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ABSTRACT

Major histocompatibility complex (MHC) molecules bind to peptides from exogenous antigens, and
present them on the surface of cells, allowing the immune system (T cells) to detect them. Elucidating
the process of this presentation is essential for regulation and potential manipulation of the cellular
immune system [1]. Predicting whether a given peptide will bind to the MHC is an important step in
the above process, motivating the introduction of many computational approaches. NetMHCPan [2],
a pan-specific model predicting binding of peptides to any MHC molecule, is one of the most widely
used methods which focuses on solving this binary classification problem using a shallow neural
network. The successful results of AI methods, especially Natural Language Processing (NLP-based)
pretrained models in various applications including protein structure determination, motivated us to
explore their use in this problem as well. Specifically, we considered fine-tuning these large deep
learning models using as dataset the peptide-MHC sequences. Using standard metrics in this area,
and the same training and test sets, we show that our model outperforms NetMHCpan4.1 which has
been shown to outperform all other earlier methods [2].
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1 Introduction

Major Histocompatibility Complex molecules (MHC) are large cell surface proteins which play a key role in immune
response by detecting and responding to foreign proteins and antigens. An MHC molecule detects and binds to a
peptide (a small fragment of a protein derived from an antigen), creates a peptide-MHC complex, and presents it to
the surface of the cell; then, based on interactions between this complex and the T cell receptor at the cell surface, an
immune response is triggered to control the compromised cell [3]. MHC molecules are classified into two classes: (i)
MHC Class I which controls non-self intracellular antigens by presenting antigenic peptides (8-13 sequence length)
to cytotoxic T cell lymphocytes (CD8+ TCR); (ii) MHC Class II which controls extracellular antigens by presenting
antigenic peptides (13-25 sequence length) to helper T cell lymphocytes (CD4+ TCR). One of the main steps in studying
the role of MHC molecules in the immune system is developing insight about the interactions of the MHC molecules
and non-self pathogen peptides, referred to as MHC-peptide binding [2]. MHC-peptide binding prediction plays an
important role in vaccine design and studies of infectious diseases, autoimmunity, and cancer therapy [4] [5].

There are two basic experimental methods to study MHC-peptide binding: (i) Peptide-MHC binding affinity (BA)
assays in which, given a peptide, binding preferences of different MHC molecules to the peptide are calculated [6];
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(ii) MHC associated eluted ligands (EL) generated by Liquid Chromatography Mass Spectrometry (LC-MS/MS) in
which, based on a single experiment, a large number of eluted ligands corresponding to an MHC are identified [7].
Compared to the BA method, the EL method is highly accurate and thorough, and it is a reliable way to determine
the peptides included in the immunopeptidome (namely, the whole set of peptides which have been defined in the
MHC-peptides complex [8]). Both methods, on the other hand, are labor-intensive and time-consuming. As a result,
a number of computational methods have been developed to predict MHC-peptide binding [9]. These started with
heuristic approaches using MHC allele–specific motifs to identify potential ligands in a protein sequence [10]; later,
supervised machine learning approaches were considered, including artificial neural networks (ANN) [11], hidden
Markov models (HMM) [12], and regression models [13] [14]. The performance of these machine learning tools
increases with the amount of data available by epitope databases such as Immune Epitope Database (IEDB) [15] and
SysteMHC [16]. While some of these methods are trained for only one specific MHC allele (known as allele-specific
methods), there are more generalized models (pan-specific methods) where a single model covers all of the alleles of
interest in the MHC. The methods are also categorized by the type of predicted variables. Among these methods, some
have been shown to be more promising, such as NetMHCPan [2], DeepLigand [17], and MHCflurry [4]. However, the
most recent version of NetMHCpan (NetMHCpan 4.1) has been shown to outperform other models according to [2].

NetMHCpan is pan-specific model which predicts binding of peptides to any MHC molecule of known sequence
using artificial neural networks. Since 2003, this model has gradually improved and its last version in the MHC Class I
(NetMHCpan 4.1) has been introduced in 2020. This model is trained on a combination of the BA and EL peptides
dataset. The inputs to this method are sequences associated with MHC-peptide complexes which are encoded by a
BLOSUM matrix [18]. There are some specific features associated with this method which helps it to outperform other
approaches: (i) instead of using the whole sequence of MHC molecules as input, NetMHCpan uses pseudosequences
of MHC with a fixed length (34 amino acids); these pseduosequences include those amino acids associated with the
binding sites of MHC which are inferred from apriori knowledge; (ii) to accommodate different lengths of peptides
(8-15 in MHC Class I), they fix the length to a uniform length of 9 by insertions and deletions of amino acids associated
with the peptides of different lengths; (iii) they use additional features with specificity information of the peptides
during insertions and deletions steps; for example, the original length of the peptide is encoded as a categorical variable
and the length of the sequence that was inserted/deleted is added as a different feature; (iv) NetMHCpan consists of
several neural networks and implements the ensemble technique; in this case, using cross-validation, the training dataset
is split into 5 parts and the model is trained five times, one for each split. Also, NetMHCpan uses a shallow neural
network with one hidden layer which contains 56 or 66 neurons and is trained using 10 different randomly initial weight
configurations; thus, the ensemble NetMHCpan contains 100 different models.

As indicated above, the most recent NetMHCpan approach (version 4.1, [2]) is based on a shallow neural network. In
recent years, a number of more complex and yet efficient methods such as deep neural networks have shown promising
results in a number of fields [19], [20], [21], [22], [23]. For example, transformer models, a recent breakthrough
in natural language processing, have shown that large models trained on unlabeled data are able to learn powerful
representations of natural languages and can lead to significant improvements in many language modeling tasks [24],
[25]. On the other hand, it has been shown that collections of protein sequences can be treated as sentences so that
similar techniques can be used to extract useful biological information from protein sequence databases [26], [27]. A
highly successful example of this approach has been DeepMind’s recent protein-folding method, using attention-based
models [28] [29] [30] [31]. Currently, there are some successful pre-trained models, publicly available, which have
been shown to be helpful in a variety of downstream tasks ([32], [33], [34], [27] , [26]).

Two recent works have considered using protein language models in the MHC-peptide problem. BERTMHC [35]
explores whether pre-trained protein sequence models can be helpful for MHC (Class II)–peptide binding prediction
by focusing on algorithms that predict the likelihood of presentation for a peptide given a set of MHC Class II
molecules. They show that models generated from transfer learning, can achieve better performance on both binding
and presentation prediction tasks compared to NetMHCIIpan4.0 (last version of NetMHCpan in MHC Class II [2]).
Another BERT-based model known as ImmunoBERT [36] applies pre-trained transformer models in MHC Class I
problem. Although they try to interpret how the BERT architecture works in MHC-peptide binding prediction, they
could not compare their model fairly with NetMHCPan [2] and MHCflurry [4] due to lack of access to the same training
set. Also, both BERTMHC and ImmunoBERT use the TAPE pre-trained models [26] which were trained with 31
million protein sequences, whereas now there are larger and more successful pre-trained models available such as ESM
[34] and ProtTrans [32] which are trained on more than 250 million protein sequences.

In the work reported in this paper we focus on the MHC Class I peptide binding prediction and develop approaches
based on the larger pre-trained protein language models; we evaluate the performance of our new model using a standard
metric and the same training and test sets as NetMHCpan 4.1. We show that our methods outperform NetMHCpan 4.1
over these test sets.
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2 Materials and Methods

2.1 Methods

One component of the approach in this work is based on transfer learning. In Deep Learning (DL), transfer learning
is a method in which a DL model is first trained on a problem similar to the problem of interest; then, a portion or
the whole of this pre-trained model is used for training the model of the desired problem. This approach is applicable
when the amount of data for the problem of interest is limited, however, large databases associated with other problems
with some similarity with the problem of interest exist. There are two ways to use transfer learning: (i) Fine-tuning
a pre-trained model using the dataset associated with the problem of interest. In this case, a portion, or all of the
weights associated with the pre-trained model are used as the initial weights of a new deep learning architecture for
the desired task. (ii) Feature extraction: In this case, each input sample of the desired task is fed to the pre-trained
model; then, the output or other information associated with the pre-trained model is extracted and used as features for
a machine learning model. During the last decade, transfer learning has been used successfully in computer vision and
more recently it has been applied to Natural Language Processing (NLP) and biology. For example, in NLP, BERT
(Bidirectional Encoder Representations from Transformers) [25] is a pre-trained transformer model which is trained on
a large corpus of unlabelled text including the entire Wikipedia (that’s 2,500 million words!) and the Book Corpus (800
million words). Thereafter, the pre-trained model has been used for a number of NLP tasks such as text classification,
text annotation, question answering, and language inference, to name a few. BERT only uses the encoder part of the
transformer since the goal is generating word embeddings (contextual relations between words (or sub-words) in a text)
which are then used as features in NLP models. This method is known as self-supervision, a form of unsupervised
learning in which context within the text is used to predict missing words. After BERT, various modifications based on
new training methodologies and types of architecture have been attempted with the goal improving BERT (RoBERTa
[37], DistilBERT [38], XLNet [39].)

Recently, following the successful results of pre-trained transformer models such as BERT and their transfer learning
derivatives in NLP applications, similar approaches have been attempted in the protein field thanks to the substantial
growth in the number of protein sequences. As a result, there are a number of pre-trained self-supervised BERT-like
models applied to protein data in the form of unlabeled amino acid sequences which can be very useful for many protein
task-specific problems using transfer learning [32] [34].

In this work we applied a fine-tuning method using two large protein language pre-trained models, Protbert-BFD
[32] and ESM1b [34], two BERT-based models which are trained on hundreds of millions protein sequences. We found
the performance of the ESM1b model to be slightly better than Protbert-BFD and decided to apply this model for
our purposes. ESM1b is a pre-trained Transformer protein language model from Facebook AI Research [34], which
has been shown to outperform all tested single-sequence protein language models across a range of protein structure
prediction tasks [34]. ESM1b has 33 layers with 650 million parameters and an embedding dimension of 1280. In our
work, after including an additional layer at the end of the ESM1b model, we re-trained the entire set of parameters of
ESM1b and trained the parameters of the added layer using our MHC-peptide dataset. Thus, the entire architecture
including the pre-trained weights of the model were updated based on our dataset (Figure 1).

Figure 1: Our fine-tuning architecture based on NLP-based pre-trained models.
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2.1.1 ESM1b fine-tuning

Since ESM1b can be regarded as a transformer-based bidirectional language model (bi-LM), we borrowed an idea from
a basic NLP task called Natural Language Inference (NLI) [40] to perform MHC-peptide binding prediction. One
of the NLI tasks is the sequence-pair classification problem, namely, predicting whether a text A (e.g., "rabbits are
herbivorous") can imply the semantics in a text B (e.g., "rabbits don’t eat rats"). Similarly, in the MHC-peptide case, we
would like to know whether a given peptide sequence (same as text A) binds to a given MHC sequence (same as text B),
suggesting that applying an NLI-based model could be promising. A common transformer-based NLI model combines
text A and B into one sequence "[BOS] seq-A [SEP] seq-B [EOS]" as input, where [BOS], [SEP] and [EOS] are special
tokens * in bi-LM vocabulary.

Suppose the amino acids in the MHC and peptide sequences are M1, ...,Mp and P1, ..., Pq, respectively. We
generate the sequence "[BOS], M1, ...,Mp, [SEP], P1, ..., Pq, [EOS]" with length p + q + 3 as the ESM1b input,
and obtain the same size embedding vectors vBOS ,vM1

, ...,vMp
,vSEP ,vP1

, ...,vPq
,vEOS (embedding dim

1280) from the last (33rd) layer of ESM1b, corresponding to each special token and amino acid in MHC and
peptide. As a common strategy in NLP sequence classification tasks, we use the embedding of [BOS] to be the
MHC-peptide sequence-pair embedding vector v. Finally, passing v through a softmax classifier layer, we output
the probability of binding and use it to compute the loss and apply back-propagation. Compared to embedding
MHC and peptide separately, this compound input allows the transformer to use the attention mechanism to further
extract the interactive information between the amino acids in the MHC and peptide, thus, helping the binding prediction.

Although ESM1b is well pre-trained in an unsupervised manner, using a large amount of universal sequences, we
know that MHCs are a highly specific type of protein sequences, so the embedding from the pre-trained ESM1b may
not be optimal for the specific MHC task and input format. Therefore, we not only need to train the final softmax
classifier, but also wish to further train the ESM1b parameters to improve the sequence-pair embedding. This led us to
apply fine-tuning which is commonly used in NLP. Initialized from the pre-trained ESM1b parameters, we updated the
parameters in the whole network using a small learning rate during the back-propagation, so that valuable information
in the pre-trained ESM1b is maintained while the fine-tuned ESM1b provided a more powerful embedding specific to
the MHC tasks.

2.1.2 ESM1b-GAT fine-tuning

Molecular structure-based biological data such as proteins, can be modeled with graph structure in which amino-acids
or atoms are used as nodes, and contacts or bonds are used as edges. It has been shown that Graph Neural Networks
(GNNs), as a branch of deep learning in non-Euclidean space, perform well in various applications in bioinformatics
[41]. Here, the interaction between MHC and peptide can be described by a graph in which amino-acids are the nodes
and the interaction between them can be considered as edges. To take advantage of this information, we added a variant
model of GNN known as Graph Attention Network (GAT) at the top of the the ESM1b network. GAT is a novel neural
network architecture that operates on graph-structured data by leveraging masked self-attentional layers to address
the shortcomings of prior methods based on graph convolutions or their approximations [42]. For each MHC-peptide
pair, we use a directed graph G, where the nodes N1, ..., Np+q+3 represent the p+ q + 3 tokens above, and an edge
(Ni, Nj) indicates that amino acids i and j are in contact with each other. Denote the neighbor set of an amino acid i
as A(i) = {j : (Ni, Nj) ∈ G}; then, each embedding vector vi is updated as a weighted average of its transformed
neighbor embedding vectors:

v′
i =

∑
j∈A(i)

αijWvj ,

where W is a weight matrix for vector transformation, and the weight αij is computed using an attention mechanism.
Suppose zij is the concatenation of vectors Wvi and Wvj and c is a parameter vector, then the weight αij is given by:

αij =
exp(σ(⟨c, zij⟩))∑

k∈A(i) exp(σ(⟨c, zik⟩))
,

where σ is an activation function.

After each GAT layer, we update the embedding vector for the amino acids and the special tokens as
v′
BOS ,v

′
M1

, ...,v′
Mp

,v′
SEP ,v

′
P1
, ...,v′

Pq
,v′

EOS , and more GAT layers follow. Here, in our implementation, we

*A token is a string of contiguous characters between two spaces, or between a space and punctuation marks.
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use two fully connected GAT layers. Same as vanilla transformer model [24], we apply multi-head attention mechanism
in which for each GAT layer, we split the parameters and pass each split independently through a separate head.
Particularly, in the first GAT layer we use 8 attention heads which are then concatenated together and passed to the next
layer while in the final GAT layer we average the heads of a certain token. We finally use the embedding vector of
[BOS] in the final GAT layer as the MHC-peptide sequence pair embedding vector to determine binding prediction. The
final GAT layer was meant to use the attention mechanism to aggregate all the node information into [BOS] position by
letting [BOS] token contact with all the amino acids in graphs, which makes the [BOS] embedding potentially a more
powerful sequence embedding than simply using the average of the embedding vectors output by the first GAT layer.
Compared to using only ESM1b layers, now we can introduce more prior information of contact from graphs, which
will be used by the GAT layers to dynamically refine the ESM1b embedding.

2.2 Dataset

2.2.1 Training set

We used the training set used by the last version of NetMHCpan [2], including 13 millions binary labeled MHC-peptide
binding samples, generated from two main data sources (i) : the BA peptides derived from in-vitro Peptide-MHC
binding assays, and (ii) the EL peptides derived from mass spectrometry experiments. However, it has been shown that
the results from the mass spectrometry EL experiment are mostly poly-specific, i.e., they contain ligands matching
multiple binding motifs [8]. That being said, for most of the samples in the EL dataset, each peptide is associated with
multiple alleles (from 2 to 6 alleles for each peptide). Thus, in this training set, the EL dataset is composed of two
subsets: (i): Single-Allele (SA, peptides assigned to single MHCs) and (ii) Multi-Allele (MA, peptides with multiple
MHC options to be assigned). Table 1 shows the distribution of the aforementioned dataset which indicates that more
than 67% of the dataset is associated with EL-MA. According to [8], the existence of the MA dataset introduces some
challenges in terms of data analysis and interpretation; therefore, to train a binary MHC-peptide predictor, a process,
known as deconvoluting the MA binding motifs, is needed to convert these EL-MA data to a single peptide-MHC pair
[2].

Table 1: Distribution of training set used in NetMHCpan 4.1 [2]; Columns correspond to each type of training data, for
which the number of positive and negative samples, and the total amount of unique MHCs are shown. A threshold of
500 nM is used to define positive BA data points.

Binding Affinity EL (Single Allele) EL (Multi Allele)
positives Negatives MHCs positives Negatives MHCs positives Negatives MHCs
52,402 155,691 170 218,962 3,813,877 142 446,530 8,395,021 112

2.2.2 Deconvolution of Multi Allelic (MA) data

To deconvolute the EL-MA dataset, several computational approaches have been used based on unsupervised sequence
clustering [43] [44]. Although these methods show some progress in dealing with the MA dataset, they have some
shortcomings; for example, they do not work in cell lines including MHC alleles with similar binding motifs. Therefore,
in the new version of NetMHCPan (Version 4.1), they present a new framework, NNAlign-MA [8], which works better
than the previous approaches. NNAlign-MA is a neural network framework, which is able to deconvolute the MA
dataset during the training of the MHC-peptide binding predictor. Recently, [35] attempted to solve this problem in
MHC Class II by using a multiple instance learning (MIL) framework. MIL is a supervised machine learning approach,
where the task is to learn from data including positive and negative bags of instances. Each bag may contain many
instances and a bag is labeled positive if at least one instance in it is positive [45]. Assume the ith bag includes m
alleles as Ai = {ai1, ai2, ..., aim} which is associated with peptide sequence si. At each training epoch, for each
instance in the ith bag, xij = (aij , si), the probability of whether that instance is positive, p(yij = 1|xij) is defined as
ŷij = fθ(aij , si) where fθ is the neural network model; then, in [35], they use max pooling as a symmetric pooling
operator to calculate the prediction of the bag from the predictions of instances within it. Here, in our work, we follow
this MIL idea to deal with the EL-MA dataset.

2.2.3 Test set

In order to have a fair comparison of our model and NetMHCPan 4.1, we used the same test set they provided in their
work (Table 2). This dataset is associated with a collection of 36 EL-SA datasets, downloaded from [46]. Each dataset
is well enriched, length-wise, with a number of negative decoy peptides equal to 5 times the number of ligands of the
most abundant peptide length.
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Table 2: Independent EL SA test set provided by NetMHCpan 4.1 ([2]

MHC # Peptides # Positives # Negatives
HLA-A02:02 77053 3063 73990
HLA-A02:05 45136 2016 43120
HLA-A02:06 54510 1975 52535
HLA-A02:11 48445 2035 46410
HLA-A11:01 33424 2309 31115
HLA-A23:01 30467 1697 28770
HLA-A25:01 6906 396 6510
HLA-A26:01 7730 555 7175
HLA-A30:01 15837 892 14945
HLA-A30:02 33180 2415 30765
HLA-A32:01 28036 1436 26600
HLA-A33:01 43333 2138 41195
HLA-A66:01 41538 1988 39550
HLA-A68:01 5648 433 5215
HLA-B07:02 2469 159 2310
HLA-B08:01 3365 180 3185
HLA-B14:02 21601 1056 20545
HLA-B15:01 16624 769 15855
HLA-B15:02 16702 637 16065
HLA-B15:03 44968 1953 43015
HLA-B15:17 45917 1712 44205
HLA-B18:01 18284 784 17500
HLA-B35:03 8275 330 7945
HLA-B37:01 20048 1253 18795
HLA-B38:01 9509 619 8890
HLA-B40:01 18908 1268 17640
HLA-B40:02 23768 1333 22435
HLA-B45:01 18750 760 17990
HLA-B46:01 14015 575 13440
HLA-B53:01 46991 2016 44975
HLA-B58:01 17946 866 17080
HLA-C03:03 35568 2003 33565
HLA-C05:01 7033 383 6650
HLA-C07:02 15293 593 14700
HLA-C08:02 32416 1546 30870
HLA-C12:03 36448 1273 35175

2.3 Metric

Predicting the binding affinity of MHC with a peptide is a binary classification problem. Typical metrics for assessing
the quality of binary classification models for a given task include precision, accuracy, recall, receiver operating
characteristic curve (ROC) and the corresponding Area Under the Curve (AUC). In this work, we use AUC and a
specific precision metrics known as positive predictive value (PPV); AUC and PPV have been used as the main metrics
in previous work in MHC-peptide binding prediction [2] [4]. AUC is an evaluation metric for binary classification
problems which measures the area underneath the receiver operating characteristic curve (ROC). AUC ranges in value
from 0 to 1 and models with higher AUC perform better at distinguishing between the positive and negative classes. To
calculate AUC, we use Scikit-learn, a free software machine learning library for Python programming language. PPV is
another metric which specifically is defined in this area and is interpretable as a model’s ability to rank positive samples
far above the negative samples. PPV is defined as fraction of true positive samples (hits) among the top-scoring 1

N+1%
samples, provided that ratio of the number of negative samples (decoys) to positive is N:1 (N is known as hit-decoy
ratio). Since NetMHCpan [2] uses hit-ratio 19 and MHCflurry [4] uses N=99, here in this work, we use 19, 49 and 99.
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3 Results

Using the above test set, we calculated the AUC and PPV scores of our ESM fine-tuning method. In order to evaluate and
compare our performance with the state-of-the-art methods, we used the latest version of NetMHCpan server (Version
4.1) which, according to their studies ([2]), and using the same training and test sets, outperformed other methods
including MHCflurry [47], MHCFlurry-EL, and MixMHCpred [44]. We used three different hit-decoy ratios (19, 49
and 99) for PPV calculations. Table 3 shows that using the AUC metric, our method works better than NetMHCpan. In
addition, as seen in Figures 2, 3 and 4, our model outperforms NetMHCpan over all hit-decoy ratios in the 35 different
test sets; only for HL-B18:01, NetMHCpan performs better.

Table 3: Comparison of AUC between our model and NetMHCpan (V4.1) ([2]

Allele Our model AUC NetMHCpan4.1 AUC

HLA-A02:02 0.99 0.98
HLA-A02:05 0.98 0.95
HLA-A02:06 0.99 0.98
HLA-A02:11 0.98 0.97
HLA-A11:01 0.96 0.95
HLA-A23:01 0.97 0.90
HLA-A25:01 0.98 0.94
HLA-A26:01 0.97 0.93
HLA-A30:01 0.98 0.95
HLA-A30:02 0.97 0.96
HLA-A32:01 0.98 0.97
HLA-A33:01 0.99 0.98
HLA-A66:01 0.99 0.98
HLA-A68:01 0.96 0.91
HLA-B07:02 0.97 0.89
HLA-B08:01 0.98 0.95
HLA-B14:02 0.98 0.96
HLA-B15:01 0.97 0.94
HLA-B15:02 0.97 0.95
HLA-B15:03 0.99 0.98
HLA-B15:17 0.99 0.98
HLA-B18:01 0.98 0.96
HLA-B35:03 0.98 0.95
HLA-B37:01 0.97 0.92
HLA-B38:01 0.98 0.94
HLA-B40:01 0.99 0.98
HLA-B40:02 0.98 0.97
HLA-B45:01 0.99 0.97
HLA-B46:01 0.98 0.95
HLA-B53:01 0.99 0.99
HLA-B58:01 0.98 0.95
HLA-C03:03 0.90 0.79
HLA-C05:01 0.98 0.92
HLA-C07:02 0.98 0.97
HLA-C08:02 0.99 0.96
HLA-C12:03 0.98 0.97
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Figure 2: PPV Comparison (hit-decoy ratio: 1:19) of our ESM fine-tuning method with the latest NetMHCpan server
(Version 4.1) over the same training and test sets [2].

Figure 3: PPV Comparison (hit-decoy ratio: 1:49) of our ESM fine-tuning method with the latest NetMHCpan server
(Version 4.1) over the same training and test sets [2].
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Figure 4: PPV Comparison (hit-decoy ratio: 1:99) of our ESM fine-tuning method with the latest NetMHCpan server
(Version 4.1) over the same training and test sets [2].

To compare the GAT-ESM fine-tuning method versus the vanilla ESM, we use the subsets of training sets that
include samples associated with peptides of length 8 and 9 and compare both methods over the test set. As can be
seen in Figure 5, ESM-GAT significantly outperforms the ESM method when the test set with peptide length 10-15 is
considered, but the results are almost the same when using the test set with peptides of length 8 and 9 (Figure 6). It
follows that GAT improves the ability of the model to predict the peptides with lengths different from those considered
in the training set, which might be useful for training models beyond MHC Type I.

Figure 5: PPV Comparison (hit-decoy ratio: 1:19) of ESM fine-tuning method versus ESM-GAT over the training set
with peptide length 8 and 9 and test set with peptide length 10 to 15.
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Figure 6: PPV Comparison (hit-decoy ratio: 1:19) of ESM fine-tuning method versus ESM-GAT over the training set
with peptide length 8 and 9 and test set with peptide length 8 and 9.

4 Conclusion

Predicting peptides that bind to the major histocompatibility complex (MHC) Class I is an important problem in
studying the immune system response and a plethora of approaches have been developed to tackle this problem. Among
these, the most recent version of NetMHCpan server (NetMHCpan 4.1) [2] has been shown to achieve state-of-the-art
performance. NetMHCpan 4.1 is developed based on training a shallow neural network, which, according to [2],
outperforms other methods such as MHCflurry [47], MHCFlurry-EL, and MixMHCpred [44]. A number of recent
works have focused on using protein language models in MHC-peptide binding problems. Protein language models
developed based on deep learning approaches, such as attention-based transformer models, have shown significant
progress towards solving a number of challenging problems in biology, most importantly, protein structure prediction
[48]. BERTMHC [35] and ImmunoBERT [36] for the first time applied the pre-trained protein language models in
MHC-peptide binding problems. Both methods used a relatively small pre-trained model (TAPE [26] which was trained
with 31 million protein sequences); currently, there are substantially larger and more informative models such as ESM1b
[34] and ProtTrans [32] which are trained on more than 250 million protein sequences. BERTMHC was trained for
MHC Class II and ImmunoBERT for MHC Class I; The focus of ImmunoBERT was on the interpretation of their
model’s architecture and a fair comparison of the performance of their model with other works was not possible due to
having different training sets. In the work reported in this paper we focus on MHC Class I peptide binding prediction by
developing an approach based on a large pre-trained protein language model, ESM1b [34]; we follow two fine-tuning
approaches using a soft-max layer and Graph Attention Transformer (GAT). In order to have a fair comparison, we train
our model using the same training set used by NetMHCpan 4.1 [2] and evaluate our model using the same test set. We
show, using the standard metrics in this area, that our model outperforms NetMHCpan 4.1 in 35 test sets out of 36. Since
having the same training set is critical to compare different models, we did not compare our model directly with other
works such as MHCflurry [4] given our different training sets. As reported, adding Graph Attention Network (GAT) to
the ESM1b network, improved the ability of the model to predict peptides with lengths different from those considered
in the training set; this feature is expected to be beneficial for training models beyond MHC Type I. Implementing a
server based on our trained model is in progress which will be added to the Cluspro servers([49] [50] [51]).
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