus
Coelioxys has three species, and one of them (in our case C. conoidea)
was randomly chosen as an undescribed species, leaving two as seen
classes. This split left 243 unseen classes and 797 seen classes, where
the training set did not include any images or DNA from these 243
classes. In order to create a validation set for unseen classes, in
the same fashion, 33% of species were randomly chosen of genera
that have at least three members from the 797 training classes. The
remainder of the data were split by a 70/30 ratio in a stratified
fashion to obtain samples for training and test seen classes. Some
of the insect classes have multiple images, each capturing a different
view of the insect (for example, ventral and dorsal views), all insect
classes with multiple images were restricted to the training set,
leaving 27 of the seen classes with no available samples for testing.
Test samples from seen and unseen classes summed up to 4,965 and
8,463 instances.

CNN Embeddings for DNA Barcodes. A Convolutional Neural Net-
work (CNN) (52, 53) was trained to optimize vector representations
of the DNA barcodes in the Euclidean space. Barcodes are first
converted into 658x5 2D one-hot encoding arrays, where 658 is
the length of the barcode sequence (median nucleotide length of
the DNA data). A total of five tokens were used, one for each of
the Adenine, Guanine, Cytosine, Thymine bases, and others. All
ambiguous and missing symbols are included in the others token.
To train the CNN model, a balanced set out of the training data,
which was discussed in the previous paragraph, is created, where
class sizes are capped at 50 samples. The training set is finalized
with 14,389 barcodes from 797 classes. Note that no barcodes nor
images from 243 unseen classes or test data are employed during
model training. The training set is further split into two sets as the
train (80%) and validation (20%) by random sampling. We used 3
blocks of convolutional layers each, followed by batch normalization
and 2D max-pooling. The output of the third convolutional layer
is flattened and batch normalized before feeding the data into a
fully-connected layer with 500 units. The CNN architecture is com-
pleted by a softmax layer. For the embeddings, we used the output
of fully-connected layer. The details of the model architecture are
depicted in Supplementary Fig 4. We trained the model for 5 epochs
with a batch size of 32 and used Adam optimizer (54) (learning rate
= 0.0005 and drop factor= 0.5, β1 = 0.9, β2 = 0.999). The model
is developed in Python with Tensorflow-Keras API.

Open-set Insect Classification. In our approach, we assume that
there are species that are completely unknown (for example, a
newly discovered species), and we introduce a framework that can
identify insects at the lowest taxonomic level possible by jointly
leveraging image and taxonomic information. More specifically,
if an insect to be classified is a previously described species, the
test sample would be classified as one of the species present in
the training set. On the other hand, if the insect is undescribed
and therefore not present in the training data, the taxonomic level
identification would be to genus, providing clues that the insect
is not a species in the current database. Thus, for undescribed
insect species, the genus would be predicted, therefore indicating
the database/training does not contain the species and it is likely
an unknown species. This open-world classification approach not
only significantly reduces the uncertainty surrounding traditional
closed-set supervised algorithms (closed-set algorithms assume all
possible classes/ species are present in the training data and there-
fore would misclassify all new/ undescribed insects into one of the
known species), but also addresses problems with existing open-set
frameworks where any undescribed species are designated as an
outlier, thus no additional taxonomic level is being identified. We
explore the predictive accuracy of the open-world classifier first by
DNA barcodes alone, then by images alone, and finally by combining
DNA barcodes and images in various forms.

Bayesian Model. Insect species have a predefined taxonomic hierar-
chy; species < genus < subfamily < family < order etc., although
rich variety between these hierarchies carries valuable information,
it is often overlooked when designing ML algorithms. A hierarchical
Bayesian model was recently introduced in computer vision for
zero-shot classification of object classes (55). This model establishes
a Bayesian hierarchy among object classes using visual attributes as
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Fig. 3. a. Generative model. Hyperparameters are defined in the Methods section. b. Class distribution formation for seen and surrogate genus classes.

auxiliary information. To identify both described and undescribed
species a similar model is developed by replacing visual attributes
with a predefined class hierarchy explicit in the taxonomical clas-
sification of biological organisms. More specifically, our proposed
method assumes that there are local priors that define the class
hierarchy in the feature space (image or DNA) and uses predefined
taxonomical classification to build the Bayesian hierarchy around
these local priors. Supplementary Fig 2 illustrates the intuition
behind this idea: species sharing similar haplotypes cluster in the
phenotypic space as well. Our model uses two types of Bayesian
priors: global and local. As the name suggests, global priors are
shared across all species, whereas local priors are only shared among
species belonging to the same genus. Unlike standard Bayesian mod-
els where the posterior predictive distribution (PPD) establishes
a compromise between prior and likelihood, our approach utilizes
posterior predictive distributions to blend local and global priors
with data likelihood. Inference for a new insect sample (image or
DNA) is performed by evaluating these posterior predictive distri-
butions and assigning the insect to one of the described species that
maximizes the posterior predictive likelihood or identifying it as a
new species belonging to the surrogate genus class maximizing the
posterior predictive likelihood.

Generative model. The Supplementary Figure 3 depicts the graphical
model of the proposed approach with the model design given below:

xjik ∼ N(µji,Σj) [1]
µji ∼ N(µj ,Σjκ−1

1 )
µj ∼ N(µ0,Σjκ−1

0 )
Σj ∼W−1(Σ0,m)

where j, i, k represent indices for local priors, classes, and data
instances, respectively. We assume that the instance xjik comes
from a Gaussian distribution with mean µji and covariance matrix
Σj . They are generated independently conditioned not only on the
global prior but also on their corresponding local priors.

Each local prior is characterized by the parameters µj and
Σj . µ0 is the mean of the Gaussian prior defined over the mean
vectors of local priors, κ0 is a scaling constant that adjusts the
dispersion of the centers of local priors around µ0. A smaller
value for κ0 suggests that class centers are expected to be farther

apart from each other whereas a larger value suggests they are
expected to be closer to each other. On the other hand, Σ0 and m
dictate the expected shape of the class distributions, as under the
inverse Wishart distribution assumption the expected covariance is
E(Σ|Σ0,m) = Σ0

m−D−1 , where D is the dimension of feature space.
The minimum feasible value of m is equal to D + 2, and the larger
the m is the less individual covariance matrices will deviate from
the expected shape.

The hyperparameter κ1 is a scaling constant that adjusts the dis-
persion of the class means around the centers of their corresponding
local priors. A larger κ1 leads to smaller variations in class means
compared to the mean of their corresponding local prior, suggesting
a fine-grained relationship among classes sharing the same local
prior. Conversely, a smaller κ1 dictates coarse-grained relationships
among classes sharing the same local prior. In this model, classes
sharing the the same local prior also retain the same covariance
matrix Σj to preserve conjugacy of the model. Test samples are
classified by evaluating posterior predictive distributions (PPD) of
seen and unseen classes.

PPD derivation. PPD incorporates three sources of information: the
data likelihood that arises from the current class, the local prior
that results from other classes sharing the same genus as the current
class, and global prior defined in terms of hyperparameters. The
derivation in six steps are outlined in Supplementary Figure 3a and
Algorithm 1 describes a pseudo code on deriving PPD for both seen
and unseen classes. Class sufficient statistics are summarized by
x̄ji, Sji and nji which represent sample mean, scatter matrix and
size of class i of local prior j, respectively.

PPDs for seen classes include the global prior and data likelihood
(See Fig 3) and are derived in the form of a Student-t distribution
as below,

P (x|{x̄c, Sc,µ0, κ0, κ1) = T (x|µ̄c, Σ̄c, v̄c) [2]

µ̄c =
ncx̄c + κ0κ1

κ0+κ1
µ0

nc + κ0κ1
κ0+κ1

, v̄c = nc +m−D + 1,

Σ̄c =
(Σ0 + Sc + Sµ)(nc + κ0κ1

κ0+κ1
+ 1)

(nc + κ0κ1
κ0+κ1

)v̄c

where, x̄c, Sc and nc are sample mean, scatter matrix and size
of current seen class c. Sµ is defined in Equation (34) from Sup-
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Algorithm 1 Modeling seen and surrogate genus classes in
BZSL
Input: Training data
Output: PPD parameters for each seen class (µ̄jc, v̄jc, Σ̄jc)
and surrogate genus (µ̄j , v̄j , Σ̄j)
1: Set hyper-parameters: κ0, κ1,m, s
2: Compute µ0 (mean of class means) and Σ0 (mean of class

covariances scaled by s)
3: for each seen class ωjc do
4: Calculate current class params: x̄jc, njc, Sjc
5: Calculate Sµ (Supp. mat. Eq 34)
6: Calculate PPD by combining global prior and data

driven likelihood: µ̄jc, v̄jc, Σ̄jc (Eq 2)
7: for each genus ωj do
8: for each seen class ωji belonging to the genus ωj do
9: Calculate class params: x̄ji, nji, Sji
10: Calculate intermediate term: κ̃j (Supp. mat Eq 30)
11: Calculate PPD parameters using only local prior :

µ̄j , v̄j , Σ̄j (Eq 3)

plementary material. The index c in Equation (2) represents the
current seen class, whose PPD is being derived.

Surrogate class formation. In our model, groupings among classes
are based on local priors. Hence, once estimated from seen classes,
local priors can be used to define surrogate classes for unseen classes
during inference. We form a surrogate-class for each genus in our
dataset by forming a local prior combining all seen classes from that
genus (See Fig 3b). During the inference, test samples are classified
based on class-conditional likelihoods evaluated for both seen and
genus-level surrogate classes.

PPDs for unseen classes also follow a Student-t distribution,
thanks to conjugacy, given below,

P (x|{x̄ji, Sji}ti=j ,µ0, κ0, κ1) = T (x|µ̄j , Σ̄j , v̄j) [3]

µ̄j =

∑
i:ti=j

njiκ1
(nji+κ1) x̄ji + κ0µ0∑

i:ti=j
njiκ1

(nji+κ1) + κ0
,

v̄j =
∑
i:ti=j

(nji − 1) +m−D + 1, Σ̄j =
(κ̃j + 1)
κ̃j v̄j

(Σ0 +
∑
i:ti=j

Sji)

where, x̄ji, Sji and nji represent sample mean, scatter matrix and
size of class i associated with surrogate-class j, respectively and κ̃j
is defined as in Eq. (30) in the Supplementary material.

It is worth to clarify the distinction between seen and surrogate
class PPDs in the case of genera where they have only one species in
the training data. The seen class distribution and surrogate genus
class will have similar formulas but with 2 important distinctions.
First, mean of the seen class PPD will have more weight on class
sample mean whereas mean of the surrogate class will lean towards
µ0. Beside the common terms in location parameters, seen class
PPDs have the term x̄c

1+κ1/κ0+κ1/nc
whereas surrogate class PPDs

have µ0 in replace of x̄c. Second, unlike surrogate class PPDs, seen
class PPDs have additional term, Sµ, in their scale matrix.

Transductive Approach. The transductive approach leverages the
unlabeled test data as well during the training process. We aim
to learn a linear mapping from Image feature space to DNA fea-
ture space using Ridge regression. Figure 1 panel (c) outlines the
transductive approach. Following the notation in the figure, X̃
and X represents the image and DNA embeddings, respectively.
V ∈ Rd×d̃ is the embedding from image space to DNA space we
want to learn and λ is the regularization constant. Ridge regression
with Frobeneus norm has a well-known closed for solution given
as, V = XX̃>(X̃X̃> + λI)−1. We leverage the learned mapping to
augment auxiliary training data by embedding image features with

labels into DNA feature space, mathematically V X̃tr and combine
this data with DNA embeddings. The whole process takes two lines
of a code and computational cost is infinitesimal compared to the
model training time, thus this step comes as free. Nonetheless, we
achieve remarkable 10% percent performance boost on unseen class
accuracy while preserving seen class accuracy.

An Open-set Distance-based Bioinformatics Approach as a Baseline.
For each described species, nucleotide sequences were aligned us-
ing training samples available for that species. Aligned sequences
are then used to compute a consensus nucleotide sequence for
each described species. Test samples were classified by evaluating
Jukes-Cantor distance (56) between a test sequence and consensus
sequences of described species. Test samples are assigned to the
species with the minimum distance only if the minimum distance
is smaller than a designated threshold. If the minimum distance is
larger than this threshold then the test sample is treated as a sample
of an undescribed species and assigned to the genus of the species
with the minimum distance. Result of this approach is included in
Table 1.

Data and Code

The data and code can be accessed from GitHub.
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