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Abstract: 
 Echinoderms are a phylum of marine invertebrates that include model organisms, 14 

keystone species, and animals commercially harvested for seafood. Despite their scientific, 15 

ecological, and economic importance, there is little known about the diversity of RNA viruses 16 

that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes 17 

and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five 18 

classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 19 

viral genome fragments that were classified to genera and families within nine viral orders - 20 

Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, 21 

Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral 22 

representation across three life stages (embryo, larvae, adult) and characterized the gene content 23 

of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a 24 

given transcriptome was not found to significantly differ between life stages though the majority 25 

of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the 26 

biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in 27 

natural populations.  28 

 29 
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Introduction 30 

Metazoans harbor an enormous diversity and abundance of RNA viruses – a discovery 31 

that has reshaped our understanding of viral evolution through expanded viral-host associations, 32 

broadened phylogenetic diversity, and novel reconfigurations of genome architectures [1, 2]. 33 

Newly discovered viruses often blur the boundaries between well-known viral groups.  For 34 

example, prior to a recent expansion, the family Flaviviridae was typified by relatively uniform, 35 

monopartite genomes, having a single 10-12 kb-long open reading frame (ORF), and being 36 

vectored to mammals by arthropod. Metagenomics has led to the discovery of hundreds of novel 37 

flavivirus genomes, redefining the genomic properties of this viral family, and extending their 38 

host diversity beyond mammals [3–6]. To date, the exploration and systematization of 39 

invertebrate RNA viruses have been skewed towards terrestrial arthropods, mainly insects, 40 

leaving gaps in our understanding of the diversity, ecology, and evolution of RNA virus in other 41 

invertebrate groups [1, 7–12]. To help close this gap, we characterized the RNA virome of 42 

Echinodermata - a phylum of marine invertebrates that are globally distributed throughout 43 

Earth’s oceans and represent an evolutionary crossroads in developmental biology as one of two 44 

phyla that are invertebrate deuterostomes.  45 

Wildlife disease and aquaculture are the two primary areas of concern regarding the 46 

threat of viral outbreaks among echinoderms. Disease outbreaks of sea urchins and sea stars have 47 

been documented at local, regional, and continental scales since 1898 and have gone unresolved 48 

in regards to their etiology [13, 14]. Certain species of sea urchins and sea cucumbers are valued 49 

as seafood delicacies and the growing demands for these species in the seafood industry have led 50 

to a rise in aquaculture farming [15, 16]. Viral outbreaks pose a major concern for aquaculture 51 

operations [17, 18], yet little is known about the identity, let alone virulence, of viruses that 52 
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infect these animals [19–21]. Baseline knowledge of viruses present in wild populations can help 53 

determine the etiology of future outbreaks and discern pathogenic versus non-pathogenic agents, 54 

or those which may become more replicative under environmental stress. Thus, a census of viral 55 

diversity will improve our future response when viruses impact the economic or ecological 56 

function of echinoderms. 57 

Parvoviruses - linear, single-stranded DNA viruses - are the best documented group 58 

known to infect echinoderms since the discovery of a densovirus in a sea urchin metagenome 59 

from Hawaii in 2014 [19]. Shortly after, another densovirus was found in various sea star species 60 

and was implicated as the causative pathogen of the 2013/2014 Sea Star Wasting Syndrome 61 

(SSWS) outbreak in the Northeast Pacific [22]. However, subsequent attempts to correlate 62 

densoviruses to SSWS have not produced any clear association with pathology or disease [21–63 

26]. Regardless, this discovery prompted a series of investigations into the diversity, prevalence, 64 

and association of these viruses with sea stars and SSWS [21, 24–26]. To date, no RNA virus 65 

identified using -omic approaches has been proven to cause any pathology in echinoderms [21, 66 

27]. However, one clear line of evidence that has emerged from the accumulation of -omic data 67 

is that sea stars are infected by a diversity of viruses. We expect that they, and other 68 

echinoderms, will be host to a novel, undocumented diversity of RNA viruses. 69 

Sequencing-based 'viromics' approaches have been the primary method for the discovery 70 

and characterization of echinoderm viruses. Other methods, like microscopy or culturing, are 71 

laborious and low throughput or hindered by the lack of available cell lines from aquatic 72 

invertebrates. All echinoderm virome studies, to date, have taken a viral metagenomic approach, 73 

where shotgun metagenomics is performed on encapsidated nucleic acids that have been 74 

enriched and selected for by chemical and/or nuclease treatment from size-filtered (<0.2 um) 75 
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tissue homogenates [19–22, 25–27]. Metatranscriptomes and transcriptomes are increasingly 76 

used for viral discovery and have not yet been applied to echinoderms [28–31]. In the context of 77 

a metazoan, a metatranscriptome refers to the sequencing of total RNA (with rRNA removed) 78 

generally from samples pooled at the population level (multiple individuals of a species), while a 79 

transcriptome is the sequencing of poly-A tailed mRNA (with rRNA removed) generally from an 80 

individual organism [28, 32]. RNA-seq studies generating metatranscriptomes are typically for 81 

the purpose of viral discovery as opposed to transcriptomes, which are created for the purpose of 82 

analyzing gene expression patterns of an organism. In this study, we analyzed over 900 publicly 83 

available transcriptomes from echinoderms to characterize the biodiversity and distribution of 84 

RNA viruses. Together with previously published RNA viral metagenomes (i.e. a population of 85 

genomes of RNA viruses), we conducted a systematic survey of RNA viruses associated with the 86 

five major classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea) of 87 

Echinodermata.  88 

Methods 
The following sections detail the processing of the short-read libraries used for viral 89 

discovery and the analyses performed on the viral sequences. The two sources of libraries were 90 

transcriptomes and RNA-based viral metagenomes derived from various echinoderm species and 91 

tissues. All libraries processed in this study were obtained from the NCBI’s Short Read Archive 92 

(Table S1) and the assemblies generated from this study and the database used for viral 93 

discovery are accessible through the Open Science Foundation (https://osf.io/JXUAM).  94 

Host transcriptomes and RNA-based viral metagenomes 95 

 96 

A total of 903 paired-end transcriptomes derived from the five classes of echinoderm 97 

hosts, including crinoid (n = 18; Crinoidea), sea cucumbers (n = 178; Holothuroidea), sea star (n 98 

= 179; Asteroidea), brittle star (n = 71; Ophiuroidea) and urchin (n = 457; Echinoidea). Raw 99 
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sequences were quality controlled using Trimmomatic [33], to clip adapters, and FastX [34], to 100 

discard reads with lengths < 50 nt and average quality scores < 30. Transcriptomes were then 101 

assembled using default parameters in Trinity (v2.1.1) [35]. Contigs less than 500 nt were 102 

discarded prior to viral annotation.  103 

A total of 24 paired-end RNA viral metagenomes derived from sea cucumbers (n=3; 104 

Holothuroidea) and sea stars (n=21; Asteroidea) were also retrieved from the Short Read Archive 105 

(Table S1). Raw sequences were merged, trimmed to clip adapters and discard reads with 106 

average quality scores < 20, and normalized to an average read depth of 100 using BBtools [36]. 107 

RNA viral metagenomes were assembled using Spades (v 3.11.1) with the -meta flag [37]. 108 

Contigs less than 500 nt were discarded prior to viral annotation.  109 

Virus discovery and annotation  110 

 111 

We curated an RNA virus database for viral annotation. The database contained viral 112 

amino acid sequences from Shi et al 2016, Wu et al 2020 and Wolf et al 2020, and from the 113 

NCBI viral genome database after filtering for viral sequences from invertebrates and 114 

invertebrates/vertebrates [1, 29, 38]. Duplicated amino acid sequences were removed from the 115 

database using seqkit, yielding a total of 36,193 unique viral gene sequences. Echinoderm RNA 116 

viruses were then identified by querying transcriptome/RNA viral metagenome assemblies 117 

against the curated RNA viral database using DIAMOND BLASTx with the sensitivity 118 

parameter adjusted to ‘very-sensitive’ and an e-value cutoff of < 10-20 [39]. Contigs with 119 

significant similarity based on the BLAST criteria above were manually inspected in Geneious 120 

Prime (v 2020.2.2), and queried against the NCBI non-redundant database using the default 121 

BLASTp parameters to verify the viral annotation and assign putative gene function. BLASTp 122 

results were also used to identify conserved protein domains. Genome illustrations were created 123 
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by exporting the sequence viewer from Geneious Prime (v 2020.2.2) into Adobe Illustrator 124 

(v25.4.1). Contigs with near identical matches to human and plant viruses and bacteriophage 125 

were removed. ORFs containing an RdRP domain were used for taxonomic placement. If a 126 

contig did not contain an RdRP sequence, a complete or partial ORF containing any conserved 127 

protein domain was chosen. Contigs that did not contain a conserved protein domain were 128 

removed from further analysis. Quality-filtered reads were mapped to viral contigs to obtain 129 

relative abundance information using BBMap [40] using the ‘semiperfect’ flag which 130 

accommodated ambiguous bases (with equivalent results achieved with the ‘perfect’ flag).  131 

Network analysis and phylogenetics 132 

 133 

 The taxonomic relationships of all recovered viral sequences were first mapped using a 134 

network analysis. To place sequences into broad taxonomic groups, we downloaded amino acid 135 

sequences from the top NCBI BLASTp results for each of our recovered viral sequences. A 136 

network was built based on sequence similarity using the online EFI-EST portal with default 137 

settings (minimum length = 0, maximum length = 50,000, filter type = e-value ≤ 10-5 [41]. Nodes 138 

represent individual viral sequences and edges are the degree of similarity based off BLASTp 139 

pairwise similarity scores using a minimum pairwise similarity of 35%. Clusters and singletons 140 

were removed from the network that did not contain any representative viral sequences with a 141 

RdRP sequence. The network was visualized in Cytoscape (v 3.8.2) using the ‘organic’ layout 142 

[42].  143 

We further established the relatives of echinoderm RNA viruses based on RdRP 144 

phylogenies. Independent phylogenetic analyses were performed for viral orders using the type 145 

species designated by the International Committee on Taxonomy of Viruses. RdRP amino acid 146 

sequences were aligned using MAFFT [43] and phylogenies were inferred by a substitution 147 
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model selected by smart model selection in PhyML 3.0 with branch support determined by 148 

bootstrapping for 100 iterations [44]. The resulting phylogenetic tree was visualized and 149 

annotated using FigTree v1.4.4 [45]. The Amarillovirales phylogeny was created from the 150 

MAFFT alignment used in [46].  151 

Results 152 

We recovered a total of 347 viral contigs and 33 complete or near-complete genomes 153 

from the 927 short read libraries analyzed. A total of 259 viral contigs were recovered from 154 

transcriptomes, and 88 viral contigs from RNA viral metagenomes (Figure S1B). The mean viral 155 

contig length recovered from RNA viral metagenomes (mean ± standard deviation: 4,421 ± 3077 156 

nt) was greater than from transcriptomes (3,143 ± 3102 nt; Figure S1A), and the size of 157 

sequencing libraries was weakly correlated with viral read depth in transcriptome libraries (p = 158 

0.002, Pearson’s r = 0.29) but not in RNA viral metagenomic libraries (p = 0.82, r = 0.05; Figure 159 

S1C). On average the relative abundance of viral contigs as a proportion of total reads was low, 160 

(0.0085%), ranging from 0.000023% to 0.29% (x� = 0.0085%). The average percentage of viral 161 

reads in viral metagenomes (x� = 0.39%) was ~45-fold higher than transcriptomes. However, 162 

viral abundance was highly uneven in the viral metagenomes with the average dropping to 163 

0.07% (~8-fold higher than transcriptomes) after excluding the top three most abundant samples. 164 

Viral sequences were recovered from 111 of the 903 transcriptomic libraries and from all 165 

five echinoderm classes (Figure 1). Sea cucumbers exhibited the highest prevalence of viral 166 

contigs among all echinoderm libraries (i.e., individuals) screened, followed by sea urchins 167 

(10%, 45/457), and the highest proportion among transcriptomes screened (26%; 47/178) (Figure 168 

1A). The majority of viral contigs recovered from transcriptomes came from adult tissue (70%) 169 

compared to embryos (20%) or larvae (10%) (Figure 1B). Transcriptomes derived from 170 

echinoderms during their larval stage had a slightly higher proportion of viral reads in their 171 
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transcriptome (x� = 0.013%) than adults (0.0095%), and more than embryos (0.0034%; Figure 172 

1C), but these differences were not significant (Kruskal-Wallis, chi-squared 1.65, p-value= 0.80).  173 

Over half of the viral contigs contained an RdRP sequence (186/347), with 96 of these 174 

containing a complete or partial capsid sequence. Most viral contigs (215) contained at least a 175 

partial capsid sequence, and 42 viral contigs contained another conserved viral domain such as a 176 

methyltransferase or an RNA helicase domain (Supplemental Table 2). The majority of viral 177 

contigs were taxonomically placed in the order Picornavirales (n= 235) (Figure 2). The 178 

recovered picornaviruses were distributed among a variety of families with the largest number 179 

related to Marnaviridae, followed by Dicistroviridae, and Iflaviridae (Figure 3). Several unique 180 

clades within Picornavirales were represented by complete or near-complete genomes and may 181 

represent novel viral families (Figure 2). The second highest number of viral contigs were 182 

recovered from Mononegavirales (n = 12), with the remainder spread among seven orders (n= 183 

20): Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, 184 

and Hepelivirales. In general, the recovered viruses did not form new monophyletic clades 185 

within Picornavirales (Figure 3) or Amarillovirales, Reovirales, and Mononegavirales (Figure 186 

4). However, within the Hepivirales, the recovered viruses formed a distinct monophyletic clade 187 

that is sister to the clade containing Orthohepivirus and Piscihepivirus. 188 

Viral contig lengths ranged from 502 nt to 12,989 nt. Complete and near complete 189 

genomes were recovered from Picornavirales, Mononegavirales, Amarillovirales, and 190 

Hepelivirales (Figure 5). The echinoderm picornavirus genomes exhibited three different open 191 

reading frame arrangements, which spatially separated the genome by function according to 192 

replication or encapsidation (Figure 3). The two most conserved protein domains related to 193 

replication were the RdRP (pfam00680) and RNA helicase (pfam00910) domains with many of 194 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.482561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482561
http://creativecommons.org/licenses/by-nd/4.0/


the genomes also containing BIR (pfam00653), DSRM (pfam00035), Sigma70 (pfam04539), 195 

peptidases (pfam12381), and large tegument protein (PHA03247) domains. The conserved 196 

capsid domains found among the picornavirus genome included: rhv-like (pfam00073), dicistro 197 

VP4 (pfam11492), CRPV (pfam08762), and calici coat (pfam00915) domains (Figure 5). The 198 

recovered hepeviruses and mononegaviruses contigs contained the expected replication proteins 199 

but many lacked complete capsid proteins, indicating they were only near complete genomes 200 

(Figure 5). The flavivirus genome previously discovered in sea cucumber [27] was completed 201 

during our assembly, leading to the extension of a second complete ORF and extending the 202 

genome size from 8,883 to 12,989 nt.  203 

Discussion 204 

The most prevalent RNA viruses in echinoderm transcriptomes and RNA viral 205 

metagenomes were picornaviruses which are non-enveloped, single-stranded RNA (+ssRNA) 206 

viruses. The order Picornavirales is comprised of eight families (Caliciviridae, Dicistroviridae, 207 

Iflaviridae, Marnaviridae, Picornaviridae, Polycipiviridae, Secoviridae, and Solinviviridae) and 208 

103 genera and are among the most prevalent and diverse group of viruses found in -omics 209 

surveys of animal and environmental samples [47, 29, 38, 48]. The majority of the echinoderm-210 

associated picornaviruses grouped into the Dicistroviridae, Iflaviridae, and Marnaviridae 211 

families, but other recovered viruses also comprised novel clades (Figure 3) which supported our 212 

expectation that the extant diversity of echinoderm RNA viruses is under sampled. The 213 

Marnaviridae are known to be ocean virioplankton which infect single-celled eukaryotes, such 214 

as phytoplankton and protists, but have also been found from metatranscriptomes from marine 215 

bivalves [48, 49]. It is possible that the Marnaviridae we observed infect protists that are 216 

symbionts or transiently associated with echinoderms. Alternatively, the host-range of the 217 
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Marnaviridae family may extend beyond single-celled eukaryotes. The host range of many viral 218 

groups has changed considerably in recent years, and there are examples of host ranges within 219 

RNA viral families that do extend from protists to mammals, such as Reoviridae [50, 51]. All 220 

classified species of Dicistroviridae and Iflaviridae infect arthropods, and have largely been 221 

characterized due to the economic impacts of their pathogenicity though the host range of these 222 

families likely extends far beyond arthropods given their presence in metatranscriptomes from 223 

organisms in the phyla Mollusca, Cnidaria, and Platyhelminthes [31, 48, 52]. The disease 224 

severity from infections of both families ranges from inapparent to lethal, supporting the 225 

possibility that there may be non-pathogenic species infecting echinoderms.  226 

Among the rare virosphere of echinoderms, and those that have few marine host 227 

associations, we observed Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, 228 

Mononegavirales, and Hepelivirales. Many of these echinoderm viruses phylogenetically cluster 229 

with established invertebrate-infecting families or genera (i.e. Nymaviridae family within 230 

Mononegavirales or Cardorevirus genus within Reovirales) while some represent evolutionary 231 

novel lineages such as the flavivirus discovered from a sea cucumber (Figure 4C) [27]. Currently 232 

it is unclear if members of the rare virosphere infect all classes of echinoderms or if some are 233 

class specific. For example, the reovirus and flavivirus discovered in this study were only found 234 

in sea stars and sea cucumbers, respectively, though we cannot rule out methodological biases 235 

and insufficient sample size as proof of absence, requiring further research. Nevertheless, the 236 

discovery of these viruses significantly expands the host range for many of these groups and 237 

represents the first RNA viruses discovered from crinoids and brittle stars.  238 

The vast majority of viruses recovered here, and elsewhere, using transcriptomic and 239 

metatranscriptomic approaches have been positive-sense single-stranded RNA (+ssRNA) [1, 48, 240 
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53]. This pattern of abundance likely has a basis in biology, but in the case of our dataset, may be 241 

inflated due to our use of transcriptomic data. The selection for polyadenylated transcripts during 242 

RNA-seq library preparation biases towards +ssRNA viruses, like picornaviruses, which have 243 

3’polyadenylated tails [54, 55]. Studies utilizing a metatranscriptomic approach for RNA viral 244 

discovery generally do not find such a highly skewed distribution towards +ssRNA but are 245 

nevertheless the most abundant viral type [1, 29, 38, 48]. By utilizing viral RNA metagenomes 246 

and transcriptomes we have uncovered the fullest diversity of RNA viruses associated with 247 

echinoderms with the datasets available, though we expect future multi-omic efforts to reveal 248 

additional diversity.  249 

The greatest difference between the two -omic approaches used in this study for viral 250 

discovery was the total number of viral contigs recovered and contig lengths. Viral RNA 251 

metagenomes generally contained >3 viral contigs per library, which were ~40 % longer, 252 

compared to transcriptomes, which contained 2.2 contigs per library. Additionally, the 253 

proportion of viral reads recovered exhibited a weak correlation with library size for 254 

transcriptomes but not for viral RNA metagenomes (Figure S1B). Thus, despite the efforts to 255 

enrich for viruses in the viral RNA metagenomes, the majority of libraries had a similar percent 256 

of viral reads compared to transcriptomes. Furthermore, these findings indicate that the efficacy 257 

of recovering RNA virus improves with sequencing depth, likely due to the improved assembly 258 

of sequenced found in low abundance.  259 

 The capacity for viral discovery using -omic approaches has greatly expanded our 260 

understanding of biodiversity and host range, fundamentally shifting the perception of viruses as 261 

solely pathogens to a more nuanced role as commensals or mutualists [1]. Performing a viral 262 

census of hosts, like echinoderms, provides a useful context about the prevalence and association 263 
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of viruses that can help understand future outbreaks or changes in the susceptibility of marine 264 

animals due to stress from climate change and human activity. The full potential of -omic 265 

approaches to understand the biological or ecological role of the diversity of viruses uncovered 266 

will only be fully realized in partnership with advances in culturing techniques to study the 267 

infection of naïve specimens [56, 57]. Our study provides a comprehensive survey of RNA 268 

viruses present in echinoderm, contrasting the diversity and abundance of RNA viruses between 269 

echinoderm classes and life stages. We hope this information provides valuable context for 270 

advancing our understanding of the role of these viruses in marine hosts and ecosystems. 271 
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Figure 1: Summary of viral contigs discovered from echinoderm transcriptomes (A) The 434 

number of transcriptomes downloaded from NCBI ordered by echinoderm class that were 435 

processed for viral discovery. (B) Top bars display the total number of viral contigs discovered 436 

separated by echinoderm class and life stage. Bottom bars display total number of transcriptomes 437 

separated by echinoderm class and life stage (C) Percentage of viral reads in transcriptomes by 438 

life stage. NS = non-significant. 439 
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Figure 2: Picornaviruses are the dominant viral order found in echinoderms. (A) Colored 468 

circles represent viral sequences discovered from echinoderm transcriptomes and RNA viral 469 

metagenomes. White circles are viral genomes taken from NCBI. (B) The bar chart displays the 470 

number of echinoderm viruses discovered from each viral order. 471 
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Figure 3: Echinoderm picornaviruses are broadly distributed across the Picornavirales 476 

phylogeny. Tips are colored by taxonomic family with orange circles representing echinoderm 477 

picornaviruses. Genome architectures of complete and near complete genomes recovered from 478 

assemblies displayed. Genomes are drawn approximate to scale in a 5’ to 3’ direction. Open 479 

reading frames denoted by boxes and colored by general function. Asterisk represents an 480 

incomplete open reading frame. Animal icons represent the echinoderm order the viral contig is 481 

associated with. 482 
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Figure 4: Phylogenetic placement of echinoderm viruses from Reovirales, Mononegavirales, 484 

Amarillovirales, and Hepevirales. Tips are colored by taxonomic family or genus with black 485 

circles representing echinoderm viruses. Genome architectures of complete and near complete 486 

genomes recovered from assemblies displayed. Genomes are drawn approximate to scale in a 5’ 487 

to 3’ direction. Open reading frames denoted by boxes and colored by general function. Asterisk 488 

represents an incomplete open reading frame and a question mark denotes potentially incomplete 489 

genome. Animal icons represent the echinoderm order the viral contig is associated with. 490 

 491 

Genus
Aquareovirus
Cardoreovirus
Coltivirus
Cypovirus
Dinovernavirus

Fijivirus
Mycoreovirus
Orbivirus
Orthoreovirus
Oryzavirus
Phytoreovirus
Rotavirus
Seadornavirus

Reovirales

Echinoderm associated
0.7

1.0

Flavivirus
Hepacivirus
Jingmenvirus
LGF
Pegivirus
Pestivirus
Unassigned

Echinoderm associated

Genus

Amarillovirales (Family: Flaviviridae)
1 2,500 5,000 7,500 10,00012,500

Replication associated proteins

Capsid or coat protein

Hypothetical protein

0.3

Mononegavirales (Family: Nymaviridae)

Genus
Berhavirus
Crustavirus

Formivirus
Nyavirus
Orinovirus
Socyvirus
Tapwovirus
Echinoderm associated

0.5

Hepevirales

Genus
Benyvirus
Betatetravirus
Omegatetravirus
Orthohepevirus
Piscihepevirus
Rubivirus
Echinoderm associated

?

* ?

1 2,500 5,000 7,500 10,000

Genome Length (bp) Genome Length (bp)

Sea cucumber Sea urchin Sea star Crinoid

Labidiaster annulatus 

Labidiaster annulatus

Pisaster ochraceus

Pisaster ochraceus
Apostichopus californicus

Phrixometra nutrix 

Isometra vivipara 

Arbacia punctulata 

Clypeaster subdepressus 

Asthenosoma varium 

Mediaster aequalis 

Echinometra sp.  

A B

C D

Replication associated proteins

Capsid or coat protein

Hypothetical protein

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.482561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482561
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Genome architectures and comparison of complete or near complete genomes 492 

recovered from assemblies. Genomes are drawn approximate to scale in a 5’ to 3’ direction. 493 

Open reading frames denoted by boxes and colored regions represent conserved protein domains. 494 

Asterisk represents an incomplete open reading frame and question marks indicate missing open 495 

reading frames that would complete the genome. Animal icons represent the echinoderm order 496 

the viral contig is associated with. 497 
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Figure S1: Summary statistics of viral discovery from short read libraries. (A) The 500 

distribution of viral contig lengths between RNA viral metagenomes and transcriptomes. (B) 501 

Total number of viral contigs discovered in RNA viral metagenomes and host transcriptomes. 502 

(C) Pearson’s correlations of total reads in a given library and total viral sequences in the same 503 

library. 504 
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