
Statistical learning of successor representations1

is related to on-task replay2

Lennart Wittkuhn1,2,*, Lena M. Krippner1,3 & Nicolas W. Schuck1,2,*3

1Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany4

2Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany5

Lentzeallee 94, D–14195 Berlin, Germany6

3Harding Center for Risk Literacy, University of Potsdam, Faculty of Health Sciences, Potsdam, Germany7

Virchowstraße 2–4, D–14482 Potsdam, Germany8

*Correspondence to9

wittkuhn@mpib-berlin.mpg.de (ORCiD: 0000-0003-2966-6888)10

schuck@mpib-berlin.mpg.de (ORCiD: 0000-0002-0150-8776)11

Abstract12

Humans automatically infer higher-order relationships between events in the environment from13

their statistical co-occurrence, often without conscious awareness. Neural replay of task representa-14

tions, which has been described as sampling from a learned transition structure of the environment,15

is a candidate mechanism by which the brain could use or even learn such relational information16

in the service of adaptive behavior. Human participants viewed sequences of images that followed17

probabilistic transitions determined by ring-like graph structures. Behavioral modeling revealed18

that participants acquired multi-step transition knowledge through gradual updating of an internal19

successor representation (SR) model, although half of participants did not indicate any knowl-20

edge about the sequential task structure. To investigate neural replay, we analyzed dynamics of21

multivariate functional magnetic resonance imaging (fMRI) patterns during short pauses from the22

ongoing statistical learning task. Evidence for sequential replay consistent with the probabilistic23

task structure was found in occipito-temporal and sensorimotor cortices during short on-task in-24

tervals. These findings indicate that implicit learning of higher-order relationships establishes an25

internal SR-based map of the task, and is accompanied by cortical on-task replay.26
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Introduction27

The representation of structural knowledge in the brain in form of a so-called cognitive map has been28

a topic of great interest. A common assumption is that a cognitive map provides the basis for flexible29

learning, inference, and generalization (Tolman, 1948; Wilson et al., 2014; Schuck et al., 2016; Behrens30

et al., 2018), and yet is based on individual experiences that provide structural information only31

indirectly (Schapiro et al., 2013; Garvert et al., 2017). The brain must therefore extract statistical32

regularities from continuous experiences, and then use these regularities as the starting point for the33

formation of abstract, map-like knowledge. A mechanism through which abstract knowledge could34

be used to generate flexible behavior is on-task replay (e.g., Sutton, 1991; Kurth-Nelson et al., 2016),35

the rapid reactivation of trajectories simulated from an internal cognitive map. In this paper, we36

investigated whether on-task replay of cognitive map-like knowledge occurs in the human brain while37

participants learn statistical regularities.38

The extraction of statistical regularities from experience is known as statistical learning (Schapiro39

and Turk-Browne, 2015; Garvert et al., 2017; Sherman et al., 2020). Statistical learning is automatic40

and incidental, as it occurs without any instructions or premeditated intention to learn, and often leads41

to implicit knowledge that is not consciously accessible (Reber, 1989; Seger, 1994; Turk-Browne et al.,42

2005). This contrasts with research on cognitive maps and planning that often relies on instruction-43

based task knowledge (e.g., Schuck et al., 2016; Constantinescu et al., 2016; Kurth-Nelson et al.,44

2016). In a statistical learning setting, relationships between events are typically described by pairwise45

transition probabilities (i.e., the probability that A is followed by B) to which humans show great46

sensitivity from an early age on (Saffran et al., 1996). Intriguingly, many experiments have shown that47

humans extract higher-order relational structures among individual events that go beyond pairwise48

transition probabilities (for reviews, see e.g., Karuza et al., 2016; Lynn and Bassett, 2020). This49

includes knowledge about ordinal and hierarchical information that structures individual subsequences50

(Schuck et al., 2012a,b; Solway et al., 2014; Balaguer et al., 2016), graph topological aspects such as51

bottlenecks and community structure (Schapiro et al., 2013; Karuza et al., 2017; Kahn et al., 2018),52

and macro-scale aspects of graph structures (Lynn et al., 2020a,b).53

A main benefit of abstracted knowledge in the context of transition structures is that it allows to54

plan multi-step sequences (Miller and Venditto, 2021; Hunt et al., 2021). Specifically, while experienced55

transition structure can be used to learn about the probability that a given event will be followed by a56

specific other event, it can also be used to compute long-term visitation probabilities, i.e., which events57

can be expected over a given future horizon. This idea is formalized in the successor representation58

(SR) (Dayan, 1993), a predictive map that reflects the (discounted) expected visitations of future events59

(Garvert et al., 2017; Bellmund et al., 2020; Brunec and Momennejad, 2021; Russek et al., 2021), and60

can be learned from the experience of individual transitions. Critically, the predictive horizon of the61

SR depends on a discount parameter γ which determines how far into the future upcoming states are62

considered (Momennejad and Howard, 2018; Momennejad, 2020). One goal of our study was therefore63

to investigate whether statistical learning leads to knowledge of expected future visitations over a64

predictive horizon, as required for mental planning.65

The second main interest of our study was to understand whether abstract knowledge derived from66

statistical learning would be reflected in on-task replay. Replay is characterized by the fast sequential67

reactivation of neural representations that reflect previously experienced transition structure (see e.g.,68

Wikenheiser and Redish, 2015a; Schuck and Niv, 2019; Wittkuhn et al., 2021; Yu et al., 2021). Replay69

occurs in hippocampal but also cortical brain areas (Ji and Wilson, 2006; Wittkuhn and Schuck, 2021)70
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and has been observed during short pauses from the ongoing task in rodents (Johnson and Redish,71

2007; Carr et al., 2011) as well as humans (Kurth-Nelson et al., 2016; Tambini and Davachi, 2019).72

Sequential reactivation observed during brief pauses is often referred to as online or on-task replay,73

and likely reflects planning of upcoming choices (Kurth-Nelson et al., 2016; Eldar et al., 2020).74

Previous studies have shown that expectations about upcoming visual stimuli elicit neural signals75

that are very similar to those during actual perception (Kok et al., 2012, 2014; Hindy et al., 2016;76

Kok and Turk-Browne, 2018) and anticipatory activation sequences have been found in visual cortex77

following perceptual sequence learning (Xu et al., 2012; Eagleman and Dragoi, 2012; Gavornik and78

Bear, 2014; Ekman et al., 2017). It remains unknown, however, whether on-task replay mirrors79

predictive knowledge that is stored in SR-based cognitive maps. In addition, while most research has80

focused on hippocampal reactivation, the above evidence suggests that statistical knowledge is also81

reflected in sensory and motor brain areas.82

In the present study, we therefore examined whether on-task neural replay in visual and motor83

cortex reflects anticipation of sequentially structured stimuli in an automatic and incidental statisti-84

cal learning context. This may elucidate if (non-hippocampal) neural replay during on-task pauses85

contributes to learning of probabilistic cognitive maps. To this end, participants performed an in-86

cidental statistical learning paradigm (cf. Schapiro et al., 2012; Lynn et al., 2020a) in which visual87

presentation order and motor responses followed statistical regularities that were determined by a88

ring-like graph structure. The nature of the graph structure allowed us to dissociate knowledge about89

individual transition probabilities from an SR-based cognitive map that entails long-term visitation90

probabilities. Moreover, the transition probabilities among the task stimuli changed halfway through91

the experiment without prior announcement, which allowed us to understand the dynamical updating92

of task knowledge and replay within the same participants.93

Results94

Thirty-nine human participants took part in an fMRI experiment over two sessions. Participants95

were first informed that the experiment involves six images of animals (cf. Snodgrass and Vanderwart,96

1980; Rossion and Pourtois, 2004) and six response buttons mapped onto their index, middle, and97

ring fingers of both hands. Participants then began the first session of magnetic resonance imaging98

(MRI), during which they learned the stimulus-response (S-R) mappings between images and response99

buttons through feedback (recall trials, Fig. 1a, 8 runs with 60 trials each, 480 trials in total). In recall100

trials, animal images were shown without any particular sequential order, i.e., all pairwise sequential101

orderings of the images were presented equally often per run. Participants had to press the correct102

button in response to briefly presented images (500 milliseconds (ms)) during a response window (800103

ms; jittered stimulus-response interval (SRI) of 2500 ms on average). If the response was incorrect,104

a feedback about the correct button was provided (500 ms; no feedback on correct trials). The trial105

ended with a jittered inter-trial interval (ITI) of 2500 ms on average.106

The second session started with one additional run of recall trials that was followed by five runs107

of graph trials (Fig. 1b, 240 trials per run, 1200 trials in total). As before, participants had to press108

the correct button in response to each animal. Images were now presented in a faster pace (800 ms109

per image and 750 ms between images on average), and only on 10% of trials (120 graph trials in110

total per participant), ITIs were set to 10 seconds (s). Importantly, the order of the images now111

followed a probabilistic transition structure (see below), about which participants were not informed,112
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and no feedback was provided. At the end of the second session, participants completed a post-task113

questionnaire assessing explicit sequence knowledge.114

The sequential ordering of images during graph trials was determined by either a unidirectional115

or bidirectional ring-like graph structure with probabilistic transitions (Fig. 2a–b; for details, see116

Methods). In the unidirectional graph condition (Fig. 2a, middle, henceforth uni), each image had117

one frequent transition to the clockwise neighboring node (probability of pij = 0.7), never transitioned118

to the counterclockwise neighbor (pij = 0.0), and was followed occasionally by the three other nodes119

(pij = 0.1 each; Fig. 2b, left). In consequence, stimuli most commonly transitioned in clockwise order120

along the ring shown in Fig. 2a. In the bidirectional graph condition (Fig. 2a, right, henceforth bi),121

transitions to both neighboring nodes (clockwise and counterclockwise) were equally likely (pij = 0.35),122

and transitions to all other three nodes occurred with pij = 0.1 (Fig. 2b, right), as in the unidirectional123

graph. Every participant started the task in one of these conditions (uni or bi). Halfway through124

the third run, transitions began to be governed by the alternative graph, such that all participants125

experienced both graphs as well as the change between them (Fig. 2c). 12 participants started in the126

unidirectional condition and transitioned to the bidirectional graph (uni – bi), while 27 participants127

experienced the reverse order (bi – uni).128

a

Chance

0

25

50

75

100

1

as.factor(1)

B
e

h
a

v
io

ra
l a

c
c
u

ra
c
y
 (

in
 %

)

Recallc

Chance

0

25

50

75

100

1

as.factor(1)

B
e

h
a

v
io

ra
l a

c
c
u

ra
c
y
 (

in
 %

)

Graphd

b

0.56

0.60

0.64

1 2 3 4 5

Run

L
o

g
 r

e
s
p

o
n

s
e

 t
im

e

Graphe

Figure 1: [see caption on the next page]
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Figure 1: Task design and stimulus-response learning. (a) On recall trials, individual images were presented
for 500 ms. Participants were instructed to press the correct response button associated with the stimulus during the
response interval (time limit of 800 ms). Stimulus presentations and motor responses were separated by SRIs and
ITIs which lasted 2.5 s on average (cf. Wittkuhn and Schuck, 2021). Feedback was only presented on incorrect trials.
Classifiers were trained on fMRI data from correct recall trials only. (b) On graph trials, images were presented for 800
ms, separated by only 750 ms on average. Participants were asked to press the correct response button associated with
the presented stimulus as quickly and accurately as possible within 800 ms. On 10% of trials, ITIs lasted 10 s (see ITI in
trial t+ 1; highlighted by the thick border, for illustrative purposes only). Classifier trained on fMRI data from correct
recall trials were applied to the eight TRs of the 10 s ITIs in graph trials to investigate task-related neural activation
patterns during on-task pauses. (c) Mean behavioral accuracy (in %; y-axis) across all nine runs of the recall trials. (d)
Mean behavioral accuracy (in %; y-axis) across all five runs of the graph trials. (e) Mean log response time (y-axis)
per run (x-axis) in graph trials. Boxplots in (c), (d), and (e) indicate the median and interquartile range (IQR). The
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker
extends from the hinge to the largest value no further than 1.5∗ IQR from the hinge (where IQR is the interquartile
range (IQR), or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest
value at most 1.5∗ IQR of the hinge. The diamond shapes show the sample mean. Error bars in (c), (d) and shaded
areas in (e) indicate ±1 standard error of the mean (SEM). Each dot in (c), (d), and (e) corresponds to averaged data
from one participant. All statistics have been derived from data of n = 39 human participants who participated in one
experiment. The stimulus material (individual images of a bear and a dromedary) shown in (a) and (b) were taken from
a set of colored and shaded images commissioned by Rossion and Pourtois (2004), which are loosely based on images
from the original Snodgrass and Vanderwart set (Snodgrass and Vanderwart, 1980). The images are freely available from
the internet at https://sites.google.com/andrew.cmu.edu/tarrlab/resources/tarrlab-stimuli under the terms of
the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-NC-SA 3.0; for details,
see https://creativecommons.org/licenses/by-nc-sa/3.0/). Stimulus images courtesy of Michael J. Tarr, Carnegie
Mellon University, (for details, see http://www.tarrlab.org/).

Behavioral results129

We first asked whether participants learned the stimulus-response (S-R) mapping sufficiently well.130

Behavioral accuracy on recall trials indeed surpassed chance-level (16.67%) in all runs (x̄ ≥ 86.50%,131

CIs [≥ 80.79, +∞], t38 ≥ 20.62, ps < 0.001 (corrected), ds ≥ 3.30; Figs. 1c, S2b–c). Likewise, during132

graph trials, participants also performed above chance in all runs (x̄ ≥ 85.12, CIs [≥ 82.55, +∞],133

t38 ≥ 44.90, ps < 0.001 (corrected), ds ≥ 7.19; Figs. 1d, S2d), and improved with time (effect of run:134

F1.00,38.00 = 7.96, p = 0.008, Fig. S2d).135

Next, we investigated sequential knowledge. Although participants were not informed that images136

followed a sequential structure during graph trials, we expected that incidental learning would allow137

them to anticipate upcoming stimuli during these trials, and thus respond faster with learning. A linear138

mixed effects (LME) model that tested the effect of task run on response times was broadly in line139

with this assumption as it showed a significant decrease of response times over the course of learning,140

F1.00,38.00 = 25.86, p < 0.001 (Figs. 1e, S2e). More directly, we expected that participants would learn141

the probabilistic transition structure of images and response buttons during graph trials, including142

the change in transition structure in the middle of the third run. Specifically, we hypothesized that143

participants would not only learn about one-step transition probabilities, but also form internal maps144

of the underlying graphs that reflect the higher-order structure of statistical multi-step relationships145

between stimuli, i.e., how likely a particular stimulus will be experienced in two, three, or more steps146

from the current time point (cf. Lynn and Bassett, 2020; Lynn et al., 2020a). In our task, this147

meant that participants might react differently to the three transitions that all have the same one-148

step transition probability, since they differ in how likely they would occur in multi-step trajectories.149

For instance, the one-step transition probabilities for A→C, A→D, and A→E were the same in the150

unidirectional graph, but the two-step probability of A→C was higher than for the other transitions,151

since the most likely two-step path was A→B→C. This means that participants should react faster152
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Figure 2: [see caption on the next page]

to A→C transitions if they have multi-step knowledge. For simplicity, we will henceforth refer to the153

A→C transition as having a shorter “node distance”, than A→D or A→E (see the rightmost column154

in Fig. 2d, where colors reflect one-step transition probabilities, and the height of the bars indicate155

node distance).156
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Figure 2: Graph learning task. (a) The relationships among the six task stimuli depicted as a ring-like graph
structure (left). In the unidirectional graph (middle), stimuli frequently transitioned to the clockwise neighboring node
(pij = pAB = 0.7), never to the counterclockwise neighboring node (pAF = 0.0), and only occasionally to the three
other nodes (pAC = pAD = pAE = 0.1). In the bidirectional graph (right), stimuli were equally likely to transition to
the clockwise or counterclockwise neighboring node (pAB = pAF = 0.35) and only occasionally transitioned to the three
other nodes (pAC = pAD = pAE = 0.1). Transition probabilities are highlighted for node A only, but apply equally
to all other nodes. Arrows indicate possible transitions, colors indicate transition probabilities (for a legend, see panel
b). (b) Transition matrices of the unidirectional (left) and bidirectional (right) graph structures. Each matrix depicts
the probability (colors) of transitioning from the stimulus at the previous trial t − 1 (x-axis) to the current stimulus
at trial t (y-axis). (c) Within-participant order of the two graph structures across the five runs of the graph learning
task. n = 12 participants first experienced the unidirectional, then the bidirectional graph structure (uni – bi; top
horizontal panel) while n = 27 participants experienced the reverse order (bi – uni; bottom horizontal panel). In both
groups of participants, the graph structure was changed without prior announcement halfway through the third task run.
Numbers indicate approximate run duration in minutes (min). Colors indicate graph condition (uni vs. bi; see legend).
(d) Visualization of the relative magnitude of the outcome variable (e.g., behavioral responses or classifier probabilities;
y-axis) for specific transitions between the nodes (x-axis) and the two graph structures (uni vs. bi; horizontal panels)
under the three assumptions (vertical panels), (1) that there is no difference between transitions (null hypothesis), (2)
that response times are only influenced by the one-step transition probabilities between the nodes (colors), or (3) that
response times are influenced by the multi-step relationships between nodes in the graph structure (here indicated by
node distance). An effect of unidirectional graph structure would be evident in a linear relationship between node
distance and the outcome variable, whereas a bidirectional graph structure would be reflected in a U-shaped relationship
between node distance and independent measures (possibly inverted, depending on the measure). The stimulus material
(individual images of a bear, a dromedary, a dear, an eagle, an elephant and a fox) shown in (a), and (b) were taken from
a set of colored and shaded images commissioned by Rossion and Pourtois (2004), which are loosely based on images
from the original Snodgrass and Vanderwart set (Snodgrass and Vanderwart, 1980). The images are freely available from
the internet at https://sites.google.com/andrew.cmu.edu/tarrlab/resources/tarrlab-stimuli under the terms of
the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-NC-SA 3.0; for details,
see https://creativecommons.org/licenses/by-nc-sa/3.0/). Stimulus images courtesy of Michael J. Tarr, Carnegie
Mellon University, (for details, see http://www.tarrlab.org/).

A first analysis revealed that participants reacted faster and more accurately to transitions with157

high compared to low one-step probabilities in the unidirectional graph condition (pij = 0.7 versus158

pij = 0.1 transition probabilities, ps < 0.001), and in the bidirectional graph condition (pij = 0.35159

versus pij = 0.1, ps < 0.001, Fig. 3a–b). In order to investigate whether multi-step transition160

probabilities also influenced participants’ behavior, we then analyzed response times and error rates161

as a function of the node distance (Fig. 2d; for details, see Methods). Using this analysis approach, we162

found a significant effect of node distance on response times in both unidirectional, F1.00,115.78 = 44.34,163

p < 0.001, and bidirectional data, F1.00,38.00 = 57.36, p < 0.001 (Fig. 3c). To further disentangle the164

effects of one-step and multi-step knowledge, we excluded data of frequent transitions (pij = 0.7 and165

pij = 0.35 in the uni and bi conditions, respectively). In this case, the effect of node distance on166

response times in the unidirectional condition disappeared, F1.00,72.32 = 0.43, p = 0.51, but persisted167

in bidirectional data, F1.00,76.98 = 5.52, p = 0.02 (Fig. 3c). No effects on behavioral accuracy were168

observed in either of the above analyses (all ps > 0.11).169

While these results offer a first indication of incidental learning of multi-step transitions, node170

distance is only an approximate reflection of the graph structure. A more precise way to express171

multi-step knowledge is to consider the discounted sum of different n-step probabilities as experienced172

by participants. This is equivalent to successor representation (SR) models (Dayan, 1993), which173

assume a representation of each node that reflects the discounted long-term occupation probability174

of all other nodes starting from the current node. Notably, recent work has shown that SRs can175

be updated through replay, rather than through online experience alone (Russek et al., 2017). We176

therefore investigated whether behavior reflected integrated mental SR-based maps of the experienced177

graph structure.178
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Specifically, for each node we modeled a vector that reflected the probability that starting from179

there a participant would experience any of the other nodes over a future-discounted predictive horizon.180

This vector was dynamically updated following the transitions that participants experienced in the181

task, using a temporal difference (TD) learning rule as used in SR models (Dayan, 1993; Russek et al.,182

2017). After experiencing the transition from image st to st+1, the row corresponding to image st of183

the successor matrix M was updated as184

Mst,∗ = Mst,∗ + α
[
1st+1 + γMst+1,∗ −Mst,∗

]
(1)

whereby 1st+1 is a zero vector with a 1 in the st+1
th position, and α is a learning rate. Crucially, the185

discounting parameter γ defined the extent to which multi-step transitions were taken into account,186

which we will henceforth refer to as the “predictive horizon” (cf. Gershman et al., 2012; Momennejad,187

2020). We computed a series of SR models with different predictive horizons between γ = 0 (no188

predictive horizon) and γ = 0.95 (in steps of 0.05), and asked how well response times could be189

predicted from these individually calculated, time-varying SRs (for details, see Methods). We then190

compared different LME models of response time, with a Shannon surprise predictor (cf. Shannon,191

1948) derived from each participants’ SR model, in addition to fixed effects of task run, graph (uni192

vs. bi) and graph order (uni – bi vs. bi – uni) as well as by-participant random intercepts and slopes.193

Comparing LME models that contained predictors from SR models with varying predictive horizons194

(i.e., levels of γ) showed that a discount parameter of γ = 0.3 resulted in the lowest Akaike information195

criterion (AIC) score (Fig. 3d), and models with non-zero γ parameters yielded substantially better196

fits than a model which assumed only knowledge of one-step transitions (γ = 0, leftmost data point in197

Fig. 3d). Thus, participants’ response times clearly indicated multi-step graph knowledge consistent198

with SR models.199

To investigate if these analyses would differ between the two graph structures (uni vs. bi) and the200

two graph orders (uni – bi vs. bi – uni), we split the data according to these two factors and repeated201

a similar analysis of LME models (for details, see Methods). These analyses again showed that models202

based on a non-zero γ parameter achieved better fits, confirming that participants learned higher-order203

relationships among the nodes in the graph structure from experiencing sequences of transitions in the204

task (Fig. 3e). Interestingly, data from the first graph structure were fit best by the same γ parameter205

(γ = 0.55), irrespective of graph condition (uni vs. bi; Fig. 3e, left panel column). When considering206

data from the second graph structure, in contrast, the depth of integration differed markedly depending207

on whether participants learned the uni- or bidirectional graph structure: participants who transitioned208

from the uni- to the bidirectional graph condition had a larger predictive horizon (γ = 0.75; Fig. 3e,209

top right panel) in the second graph learning phase compared to participants who transitioned from210

a bi- to a unidirectional graph (γ = 0.3; Fig. 3e, bottom right panel). These results indicated that211

the order in which graphs were experienced determined the depth of integration when learning was212

updated following a change in transition probabilities.213

Finally, we assessed whether participants were able to express knowledge of the sequential ordering214

of stimuli and graph structures explicitly during a post-task questionnaire. Asked whether they had215

noticed any sequential ordering of the stimuli in the preceding graph task, n = 19 participants replied216

“yes” and n = 20 replied “no” (Fig. 3f). Of those participants who noticed sequential ordering217

(n = 19), almost all (18 out of 19) indicated that they had noticed ordering within the first three runs218

of the task (Fig. 3g), and more than half of those participants (11 out of 19) indicated that they had219

noticed ordering during the third task run, i.e., the run during which the graph structure was changed.220
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Thus, sequential ordering of task stimuli remained at least partially implicit in half of the sample,221

and the change in the sequential order halfway through the third run of graph trials seemed to be one222

potential cause for the conscious realization of sequential structure. Participants were also asked to rate223

the transition probabilities of all pairwise sequential combinations of the six task stimuli (30 ratings in224

total). Interestingly, participants on average reported probability ratings that reflected bidirectional225

graph structure. Probabilities of transitions to clockwise and counterclockwise neighboring nodes were226

rated higher than rarer transitions to intermediate nodes, regardless of the order in which participants227

had experienced the two graph structures immediately before the questionnaire (Fig. 3h).228

Figure 3: Behavioral responses are modulated by transition probabilities and graph structure. (a) Behav-
ioral accuracy (y-axis) following transitions with low (pij = 0.1) and high probability (x-axis; pij = 0.7 and pij = 0.35 in
the uni and bi conditions, respectively) for both graph structures (panels). Colors as in Fig. 2d. The horizontal dashed
lines indicate the chance level (16.67%). (b) Log response time (y-axis) following transitions with low (pij = 0.1) and
high probability (x-axis; pij = 0.7 and pij = 0.35 in the uni and bi conditions, respectively) for both graph structures
(panels). Colors as in panel (a) and Fig. 2d. (c) Log response times (y-axis) as a function of uni- or bidirectional
(u | b) node distance (x-axis) in data from the two graph structures (colors / panels). (d) AIC scores (y-axis) for
LME models fit to participants’ log response time data using Shannon surprise based on SRs with varying predictive
horizons (the discounting parameter γ; x-axis) as the predictor variable. (e) AIC scores (y-axis) for LME models fit
to participants’ log response time data using Shannon information based on SRs with varying predictive horizons (the
discounting parameter γ; x-axis) as the predictor variable, separated by graph order (uni – bi vs. bi – uni; horizontal
panels) and graph condition (uni vs. bi; panel colors). (f) Number of participants (y-axis) indicating whether they
had noticed any sequential ordering during the graph task (“yes” or “no”, x-axis). (g) Number of those participants
(y-axis) who had detected sequential ordering indicating in which of the five runs of the graph task (x-axis) they had first
noticed sequential ordering. (h) Ratings of pairwise transition probabilities (in %; y-axis) as a function of node distance
/ transition probability, separately for both graph orderings (uni – bi vs. bi – uni; panels). Boxplots in (a), (b), (c),
and (h) indicate the median and IQR. The lower and upper hinges correspond to the first and third quartiles (the 25th

and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5∗ IQR from the
hinge (where IQR is the interquartile range (IQR), or distance between the first and third quartiles). The lower whisker
extends from the hinge to the smallest value at most 1.5∗ IQR of the hinge. The diamond shapes in (a), (b), (c), and
(h) show the sample mean. Error bars and shaded areas in (a), (b), (c), and (h) indicate ±1 SEM. Each dot in (a), (b),
(c), and (h) corresponds to averaged data from one participant. Vertical lines in (d) and (e) mark the lowest AIC score.
All statistics have been derived from data of n = 39 human participants who participated in one experiment.
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Figure 3: [see caption on the previous page]
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fMRI results229

We next asked whether learning of map-like graph representations was accompanied by on-task replay.230

First, we trained logistic regression classifiers on fMRI signals related to stimulus and response onsets231

in correct recall trials (one-versus-rest training; for details, see Methods; cf. Wittkuhn and Schuck,232

2021). Separate classifiers were trained on data from gray-matter-restricted anatomical regions of233

interest (ROIs) of (a) occipito-temporal cortex and (b) pre- and postcentral gyri, which reflect visual234

object processing (cf. Haxby et al., 2001) and sensorimotor activity (e.g., Kolasinski et al., 2016),235

respectively. In each case, a single repetition time (TR) per trial corresponding either to the onset of236

the visual stimulus, or to participants’ motor response was chosen (accounting for hemodynamic lag,237

time points were shifted by roughly 4 s; for details, see Methods). Note, that the order of displayed238

animals in recall trials was random, and image displays and motor responses were separated by SRIs239

and ITIs of 2500 ms to reduce temporal autocorrelation (cf. Dale, 1999; Wittkuhn and Schuck, 2021).240

The trained classifiers successfully distinguished between the six animals. Leave-one-run-out clas-241

sification accuracy was M = 63.08% in occipito-temporal data (SD = 12.57, t38 = 23.06, CI [59.69,242

+∞], p < 0.001, compared to a chance level of 16.67%, d = 3.69) and M = 47.05% in motor cortex243

data (SD = 7.79%, t38 = 24.36, CI [44.95, +∞], p < 0.001, compared to a chance level of 16.67%,244

d = 3.90, all p-values Bonferroni-corrected, Fig. 4a). We also tested whether the classifiers successfully245

generalized from session 1 (eight recall runs) to session 2 (one recall run), and found no evidence for246

diminished cross-session decoding, compared to within-session, F8.00,655.00 = 0.95, p = 0.48 (for details247

see Methods). Next, we examined the sensitivity of the classifiers to pattern activation time courses by248

applying them to fifteen TRs following event onsets in recall trials (cf. Wittkuhn and Schuck, 2021).249

This analysis showed that the estimated normalized classification probability of the true stimulus class250

given the data peaked at the fourth TR as expected (Fig. 4b), where the probability of the true event251

was significantly higher than the mean probability of all other events at that time point (difference252

between current vs. other events; motor: M = 12.24, t38 = 32.10, CI [11.47, 13.01], p < 0.001,253

d = 5.14; occipito-temporal: M = 17.88, t38 = 21.72, CI [16.22, 19.55], p < 0.001, d = 3.48, all254

p-values Bonferroni-corrected; Fig. 4b).255

To address our main questions concerning on-task neural replay, we applied the classifiers to data256

from the graph trials that included 10 s on-task intervals (ITIs) with only a fixation on screen (120 trials257

per participant in total; 24 trials per run; 4 trials per stimulus per run; 10 s correspond to 8 TRs). We258

expected that participants would replay anticipated upcoming events or recently experienced event259

sequences during these on-task intervals, and that such replay would be evident in the ordering of260

classification probabilities. Crucially, classifier probabilities should reflect participants’ knowledge of261

one-step transitions, but also their map-like representations that enabled them to form multi-step262

expectations, as described above. For example, in unidirectional graph trials image A was followed263

by image B with a higher probability than the other images. Therefore, the probability of decoding264

image B during an on-task interval following image A should be higher than the classifier probabilities265

of the other four possible next images (see Fig. 2a). In addition, although images C, D, and E266

had equal one-step transition probabilities, we expected the corresponding classifier probabilities to267

be ordered such as to reflect the multi-step SR-model described above. Following our previous work268

(Wittkuhn and Schuck, 2021), we also assumed that the ordering during the earlier phase of the on-269

task interval (TRs 1–4) would reflect the true directionality of the replayed sequence and would be270

reversed in the later phase of the interval (TRs 5–8), reflecting the rising and falling slopes of the271

underlying hemodynamic response functions (HRFs). As expected, the classifier probability of the272
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Figure 4: [see caption on the next page]

animal displayed in the current trial was higher compared to all other classes (Fig. 4c), and rising273

and falling slowly as observed in recall trials (Fig. 4d, Fig. 5a; mean probability of current event vs.274

all others; ts ≥ 17.88, ps < .001, ds ≥ 3.48, p-values Bonferroni-corrected). Because stimulus-evoked275

activation was not of interest, we removed probabilities of the current stimulus from all following276

analyses, considering only (normalized) probabilities from the five classes that did not occur on the277

current trial.278

To investigate replay of experienced or anticipated stimulus sequences, we modeled classifier prob-279

abilities of non-displayed stimuli with LME models. LME models contained predictors that reflected280

node distance, i.e., how likely each stimulus was to appear soon, given either a unidirectional (lin-281

ear node distance) or bidirectional graph (quadratic node distance, see above). Because linear and282

quadratic predictors were collinear, corresponding LME models were run separately. Each model283

included fixed effects of ROIs (occipito-temporal vs. sensorimotor) and ITI phase (early vs. late).284
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Figure 4: Classification accuracy and probabilistic classifier time courses on recall and graph trials. (a)
Cross-validated classification accuracy (in %) in decoding the six unique visual objects in occipito-temporal data (“vis”)
and six unique motor responses in sensorimotor cortex data (“mot”) during task performance. Chance level is at 16.67%
(horizontal dashed line). (b) Time courses (in TRs from stimulus onset; x-axis) of probabilistic classification evidence
(in %; y-axis) for the event on the current recall trial (black) compared to all other events (gray), separately for both
ROIs (panels). (c) Mean classifier probability (in %; y-axis) for the event that occurred on the current graph trial (black
color), shortly before the onset of the on-task interval, compared to all other events (gray color), averaged across all TRs
in the on-task interval, separately for each ROI (panels). (d) Time courses (in TRs from on-task interval onset; x-axis)
of mean probabilistic classification evidence (in %; y-axis) in graph trials for the event that occurred on the current
trial (black) and all other events (gray). Each line in (b) and (c) represents one participant. Classifier probabilities in
(b), (c), and (d) were normalized across 15 TRs. The chance level therefore is at 100/15 = 6.67% (horizontal dashed
line). Gray rectangles in (d) indicate the on-task interval (TRs 1–8). The light and dark gray areas in (d) indicate early
(TRs 1–4) and late (TRs 5–8) phases, respectively. Boxplots in (a) and (c) indicate the median and IQR. The lower and
upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from
the hinge to the largest value no further than 1.5∗ IQR from the hinge (where IQR is the interquartile range (IQR), or
distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most
1.5∗ IQR of the hinge. The diamond shapes in (a) and (c) show the sample mean. Error bars and shaded areas indicate
±1 SEM. Each dot corresponds to averaged data from one participant. All statistics have been derived from data of
n = 39 human participants who participated in one experiment.

Considering data from runs in which stimulus transitions were governed by the unidirectional graph,285

an LME model containing the linear node distance predictor indicated a three-way interaction between286

node distance, ROI and phase F1.00,852.00 = 7.21, p = 0.007. Post-hoc tests revealed an effect of node287

distance on classifier probabilities in unidirectional data in both ROIs in the early phase (TRs 1–4)288

of the ITIs, F1.00,810.00 ≥ 78.18, ps < 0.001, akin to backward replay of recently experienced stimuli.289

Effects in the late phase failed to reach significance (TRs 5–8), ps ≤ 0.11 (Fig. 5c). Considering290

data from the bidirectional run, we found a corresponding three-way interaction between bidirectional291

node distance, ROI and phase F1.00,852.00 = 5.59, p = 0.02. Again, post-hoc tests revealed an effect292

of bidirectional node distance on classifier probabilities in both ROIs, showing a sign reversal when293

comparing the early to the late phase of the ITIs, F1.00,810.00 ≥ 7.09, ps ≤ 0.008 (Fig. 5c), in line294

with our expectations about on-task multi-step replay. Although linear and quadratic node distance295

predictors were collinear and therefore difficult to disentangle, we next tried to assess the specificity296

of the above effects by testing the linear (unidirectional) node distance on bidirectional data and the297

quadratic (bidirectional) node distance on unidirectional data. When a linear predictor was used298

in an LME model of bidirectional data, only a main effect of phase (early vs. late) was observed,299

F1.00,852.00 = 11.55, p < 0.001, but no main effect of the linear predictor, F1.00,852.00 = 0.27, p = 0.60,300

or any interactions among the predictor variables, ps ≤ 0.09. Importantly, direct model comparison301

revealed that the linear model fit better in the unidirectional graph condition and the early phase302

of the ITI (see Fig. S6a–b). Using the quadratic predictor in the analysis of unidirectional data,303

we observed a three-way interaction between bidirectional node distance, the ROI, and the phase,304

F1.00,852.00 = 4.35, p = 0.04. Post-hoc tests revealed an effect of bidirectional node distance on classi-305

fier probabilities in unidirectional data only in the occipito-temporal ROI and only in the early phase306

(TRs 1–4) of the ITIs, F1.00,810.00 ≥ 5.56, ps < 0.02 (Fig. 5c). Yet, model comparison again showed307

that the the quadratic model fit better in the bidirectional graph condition in both TR phases (dif-308

ferences in AICs were between −31.02 and 162.03, see Fig. S6a–b). Hence, these analyses confirmed309

that the observed classifier ordering was specific to the currently experienced graph.310

The above analysis assumed that replayed sequences would always follow the most likely transitions311

(assuming a fixed ordering of replay sequences according to the multi-step graph structure). Yet, replay312
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might correspond more closely to a mental simulation of several possible sequences that are generated313

from a mental model. Consistent with this idea, the distribution of the observed sequential orders314

of classifier probabilities indicated a wide variety of replayed sequences (Fig. 5d, distribution over315

the entire ITI of 8 TRs). We next quantified how likely each possible sequential ordering of 5–item316

sequences was, based on the transition probabilities estimated by the SR model described above (γ317

was set to 0.3 in order to approximate to the mean level of planning depth we had estimated based on318

the behavioral data, see above). To model measurement noise in the observed relative to the predicted319

sequences, we employed a hidden markov model (HMM) with structured emission probabilities (for320

details, see Methods). This revealed that during the unidirectional runs, the frequency with which321

we observed a sequence in brain data during the on-task pauses, strongly related to the probability322

of that sequence given the unidirectional graph structure (occipito-temporal ROI: r = .51, p < 0.001;323

motor ROI: r = .35, p < 0.001; Fig. 5e). Unexpectedly, this was not the case for the bidirectional324

runs (p = 0.21 and p = 0.50, respectively; Fig. 5e).325

We then sought to characterize the time courses of evidence for replay of sequences most likely326

to occur when mentally simulating a given sequence in the two graph structures. To this end, we327

calculated TR-wise linear regression slopes between the classifier probabilities and the 24 most likely328

sequences (top 20% of the 5! = 120 possible permutations), which resulted in an average sequentiality329

metric for each TR, similar to our previous work (Wittkuhn and Schuck, 2021). This analysis revealed330

significant backward sequentiality in the earlier phase (TRs 1–4) of the ITIs based on data from the331

unidirectional graph structure in both ROIs specifically for those sequences that were most likely332

given the unidirectional graph structure, t38’s ≤ −7.51, ps < 0.001, p-values Bonferroni-corrected (80333

– 100%; Fig. 5e). We did not find evidence for sequentiality in the late phase of the interval (TRs334

5–8) for either ROI in the unidirectional condition (ps > 0.97). These findings mirror the results from335

the analysis of classification probabilities (see above) in showing that classifier probabilities in earlier336

TRs of fMRI data with unidirectional graph structure are ordered backward relative to the sequential337

ordering implied by the graph structure. In the bidirectional condition, we found forward sequentiality338

in the earlier phase (TRs 1–4; t38’s ≥ 3.90, ps < 0.02, ds ≥ 0.63) of the ITI and backward sequentiality339

in the later phase (TRs 5–8; t38’s ≤ −4.31, ps < 0.001, ds ≤ −0.69), in occipito-temporal data for the340

top 40% most likely sequences (i.e., both 80–100% and 60–80%, p-values Bonferroni-corrected, Fig.341

5e). Again, these results were in line with the analyses of classification probabilities, that found an342

influence on bidirectional graph structure in both early and late TRs.343

Together, these results provide evidence that classifier probabilities in ITIs of graph trials are344

modulated by the multi-step distances between nodes in the graph structure. These effects of multi-345

step distances are in line with the idea that participants replayed multi-step sequences during brief346

on-task pauses, which could provide the basis for participants’ map-like knowledge of incidentally347

experienced graph structures. When transition probabilities among stimuli in the task followed a348

unidirectional graph structure, classifier probabilities are influenced by a linear ordering of nodes349

that scales with the distance among the nodes in a unidirectional ordering, albeit only in earlier350

TRs following ITI onset (Fig. 5). When classifier probabilities from trials of the bidirectional graph351

structure are considered, classifier probabilities are influenced by a quadratic relationship to node352

distance (modeling a bidirectional ordering of nodes), in both the early (TRs 1–4) and late (TRs 5–8)353

phases of the ITIs and in both ROIs (Fig. 5). The graph distance effect appeared more pronounced354

in earlier compared to later TRs, but was present in both occipito-temporal and motor ROIs and355

followed a similar dynamic with respect to early and late phases of the ITI in both ROIs.356
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Figure 5: Classifier probabilities during inter-trial intervals (ITIs) of graph trials are modulated by node
distances in the graph structure. (a) Time courses (in TRs from ITI onset; x-axis) of mean probabilistic classification
evidence (in %; y-axis) for each of the six classes (colors) depending on the event of the current trial (vertical panels)
and the anatomical ROI (horizontal panels). The event of the current trial (stimulus presentation or motor response)
happened a few hundred ms before the onset of the ITI (for the trial procedure of graph trials, see Fig. 1b). (b)
Time courses (in TRs from ITI onset; x-axis) of mean probabilistic classification evidence (in %; y-axis) for each of the
five classes that were not presented on the current trial, colored by node distance in the two graph structures (vertical
panels) for both anatomical ROI (horizontal panels). (c) Mean probabilistic classification evidence (in %; y-axis) for each
node distance (colors) in the unidirectional (left vertical panel) and bidirectional (right vertical panel) graph structures
averaged across TRs in the early (TRs 1–4) or late (TRs 5–8) phase (x-axis) for data in the occipito-temporal (top
horizontal panels) and motor (bottom horizontal panels) ROIs. (d) Relative frequencies (y-axis) of all 120 permutations
of probability-ordered 5–item sequences within each TR observed during on-task intervals, separately for both graph
structures (vertical panels) and anatomical ROIs (horizontal panels). The horizontal gray line indicates the expected
frequency if all sequences would occur equally often (1/120 = 0.008). Colors indicate sequence ordering from forward
(e.g., 12345; dark blue) to backward (e.g., 54321; light blue) sequences. (e) Correlations (Pearson’s r) between the
predicted sequence probability and the observed sequence frequency (120 5–item sequences per correlation), separately
for both graph structures (vertical panels) and anatomical ROIs (horizontal panels). Each dot represents one 5–item
sequence. (f) Regression slopes (y-axis) relating classifier probabilities to sequential positions for both graph structures
(vertical panels) and anatomical ROIs (horizontal panels). Sequential orderings were determined based on a hidden
markov model (HMM) identifying the most likely sequences based on the two graph structures (colors). Positive and
negative slopes indicate forward and backward sequentiality, respectively (cf. Wittkuhn and Schuck, 2021). (g) Mean
classifier probabilities averaged across all TRs in the early and late phase (x-axis) of the ITIs, separately for both graph
structures (vertical panels) and anatomical ROIs (horizontal panels). Each dot in (c) and (g) corresponds to averaged
data from one participant. Error bars in (c), (d), and (g) and shaded areas in (a), (b), and (f) represent ±1 SEM. Gray
rectangles in (a), (b), and (d) indicate the on-task interval (TRs 1–8). The light and dark gray areas in (a), (b), and
(f) indicate early (TRs 1–4) and late (TRs 5–8) interval phases, respectively. 1 TR in (a), (b), and (f) = 1.25 s. All
statistics have been derived from data of n = 39 human participants who participated in one experiment.

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.02.478787doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion357

We present results showing on-task cortical replay of future sequences simulated from a mental model358

of an experienced graph in humans. Replay was detected in visual and sensorimotor cortex while359

participants briefly paused during an incidental statistical learning task. Statistical regularities in our360

main task were governed by two graph structures, one of which determined transitions in the first half361

of the experiment, while the other one determined transitions in the second half. We demonstrate that362

participants’ response times reflect continuous learning of future-discounted predictive expectations363

that go beyond knowledge of one-step transitions and are captured by temporal difference (TD)364

learning of a successor representation (SR) model (cf. Dayan, 1993). These behavioral effects are365

in line with our neural results which indicate on-task replay consistent with sampling from such an366

SR model. Participants did not receive explicit instructions to learn and about half of participants367

reported no explicit knowledge of the experienced sequentiality. Learning was therefore automatic and368

partially implicit.369

Our behavioral results are consistent with previous findings showing that humans learn about370

networks of stimuli beyond one-step transitions (e.g., Schapiro et al., 2013; Karuza et al., 2016, 2017,371

2019; Garvert et al., 2017; Kahn et al., 2018; Lynn and Bassett, 2020; Lynn et al., 2020a,b). Our372

computational modeling establishes a link between these behavioral effects and an online temporal373

difference (TD) learning mechanism that tracks the long-term visitation probabilities. Our findings374

add to a growing set of studies that uses models based on SRs (Dayan, 1993) to demonstrate the375

formation of predictive representations of task structure in human behavioral and neuroimaging data376

(Garvert et al., 2017; Russek et al., 2017; Momennejad et al., 2017; Momennejad, 2020; Russek et al.,377

2021). Through model comparisons between SR models that differed in their discounting parameter378

γ, i.e., their predictive horizon, we found that behavior overall was best explained by a medium379

deep predictive horizon corresponding to γ = 0.3 (note, that any model with γ > 0 suggests that380

participants formed predictive representations). When we separated the analyses by graph condition381

and graph order, we found that during learning of the first graph structure, planning depth was382

deeper, as indicated by a predictive horizon of γ = 0.55, irrespective of whether transition structure383

was governed by the uni- or bidirectional graph condition. This finding suggests that, upon entering a384

novel environment with sequential events, humans might integrate multi-step transition probabilities385

to a medium depth that is independent from the specific structure of the environment. Interestingly,386

after the transition structure changed to the second graph structure halfway through the task, this387

also seemed to influence the predictive horizon in a manner that was dependent on the order in which388

the two graphs were experienced. In participants who first learned the unidirectional and then the389

bidirectional graph, the best fitting model was based on an SR with a higher discount parameter of390

γ = 0.75. This may indicate a deeper integration of higher-order relationships in the bidirectional391

graph structure compared to the unidirectional graph structure. In contrast, in participants who392

experienced the reverse order, the best fitting model during the second half of the experiment was393

based on an SR with a lower discount parameter of γ = 0.3. This could indicate a reduced predictive394

horizon when learning relationships in the unidirectional graph. In sum, these results suggest that395

participants’ predictive horizon interacts with the structure of the task as well as the learning history396

and indicates that the depth of integration could adapt to changes in the task environment. This397

idea relates to recent work suggesting that the brain may host SRs at varying predictive horizons in398

parallel (Momennejad and Howard, 2018; Brunec and Momennejad, 2021).399
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Analyzing fMRI data recorded during 10 s pauses in-between performing the main task, we found400

evidence that classification probabilities were modulated by the transition probabilities and multi-401

step node distances within the two graph structures. Applying our previously developed sequentiality402

metric (Schuck and Niv, 2019; Wittkuhn and Schuck, 2021), we found evidence for backward sequen-403

tiality in unidirectional data and forward sequentiality in bidirectional data in both occipito-temporal404

and motor ROIs. The sequentiality metric was strongest specifically for those sequential orderings of405

classification probabilities that were most likely given an SR model of the two graph structures (Fig.406

5). Our evidence for on-task replay relates to research in rodents, where time-compressed sequential407

place cell activations, called theta sequences, occur during active behavior (Foster and Wilson, 2007)408

and reflect multiple potential future trajectories when the animal pauses at a decision point (Johnson409

and Redish, 2007), or cycle between future trajectories during movement (Kay et al., 2020) possibly410

reflecting an online planning process. Similar relationships between hippocampal theta and planning411

have been observed in human magnetoencephalography (MEG) experiments (Kaplan et al., 2020),412

which have also yielded evidence for on-task planning in the form of fast sequential neural reactiva-413

tion (Kurth-Nelson et al., 2016; Eldar et al., 2020). An fMRI study in humans has related on-task414

prospective neural activation to model-based decision-making (Doll et al., 2015), but the temporal415

dynamics of the prospective neural representations remained unclear. In contrast to previous studies,416

participants in our experiment did not engage in any explicit planning process. As mentioned before,417

participants were not instructed to learn about any sequentiality in the task. Moreover, participants418

were only told that short pauses may occur during the task, but they were not informed about the419

purpose of these pauses, and could not predict when the pauses would occur. It therefore seems likely420

that neural representations during on-task pauses reflect ongoing task representations similar to theta421

sequences in rodents.422

One important aspect of our work is that we focused on cortical replay of predictive representations423

in visual (occipito-temporal) and sensorimotor (pre- and postcentral gyri) cortex. Previous work has424

largely focused on the hippocampus as a site of replay and as a potential brain region to host predictive425

cognitive maps (Garvert et al., 2017; Stachenfeld et al., 2017), while other studies have also emphasized426

the role of the prefrontal cortex (PFC) (Wilson et al., 2014; Schuck et al., 2016; Badre and Nee, 2018).427

Several fMRI studies demonstrated that hippocampal activity is modulated by stimulus predictability428

in sequential learning tasks (Strange et al., 2005; Harrison et al., 2006; Bornstein and Daw, 2012) and429

is related to the reinstatement of cortical task representations in visual cortex (Bosch et al., 2014;430

Hindy et al., 2016; Kok and Turk-Browne, 2018). Replay is known to occur throughout the brain (see431

e.g., Foster, 2017) but the functions of distributed replay events still remain to be further illuminated.432

Our findings shed light on the distribution of predictive representations and replay in the human brain,433

and suggest a potential involvement of sensory and motor areas. Yet, which roles the hippocampus434

and PFC play in this process remains an open question.435

Our results suggest that participants formed a predominantly bidirectional representation of the436

ring-like graph structure, irrespective of the order in which the two graphs were experienced. The437

influence of node distance on response times was more pronounced and the predictive horizon in438

SR-based analyses was deeper in bidirectional compared to unidirectional behavioral data. Post-task439

ratings of transition probabilities were biased by bidirectional node distance, irrespective of graph440

order. The reversal in the directionality of classifier probabilities from early to late TRs, which is441

characteristic for sequential neural events in fMRI data (cf. Wittkuhn and Schuck, 2021), was only442

observed in on-task intervals during bidirectional but not unidirectional graph trials. This dominance443
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of a bidirectional representation could reflect that transitions in clockwise order in the unidirectional444

graph (e.g., from A to B; Fig. 2) still allow to infer an associative relationship in the reverse direction445

(i.e., from B to A), even though this transition actually never occurs during the task.446

One remaining challenge for future research is to better understand the sequentiality of replay. We447

have previously shown that, at the level of classifier probabilities, sequences of neural events first elicit448

forward followed by backward sequentiality relative to the true sequence of events due to the dynamics449

of the HRF (Wittkuhn and Schuck, 2021). The fact that we found backward sequentiality in earlier450

TRs relative to an assumed sequential ordering of classifier probabilities in line with the unidirectional451

graph structure suggests that the true sequence of neural events at the start of the on-task intervals452

was indeed backwards. In the bidirectional graph structure, however, sequences can be expected in453

both directions, i.e., A-B-C-D-E and E-D-C-B-A sequences are both very likely. It therefore remains454

unclear whether detecting a replayed sequence of A-B-C-D-E reflects forward replay of this sequence455

or backward replay of its reverse (E-D-C-B-A). Previous research has found awake replay in both456

forward and backward order in rodents (Foster and Wilson, 2006; Diba and Buzsáki, 2007; Gupta457

et al., 2010) as well as in humans (Liu et al., 2021), and suggested that the directionality of replay458

may be tied to different functions, such as memory consolidation vs. value learning (e.g., Foster and459

Wilson, 2006; Ólafsdóttir et al., 2018; Liu et al., 2019; Wittkuhn et al., 2021). Neural sequences that460

have been associated with a prospective planning function are typically in forward order relative to the461

experienced sequence (Johnson and Redish, 2007; van der Meer and Redish, 2009; Pfeiffer and Foster,462

2013; Wikenheiser and Redish, 2015b). However, as others have pointed out before (Kurth-Nelson463

et al., 2016), it is plausible to plan backward instead of forward (also see LaValle, 2006), and previous464

studies also reported backward sequences during theta in rodents (Wang et al., 2020) as well as during465

value learning in humans (Liu et al., 2021).466

Another challenge will be to better understand the relation between changes in neural representa-467

tions and replay. Repeated exposure to sequences of stimuli has been shown to increase the similarity468

of neural stimulus representations in the medial temporal lobe (MTL) in both macaques (Miyashita,469

1988) and humans (Schapiro et al., 2012). Using fMRI adaptation (cf. Barron et al., 2016), Garvert470

et al. (2017) showed that the similarity of neural representations of task stimuli decreases with distance471

between stimuli in a graph structure. This may pose a challenge to classifiers trained on individual472

stimulus presentations as in the current study, because increases in the similarity of neural represen-473

tations could increase the confusability of decoded patterns, which in turn may cause biases in the474

measured sequentiality.475

In conclusion, our results provide insights into how the human brain forms predictive represen-476

tations of the structural relationships in the environment from continuous experience and samples477

sequences from these internal cognitive maps during on-task replay.478
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Methods479

Participants480

44 young and healthy adults were recruited from an internal participant database or through local481

advertisement and fully completed the experiment. No statistical methods were used to predetermine482

the sample size but it was chosen to be larger than similar previous neuroimaging studies (e.g., Schuck483

and Niv, 2019; Momennejad et al., 2018; Tambini and Davachi, 2013). Five participants were excluded484

from further analysis because they viewed different animals in session 1 and 2 due to a programming485

error in the behavioral task. Thus, the final sample consisted of 39 participants (mean age = 24.28486

years, SD = 4.24 years, age range: 18 - 33 years, 23 female, 16 male). All participants were screened487

for MRI eligibility during a telephone screening prior to participation and again at the beginning488

of each study session according to standard MRI safety guidelines (e.g., asking for metal implants,489

claustrophobia, etc.). None of the participants reported to have any major physical or mental health490

problems. All participants were required to be right-handed, to have corrected-to-normal vision,491

and to speak German fluently. The ethics commission of the German Psychological Society (DGPs)492

approved the study protocol (reference number: SchuckNicolas2020-06-22VA). All volunteers gave493

written informed consent prior to the beginning of the experiments. Every participant received 70.00494

Euro and a performance-based bonus of up to 5.00 Euro upon completion of the study. None of the495

participants reported to have any prior experience with the stimuli or the behavioral task.496

Task497

Stimuli498

All visual stimuli were taken from a set of colored and shaded images commissioned by Rossion499

and Pourtois (2004), which are loosely based on images from the original Snodgrass and Vanderwart500

set (Snodgrass and Vanderwart, 1980). The images are freely available on the internet at https:501

//sites.google.com/andrew.cmu.edu/tarrlab/resources/tarrlab-stimuli under the terms of502

the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (for details, see503

https://creativecommons.org/licenses/by-nc-sa/3.0/) and have been used in similar previous504

studies (e.g., Garvert et al., 2017). Stimulus images courtesy of Michael J. Tarr at Carnegie Mellon Uni-505

versity, (for details, see http://www.tarrlab.org/). In total, we selected 24 images which depicted506

animals that could be expected in a public zoo. Specifically, the images depicted a bear, a dromedary,507

a deer, an eagle, an elephant, a fox, a giraffe, a goat, a gorilla, a kangaroo, a leopard, a lion, an ostrich,508

an owl, a peacock, a penguin, a raccoon, a rhinoceros, a seal, a skunk, a swan, a tiger, a turtle, and a509

zebra (in alphabetical order). For each participant, six task stimuli were randomly selected from the510

set of 24 the animal images and each image was randomly assigned to one of six response buttons. This511

randomization ensured that any potential systematic differences between the stimuli (e.g., familiarity,512

preference, or ability to decode) would not influence the results on a group level (for a similar reasoning,513

see e.g., Liu et al., 2021). Cages were represented by a clipart illustration of a black fence which is freely514

available from https://commons.wikimedia.org/wiki/File:Maki-fence-15.svg, open-source and515

licensed under the Creative Commons CC0 1.0 Universal Public Domain Dedication, allowing further516

modification (for details, see https://creativecommons.org/publicdomain/zero/1.0/). When517

feedback was presented in the training and recall task conditions, correct responses were indicated518

by a fence colored in green and incorrect responses were signaled by a fence colored in red. The color519
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of the original image was modified accordingly. All stimuli were presented against a white background.520

Hardware and software521

Behavioral responses were collected using two 4-button inline fiber optic response pads (Current522

Designs, Philadelphia, PA, USA), one for each hand, with a linear arrangement of four buttons (buttons523

were colored in blue, yellow, green, and red, from left to right). The two response pads were attached524

horizontally to a rectangular cushion that was placed in participants’ laps such that they could place525

their fingers on the response buttons with arms comfortably extended while resting on the scanner526

bed. Participants were asked to place their index, middle, and ring finger of their left and right527

hand on the yellow, green, and red buttons of the left and right response pads, respectively. The528

fourth (blue) button on each response pad was masked with tape and participants were instructed to529

never use this response button. Behavioral responses on the response pads were transferred to the530

computer running the experimental task and mapped to the keyboard keys z, g, r and w, n, d for531

the left and right hand, respectively. The task was programmed in PsychoPy3 (version 3.0.11; Peirce,532

2007, 2008; Peirce et al., 2019) and run on a Windows 7 computer with a monitor refresh-rate of 16.7533

ms. We recorded the presentation time stamps of all task events (onsets of all presentations of the534

fixation, stimulus, SRI, response, feedback, and ITI events) and confirmed that all components of the535

experimental task procedure were presented as expected.536

Instructions537

After participants entered the MRI scanner during the first study session and completed an anatomical538

T1-weighted (T1w) scan and a 5 min fMRI resting-state scan, they read the task instructions while539

lying inside the MRI scanner (for an illustration of the study procedure, see Fig. S1). Participants540

were asked to read all task instructions carefully (for the verbatim instructions, see Boxes S1 to S15).541

They were further instructed to clarify any potential questions with the study instructor right away542

and to lie as still and relaxed as possible for the entire duration of the MRI scanning procedure. As543

part of the instructions, participants were presented with a cover story in order to increase motivation544

and engagement (see Box S1). Participants were told to see themselves in the role of a zookeeper in545

training whose main task is to ensure that all animals are in the correct cages. In all task conditions,546

participants were asked to always keep their fingers on the response buttons to be able to respond as547

quickly and as accurately as possible. The full task instructions can be found in the supplementary548

information (SI), translated to English (see SI, starting on page 7, Boxes S1 to S15) from the original549

in German (see SI, page 11).550

Training trials551

After participants read the instructions and clarified all remaining questions with the study instructors552

via the intercom, they completed the training phase of the task. The training condition was designed553

to explicitly teach participants the assignment of stimuli to response buttons. Each of the six animal554

stimuli selected per participant was randomly assigned to one of six response buttons. For the training555

condition, participants were told to see themselves in the role of a zookeeper in training in a public zoo556

whose task is to learn which animal belongs in which cage (see Box S1). During each trial, participants557

saw six black cages at the bottom of the screen with each cage belonging to one of the six animals.558

On each trial, an animal appeared above one of the six cages. Participants were tasked to press the559
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response button for that cage as fast and accurately as possible and actively remember the cage where560

the animal belonged (see Box S3 and Box S4). The task instructions emphasized that it would be very561

important for participants to actively remember which animal belonged in which cage and that they562

would have the chance to earn a higher bonus if they learned the assignment and responded accurately563

(see Box S5).564

In total, participants completed 30 trials of the training condition. Across all trials, the pairwise565

ordering of stimuli was set to be balanced, with each pairwise sequential combination of stimuli566

presented exactly once, i.e., with n = 6 stimuli, this resulted in n ∗ (n − 1) = 6 ∗ (6 − 1) = 30 trials.567

In this sense, the stimulus order was drawn from a graph with all nodes connected to each other568

and an equal probability of pij = 0.2 of transitioning from one node to any other node in the graph.569

This pairwise balancing of sequential combinations was used to ensure that participants would not570

learn any particular sequential order among the stimuli. Note, that this procedure only controlled for571

sequential order between pairs of consecutive stimuli but not higher-order sequential ordering of two572

steps or more.573

On the first trial of the training condition, participants first saw a small black fixation cross that574

was displayed centrally on the screen for a fixed duration of 300 ms and signaled the onset of the575

following stimulus. The fixation cross was only shown on the first trial of the training phase, to allow576

for a short preparation signal before stimulus presentation began. Following the fixation cross, one of577

the animals was presented in the upper half of the screen above one of six cages that referred to the578

six response buttons and were presented in the lower half of the screen. The stimuli were shown for a579

fixed duration of 800 ms which was also the maximum time allowed for participants to respond. Note,580

that the instructions told participants that they would have 1 s to respond (see Box S4), an actual581

difference of 200 ms that was likely hardly noticeable. Following the stimulus, participants always582

received feedback that was shown for a fixed duration of 500 ms. If participants responded correctly,583

the cage corresponding to the correctly pressed response button, was shown in green. If participants584

did not respond correctly, the cage referring to the correct response button was shown in green and the585

cage referring to the incorrectly pressed response button was shown in red. If participants responded586

too late, the cage referring to the correct response button was shown in green and the German words587

“Zu langsam” (in English: “Too slow”) appeared in large red letters in the upper half of the screen.588

Finally, a small black fixation cross was shown during an ITI with a variable duration of M = 1500589

ms. The ITIs were drawn from a truncated exponential distribution with a mean of M = 1.5 s, a590

lower bound of x1 = 1.0 s and an upper bound of x2 = 10.0 s. To this end, we used the truncexpon591

distribution from the SciPy package (Virtanen et al., 2020) implemented in Python 3 (Van Rossum592

and Drake, 2009). The truncexpon distribution is described by three parameters, the shape b, the593

location µ and the scale β. The support of the distribution is defined by the lower and upper bounds,594

[x1, x2], where x1 = µ and x2 = b ∗ β + µ. We solved the latter equation for the shape b to get595

b = (x2 − x1)/β. We chose the scale parameter β such that the mean of the distribution would be596

M = 2.5. To this end, we applied scipy.optimize.fsolve (Virtanen et al., 2020) to a function of597

the scale β that becomes zero when truncexpon.mean((x2 − x1)/β, µ, β) − M) = 2.5. In total, the598

training phase took approximately 2 min to complete.599

Recall trials600

After participants finished the training phase of the task in the first experimental session, they com-601

pleted eight runs of the recall condition and another ninth run at the beginning of the second session602
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(for an illustration of the study procedure, see Fig. S1). The recall condition of the task mainly served603

two purposes: First, the recall condition was used to further train participants on the associations604

between animal stimuli and response keys. Second, the recall condition was designed to elicit object-605

specific neural activation patterns of the presented visual animal stimuli and the following motor606

response. The resulting neural activation patterns were later used to train the probabilistic classifiers.607

The cover story of the instructions told participants that they would be tested on how well they have608

learned the association between animals and response keys during the training phase (see Box S6).609

In total, participants completed nine runs of the recall condition. Eight runs were completed during610

session 1 and an additional ninth run was completed at the beginning of session 2 in order to remind611

participants about the S-R mappings (for an illustration of the study procedure, see Fig. S1). Each612

run consisted of 60 trials. As in the training phase, the proportion of pairwise sequential combinations613

of stimuli was balanced within a run. Across all trials, each pairwise sequential combination of stimuli614

was presented twice, i.e., with n = 6 stimuli, this results in n ∗ (n − 1) ∗ 2 = 6 ∗ (6 − 1) ∗ 2 = 60615

trials. As for the training trials, the sequential ordering of stimuli was drawn from a graph with all616

nodes connected to each other and an equal probability of pij = 0.2 of transitioning from one node617

to any other node in the graph. With 60 trials per run, each of the six animal stimuli was shown618

10 times per run. Given nine runs of the recall condition in total, this amounted to a maximum of619

90 trials per stimulus per participant of training examples for the classifiers. Including a ninth run620

at the beginning of session 2 offered two advantages. First, participants were reminded about the621

associations between the stimuli and response keys that they had learned extensively during session 1.622

Second, the ninth run allowed to investigate decoding performance across session boundaries. Note,623

that the two experimental sessions were separated by about one week. Although the pre-processing624

of fMRI data (for details, see section on fMRI pre-processing below) should align the data of the two625

sessions, remaining differences between the two sessions (e.g., positioning of the participant in the MRI626

scanner) could lead to a decrement in decoding accuracy when testing classifiers that were trained627

on session 1 data to data from session 2. Our decoding approach was designed such that pattern628

classifiers would be mainly trained on neural data from recall trials in session 1 but then applied to629

data from session 2.630

As in training trials, the first trial of each run in the recall phase started with a black fixation631

cross on a white background that was presented for a fixed duration of 300 ms. Only the first trial of632

a run contained a fixation cross, to provide a preparatory signal for participants which would later be633

substituted for by the ITI. Participants were then presented with one of the six animal stimuli that634

was presented centrally on the screen for a fixed duration of 500 ms. Participants were instructed635

to not respond to the stimulus (see instructions in Box S7). To check if participants indeed did not636

respond during the stimulus or the following SRI, we also recorded responses during these trial events.637

During the breaks between task runs, participants received feedback about the proportion of trials638

on which they responded too early. If participants responded too early, they were reminded by the639

study instructors to not respond before the response screen. A variable SRI followed the stimulus640

presentation during which a fixation cross was presented again. Including a jittered SRI ensured that641

the neural responses to the visual stimulus and the motor response could be separated in time and642

reduce temporal autocorrelation. Following the SRI, the cages indicating the response buttons were643

displayed centrally on the screen for a fixed duration of 800 ms, which was also the response time644

limit for participants. If participants responded incorrectly, the cage referring to the correct response645

button was shown in green and the cage referring to the incorrectly pressed response key was shown646
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in red. If participants responded too late, the cage referring to the correct response button was shown647

in green and the German words “Zu langsam” (in English: “Too slow”) appeared in large red letters648

in the upper half of the screen. If participants responded correctly, the feedback screen was skipped.649

Each trial ended with an ITI with a variable duration of M = 2.5 s. Both SRIs and ITIs were drawn650

from a truncated exponential distribution as on training trials (for details, see description of training651

trials above).652

Graph trials653

Following the ninth run of the recall condition in session 2, participants completed five runs of the graph654

condition (for an illustration of the study procedure, see Fig. S1). During graph trials, participants655

were exposed to a fast-paced stream of the same six animal stimuli as in the training and recall phase.656

Unbeknownst to participants, the sequential ordering of animal stimuli followed particular transition657

probabilities.658

During the graph task, the sequential order of stimuli across trials was determined by two graph659

structures with distinct transition probabilities. In the first graph structure, each node had a high660

probability (pij = 0.7) of transitioning to the next neighboring (i.e., transitioning from A to B, B to661

C, C to D, D to E, E to F , and F to A). Transitions to all other nodes (except the previous node)662

happened with equal probability of 0.1. Transitions to the previous node never occurred (transition663

probability of pij = 0.0). These transition probabilities resulted in a sequential ordering of stimuli664

that can be characterized by a continuous progression in a unidirectional (i.e., clockwise) order around665

the ring-like graph structure. We therefore termed this graph structure the unidirectional graph666

(or uni in short). The second graph structure allowed sequential ordering that could also progress667

in counterclockwise order. To this end, stimuli were now equally likely to transition to the next668

neighboring but also the previous node (probability of pij = 0.35, i.e., splitting up the probability of669

pij = 0.7 of transitioning to the next neighboring node only in the unidirectional graph structure). As670

in the unidirectional graph, transitions to all other nodes happened with equal probability of pij = 0.1.671

Given that stimuli could follow a sequential ordering in both directions of the ring, we refer to this672

graph structure as the bidirectional graph (or bi in short).673

Participants completed five runs of the graph task condition. Each run consisted of 240 trials.674

Each stimulus was shown 40 times per run. In the unidirectional graph, for each stimulus the most675

likely transitions (probability of pij = 0.7) to the next neighboring node occurred 28 times per partic-676

ipant. Per stimulus and participant, 4 transitions to the other three possible nodes (low probability677

of pij = 0.1) happened. No transitions to the previous node happened when stimulus transitions were678

drawn from a unidirectional graph structure. Together, this resulted in 28 + 4 ∗ 3 = 40 presentations679

per stimulus, run and participant. For the bidirectional graph structure, transitions to the next neigh-680

boring and the previous node occurred 14 times per stimulus and to all other nodes 4 times as for681

the unidirectional graph structure. Together, this resulted in 14 + 14 + 4 ∗ 3 = 40 presentations per682

stimulus, run and participant.683

As for the other task conditions, only the first trial of the graph phase started with the presentation684

of a small black fixation cross that was presented centrally on the screen for a fixed duration of 300685

ms. Then, an animal stimulus was presented centrally on the screen for a fixed duration of 800 ms,686

which also constituted the time limit in which participants could respond with the correct response687

button. Participants did not receive feedback during the graph phase of the task in order to avoid any688

influence of feedback on graph learning. The stimulus was followed by an ITI with a mean duration689
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of 750 ms. The ITI in the graph trial phase was also drawn from a truncated exponential distribution690

with a mean of M = 750 ms, a lower bound of x1 = 500 ms and an upper bound of x2 = 5000 ms.691

Importantly, during the graph task, we also included long ITIs of 10 s in order to investigate692

on-task replay. As stated above, participants completed 240 trials of the main task per run. In each693

run, each stimulus was shown on a total of 40 trials. For each stimulus, every 10th trial on average694

was selected to be followed by a long ITI of 10 s. This meant that in each of the five main task runs,695

4 trials per stimulus were followed by a long ITI. In total, each participant experienced 24 long ITI696

trials per run and 120 long ITI trials across the entire experiment. The duration of 10 s (roughly697

corresponding to eight TRs at a repetition time (TR) of 1.25 s) was chosen based on our previous698

results showing that the large majority of sequential fMRI signals can be captured within this time699

period (cf. Wittkuhn and Schuck, 2021, their Fig. 3).700

Post-task questionnaire701

After participants left the scanner in session 2, they were asked to complete a computerized post-task702

questionnaire consisting of four parts. First, participants were asked to report their handedness by703

selecting from three alternative options, “left”, “right” or “both”, in a forced-choice format. Note,704

that participants were required to be right-handed to participate in the study, hence this question705

merely served to record the self-reported handedness in addition to the participant details acquired706

as part of the recruitment procedure and demographic questionnaire assessment. Second, participants707

were asked whether they noticed any sequential order among the animal stimuli in the main task and708

could respond either “yes” or “no” in a forced-choice format. Third, if participants indicated that they709

noticed a sequential order of the stimuli (selecting “yes” on the previous question), they were asked710

to indicate during which run of the main task they had started to notice the ordering (selecting from711

run “1” to “5”). In case participants indicated that they did not notice a sequential ordering, they712

were asked to select “None” when asked about the run. Fourth, participants were presented with all713

sequential combinations of pairs of the animal stimuli and asked to indicate how likely animal A (on714

the left) was followed by animal B (on the right) during the Main condition of the task. Participants715

were instructed to follow their gut feeling in case they were uncertain about the probability ratings.716

With n = 6 stimuli, this resulted in n ∗ (n− 1) = 6 ∗ (6− 1) = 30 trials. Participants indicated their717

response using a slider on a continuous scale from 0% to 100%. We recorded participants probability718

rating and response time on each trial. There was no time limit for any of the assessments in the719

questionnaire. Participants tookM = 5.49 min (SD = 2.38 min; range: 2.23 to 12.63 min) to complete720

the questionnaire. The computerized questionnaire was programmed in PsychoPy3 (version 3.0.11;721

Peirce, 2007, 2008; Peirce et al., 2019) and run on the same Windows 7 computer that was used for722

the main experimental task.723

Study procedure724

All participants were screened for study and MRI eligibility during a telephone screening prior to725

participation. The study consisted of two experimental sessions. Upon arrival at the study center in726

both sessions, participants were first asked about any symptoms that could indicate an infection with727

the SARS-CoV-2 virus. The study instructors then measured participants’ body temperature which728

was required to not be higher than 37.5°C. Participants were asked to read and sign all the relevant729

study documents at home prior to their arrival at the study center.730
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Session 1 The first MRI session started with a short localizer sequence of ca. 1 min during which731

participants were asked to rest calmly, close their eyes and move as little as possible. Once the732

localizer data was acquired, the study personnel aligned the field of view (FOV) for the acquisition733

of the T1w sequence. The acquisition of the T1w sequence took about 4 min to complete. Using the734

anatomical precision of the T1w images, the study personnel then aligned the FOV of the functional735

MRI sequences. Here, the lower edge of the FOV was first aligned to the visually identified anterior736

commissure - posterior commissure (AC-PC) line of the participant’s brain. The FOV was then737

manually titled by 20 degrees forwards relative to the rostro-caudal axis (positive tilt; for details see738

the section on “MRI data acquisition” on page 26). Shortly before the functional MRI sequences739

were acquired, we performed Advanced Shimming. During the shimming period, which took ca. 2740

min, participants were again instructed to move as little as possible and additionally asked to avoid741

swallowing to further reduce any potential movements. Next, we acquired functional MRI data during742

a resting-state period of 5 min. For this phase, participants were instructed to keep their eyes open743

and fixate a white fixation cross that was presented on a black background. Acquiring fMRI resting-744

state data before participants had any exposure to the task allowed us to record a resting-state period745

that was guaranteed to be free of any task-related neural activation or reactivation. Following this746

pre-task resting-state scan, participants read the task instructions inside the MRI scanner and were747

able to clarify any questions with the study instructions via the intercom system. Participants then748

performed the training phase of the task (for details, see the section “Training trials” on page 21)749

while undergoing acquisition of functional MRI data. The training phase took circa 2 min to complete.750

Following the training phase, participants performed eight runs of the recall phase of the task of circa 6751

min each while fMRI data was recorded. Before participants left the scanner, field maps were acquired.752

Session 2 At the beginning of the second session, participants first completed the questionnaire for753

MRI eligibility and the questionnaire on COVID-19 symptoms before entering the MRI scanner again.754

As in the first session, the second MRI session started with the acquisition of a short localizer sequence755

and a T1w sequence followed by the orientation of the FOV for the functional acquisitions and the756

Advanced Shimming. Participants were asked to rest calmly and keep their eyes closed during this757

period. Next, during the first functional sequence of the second study session, participants performed758

a ninth run of the recall phase of the task in order to remind them about the correct response buttons759

associated with each of the six stimuli. We then acquired functional resting-state scans of 3 min each760

and functional task scans of 10 min each in an interleaved fashion, starting with a resting-state scan.761

During the acquisition of functional resting-state data, participants were asked to rest calmly and762

fixate a small white cross on a black background that was presented on the screen. During each of763

the functional task scans, participants performed the graph learning phase of the task (for details, see764

section “Graph trials” on page 24). Importantly, half-way through the third block of the main task, the765

graph structure was changed without prior announcement towards the second graph structure. After766

the sixth resting-state acquisition, field maps were acquired and participants left the MRI scanner.767

MRI data acquisition768

All MRI data were acquired using a 32-channel head coil on a research-dedicated 3-Tesla Siemens769

Magnetom TrioTim MRI scanner (Siemens, Erlangen, Germany) located at the Max Planck Institute770

for Human Development in Berlin, Germany.771

At the beginning of each of the two MRI recording sessions, high-resolution T1w anatomical Mag-772
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netization Prepared Rapid Gradient Echo (MPRAGE) sequences were obtained from each participant773

to allow co-registration and brain surface reconstruction (sequence specification: 256 slices; TR =774

1900 ms; echo time (TE) = 2.52 ms; flip angle (FA) = 9 degrees; inversion time (TI) = 900 ms; matrix775

size = 192 x 256; FOV = 192 x 256 mm; voxel size = 1 x 1 x 1 mm).776

For the functional scans, whole-brain images were acquired using a segmented k-space and steady777

state T2*-weighted multi-band (MB) echo-planar imaging (EPI) single-echo gradient sequence that is778

sensitive to the blood-oxygen-level dependent (BOLD) contrast. This measures local magnetic changes779

caused by changes in blood oxygenation that accompany neural activity (sequence specification: 64780

slices in interleaved ascending order; anterior-to-posterior (A-P) phase encoding direction; TR = 1250781

ms; TE = 26 ms; voxel size = 2 x 2 x 2 mm; matrix = 96 x 96; FOV = 192 x 192 mm; FA = 71782

degrees; distance factor = 0%; MB acceleration factor 4). Slices were tilted for each participant by 20783

degrees forwards relative to the rostro-caudal axis (positive tilt) to improve the quality of fMRI signal784

from the hippocampus (cf. Weiskopf et al., 2006) while preserving good coverage of occipito-temporal785

and motor brain regions. The same sequence parameters were used for all acquisitions of fMRI data.786

For each functional task run, the task began after the acquisition of the first four volumes (i.e., after787

5.00 s) to avoid partial saturation effects and allow for scanner equilibrium.788

The first MRI session included nine functional task runs in total (for the study procedure, see789

Fig. S1). After participants read the task instructions inside the MRI scanner, they completed the790

training trials of the task which explicitly taught participants the correct mapping between stimuli791

and response keys. During this task phase, 80 volumes of fMRI were collected, which were not used792

in any further analysis. The other eight functional task runs during session 1 consisted of eight runs793

of the recall condition. Each run of the recall task was about 6 min in length, during which 320794

functional volumes were acquired. We also recorded two functional runs of resting-state fMRI data,795

one before and one after the task runs. Each resting-state run was about 5 min in length, during796

which 233 functional volumes were acquired.797

The second MRI session included six functional task runs in total (for the study procedure, see798

Fig. S1). After participants entered the MRI scanner, they completed a ninth run of the recall task.799

As before, this run of the recall task was also about 6 min in length, during which 320 functional800

volumes were acquired. Participants then completed five runs of the graph learning task. Each run of801

the five graph learning runs was about 10 min in length, during which 640 functional volumes were802

acquired. The five runs of the graph learning task were interleaved with six recordings of resting-state803

fMRI data, each about 3 min in length, during which 137 functional volumes were acquired.804

At the end of each scanning session, two short acquisitions with six volumes each were collected805

using the same sequence parameters as for the functional scans but with varying phase encoding806

polarities, resulting in pairs of images with distortions going in opposite directions between the two807

acquisitions (also known as the blip-up / blip-down technique). From these pairs the displacement808

maps were estimated and used to correct for geometric distortions due to susceptibility-induced field809

inhomogeneities as implemented in the fMRIPrep preprocessing pipeline (Esteban et al., 2018) (see810

details below). In addition, a whole-brain spoiled gradient recalled (GR) field map with dual echo-time811

images (sequence specification: 36 slices; A-P phase encoding direction; TR = 400 ms; TE1 = 4.92812

ms; TE2 = 7.38 ms; FA = 60 degrees; matrix size = 64 x 64; FOV = 192 x 192 mm; voxel size = 3813

x 3 x 3.75 mm) was obtained as a potential alternative to the blip-up / blip-down method described814

above.815

We also measured respiration during each scanning session using a pneumatic respiration belt as816
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part of the Siemens Physiological Measurement Unit (PMU). Pulse data could not be recorded as the817

recording device could not be attached to the participants’ index finger as it would have otherwise818

interfered with the motor responses.819

MRI data preparation820

Conversion of data to the brain imaging data structure (BIDS) standard The majority821

of the steps involved in preparing and preprocessing the MRI data employed recently developed tools822

and workflows aimed at enhancing standardization and reproducibility of task-based fMRI studies823

(for a similar data processing pipeline, see e.g., Esteban et al., 2019a; Wittkuhn and Schuck, 2021).824

Version-controlled data and code management was performed using DataLad (version 0.13.0; Halchenko825

et al., 2019, 2021), supported by the DataLad handbook (Wagner et al., 2020). Following success-826

ful acquisition, all study data were arranged according to the brain imaging data structure (BIDS)827

specification (Gorgolewski et al., 2016) using the HeuDiConv tool (version 0.8.0.2; freely available828

from https://github.com/ReproNim/reproin or https://hub.docker.com/r/repronim/reproin)829

in combination with the ReproIn heuristic (Visconti di Oleggio Castello et al., 2020) (version 0.6.0)830

that allows automated creation of BIDS data sets from the acquired Digital Imaging and Commu-831

nications in Medicine (DICOM) images. To this end, the sequence protocol of the MRI data ac-832

quisition was set up to conform with the specification required by the ReproIn heuristic (for details833

of the heuristic, see https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/834

reproin.py). HeuDiConv was run inside a Singularity container (Kurtzer et al., 2017; Sochat et al.,835

2017) that was built from the most recent version (at the time of access) of a Docker container (tag836

0.8.0.2), available from https://hub.docker.com/r/repronim/reproin/tags. DICOMs were con-837

verted to the NIfTI-1 format using dcm2niix (version 1.0.20190410GCC6.3.0; Li et al., 2016). In838

order to make personal identification of study participants unlikely, we eliminated facial features from839

all high-resolution structural images using pydeface (version 2.0.0; Gulban et al., 2019, available840

from https://github.com/poldracklab/pydeface or https://hub.docker.com/r/poldracklab/841

pydeface). pydeface (Gulban et al., 2019) was run inside a Singularity container (Kurtzer et al.,842

2017; Sochat et al., 2017) that was built from the most recent version (at the time of access) of a Docker843

container (tag 37-2e0c2d), available from https://hub.docker.com/r/poldracklab/pydeface/tags844

and used Nipype, version 1.3.0-rc1 (Gorgolewski et al., 2011, 2019). During the process of convert-845

ing the study data to BIDS the data set was queried using pybids (version 0.12.1; Yarkoni et al.,846

2019a,b), and validated using the bids-validator (version 1.5.4; Gorgolewski et al., 2020). The847

bids-validator (Gorgolewski et al., 2020) was run inside a Singularity container (Kurtzer et al.,848

2017; Sochat et al., 2017) that was built from the most recent version (at the time of access) of a849

Docker container (tag v1.5.4), available from https://hub.docker.com/r/bids/validator/tags.850

MRI data quality control The data quality of all functional and structural acquisitions were851

evaluated using the automated quality assessment tool MRIQC, version 0.15.2rc1 (for details, see Es-852

teban et al., 2017, and the MRIQC documentation, available at https://mriqc.readthedocs.io/en/853

stable/). The visual group-level reports of the estimated image quality metrics confirmed that the854

overall MRI signal quality of both anatomical and functional scans was highly consistent across par-855

ticipants and runs within each participant.856

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.02.478787doi: bioRxiv preprint 

https://github.com/ReproNim/reproin
https://hub.docker.com/r/repronim/reproin
https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py
https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py
https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py
https://hub.docker.com/r/repronim/reproin/tags
https://github.com/poldracklab/pydeface
https://hub.docker.com/r/poldracklab/pydeface
https://hub.docker.com/r/poldracklab/pydeface
https://hub.docker.com/r/poldracklab/pydeface
https://hub.docker.com/r/poldracklab/pydeface/tags
https://hub.docker.com/r/bids/validator/tags
https://mriqc.readthedocs.io/en/stable/
https://mriqc.readthedocs.io/en/stable/
https://mriqc.readthedocs.io/en/stable/
https://doi.org/10.1101/2022.02.02.478787
http://creativecommons.org/licenses/by-nc-nd/4.0/


MRI data preprocessing857

Preprocessing of MRI data was performed using fMRIPrep 20.2.0 (long-term support (LTS) release;858

Esteban et al., 2018, 2019b, RRID:SCR 016216), which is based on Nipype 1.5.1 (Gorgolewski et al.,859

2011, 2019, RRID:SCR 002502). Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham860

et al., 2014, RRID:SCR 001362), mostly within the functional processing workflow. For more details861

of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation at https:862

//fmriprep.readthedocs.io/en/latest/workflows.html. Note, that version 20.2.0 of fMRIPrep863

is a long-term support (LTS) release, offering long-term support and maintenance for four years.864

Preprocessing of anatomical MRI data using fMRIPrep A total of two T1w images were found865

within the input BIDS data set, one from each study session. All of them were corrected for inten-866

sity non-uniformity (INU) using N4BiasFieldCorrection (Tustison et al., 2010), distributed with867

Advanced Normalization Tools (ANTs) 2.3.3 (Avants et al., 2008, RRID:SCR 004757). The T1w-868

reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh869

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cere-870

brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-871

extracted T1w using fast (FMRIB Software Library (FSL) 5.0.9, RRID:SCR 002823, Zhang et al.,872

2001). A T1w-reference map was computed after registration of two T1w images (after INU-correction)873

using mri robust template (FreeSurfer 6.0.1, Reuter et al., 2010). Brain surfaces were reconstructed874

using recon-all (FreeSurfer 6.0.1, RRID:SCR 001847, Dale et al., 1999), and the brain mask es-875

timated previously was refined with a custom variation of the method to reconcile ANTs-derived876

and FreeSurfer-derived segmentations of the cortical GM of Mindboggle (RRID:SCR 002438, Klein877

et al., 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym,878

MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs879

2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The following880

templates were selected for spatial normalization: FSL’s MNI ICBM 152 non-linear 6th Generation881

Asymmetric Average Brain Stereotaxic Registration Model (Evans et al., 2012, RRID:SCR 002823;882

TemplateFlow ID: MNI152NLin6Asym), ICBM 152 Nonlinear Asymmetrical template version 2009c883

(Fonov et al., 2009, RRID:SCR 008796; TemplateFlow ID: MNI152NLin2009cAsym).884

Preprocessing of functional MRI data using fMRIPrep For each of the BOLD runs found per885

participant (across all tasks and sessions), the following preprocessing was performed. First, a refer-886

ence volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.887

A B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging888

(EPI) references with opposing phase-encoding directions, with 3dQwarp (Cox and Hyde, 1997, AFNI889

20160207). Based on the estimated susceptibility distortion, a corrected echo-planar imaging (EPI)890

reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD891

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements892

boundary-based registration (Greve and Fischl, 2009). Co-registration was configured with six degrees893

of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices,894

and six corresponding rotation and translation parameters) are estimated before any spatiotemporal895

filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-time corrected using896

3dTshift from AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR 005927). The BOLD time-series897

were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative. The898
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BOLD time-series (including slice-timing correction) were resampled onto their original, native space899

by applying a single, composite transform to correct for head-motion and susceptibility distortions.900

These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just901

preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a prepro-902

cessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped version903

were generated using a custom methodology of fMRIPrep. Several confounding time-series were calcu-904

lated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise905

global signals. FD was computed using two formulations following Power et al. (absolute sum of906

relative motions, 2014) and Jenkinson et al. (relative root mean square displacement between affines,907

2002). FD and DVARS are calculated for each functional run, both using their implementations in908

Nipype (following the definitions by Power et al., 2014). The three global signals are extracted within909

the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were910

extracted to allow for component-based noise correction (CompCor, Behzadi et al., 2007). Principal911

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete912

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical913

(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within the914

brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are gener-915

ated in anatomical space. The implementation differs from that of Behzadi et al. (2007) in that instead916

of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted from a mask917

of pixels that likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask918

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from919

voxels containing a minimal fraction of GM. Finally, the masks are resampled into BOLD space and920

binarized by thresholding at 0.99 (as in the original implementation). Components are also calculated921

separately within the WM and CSF masks. For each CompCor decomposition, the k components with922

the largest singular values are retained, such that the retained components’ time series are sufficient923

to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). The924

remaining components are dropped from consideration. The head-motion estimates calculated in the925

correction step were also placed within the corresponding confounds file. The confound time series926

derived from head motion estimates and global signals were expanded with the inclusion of temporal927

derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold928

of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. All resamplings can be929

performed with a single interpolation step by composing all the pertinent transformations (i.e. head-930

motion transform matrices, susceptibility distortion correction when available, and co-registrations931

to anatomical and output spaces). Gridded (volumetric) resamplings were performed using antsAp-932

plyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of933

other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri vol2surf934

(FreeSurfer).935

Additional preprocessing of functional MRI data following fMRIPrep Following preprocess-936

ing using fMRIPrep, the fMRI data were spatially smoothed using a Gaussian mask with a standard937

deviation (Full Width at Half Maximum (FWHM) parameter) set to 4 mm using an example Nipype938

smoothing workflow (see the Nipype documentation for details) based on the Smallest Univalue Seg-939

ment Assimilating Nucleus (SUSAN) algorithm as implemented in FSL (Smith and Brady, 1997). In940

this workflow, each run of fMRI data is separately smoothed using FSL’s SUSAN algorithm with the941
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brightness threshold set to 75% of the median value of each run and a mask constituting the mean942

functional image of each run.943

Multi-variate fMRI pattern analysis944

All fMRI pattern classification analyses were conducted using the open-source Python (Python Soft-945

ware Foundation, Python Language Reference, version 3.8.6) packages Nilearn (version 0.7.0; Abra-946

ham et al., 2014) and scikit-learn (version 0.24.1; Pedregosa et al., 2011). In all classification947

analyses, we trained an ensemble of six independent classifiers, one for each of the six event classes.948

Depending on the analysis, these six classes either referred to the identity of the six visual animal949

stimuli or the identity of the participant’s motor response, when training the classifiers with respect950

to the stimulus or the motor onset, respectively. For each class-specific classifier, labels of all other951

classes in the data were relabeled to a common “other” category. In order to ensure that the classifier952

estimates were not biased by relative differences in class frequency in the training set, the weights953

associated with each class were adjusted inversely proportional to the class frequencies in each train-954

ing fold. Given that there were six classes to decode, the frequencies used to adjust the classifiers’955

weights were 1
6 for the class of interest, and 5

6 for the “other” class, comprising any other classes.956

Adjustments to minor imbalances caused by the exclusion of erroneous trials were performed in the957

same way. We used separate logistic regression classifiers with identical parameter settings. All classi-958

fiers were regularized using L2 regularization. The C parameter of the cost function was fixed at the959

default value of C = 1.0 for all participants. The classifiers employed the lbfgs algorithm to solve the960

multi-class optimization problem and were allowed to take a maximum of 4, 000 iterations to converge.961

Pattern classification was performed within each participant separately, never across participants. For962

each example in the training set, we added 4 s to the event onset and chose the volume closest to963

that time point (i.e., rounding to the nearest volume) to center the classifier training on the expected964

peaks of the BOLD response (for a similar approach, see e.g., Deuker et al., 2013). At a TR of 1.25965

s this corresponded roughly to the fourth MRI volume which thus compromised a time window of966

3.75 s to 5.0 s after each event onset. We detrended the fMRI data separately for each run across all967

task conditions to remove low frequency signal intensity drifts in the data due to noise from the MRI968

scanner. For each classifier and run, the features were standardized (z-scored) by removing the mean969

and scaling to unit variance separately for each training and test set.970

Classification procedures First, in order to assess the ability of the classifiers to decode the correct971

class from fMRI patterns, we conducted a leave-one-run-out cross-validation procedure for which data972

from seven task runs of the recall phase in session 1 were used for training and data from the left-out973

run (i.e., the eighth run) from session 1 was used for testing the classification performance. This974

procedure was repeated eight times so that each task run served as the testing set once. Classifier975

training was performed on data from all correct recall trials of the seven runs in the respective cross-976

validation fold. In each iteration of the leave-one-run-out procedure, the classifiers trained on seven out977

of eight runs were then applied separately to the data from the left-out run. Specifically, the classifiers978

were applied to (1) data from the recall trials of the left-out run, selecting volumes capturing the979

expected activation peaks to determine classification accuracy, and (2) data from the recall trials of980

the left-out run, selecting all volumes from the volume closest to the stimulus or response onset and981

the next seven volumes to characterize temporal dynamics of probabilistic classifier predictions on a982

single trial basis.983
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Second, we assessed decoding performance on recall trials across the two experimental sessions.984

The large majority of fMRI data that was used to train the classifiers was collected in session 1 (eight of985

nine runs of the recall task), but the trained classifiers were mainly applied to fMRI data from session986

2 (i.e., on-task intervals during graph trials). At the beginning of the second experimental session,987

participants completed another run of the recall task (i.e., a ninth run; for the study procedure, see988

Fig. S1). This additional task run mainly served the two purposes of (1) reminding participants about989

the correct S-R mapping that they had learned in session 1, and (2) to investigate the ability of the990

classifiers to correctly decode fMRI patterns in session 2 when they were only trained on session 1991

data. This second aspect is crucial, as the main focus of investigation is the potential reactivation of992

neural task representations in session 2 fMRI data. Thus, it is important to demonstrate that this993

ability is not influenced by losses in decoding performance due to decoding across session boundaries.994

In order to test cross-session decoding, we thus trained the classifiers on all eight runs of the recall995

condition in session 1 and tested their decoding performance on the ninth run of the recall condition996

in session 2. Classifiers trained on data from all nine runs of the recall task were subsequently applied997

to data from on-task intervals in graph trials in session 2. For the classification analyses in on-task998

intervals of the graph task, classifiers were trained on the peak activation patterns from all correct999

recall trials (including session 1 and session 2 data) and then tested on all TR corresponding to the1000

graph task ITIs.1001

Feature selection All participant-specific anatomical masks were created based on automated1002

anatomical labeling of brain surface reconstructions from the individual T1w reference image cre-1003

ated with Freesurfer’s recon-all (Dale et al., 1999) as part of the fMRIPrep workflow (Esteban et al.,1004

2018), in order to account for individual variability in macroscopic anatomy and to allow reliable la-1005

beling (Fischl et al., 2004; Poldrack, 2007). For the anatomical masks of occipito-temporal regions we1006

selected the corresponding labels of the cuneus, lateral occipital sulcus, pericalcarine gyrus, superior1007

parietal lobule, lingual gyrus, inferior parietal lobule, fusiform gyrus, inferior temporal gyrus, parahip-1008

pocampal gyrus, and the middle temporal gyrus (cf. Haxby et al., 2001; Wittkuhn and Schuck, 2021).1009

For the anatomical ROI of motor cortex, we selected the labels of the left and right gyrus precentralis1010

as well as gyrus postcentralis. The labels of each ROI are listed in Table 1. Only gray-matter voxels1011

were included in the generation of the masks as BOLD signal from non-gray-matter voxels cannot be1012

generally interpreted as neural activity (Kunz et al., 2018). Note, however, that due to the whole-brain1013

smoothing performed during preprocessing, voxel activation from brain regions outside the anatomical1014

mask but within the sphere of the smoothing kernel might have entered the anatomical mask (thus,1015

in principle, also including signal from surrounding non-gray-matter voxels).1016

ROI Freesurfer labels (brain region)

Occipito-temporal 1005, 2005 (cuneus); 1011, 2011 (lateral occipital sulcus); 1021, 2021 (perical-
carine gyrus); 1029, 2029 (superio parietal lobule); 1013, 2013 (lingual gyrus);
1008, 2008 (inferior parietal lobule); 1007, 2007 (fusiform gyrus); 1009, 2009
(inferior temporal gyrus); 1016, 2016 (parahippocampal gyrus); 1015, 2015
(middle temporal gyrus)

Motor 1024, 2024 (left and right gyrus precentralis); 1022, 2022 (left and right gyrus
postcentralis)

Table 1: Labels used to index brain regions to create participant-specific anatomical masks of selected ROIs based on
Freesurfer’s recon-all labels (Dale et al., 1999)
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Statistical analyses1017

All statistical analyses were run inside a Docker software container or, if analyses were executed on1018

a high performance computing (HPC), a Singularity version of the same container (Kurtzer et al.,1019

2017; Sochat et al., 2017). All main statistical analyses were conducted using LME models employing1020

the lmer function of the lme4 package (version 1.1.27.1, Bates et al., 2015) in R (version 4.1.2, R1021

Core Team, 2019). If not stated otherwise, all models were fit with participants considered as a1022

random effect on both the intercept and slopes of the fixed effects, in accordance with results from1023

Barr et al. (2013) who recommend to fit the most complex model consistent with the experimental1024

design. If applicable, explanatory variables were standardized to a mean of zero and a standard1025

deviation of one before they entered the models. If necessary, we removed by-participant slopes1026

from the random effects structure to achieve a non-singular fit of the model (Barr et al., 2013).1027

Models were fitted using the Bound Optimization BY Quadratic Approximation (BOBYQA) optimizer1028

(Powell, 2007, 2009) with a maximum of 500, 000 function evaluations and no calculation of gradient1029

and Hessian of nonlinear optimization solution. The likelihoods of the fitted models were assessed1030

using Type III analysis of variance (ANOVA) with Satterthwaite’s method. A single-step multiple1031

comparison procedure between the means of the relevant factor levels was conducted using Tukey’s1032

honest significant difference (HSD) test (Tukey, 1949), as implemented in the emmeans package in R1033

(version 1.7.0, Lenth, 2019; R Core Team, 2019). In all other analyses, we used one-sample t-tests1034

if group data was compared to a baseline or paired t-tests if two samples from the same population1035

were compared. If applicable, correction for multiple hypothesis testing was performed using the false1036

discovery rate (FDR) (Benjamini and Hochberg, 1995) or Bonferroni (Bonferroni, 1936) correction1037

method. If not stated otherwise, the α-level was set to α = 0.05, and analyses of response times1038

included data from correct trials only. When effects of stimulus transitions were analyzed, data from1039

the first trial of each run and the first trial after the change in transition structure were removed.1040

Statistical analyses of behavioral data In order to test the a-priori hypothesis that behavioral1041

accuracy in each of the nine runs of the recall trials and five runs of the graph trials would be higher1042

than the chance-level, we performed a series of one-sided one-sample t-tests that compared partici-1043

pants’ mean behavioral accuracy per run against the chance level of 100%/6 = 16.67%. Participants’1044

behavioral accuracy was calculated as the proportion of correct responses per run (in %). The effect1045

sizes (Cohen’s d) were calculated as the difference between the mean of behavioral accuracy scores1046

across participants and the chance baseline (16.67%), divided by the standard deviation of the data1047

(Cohen, 1988). The resulting p-values were adjusted for multiple comparisons using the Bonferroni1048

correction (Bonferroni, 1936).1049

To examine the effect of task run on behavioral accuracy and response times in recall and graph1050

trials, we conducted an LME model that included all nine task runs of the recall trials (or five runs1051

of graph trials) as a numeric predictor variable (runs 1 to 9 and 1 to 5, respectively) as the main1052

fixed effect of interest as well as random intercepts and slopes for each participant. We also conceived1053

separate LME models that did not include data from the first task run of each task condition. These1054

models only included eight task runs of the recall trials (or four runs of the graph trials) as a numeric1055

predictor variable (runs 2 to 9 and 2 to 5, respectively) as the main fixed effect of interest as well as1056

by-participant random intercepts and slopes.1057

Analyzing the effect of one-step transition probabilities on behavioral accuracy and response times,1058

we conducted two-sided paired t-tests comparing the effect of high vs. low transition probability1059
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separately for both unidirectional (pij = 0.7 vs. pij = 0.1) and bidirectional (pij = 0.35 vs. pij = 0.1)1060

data. Effect sizes (Cohen’s d) were calculated by dividing the mean difference of the paired samples1061

by the standard deviation of the difference (Cohen, 1988) and p-values were adjusted for multiple1062

comparisons across both graph conditions and response variables using the Bonferroni correction1063

(Bonferroni, 1936).1064

In order to examine the effect of node distance on response times in graph trials, we conducted1065

separate LME models for data from the unidirectional and bidirectional graph structures. For LME1066

models of response time in unidirectional data, we included a linear predictor variable of node distance1067

(assuming a linear increase of response time with node distance; see Fig. 2d top right) as well as random1068

intercepts and slopes for each participant. The linear predictor variable was coded such that the node1069

distance linearly increased from −2 to +2 in steps of 1, modeling the hypothesized increase of response1070

time with node distance from 1 to 5 (centered on the node distance of 3). For LME models of response1071

time in bidirectional data, we included a quadratic predictor variable of node distance (assuming an1072

inverted U-shaped relationship between node distance and response time; see Fig. 2d bottom right) as1073

well as by-participant random intercepts and slopes. The quadratic predictor variable of node distance1074

was obtained by squaring the linear predictor variable. We also conducted separate LME models, that1075

did not include data of the most frequent transitions in both the uni- and bi-directional data, but1076

were otherwise specified in the same fashion.1077

Behavioral modeling based on the successor representation We modeled successor represen-1078

tations (SRs) for each participant depending on the transitions they experienced in the task, including1079

training and recall trials. Specifically, each of the six stimuli was associated with a vector that reflected1080

a running estimate of the long-term visitation probability of all six stimuli, starting from the present1081

node. The successor matrix Mt was therefore a 6-by-6 matrix that contained six predictive vectors,1082

one for each stimulus, and changed over time (hence the index t). The SR matrix on the first trial was1083

initialized with a baseline expectation of 1
36 for each node. After a transition between stimuli st and1084

st+1, the matrix row corresponding to st was updated following a temporal difference (TD) learning1085

rule (Dayan, 1993; Russek et al., 2017) as follows:1086

Mt
st,∗ = Mt

st,∗ + α
[
1st+1 + γMt

st+1,∗ −Mt
st,∗

]
(2)

whereby 1st+1 is a zero vector with a 1 in the st+1
th position, Mt

st,∗ is the row corresponding to1087

stimulus st of matrix M. The learning rate α was arbitrarily set to a fixed value of 0.1, and the1088

discount parameter γ was varied in increments of 0.05 from 0 to 0.95, as described in the main text.1089

This meant that the SR matrix would change throughout the task to reflect the experienced transitions1090

of each participant, first reflecting the random transitions experienced during the training and recall1091

trials, then adapting to the first experienced graph structure and later to the second graph structure.1092

In order to relate the SR models to participants’ response times, we calculated how surprising each1093

transition in the graph learning task was – assuming participants’ expectations were based on the1094

current SR on the given trial, Mt. To this end, we normalized Mt to sum to 1, and then calculated1095

the Shannon information (Shannon, 1948) for each trial, reflecting how surprising the just observed1096

transition from stimulus i to j was given the history of previous transitions up to time point t:1097

I(j) = − log2(m̃
t
i,j) (3)
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where m̃t
i,j is the normalized (i, j)th entry of SR matrix Mt. Using the base-2 logarithm allowed1098

to express the units of information in bits (binary digits) and the negative sign ensured that the1099

information measure was always positive or zero.1100

The final step in our analysis was to estimate LME models that tested how strongly this trial-wise1101

measure of SR-based surprise was related to participants’ response times in the graph learning task,1102

for each level of the discount parameter γ. LME models therefore included fixed effects of the SR-1103

based Shannon surprise, in addition to factors of task run, graph order (uni – bi vs. bi – uni) and1104

graph structure (uni vs. bi) of the current run, as well as by-participant random intercepts and slopes.1105

Separate LME models were conducted for each level of γ, and model comparison of the twenty models1106

was performed using AIC, as reported in the main text. To independently investigate the effects of1107

graph condition (uni vs. bi) and graph order (uni – bi vs. bi – uni), we analyzed separate LME models1108

for each combination of the two factors, using only SR-based Shannon surprise as the main fixed effect1109

of interest, and including by-participant random intercepts and slopes.1110

Statistical analysis of classification accuracy and single-trial decoding time courses In1111

order to assess the classifiers’ ability to differentiate between the neural activation patterns of individ-1112

ual visual objects and motor responses, we compared the predicted visual object or motor response1113

of each example in the test set to the visual object or motor response that actually occurred on the1114

corresponding trial. We obtained an average classification accuracy score for each participant by cal-1115

culating the mean proportion of correct classifier predictions across all correctly answered recall trials1116

in session 1 (Fig. 4a). The mean decoding accuracy scores of all participants were then compared1117

to the chance baseline of 100%/6 = 16.67% using a one-sided one-sample t-test, testing the a-priori1118

hypothesis that mean classification accuracy would be higher than the chance baseline. The effect1119

size (Cohen’s d) was calculated as the difference between the mean of accuracy scores and the chance1120

baseline, divided by the standard deviation of the data (Cohen, 1988). These calculations were per-1121

formed separately for each ROI and the resulting p-values were adjusted for multiple comparisons1122

using Bonferroni correction (Bonferroni, 1936).1123

We also examined the effect of task run on classification accuracy in recall trials. To this end,1124

we conducted an LME model including the task run as the main fixed effect of interest as well as1125

by-participant random intercepts and slopes (Fig. 4c). We then assessed whether performance was1126

above the chance level for all nine task runs and conducted nine separate one-sided one-sample t-tests1127

separately per ROIs, testing the a-priori hypothesis that mean decoding accuracy would be higher1128

than the 16.67% chance-level in each task run. All p-values were adjusted for 18 multiple comparisons1129

(across nine runs and two ROIs) using the Bonferroni-correction (Bonferroni, 1936).1130

Furthermore, we assessed the classifiers’ ability to accurately detect the presence of visual objects1131

and motor responses on a single trial basis. For this analysis we applied the trained classifiers to fifteen1132

volumes from the volume closest to the event onset and examined the time courses of the probabilistic1133

classification evidence in response to the event on a single trial basis (Fig. 4b). In order to test if1134

the time series of classifier probabilities reflected the expected increase of classifier probability for1135

the event occurring on a given trial, we compared the time series of classifier probabilities related to1136

the classified class with the mean time courses of all other classes using a two-sided paired t-test at1137

the fourth TR from event onset. Classifier probabilities were normalized by dividing each classifier1138

probability by the sum of the classifier probabilities across all fifteen TRs of a given trial. Here,1139

we used the Bonferroni-correction method (Bonferroni, 1936) to adjust for multiple comparisons of1140
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two observations. In the main text, we report the results for the peak in classification probability1141

of the true class, corresponding to the fourth TR after stimulus onset. The effect size (Cohen’s d)1142

was calculated as the difference between the means of the probabilities of the current versus all other1143

stimuli, divided by the standard deviation of the difference (Cohen, 1988).1144

Statistical analyses of classifier time courses on graph trials Classifier probabilities on graph1145

trials indicated that the fMRI signal was strongly dominated by the activation of the event on the1146

current trial. In order to test this effect, we calculated the mean classifier probabilities for the current1147

and all other five events of the current trial across all eight TRs in the ITIs. The mean classifier prob-1148

abilities of the current event were then compared to the mean classifier probabilities of all other events1149

using two two-sided paired t-tests, one for each ROI. The Bonferroni-correction method Bonferroni1150

(1936) was used to correct the p-values for two comparisons. The effect size (Cohen’s d) was calculated1151

as the difference between the means of the probabilities of the current versus all other events, divided1152

by the standard deviation of the difference Cohen (1988).1153

After excluding data from the event of the current trial, we analyzed the effect of node distance on1154

classifier probabilities for all non-displayed items using separate LME models for each graph structure,1155

similar to the analysis of response times described above. Based on our previous findings indicating1156

that the ordering of sequential neural events unfolds in the same order in earlier TRs and in reverse1157

order in later TRs (cf. Wittkuhn and Schuck, 2021), we also included a fixed effect of interval phase1158

(early TRs 1–4 vs. late TRs 5–8). In addition, each model included a fixed effect of ROI (occipito-1159

temporal vs. sensorimotor). As for response times (see above), LME models of classifier probabilities1160

in unidirectional or bidirectional data included a linear or quadratic predictor variable of node distance,1161

respectively, as well as random intercepts and slopes for each participant. In order to examine the effect1162

of a linear predictor in bidirectional data and the effect of the quadratic predictor in unidirectional1163

data, predictor variables were switched accordingly, but otherwise the LME were conducted as before.1164

Finally, we also directly compared the fits of a linear and quadratic model for each graph condition,1165

ROI, and interval phase and quantified the model comparison using AIC.1166

Predicting sequence probability during on-task intervals We computed how likely it was1167

to observe each 5-item sequence of stimuli under the assumption that participants were internally1168

sampling from an SR model of the unidirectional or bidirectional graph structure. This was done in1169

two steps.1170

First, we computed an ideal SR representation based on the true transition probabilities for each1171

graph structure. Specifically, we defined the true transition function T, as given by a graph, such that1172

each entry tij reflected the true probability of transitioning from image i to j. Following the main1173

ideas of the SR, we then calculated the long-term visitation probabilities as the time-discounted 5-step1174

probabilities following the Chapman-Kolmogorov Equation:1175

M̂ = T+ γT2 + γ2T3 + γ3T4 + γ4T5 (4)

The discount rate γ was set to 0.3. We used five steps since more steps make little practical dif-1176

ference given the exponential discounting. The theoretical sequence probabilities for a given sequence1177

s were then computed as the product of probabilities for all pairwise transitions (i, j) in the sequence,1178

according to the approximated and normalized SR matrix:1179
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p(s) =
∏
i,j∈s

˜̂mi,j (5)

Second, we approximated how likely it was to observe a sequence in the fMRI signal, given a1180

particular sequence event in the brain. Our previous work has investigated which sequences are1181

observed in classifier probabilities for a known true sequence (Wittkuhn and Schuck, 2021), and found1182

that random reordering of items (induced by noise) was most prominent for the middle sequence items,1183

and less severe for the start and end items. To model this effect, we set up a hidden markov model1184

(HMM) in which the emission probabilities for the items that came first or last in a sequence were1185

tuned sharply, sampled from a Gaussian distribution with a standard deviation of 0.5. This meant1186

that the probability to observe the true item was 79%, and the probabilities to observe other items1187

decreased sharply with distance from the true sequence position. The intermediate items had emission1188

probabilities sampled from a Gaussian with a larger standard deviation of 2, yielding a much flatter1189

distribution (probability to observe the true item at these positions was merely 19.9%). Using the1190

HMM framework, we then computed the “forward” probabilities to observe a specific sequence given1191

the transitions of a true sequence and the specified emission probabilities.1192

Finally, we combined the two probabilities that resulted from steps 1 and 2: (1) how likely a given1193

sequence was to have resulted from a sample of an SR-based internal model of a graph structure,1194

and (2) how likely it was to observe a sequence in the fMRI signal, given a specific sequence has1195

been reactivated in the brain. To obtain our final estimates, we multiplied these probabilities for1196

each sequence. This yielded the total probability to observe each sequence, assuming a true sequence1197

distribution that results from sampling from the SR model, and a noise model that relates true to1198

observed sequences.1199

To examine the relationship between predicted sequences based on this approach and observed1200

sequences in fMRI during on-task intervals, we ordered the classes by their classifier probabilities1201

within each TR (removing the class of the stimulus shown on the current trial) to obtain the observed1202

frequencies for each of the possible 120 5–item sequences across all TRs of the on-task intervals during1203

the graph learning task, separately for each participant, ROI and graph condition. The resulting1204

distribution indicated how often classifier probabilities within TRs were ordered according to the 1201205

sequential 5–item combinations. This distribution was then averaged across participants for each of the1206

120 sequences and correlated with the sequence probability based on the HMM approach described1207

above, separately for each ROI and graph condition (using Pearson’s correlation across 120 data1208

points).1209

Calculating the TR-wise sequentiality metric To analyze evidence for sequential replay during1210

on-task intervals in graph trials, we calculated a sequentiality metric quantified by the slope of a linear1211

regression between the classifier probabilities and each of the 5! = 120 possible sequential orderings1212

of a 5-item sequence in each TR, similar to our previous work (Wittkuhn and Schuck, 2021). We1213

next separated the regression slope data based on how likely the permuted sequences were given the1214

transition probabilities of the two graph structures in our experiment. To determine the probabilities of1215

each possible sequential ordering of the 5–item sequences, we used the HMM approach described above1216

to obtain the probability of all the 5! = 120 sequences, assuming a particular starting position (i.e.,1217

the event on the current trial). Next, we ranked the permuted sequences according to their probability1218

given the graph structures which allowed us to separately investigate sequentiality for the most and1219
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the least likely sequences based on the graph structure. We then separated the ranked sequences into1220

quintiles, i.e., five groups of ranked sequences from the least likely to the most likely 20%. Finally,1221

we averaged the regression slopes separately for both ROIs, the two graph structures and the early1222

and late TRs and compared the average slope against zero (the assumption of no sequentiality). The1223

mean slope coefficients of all participants were compared to zero using a series of two-sided one-sample1224

t-test, one for each graph condition, ROI, interval phase and sequence ranking bracket. p-values were1225

adjusted for multiple comparisons using Bonferroni correction (Bonferroni, 1936). The effect size1226

(Cohen’s d) was calculated as the difference between the mean of slope coefficients and the baseline,1227

divided by the standard deviation of the data (Cohen, 1988).1228
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ANTs Advanced Normalization Tools.1790

A-P anterior-to-posterior.1791
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BOBYQA Bound Optimization BY Quadratic Approximation.1793

BOLD blood-oxygen-level dependent.1794

CSF cerebrospinal fluid.1795

DGPs German Psychological Society.1796

DICOM Digital Imaging and Communications in Medicine.1797

EPI echo-planar imaging.1798

FA flip angle.1799

FD framewise displacement.1800

FDR false discovery rate.1801

fMRI functional magnetic resonance imaging.1802

FOV field of view.1803

FSL FMRIB Software Library.1804

FWHM Full Width at Half Maximum.1805

GM gray-matter.1806

GR gradient recalled.1807
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HRF The hemodynamic response function (HRF) characterizes an fMRI response that results from1810

a brief, spatially localized pulse of neuronal activity.1811

HSD honest significant difference.1812

INU intensity non-uniformity.1813
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IQR interquartile range.1814

ITI inter-trial interval.1815

LME linear mixed effects.1816

LTS long-term support.1817

MB multi-band.1818

MEG magnetoencephalography.1819

min minute.1820

MPRAGE Magnetization Prepared Rapid Gradient Echo.1821

MRI magnetic resonance imaging.1822

ms millisecond.1823

MTL medial temporal lobe.1824

PFC prefrontal cortex.1825

PMU Physiological Measurement Unit.1826

ROI region of interest.1827

s second.1828

SEM standard error of the mean.1829

SI supplementary information.1830

SR successor representation.1831

S-R stimulus-response.1832

SRI stimulus-response interval.1833

SUSAN Smallest Univalue Segment Assimilating Nucleus.1834

T1w T1-weighted.1835

TD temporal difference.1836

TE echo time.1837

TI inversion time.1838

TR repetition time.1839

WM white-matter.1840
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Task: Training

Task: Recall

Task: Main

Rest (Fixation)

Eyes closed

Supplementary Figure S1: Study procedure. (a) Session 1 started with a 5 min resting-state scan before partic-
ipants read the task instructions and completed the training condition of the task. Participants then completed eight
runs of the recall condition of ca. 6 min each before another 5 min resting-state scan was recorded. (b) Session 2 started
with another run of the recall condition of ca. 6 min. Participants then completed all five runs of the graph learning
task of about 10 min each which were interleaved with six resting-state scans of 3 min each. Both experimental sessions
started with a short localizer scan and a T1w anatomical scan and ended with the acquisition of fieldmaps. During
these scans and additional preparations by the study staff (e.g., orientation of the FOV) participants were asked to keep
their eyes closed. Numbers inside the rectangles indicate approximate duration of each step in minutes (mins). Colors
indicate participants’ task (see legend).

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.02.478787doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S2: Behavioral accuracy and response times per task run in training, recall, and
graph trials. Mean behavioral accuracy (in %; y-axis) per task run of the study (x-axis) in (a) training trials, (b) recall
trials in session 1, (c) recall trials in session 2, and (d) graph trials in session 2. (e) Mean log response time (y-axis) per
task run of the study (x-axis) in graph trials. The chance-level (gray dashed line) is at 16.67%. Each dot corresponds to
averaged data from one participant. Colored lines connect data across runs for each participant. Boxplots indicate the
median and IQR. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).
The upper whisker extends from the hinge to the largest value no further than 1.5∗ IQR from the hinge (where IQR is
the interquartile range (IQR), or distance between the first and third quartiles). The lower whisker extends from the
hinge to the smallest value at most 1.5∗ IQR of the hinge. The diamond shapes show the sample mean. Error bars and
shaded areas indicate ±1 SEM. All statistics have been derived from data of n = 39 human participants who participated
in one experiment.
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Supplementary Figure S3: Behavioral responses across task runs. (a) Log response times (y-axis) as a function
of node distance (x-axis) in the graph structure (colors) for each task run (vertical panels) and graph order (uni – bi
vs. bi – uni; horizontal panels). (b) Proportion of errors (in %; y-axis; relative to the total number of trials per node
distance and run) as a function of node distance (x-axis) in the graph structure (colors) for each task run (vertical panels)
and graph order (uni – bi vs. bi – uni; horizontal panels). Boxplots indicate the median and IQR. The lower and upper
hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the
hinge to the largest value no further than 1.5∗ IQR from the hinge (where IQR is the interquartile range (IQR), or
distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most
1.5∗ IQR of the hinge. The diamond shapes show the sample mean. Each dot corresponds to averaged data from one
participant. Error bars and shaded areas represent ±1 SEM. All statistics have been derived from data of n = 39 human
participants who participated in one experiment.
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Supplementary Figure S4: Classifier probabilities in long ITIs of graph trials. Time courses (in TRs from the
onset of the ITIs; x-axis) of classifier probabilities (in %; y-axis) per class (colors; see legend) and run (vertical panels).
Substantial delayed and extended increases in classifier probability were found for the class that occurred on a given
trial (horizontal panels) in both occipito-temporal brain regions (a) and motor and somatosensory cortex (b), peaking
around the fourth TR following ITI onset, as expected given that classifier were trained on the fourth TR from event
onset in fMRI data from recall trials. Each line represented averaged data across all trials of all participants. All shaded
areas represent ±1 SEM. Gray rectangles indicate the long ITI (TRs 1–8). All statistics have been derived from data of
n = 39 human participants who participated in one experiment.
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Supplementary Figure S5: Classifier probabilities during graph trials are modulated by node distance
in the graph structure. Classifier probabilities (in %; y-axis) as a function of the distance between the nodes in the
uni-directional (first line) and bi-directional (second line) graph structure averaged across TRs in the early (TRs 1–4) or
late (TRs 5–8) phase (horizontal panels) of the long ITIs of the five runs (vertical panels) in graph trials for data in the
occipito-temporal (a), (b) and motor cortex (c), (d) ROIs. Each dot corresponds to data averaged across participants.
Error bars represent ±1 SEM. All statistics have been derived from data of n = 39 human participants who participated
in one experiment.
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Supplementary Figure S6: Model comparison of LME models with linear vs. quadratic predictor of
classifier probabilities in ITIs of graph trials. (a) Difference in AIC values for LME models including a linear vs.
a quadratic predictor for mean classifier probabilities for the two TR phases (early vs. later), the two graph conditions
(uni vs. bi; vertical panels) and the two ROIs (occipito-temporal vs. motor; horizontal panels). Positive values
indicate a better fit of the LME model with the linear predictor and negative values indicate a better fit of the LME
model with the quadratic predictor. (b) Table of AIC values of LME models with linear and quadratic predictor (and
their difference) for all combinations of ROI, graph condition, TR phase. All statistics have been derived from data of
n = 39 human participants who participated in one experiment with two sessions.
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Task instructions in English3

Box S1: Screen 1 of instructions for the training condition in session 1

Welcome to the study - Session 1!

Please read the following information carefully. If you have any questions, you can clarify

them right away with the study instructor. Please lie as still and relaxed as possible for the

entire time.

Press any key to continue.

Box S2: Screen 1 of instructions for the training condition in session 1

Your task:

You are a zookeeper in training and have to make sure that all animals are in the right cages.

First you will learn in a training which animal belongs in which cage. We will now explain to

you exactly how this task works.

Press any key to continue.

Box S3: Screen 3 of instructions for the training condition in session 1

Training (Part 1)

You want to become a zookeeper and start your training today. First you will learn which

animal belongs in which cage. You will see six cages at the bottom of the screen. Each of the

six cages belongs to one of six animals. You will select a cage with the appropriate response

key. Please keep your ring, middle and index fingers on the response keys the entire time so

that you can answer as quickly and accurately as possible.

Press any key to continue.

Box S4: Screen 4 of instructions for the training condition in session 1

During the training, the animals appear above their cages. Press the key for that cage as fast

as you can and remember the cage where the animal belongs. Please press the correct button

within 1 second. Please answer as quickly and accurately as possible. You will receive

feedback if your answer was correct, incorrect or too slow. The correct cage will appear in

green and the incorrect cage will appear in red.

Press any key to continue.
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Box S5: Screen 5 of instructions for the training condition in session 1

It is very important that you actively remember which animal belongs in which cage. You will

get a higher bonus if you remember the correct assignment. The better you remember which

animal belongs in which cage, the more money you earn! You will now complete one pass of

this task, which will take approximately 2 minutes.

Press any key to continue.

Box S6: Screen 1 of instructions for the recall condition in session 1

Training (part 2)

We will now check how well you have learned the assignment of the animals to their cages.

The animals will now appear in the center of the screen. You are asked to remember the

correct cage for each animal, and then press the correct key as quickly as possible.

Press any key to continue.

Box S7: Screen 2 of instructions for the recall condition in session 1

This time you respond only after the animal is shown. In each round, the animal will appear

first in the center of the screen. Then please try to actively imagine the correct combination of

animal, cage and response key. After that, a small cross will appear for a short moment. Then

the cages appear and you can respond as quickly and accurately as possible. Please respond

as soon as the cages appear, not earlier.

Press any key to continue.

Box S8: Screen 3 of instructions for the recall condition in session 1

You have again 1 second to respond. Please respond again as fast and accurate as possible.

You will get feedback again if your response was wrong or too slow. If your response was

correct, you will continue directly with the next round without feedback. You will now

complete 8 passes of this task, each taking about 6 minutes. In between the rounds you will

be given the opportunity to take a break.

Press any key to continue.

Box S9: Screen 1 of instructions for the recall condition in session 2

Welcome to the study - Session 2!

We will check again if you can remember the assignment of the animals to their cages. The

animals will appear in the center of the screen again. You are asked to remember again the

correct cage for each animal and press the correct key as quickly as possible.

Press any key to continue.
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Box S10: Screen 2 of instructions for the recall condition in session 2

You answer again only after the animal has been shown. In each round, the animal appears

first in the center of the screen. Then please try to actively imagine the correct combination of

animal, cage and answer key. After that, a small cross will first appear for a short moment.

Then the cages appear and you can answer as quickly and accurately as possible. Please

respond as soon as the cages appear, not earlier.

Press any key to continue.

Box S11: Screen 3 of instructions for the recall condition in session 2

You have again 1 second to respond. Please respond again as fast and accurate as possible.

You will get feedback again if your response was wrong or too slow. If your answer was

correct, you will proceed directly to the next round without feedback. You will now complete

a run-through of this task, which will again take approximately 6 minutes. After the round

you will be given the opportunity to take a break. Press any key to continue.

Box S12: Screen 1 of instructions for the graph condition in session 2

You have finished the passage to memory! Well done! You are now welcome to take a short

break and also close your eyes. Please continue to lie still and relaxed. When you are ready,

you can continue with the instructions for the main task.

Press any key to continue.

Box S13: Screen 2 of instructions for the graph condition in session 2

Main task

Congratulations, you are now a trained zookeeper! Attention: Sometimes the animals break

out of their cages! Your task is to bring the animals back to the right cages. When you see an

animal on the screen, press the right button as fast as possible to bring the animal back to the

right cage. This time you will not get any feedback if your answer was right or wrong. The

more animals you put in the correct cages, the more bonus you get at the end of the trial!

The main task consists of 5 runs, each taking about 10 minutes to complete.

Press any key to continue.

Box S14: Screen 3 of instructions for the graph condition in session 2

You have again 1 second to respond. In the main task, you again respond immediately when

you see an animal on the screen. Again, please respond as quickly and accurately as possible.

Between each round you will again see a cross for a moment. Sometimes the cross will be

shown a little shorter and sometimes a little longer. It is best to stand by all the time to

respond as quickly as possible to the next animal.

Press any key to continue.
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Box S15: Screen 4 of instructions for the graph condition in session 2

Resting phases

After all the work as a zookeeper you also need rest. Before, between and after the main task

we will take some measurements during which you should just lie still. During these rest

periods, please keep your eyes open and look at a cross the entire time. Blinking briefly is

perfectly fine. The background of the screen will be dark during the resting phases. Please

continue to lie very still and relaxed and continue to try to move as little as possible. Please

try to stay awake the entire time.

Please wait for the study instructor.
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Task instructions in German4

Box S16: Screen 1 of instructions for the training condition in session 1

Willkommen zur Studie - Sitzung 1!

Bitte lesen Sie sich die folgenden Informationen aufmerksam durch. Falls Sie Fragen haben,

können Sie diese gleich mit der Versuchsleitung klären. Bitte liegen Sie die gesamte Zeit so

ruhig und entspannt wie möglich.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S17: Screen 2 of instructions for the training condition in session 1

Ihre Aufgabe:

Sie sind ein*e Zoowärter*in in Ausbildung und sollen darauf achten, dass alle Tiere in den

richtigen Käfigen sind. Zuerst werden Sie in einem Training lernen, welches Tier in welchen

Käfig gehört. Wir werden Ihnen jetzt genau erklären, wie diese Aufgabe funktioniert.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S18: Screen 3 of instructions for the training condition in session 1

Training (Teil 1)

Sie wollen Zoowärter*in werden und beginnen heute Ihre Ausbildung. Zuerst lernen Sie,

welches Tier in welchen Käfig gehört. Sie werden gleich sechs Käfige im unteren Teil des

Bildschirms sehen. Jeder der sechs Käfige gehört zu einem von sechs Tieren. Sie wählen einen

Käfig mit der entsprechenden Antworttaste aus. Bitte lassen Sie Ihre Ring-, Mittel- und

Zeigefinger die gesamte Zeit auf den Antworttasten, damit Sie so schnell und genau wie

möglich antworten können.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S19: Screen 4 of instructions for the training condition in session 1

Während des Trainings erscheinen die Tiere über ihren Käfigen. Drücken Sie die Taste für

diesen Käfig so schnell wie möglich und merken Sie sich den Käfig, in den das Tier gehört.

Bitte drücken Sie die richtige Taste innerhalb von 1 Sekunde. Bitte antworten Sie so schnell

und genau wie möglich. Sie erhalten eine Rückmeldung, wenn Ihre Antwort richtig, falsch

oder zu langsam war. Dabei erscheint der richtige Käfig in Grün und der falsche Käfig in Rot.

Drücken Sie eine beliebige Taste, um fortzufahren.
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Box S20: Screen 5 of instructions for the training condition in session 1

Es ist sehr wichtig, dass Sie sich aktiv merken, welches Tier in welchen Käfig gehört. Sie

erhalten einen höheren Bonus, wenn Sie sich an die richtige Zuordnung erinnern. Je besser Sie

sich daran erinnern, in welchen Käfig welches Tier gehört, desto mehr Geld verdienen Sie! Sie

werden nun einen Durchgang dieser Aufgabe absolvieren, der circa 2 Minuten dauert.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S21: Screen 1 of instructions for the recall condition in session 1

Training (Teil 2)

Wir werden nun überprüfen, wie gut Sie die Zuordnung der Tiere zu ihren Käfigen gelernt

haben. Die Tiere werden nun in der Mitte des Bildschirms erscheinen. Sie sollen sich an den

richtigen Käfig für jedes Tier erinnern und dann die richtige Taste so schnell wie möglich

drücken.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S22: Screen 2 of instructions for the recall condition in session 1

Dieses Mal antworten Sie erst nachdem das Tier gezeigt wurde. In jeder Runde erscheint

zuerst das Tier in der Mitte des Bildschirms. Versuchen Sie dann bitte, sich die richtige

Kombination von Tier, Käfig und Antworttaste aktiv vorzustellen. Danach erscheint zunächst

ein kleines Kreuz für einen kurzen Moment. Dann erscheinen die Käfige und Sie können so

schnell und genau wie möglich antworten. Bitte antworten Sie erst sobald die Käfige

erscheinen, nicht früher.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S23: Screen 3 of instructions for the recall condition in session 1

Sie haben wieder 1 Sekunde Zeit zu antworten. Bitte antworten Sie wieder so schnell und

genau wie möglich. Sie erhalten wieder eine Rückmeldung, wenn Ihre Antwort falsch oder zu

langsam war. Wenn Ihre Antwort richtig war, geht es ohne Rückmeldung direkt mit der

nächsten Runde weiter. Sie werden nun 8 Durchgänge dieser Aufgabe absolvieren, die jeweils

circa 6 Minuten dauern. Zwischen den Durchgängen werden Sie die Möglichkeit bekommen,

eine Pause zu machen.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S24: Screen 1 of instructions for the recall condition in session 2

Willkommen zur Studie - Sitzung 2!

Wir werden noch einmal überprüfen, ob Sie sich an die Zuordnung der Tiere zu ihren Käfigen

erinnern können. Die Tiere werden wieder in der Mitte des Bildschirms erscheinen. Sie sollen

sich wieder an den richtigen Käfig für jedes Tier erinnern und die richtige Taste so schnell wie

möglich drücken.

Drücken Sie eine beliebige Taste, um fortzufahren.
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Box S25: Screen 2 of instructions for the recall condition in session 2

Sie antworten wieder erst nachdem das Tier gezeigt wurde. In jeder Runde erscheint zuerst das

Tier in der Mitte des Bildschirms. Versuchen Sie dann bitte, sich die richtige Kombination von

Tier, Käfig und Antworttaste aktiv vorzustellen. Danach erscheint zunächst ein kleines Kreuz

für einen kurzen Moment. Dann erscheinen die Käfige und Sie können so schnell und genau

wie möglich antworten. Bitte antworten Sie erst sobald die Käfige erscheinen, nicht früher.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S26: Screen 3 of instructions for the recall condition in session 2

Sie haben wieder 1 Sekunde Zeit zu antworten. Bitte antworten Sie wieder so schnell und

genau wie möglich. Sie erhalten wieder eine Rückmeldung, wenn Ihre Antwort falsch oder zu

langsam war. Wenn Ihre Antwort richtig war, geht es ohne Rückmeldung direkt mit der

nächsten Runde weiter. Sie werden nun einen Durchgang dieser Aufgabe absolvieren, der

wieder circa 6 Minuten dauert. Nach dem Durchgang werden Sie die Möglichkeit bekommen,

eine Pause zu machen.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S27: Screen 1 of instructions for the graph condition in session 2

Sie haben den Durchgang zu Erinnerung beendet! Gut gemacht! Sie können jetzt gerne eine

kurze Pause machen und dabei auch Ihre Augen schließen. Bitte bleiben Sie weiterhin ruhig

und entspannt liegen. Wenn Sie bereit sind, können Sie mit den Instruktionen für die

Hauptaufgabe fortfahren.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S28: Screen 2 of instructions for the graph condition in session 2

Hauptaufgabe

Herzlichen Glückwunsch, Sie sind nun ausgebildete*r Zoowärter*in! Achtung: Manchmal

brechen die Tiere aus ihren Käfigen aus! Ihre Aufgabe ist es, die Tiere wieder in die richtigen

Käfige zu bringen. Wenn Sie ein Tier auf dem Bildschirm sehen, drücken Sie so schnell wie

möglich die richtige Taste, um das Tier zurück in den richtigen Käfig zu bringen. Dieses Mal

bekommen Sie keine Rückmeldung, ob Ihre Antwort richtig oder falsch war. Je mehr Tiere Sie

in die richtigen Käfige bringen, desto mehr Bonus bekommen Sie am Ende der Studie! Die

Hauptaufgabe besteht aus 5 Durchgängen, die jeweils circa 10 Minuten dauern.

Drücken Sie eine beliebige Taste, um fortzufahren.

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2022.02.02.478787doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.478787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Box S29: Screen 3 of instructions for the graph condition in session 2

Sie haben wieder 1 Sekunde Zeit zu antworten. In der Hauptaufgabe antworten Sie wieder

sofort, wenn Sie ein Tier auf dem Bildschirm sehen. Bitte antworten Sie wieder so schnell und

genau wie möglich. Zwischen den einzelnen Runden sehen Sie wieder ein Kreuz für einen

Moment. Manchmal wird das Kreuz etwas kürzer und manchmal etwas länger gezeigt. Am

Besten halten Sie sich die ganze Zeit bereit, um so schnell wie möglich auf das nächste Tier zu

reagieren.

Drücken Sie eine beliebige Taste, um fortzufahren.

Box S30: Screen 4 of instructions for the graph condition in session 2

Ruhephasen

Nach der ganzen Arbeit als Zoowärter*in braucht man auch Erholung. Vor, zwischen und

nach den Durchgängen der Hauptaufgabe machen wir einige Messungen bei denen Sie einfach

nur ruhig liegen sollen. In diesen Ruhephasen sollen Sie bitte Ihre Augen geöffnet halten und

die gesamte Zeit auf ein Kreuz schauen. Kurzes Blinzeln ist vollkommen in Ordnung. Der

Hintergrund des Bildschirms wird in den Ruhephasen dunkel sein. Bitte liegen Sie weiterhin

ganz ruhig und entspannt und versuchen Sie weiterhin sich so wenig wie möglich zu bewegen.

Versuchen Sie bitte die gesamte Zeit wach zu bleiben.

Bitte warten Sie auf die Versuchsleitung.
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