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Abstract 1 
The neurodevelopmental period spanning early-to-middle childhood represents a time of significant growth and 2 
reorganisation throughout the cortex. Such changes are critical for the emergence and maturation of a range of 3 
social and cognitive processes. Here, we utilised both eyes open and eyes closed resting-state 4 
electroencephalography (EEG) to examine maturational changes in both oscillatory (i.e., periodic) and non-5 
oscillatory (aperiodic, ‘1/f-like’) activity in a large cohort of participants ranging from 4-to-12 years of age (N=139, 6 
average age=9.41 years, SD=1.95). The EEG signal was parameterised into aperiodic and periodic 7 
components, and linear regression models were used to evaluate if chronological age could predict aperiodic 8 
exponent and offset, as well as well as peak frequency and power within the alpha and beta ranges. Exponent 9 
and offset were found to both decrease with age, while aperiodic-adjusted alpha peak frequency increased with 10 
age; however, there was no association between age and peak frequency for the beta band. Age was also 11 
unrelated to aperiodic-adjusted spectral power within either the alpha or beta bands, despite both frequency 12 
ranges being correlated with the aperiodic signal. Overall, these results highlight the capacity for both periodic 13 
and aperiodic features of the EEG to elucidate age-related functional changes within the developing brain.  14 
 15 
Key words: EEG, aperiodic activity, oscillations, neurodevelopment, neurophysiology, spectral power 16 
 17 
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1. Introduction 19 
Electroencephalography (EEG) has proven highly valuable in quantifying neural dynamics and providing critical 20 
insights into the physiological processes that underlie key aspects of human cognition and neurodevelopment. 21 
Neural oscillations represent a prominent and extensively investigated feature of the EEG record, reflecting 22 
synchronised fluctuations in excitability across cortical microcircuits, both within and between broader neuronal 23 
networks (Buzsaki & Draguhn, 2004; Cohen, 2017). Decades of research has linked oscillatory activity within 24 
the cortex to a broad range of cognitive, perceptual, and developmental processes (Benchenane et al., 2011; 25 
Kahana, 2006), while changes in the frequency or amplitude of oscillations can be a sign of pathological neural 26 
activity in a number of psychiatric, neurological, and neurodevelopmental disorders (Başar, 2013; Newson & 27 
Thiagarajan, 2018; Voytek & Knight, 2015; Wang et al., 2013).  28 
 29 
Resting-sate EEG recordings can be used to capture spontaneous, or ‘intrinsic’ activity that occurs in the 30 
absence of any overt external stimuli, or task-related neurocognitive processing (Buzsáki et al., 2012; Michel & 31 
Murray, 2012). A common trend observed in studies examining maturational changes in resting-state brain 32 
rhythms in children and adolescents is a reduction in power with increasing age within lower frequency ranges 33 
(i.e., delta and theta bands; Clarke et al., 2001; Gasser et al., 1988; Gómez et al., 2013; John et al., 1980) which 34 
is also often also accompanied by a concomitant increase in power within faster rhythms, particularly the alpha 35 
and beta bands (Benninger et al., 1984; Gasser et al., 1988; Gómez et al., 2013; Marshall et al., 2002; Saby & 36 
Marshall, 2012). In addition to changes in spectral power, the peak frequency of the dominant posterior alpha 37 
rhythm also increases with age until around late childhood, or early adulthood (Cellier et al., 2021; Chiang et 38 
al., 2011; Eeg-Olofsson et al., 1971; Marshall et al., 2002; Miskovic et al., 2015; Stroganova et al., 1999). These 39 
shifts in oscillatory dynamics likely reflect multiple structural and functional neurodevelopmental processes, 40 
including differentiation and specialisation of cortical regions/networks, synaptic and axonal pruning, and 41 
alterations in excitatory and inhibitory (E/I) circuits (De Bellis et al., 2001; Feinberg & Campbell, 2010; Lujan et 42 
al., 2005; Uhlhaas et al., 2010).  43 
 44 
The EEG signal, however, reflects not only oscillatory (i.e., periodic) activity, but also additional background 45 
aperiodic, or ‘scale-free’ broadband activity, which is present at all frequencies and adheres to a 1/f power 46 
distribution, whereby spectral power decreases with increasing frequency (Barry & De Blasio, 2021; Donoghue 47 
et al., 2020b; He, 2014; Muthukumaraswamy & Liley, 2018; Pritchard, 1992). Despite constituting a large 48 
proportion of the spontaneous neural activity recorded from the cortex (Bullock et al., 2003; He et al., 2010), the 49 
aperiodic component has until recently received only limited attention in the EEG literature, often being treated 50 
as ‘noise’ and regarded as having limited physiological relevance (Donoghue et al., 2020b; He, 2014). Recent 51 
work, however, has begun to provide compelling evidence in support of the importance of the aperiodic signal.  52 
Studies have shown aperiodic activity to be modulated by task-performance (He et al., 2010), level of arousal 53 
(Lendner et al., 2020), and drug-induced states (Colombo et al., 2019; Muthukumaraswamy & Liley, 2018; 54 
Waschke et al., 2021). In addition, several studies have shown features of the aperiodic signal to be altered in 55 
neurological and psychiatric disease (Molina et al., 2020; Ostlund et al., 2021a; Robertson et al., 2019; 56 
Wilkinson & Nelson, 2021).  57 
 58 
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The aperiodic signal is comprised of two parameters: a spectral slope (henceforth referred to as the aperiodic 59 
exponent), and an offset (Donoghue et al., 2020b). The exponent represents the pattern of power across 60 
frequencies, reflecting the steepness of the decay of the power spectrum (Donoghue et al., 2020b), while the 61 
offset reflects the broadband shift in power across frequencies (Figure 1B). Emerging research now indicates 62 
that these parameters show changes across the lifespan. In adults, a reduction in the exponent (i.e., ‘flatter’ 63 
power spectral density [PSD]) with increasing age has been observed across several independent studies (Dave 64 
et al., 2018; Merkin et al., 2021; Tran et al., 2020; Voytek et al., 2015). There is also some limited evidence to 65 
suggest that these age-dependent changes also occur during childhood. For example, a recent longitudinal 66 
EEG study in infants (age ranging between 38 to 203 days) revealed that exponent values decline with age 67 
across this early developmental window (Schaworonkow & Voytek, 2021). Additionally, an analysis of 68 
magnetoencephalographic (MEG) recordings from a cohort of 24 neurotypical children (mean age = 8.0 years) 69 
and 24 adults (mean age = 40.6 years) showed adults to exhibit flatter exponents, and smaller offset values 70 
than children (He et al., 2019). A further study containing EEG recordings from both children and young adults 71 
(age range 5-21 years), the majority (~ 88%) of whom had a psychiatric diagnosis, also reported a flattening of 72 
the aperiodic exponent, and reduction in offset with increasing age (Tröndle et al., 2020). Similarly, Cellier et al. 73 
(2021) recently reported a similar trend in a sample containing both children and adults (age range 3-24 years).  74 
 75 
In sum, neural activity patterns demonstrate various changes across the lifespan. Growing evidence indicates 76 
that these alterations do not only reflect shifts in oscillatory dynamics, but also changes within the underlying 77 
broadband aperiodic signal. The developmental period spanning early-to-middle childhood is a time of 78 
significant and widespread functional and neuroanatomical changes which correspond to vastly increased social 79 
and cognitive demands (Bunge & Wright, 2007; Casey et al., 2005). Understanding modifications in both 80 
oscillatory and aperiodic neural dynamics within this critical neurodevelopmental period is therefore likely to 81 
provide important insight into the physiological processes which take place during this time. The primary aim of 82 
the present study was to provide a comprehensive analysis of both periodic and aperiodic components of the 83 
spontaneous EEG record in a large cohort of neurotypical children. To achieve this, we employed a recently 84 
developed spectral parameterisation approach (Fitting Oscillations and One Over f [FOOOF] (Donoghue et al., 85 
2020b)) which enables decomposition of the neural signal into its respective periodic and aperiodic components. 86 
This permits narrowband oscillatory dynamics (e.g., power and centre frequency) to be extracted from, and 87 
studied independently of, the broadband aperiodic signal. Equally importantly, it further allows explicit 88 
measurement of the aperiodic signal, which is likely to be driven by a unique set of neural generators (Donoghue 89 
et al., 2021; Ostlund et al., 2021b). Using linear regression models, we examined whether chronological age 90 
would predict exponent and offset within the aperiodic signal, as well as the power and centre frequency of the 91 
dominant alpha and beta oscillations.  92 
 93 
2. Methods 94 
2.1 Participants 95 
The sample comprised 139 typically developing children (72 male; average age = 9.41 years, SD = 1.95; age 96 
range: 4-12 years). All participants were proficient English speakers, and had no history of any 97 
neurodevelopmental or neuropsychiatric disorder (as reported by their primary care-giver). Ethical approval was 98 
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provided by the Deakin University Human Research Ethics Committee (2017-065), while approval to approach 99 
public schools was granted by the Victorian Department of Education and Training (2017_003429). 100 
 101 
2.2 Procedure 102 
Data were collected during a single experimental session conducted either at the university laboratory, or in a 103 
quiet room at the participants’ school. Prior to commencement of the study, written consent was obtained from 104 
the parent or legal guardian of each child. Details of the experimental protocol were also explained to each child 105 
who then agreed to participate. Data reported in this study were collected as part of a larger neurocognitive and 106 
electrophysiological investigation into the development of the social brain in early and middle childhood (Bigelow 107 
et al., 2021).  108 
 109 
2.3 EEG data acquisition 110 
EEG data were recorded in a dimly lit room using a 64-channel HydroCel Geodesic Sensor Net (Electrical 111 
Geodesics, Inc, USA) containing Ag/AgCl electrodes surrounded by electrolyte-wetted sponges. Data were 112 
acquired using NetStation software (version 5.0) via a Net Amps 400 amplifier using a sampling rate of 1 KHz, 113 
with data online referenced to the Cz electrode. Prior to the commencement of recording, electrode impedances 114 
were checked to ensure they were < 50 KOhms. The resting-state data were recorded for two minutes while 115 
participants sat with their eyes open and stared at a fixation cross on a computer screen, and two minutes while 116 
participants had their eyes closed.  117 
 118 
2.4 EEG data analysis 119 

2.4.1 Pre-processing 120 
All pre-processing procedures were performed in Matlab (R2020a; The Mathworks, Massachusetts, USA) 121 
incorporating the EEGLAB toolbox (Delorme & Makeig, 2004) along with custom scripts. The raw EEG files 122 
were cleaned using the Reduction of Electrophysiological Artifacts (RELAX) pre-processing pipeline (Bailey et 123 
al., 2021). This validated and fully automated pipeline uses empirical approaches to identify and reduce artifacts 124 
within the data, including the use of both multiple Wiener filters and wavelet enhanced independent component 125 
analysis (ICA). Briefly, data were bandpass filtered between 0.5 – 80 Hz (fourth-order Butterworth filter), with a 126 
notch filter between 47-53 Hz to remove any line noise, following which any bad channels were removed using 127 
a multi-step process including the ‘findNoisyChannels’ function from the PREP pipeline (Bigdely-Shamlo et al., 128 
2015). Data were then subject to multiple Wiener filtering, followed by wavelet-enhanced ICA, with components 129 
for cleaning identified using IClabel (Pion-Tonachini et al., 2019). Data were re-referenced to the average of all 130 
electrodes ready for further analysis. As a final step, all pre-processed data files were also visually inspected 131 
prior to inclusion in the analyses. An overview of the key steps involved in the RELAX pre-processing pipeline 132 
can be found in the Supplemental Materials (Figure S1).  133 
 134 

2.4.2 Parameterisation of the spectral data 135 
PSD was first calculated separately for each participant and electrode across the continuous EEG using Welch’s 136 
method implemented in Matlab (2 second Hamming window, 50% overlap). The FOOOF Python toolbox 137 
(version 1.0.0; https://fooof-tools.github.io/fooof/) was then used to parameterize the spectral data through 138 
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separation of the periodic and aperiodic components of the signal. Using this approach, PSDs are treated as a 139 
linear combination of both aperiodic activity and oscillatory peaks with amplitudes that extend above the 140 
aperiodic signal (for a detailed overview of this approch see: Donoghue et al., 2020b; Ostlund et al., 2021b). 141 
Using a model driven approach, the FOOOF algorithm is able to extract both periodic and aperiodic components 142 
within the overall power spectra (Donoghue et al., 2020b). For the present study, we extracted the aperiodic 143 
exponent and offset across a broad frequency range between 1 and 40 Hz, similar to prior studies (Cellier et 144 
al., 2021; Molina et al., 2020; Ostlund et al., 2021a), and as recommended in the FOOOF documentation in 145 
order to allow for reliable estimation of the aperiodic component of the data. Fitting was performed using the 146 
‘fixed’ aperiodic mode due to the absence of a clear ‘knee’ in the power spectrum when the output was visually 147 
inspected in log-log space (i.e., the signal was approximately linear across the specified frequency range). 148 
Spectral parameterisation settings for the algorithm were: peak width limits = [1, 12], maximum number of peaks 149 
= 8, peak threshold = 2, minimum peak height = 0.0. The final FOOOF outputs are the aperiodic exponent and 150 
offset values, as well as the centre frequency, power, and bandwidth for the oscillatory component of the signal 151 
(see Figure 1A).  152 
 153 
 2.4.3 Aperiodic Exponent and Offset 154 
The exponent and offset values were extracted from the aperiodic signal for each participant and for each EEG 155 
electrode. Prior to statistical analysis, the data were averaged across all scalp electrodes for each participant 156 
to generate a ‘global’ exponent and offset value representing the mean signal across the scalp. This approach 157 
was chosen as we had no a priori hypotheses regarding the scalp distribution of the aperiodic components 158 
(Jacob et al., 2021) and also helped to avoid multiple comparisons across electrodes. In instances where 159 
significant results were achieved at the global level, we then ran additional analyses across three broad cortical 160 
regions using the average signal across electrode clusters covering bilateral anterior (Fp1, Fp2, AFz, AF3, AF4, 161 
Fz, F1, F2, F3, F4, F5, F6, F7, F8), central (FCz, FC1, FC2, FC3, FC4, C1, C2, C3, C4, C5, C6, CP1, CP2), 162 
and posterior (Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, Oz, O1, O2) channels* (see Figure 2C for 163 
a depiction of the EEG cap with the three electrode clusters highlighted).   164 
 165 
 2.4.4 Spectral power and centre frequency 166 
Following spectral parameterisation, the power and centre frequency peak parameters were extracted from the 167 
periodic signal for both the alpha (7-13 Hz) and beta (13-30 Hz) frequency ranges. These two frequency ranges 168 
were selected based on visual inspection of the power spectra, which indicated clear peaks (i.e., ‘bumps’ in the 169 
power spectra) over-and-above the 1/f-like decay for most participants (e.g., Figure 1A). Conversely, far fewer 170 
participants demonstrated clearly discernible peaks within the canonical delta (1-3 Hz), theta (3-7 Hz), and 171 
gamma (>30 Hz) ranges, consistent with other findings (Ostlund et al., 2021b). For statistical analysis, spectral 172 
power and centre frequency values were extracted from the midline electrode exhibiting the highest power value 173 
(alpha = POz, beta = FCz). Single electrodes, as opposed to electrode clusters, were used in this instance, as 174 
the precise number of peaks detected for each electrode differed across subjects, thus prohibiting averaging 175 
across a larger ROI. Following removal of the aperiodic components of the signal, an alpha peak was detected 176 

 
* Note: International 10-10 electrode positions are stated for ease of interpretation. Channels listed are those which best approximate the 
sensor positions used by the Geodesic Sensor Net.   
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in 131 (94.2%) and 138 (99.3%) of participants in the eyes open and eyes closed recordings, respectively; while 177 
in the beta range, a peak was successfully detected in 136 (97.8%) and 132 (95.0%) participants for the eyes 178 
open and eyes closed conditions, respectively.  179 
 180 
2.5 Statistical analysis 181 
Statistical analyses were conducted in R (version 4.0.3; R Core Team, 2020). Ordinary least squares regression 182 
models were used to predict each of the aperiodic (exponent, offset) and periodic (centre frequency, spectral 183 
power) EEG components from chronological age. Regressions were run separately for the eyes open and eyes 184 
closed EEG recordings, and for each outcome variable. Residuals diagnostics were performed for all models to 185 
assess assumptions (‘olsrr’ package). This included visual inspection of residual Q-Q plots, residual versus 186 
fitted values plots, and histograms, as well as Kolmogorov-Smirnov normality tests. In cases of severe 187 
violations, the outcome variable was transformed using Yeo-Johnson power transformations (Yeo & Johnson, 188 
2000). As the aperiodic data used the average signal across all electrodes, we also ran further Spearman rank-189 
order correlations to assess for associations between age and exponent and offset values separately across 190 
anterior, central, and posterior electrode clusters in instances where regression models were significant. Finally, 191 
we ran exploratory correlations to assess for any associations between the aperiodic exponent and offset 192 
values, and aperiodic-adjusted spectral power. For all analyses, Bonferroni corrections were used to control for 193 
multiple comparisons. For regression models using the aperiodic data, we corrected for four comparisons (2 194 
aperiodic parameters [exponent, offset] x 2 recording conditions [eyes open, eyes closed]; adjusted alpha = 195 
.0125). For the periodic data, we corrected for eight comparisons (2 periodic parameters [centre frequency, 196 
spectral power] x2 frequencies [alpha, beta] x 2 recording conditions [eyes open, eyes closed]; adjusted alpha 197 
= .006). Correlations comparing age and aperiodic activity across specific scalp locations were corrected to 198 
account for electrode cluster (3 [anterior, central, posterior] x 2 recording conditions [eyes open, eyes closed]; 199 
adjusted alpha = .008). Correlations between exponent and offset were corrected for two correlations (eyes 200 
open, eyes closed; adjusted alpha = .025); while correlations between aperiodic activity and spectral power 201 
were corrected for eight comparisons (2 periodic parameters [centre frequency, spectral power] x 2 periodic 202 
parameters [peak frequency, power], and x 2 recording conditions [eyes open, eyes closed]; adjusted alpha = 203 
.006).  204 
 205 
3. Results 206 
3.1 Algorithm performance and characteristics of the aperiodic exponent and offset 207 
The performance of the FOOOF algorithm was assessed via the ‘goodness of fit’ measures, R2 and Error, which 208 
represent the explained variance, and total error of the model fit, respectively (Donoghue et al., 2020b; Ostlund 209 
et al., 2021b). Good model fits for the FOOOF algorithm were observed for both the eyes open (R2 = .99, Error 210 
= .05) and eyes closed (R2 = .98, Error = .07) data (average over all participants/electrodes; Figure 1D). When 211 
comparing the eyes open and eyes closed data, R2 values were found to be higher for the eyes open, compared 212 
to the eyes closed, condition, t(138) = 6.58, p < .001, while Error values were lower for the eyes open, compared 213 
to the eyes closed, condition, t(138) = -14.11, p < .001. Topographic plots of the aperiodic exponent and offset 214 
(average across all subjects) revealed similar patterns for both the eyes open and eyes closed recordings. 215 
Specifically, exponent values showed a relatively widespread distribution, with maximal signal close to the 216 
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vertex, while offset values were largest across posterior regions of the cortex (Figure 1E). Comparisons between 217 
the eyes open and eyes closed recordings also indicated that exponent values were significantly larger (i.e., 218 
steeper aperiodic slope) in the eyes closed, compared to the eyes open recordings, t(138) = -12.68, p <.001, 219 
with offset values also significantly larger for the eyes closed, compared to the eyes open recordings, t(138) = 220 
-14.262, p <.001 (Figure 1C). Finally, exponent and offset values were found to be strongly positively correlated 221 
in both the eyes open (rho = .80, p < .001) and eyes closed (rho = .79, p < .001) conditions (Figure 1F).  222 
 223 

 224 
Figure 1. A) Example FOOOF model fit from a single subject showing the aperiodic exponent and offset (marked 225 
in blue) across the analysed frequency range (1-40 Hz). The centre frequency, power, and bandwidth are 226 
highlighted (arrows) for the oscillatory peak present within the alpha range. B) Graphical illustration 227 
demonstrating shifts in the aperiodic exponent and offset. C) Aperiodic exponent and offset values for the eyes 228 
open (EO) and eyes closed (EC) recordings. Values are the average across all EEG electrodes. D) R-squared and 229 
error values for the model fit for the eyes open and eyes closed recordings (average across all electrodes). E) 230 
Topographic plots showing the spatial distribution of mean exponent and offset values across participants. 231 
Exponent values were highest near the midline, spanning frontal, central and posterior channels; while offset 232 
values were highest over posterior channels. F) Correlation between exponent and offset values (average over 233 
all electrodes). There was a strong association between both metrics for the eyes open and eyes closed data. 234 
 235 
3.1 Association between age and aperiodic activity  236 
Regression models revealed that age predicted the aperiodic exponent for the eyes open EEG recordings, 237 
F(1,37) = 8.12, p = .005, R2 = .06; however, the eyes closed recordings failed to reach significance after multiple 238 
comparison correction, F(1,37) = 5.56, p = .020, R2 = .04 (Figure 2A). Age also significantly predicted offset for 239 
both the eyes open, F(1,37) = 25.35, p < .001, R2 = .16, and eyes closed, F(1,37) = 18.07, p < .001, R2 = .12, 240 
EEG recordings (Figure 2A). For conditions that reached significance in the regression models, we further 241 
examined the relationship between age and aperiodic activity, through correlations using exponent and offset 242 
values taken from the average across anterior, central, and posterior scalp locations (see Figure 2C for a 243 
depiction of the electrode clusters used). Correlations were significant across each of these three locations (all 244 
p < .008), with the strongest association between age and exponent identified posteriorly (rho = -.35), and the 245 
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strongest association between age and offset over the anterior region for both the eyes open (rho = -.46) and 246 
eyes closed (rho = -.39) conditions. Correlation coefficients for all associations are provided in Figure 2B. 247 
Additional scatterplots can be found in the Supplementary Materials (Figure S2).  248 
 249 

 250 
Figure 2: Association between age and aperiodic activity. A) Scatterplot of the aperiodic exponent (upper panel) 251 
and offset (lower panel) in relation to age for the eyes open and eyes closed EEG recordings. R-squared (R2) and 252 
significance values from the regression analyses are shown (asterisk indicates significance after Bonferroni 253 
correction). B) Correlations between aperiodic activity and age for each of the anterior, central, and posterior 254 
electrode clusters. Correlations reached significance across all three locations. C) EEG electrode cap highlighting 255 
the electrodes forming each of the electrode clusters used for the correlations (anterior = yellow, central = blue, 256 
posterior = magenta).  257 
 258 
3.2 Age-related differences in aperiodic-adjusted centre frequency 259 
Age was found to predict alpha centre frequency across both the eyes open, F(1,129) = 20.73, p <.001, R2 = 260 
.14, and eyes closed, F(1,136) = 22.31, p <.001, R2 = .14, recordings. Specifically, these findings indicate that 261 
alpha centre frequency increased systematically with age. In contrast, age did not predict beta centre frequency 262 
for either eyes open, F(1,134) = .13, p = .72, R2 = .00, or eyes closed, F(1,130) = .51, p = .47, R2 = .00, conditions. 263 
Scatterplots highlighting the association between age and centre frequency within the alpha and beta bands 264 
are presented in Figure 3A.  265 
 266 
3.3 Association between age and aperiodic-adjusted spectral power  267 
We assessed whether age could predict the power of the detected oscillatory peaks in the alpha and beta 268 
ranges after removal of the aperiodic signal. No association between age and power was found for the alpha 269 
(eyes open: F(1,129) = .08, p = .78, R2 = .00; eyes closed: F(1,136) = 3.02, p = .08, R2 = .02), or beta (eyes 270 
open: F(1,134) = 1.67, p = .20, R2 = .01; eyes closed: F(1,130) = 4.33, p = .04, R2 = .03) frequencies (for 271 
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scatterplots, see Supplementary Figure S3). Figure 3B depicts spectral power in relation to centre frequency 272 
for the alpha and beta frequencies. Given recent work identifying a potential association the aperiodic signal 273 
and aperiodic-adjusted spectral power and peak frequency (He et al., 2019; Merkin et al., 2021), exploratory 274 
analyses were also run comparing exponent and offset (average across all electrodes) with power and centre 275 
frequency within the alpha and beta ranges (using the midline electrode exhibiting the greatest amplitude [alpha 276 
= POz, beta = FCz]). We found significant weak-to-moderate positive correlations between exponent and offset 277 
and aperiodic-adjusted spectral power in both the alpha and beta bands for both the eyes open and eyes closed 278 
data (Bonferroni corrected; all p < .006; Figure 4). When comparing aperiodic activity with centre frequency, the 279 
only significant result was a modest negative association between beta power in the eyes open recordings and 280 
exponent (rho = -.24, p = .005) and offset (rho = -.26, p = .002) (Supplementary Figure S4). 281 
 282 

 283 
Figure 3: A) Scatter plots of centre frequency for the alpha and beta range in relation to age. Significance values 284 
from the regression analyses are shown (asterisk indicates significance after Bonferroni correction). Age was 285 
found to significantly predict alpha, but not beta, centre frequency. B) Spectral power plotted in relation to 286 
centre frequency for the alpha and beta frequency ranges. Topographic plots show the average power 287 
distribution for each of the eyes open and eyes closed recordings for the alpha and beta frequency ranges. Star 288 
indicates the electrode used for obtaining the power and centre frequency values used in the analyses (alpha = 289 
POz electrode, beta = FCz electrode). 290 
 291 
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 292 
Figure 4: Scatterplots depicting the association between aperiodic activity and aperiodic-adjusted oscillatory 293 
power. Both exponent and offset positively correlated with spectral power in both the alpha and beta bands 294 
across the eyes open and eyes closed conditions. Asterisks indicate a significant correlation after Bonferroni 295 
correction.  296 
 297 
4. Discussion 298 
The aim of the present study was to characterise neurodevelopmental changes across both the periodic and 299 
aperiodic components of the spontaneous EEG signal in early-to-middle childhood. To achieve this, we applied 300 
a spectral parameterization approach to disentangle key features (i.e., centre frequency and power) of 301 
narrowband oscillations in the alpha and beta band from the broader aperiodic signal. Using regression models, 302 
we then examined if participants’ age could predict the aperiodic exponent and offset, as well as power and 303 
centre frequency within the alpha and beta frequencies. Several key findings emerged from this investigation. 304 
First, we found chronological age to be a predictor of both aperiodic exponent and offset, with older children 305 
having smaller exponent values (i.e., flatter 1/f spectral slope) and reduced offset values, compared to younger 306 
children. Second, we found that age was also able to predict centre frequency of the alpha (but not beta) band, 307 
with older children displaying faster peak frequencies. Finally, age was unable to predict spectral power in either 308 
the alpha or beta bands; however, power within these bands significantly correlated with both aperiodic 309 
exponent and offset.  310 
 311 
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4.1 Age predicts aperiodic properties of the EEG signal 312 
The present results are indicative of an association between children’s chronological age and the aperiodic 313 
properties of the EEG signal. Specifically, exponent values, extracted from the eyes open recordings, were 314 
shown to decline as a function of age; however, this association failed to reach significance in the eyes closed 315 
data after multiple comparison correction. Offset also declined with age, with this result significant for both the 316 
eyes open and eyes closed recordings. These findings largely corroborate previous work also indicating age-317 
related changes in the aperiodic EEG signal. An initial study by Voytek et al. (2015) that examined EEG recorded 318 
during a visual working memory task found that the slope of the 1/f signal was less negative (i.e., ‘flatter’ 319 
aperiodic exponent) in older (60-70 years), compared to younger (20-30 years) participants. Similar results were 320 
also reported by Tran et al. (2020) comparing participants across the same age groups as Voytek et al. (2015), 321 
but instead using pretrial baseline EEG recorded during a cognitive task. Consistent with Voytek et al. (2015) 322 
these authors also found that exponent was flatter in the older, compared to younger, group. These key findings 323 
of smaller exponent and reduced offset in older individuals were further recently supported by Merkin et al. 324 
(2021) using eyes closed resting-state EEG in younger (18-35 years) and older (50-86 years) adults. Our 325 
present findings add to this emerging body of evidence in adult populations by demonstrating reduced exponent 326 
and offset with age in a large cohort spanning early-to-middle childhood (4-to-12 years). These findings were 327 
present both when using the signal averaged across the entire scalp, and when using electrode clusters 328 
covering anterior, central, and posterior regions separately (Figure 2B and 2C), thus suggesting that systematic 329 
variations with age are a relatively widespread phenomenon. Importantly, our findings also replicate recent 330 
observations of flattening of the aperiodic exponent with age in infancy (Schaworonkow & Voytek, 2021), as 331 
well as in cohorts with ages ranging from childhood into adulthood (Cellier et al., 2021; Donoghue et al., 2020a; 332 
He et al., 2019; Tröndle et al., 2020). The present results, in conjunction with previous findings, are therefore 333 
supportive of quantitative neurodevelopmental changes in the aperiodic component of the EEG signal.  334 
 335 
Although precise neurobiological substrate of aperiodic activity remains uncertain, evidence suggests that a 336 
flatter exponent reflects increased asynchronous background neuronal firing (i.e., neural ‘noise’) which is 337 
theorised to be driven by an increased E/I ratio (Voytek & Knight, 2015; Voytek et al., 2015). This has recently 338 
been supported via both in silico models (Gao et al., 2017), as well as neural recordings demonstrating 339 
modulation of the spectral exponent through administration of pharmacological agents known to either increase 340 
inhibition (e.g., propofol), or increase excitation (ketamine) (Gao et al., 2017; Lendner et al., 2020; Waschke et 341 
al., 2021). Hence, it is possible that the age-dependent exponent reductions observed here reflect, to some 342 
extent, maturational changes in E/I balance occurring throughout this neurodevelopmental period, possibly 343 
representing a shift towards increased excitatory tone within neural circuits as children mature. However, further 344 
work is needed to elucidate the precise cellular and molecular mechanisms that underlie these 345 
neurodevelopmental shifts in aperiodic activity. Future studies could combine analysis of the EEG-derived 346 
aperiodic signal with neuroimaging techniques capable of quantifying excitatory and inhibitory neurotransmitter 347 
concentrations (i.e., γ-aminobutyric acid [GABA] and glutamate) within the brain, such as magnetic resonance 348 
spectroscopy (MRS) (Harris et al., 2017; Thakkar et al., 2017). For instance, there is some limited evidence that 349 
GABA levels increase during neurodevelopment (Porges et al., 2021), however, exactly how this finding ties in 350 
with markers of neural excitability remains to be established. Multi-modal approaches combining 351 
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neurostimulation with electrophysiology, such as combined transcranial magnetic stimulation and EEG (TMS-352 
EEG), could also be utilised to probe associations between cortical excitability (via TMS-evoked potentials) and 353 
aperiodic activity across specific cortical targets (Hill et al., 2016; Tremblay et al., 2019).  354 
 355 
The observation of age-related reductions in offset also warrants further investigation. Intracranial local field 356 
potential recordings from patients undergoing neurosurgery provide compelling evidence that broadband power 357 
shifts are positively correlated to neuronal population spiking (Manning et al., 2009), with similar findings also 358 
observed in macaques (Ray & Maunsell, 2011). Hence, our present observation of a reduction in aperiodic 359 
offset with increasing age could be tentatively interpreted to reflect a maturational decline in the spiking rate of 360 
cortical neurons. In keeping with the observed changes in aperiodic exponent, this effect appears to be a 361 
relatively global phenomenon, given that results were taken from the average of the aperiodic signal across all 362 
scalp electrodes. More broadly, these findings also appear consistent with previous observations of reduced 363 
broadband power throughout childhood and into adulthood (Gomez et al., 2017; Segalowitz et al., 2010). It is 364 
possible that reductions in cortical grey matter volume that occur during childhood, likely the result of 365 
maturational ‘synaptic pruning’-like processes (Paolicelli et al., 2011; Paus et al., 2008; Pfefferbaum et al., 366 
1994), are responsible for these findings. However, we note that cautious interpretation is warranted, as 367 
changes in skull conductivity with age might also contribute to these observations when using EEG recordings 368 
(Gomez et al., 2017; Hoekema et al., 2003). In any event, the results of He et al. (2019), which also reported 369 
an age-related decline in offset, lend support to such changes being genuine neural phenomena, given that 370 
these authors used MEG recordings, which are largely unaffected by the electrical resistivity of the skull (Wolters 371 
et al., 2006).  372 
 373 
4.2 Age predicts alpha centre frequency, but not power 374 
Participants’ age was able to predict the aperiodic-adjusted alpha frequency, with older children showing 375 
increased alpha peak frequency. This finding aligns with previously documented observations of alpha 376 
frequency with age both across childhood (Dickinson et al., 2018; Eeg-Olofsson et al., 1971; Marshall et al., 377 
2002; Miskovic et al., 2015; Somsen et al., 1997), and into adolescence and early adulthood (Chiang et al., 378 
2011; Cragg et al., 2011). The posterior alpha rhythm first manifests on the EEG record at around 3 months of 379 
age, with a peak frequency between 3-5 Hz, which increases to 6-7 Hz by one year of age (Saby & Marshall, 380 
2012), and continues to increase throughout childhood until reaching a peak between 8-12 Hz in early 381 
adulthood, after which it steadily declines with age (Chiang et al., 2011; Hashemi et al., 2016). It has been 382 
theorised that the increase in alpha frequency seen throughout childhood might represent an increase in the 383 
speed at which interconnected neural populations are able to communicate, as a result of greater myelination 384 
and axon diameter (Segalowitz et al., 2010; Thorpe et al., 2016). A relationship between increasing alpha 385 
frequency and the development of large-scale oscillatory networks would also be in alignment with studies that 386 
have shown associations between peak alpha frequency and cognitive function in children (Carter Leno et al., 387 
2021; Dickinson et al., 2018). Our present findings also corroborate recent reports of age-related changes in 388 
aperiodic-adjusted alpha centre frequency. Specifically, Cellier et al. (2021) showed that peak frequency within 389 
the 4-12 Hz range increased with age in a cohort which included both children and adults (3-24 years of age); 390 
while He et al. (2019) reported a positive association between age and alpha centre frequency in a small sample 391 
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(N = 24) of children using MEG recordings. The same trend was also reported by Carter-Leno et al. (2021) in a 392 
longitudinal sample of young children from 1 to 3 years of age. Our findings extend these observations by 393 
demonstrating age-related shifts in alpha centre frequency using both eyes open and eyes closed data from a 394 
large (N = 139) cohort of children spanning early-to-middle childhood. Our results were also specific to the alpha 395 
band, with no evidence of an association between age and beta centre frequency. The maturational changes 396 
observed in alpha frequency, however, did not extend to spectral power in either the alpha or beta frequencies. 397 
Although a number of studies have shown associations between power in various canonical frequencies and 398 
age, considerable heterogeneity exists, with results likely to be strongly contingent on the specific age range 399 
investigated (for review see: Segalowitz et al., 2010). Importantly, the majority of past research examining 400 
narrow-band oscillatory power has failed to account for the potential influence of the aperiodic signal, which 401 
risks conflating these two separate phenomena (Donoghue et al., 2020a; Donoghue et al., 2021). Recent work 402 
examining peak alpha frequency in adulthood also found no age-related changes after accounting for the 403 
aperiodic signal (Merkin et al., 2021).  404 
 405 
4.3 Limitations and future directions 406 
The present study has some limitations. First, as we used resting-state EEG, the present results are limited to 407 
spontaneous neural activity. Whilst this is valuable for understanding intrinsic (i.e., stimulus free) dynamics, 408 
future work could further extend these findings using task-related paradigms. This might be particularly useful 409 
to help identify relationships between periodic and aperiodic neural dynamics and specific neurocognitive 410 
processes. For example, recent work has identified aperiodic activity as a predictor of working memory 411 
performance (Donoghue et al., 2020b) and cognitive processing speed (Ouyang et al., 2020). Second, we 412 
parameterised our data between 1-40 Hz. We chose this range to reduce the presence of non-neural artefacts 413 
(e.g., electromyographic activity, or microsaccades) which often occur at higher frequencies (Goncharova et al., 414 
2003; Muthukumaraswamy, 2013; Yuval-Greenberg et al., 2008). While this still represents a broad frequency 415 
range, and is consistent with other EEG studies utilising spectral parameterisation (Carter Leno et al., 2021; 416 
Cellier et al., 2021; Merkin et al., 2021; Robertson et al., 2019), future work could extend these analyses to even 417 
wider frequency ranges to capture higher frequency activity (e.g., > 40 Hz). This might be particularly useful for 418 
more directly comparing MEG and EEG derived data with results from local field potential and 419 
electrocorticography recordings (e.g., Gao et al., 2017; Halgren et al., 2021). Finally, emerging evidence 420 
indicating that the aperiodic exponent might act as a non-invasive measure of E/I balance (Gao et al., 2017; 421 
Waschke et al., 2021) opens exciting possibilities for research into the neurobiology of developmental and 422 
neuropsychiatric disorders linked to dysfunction within excitatory and inhibitory circuits, such as autism and 423 
schizophrenia (Foss-Feig et al., 2017).   424 
 425 
4.4 Conclusion 426 
The present results highlight several key maturational effects on the spontaneous EEG in recorded in a large 427 
sample of participants spanning early-to-middle childhood (4-to-12 years). Across this age-range, both aperiodic 428 
exponent and offset were shown to decrease with age. Further, aperiodic-adjusted peak alpha frequency 429 
increased with age, while no effect of age was observed for the beta band. Finally, age was not shown to predict 430 
either aperiodic-adjusted alpha, or beta power. These results provide support for nuanced approaches aiming 431 
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to examine neural dynamics within neurodevelopmental cohorts, which disentangle narrow-band oscillatory 432 
features from broadband aperiodic activity.  433 
  434 
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