Full paper

A Physcomitrella PIN protein acts in spermatogenesis and sporophyte abortion

 L. Decker ${ }^{1}$ and Ralf Reski ${ }^{1,2,3,4}$
${ }^{1}$ Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
${ }^{2}$ Speman Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
${ }^{3}$ CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
${ }^{4}$ Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
Current address:
* Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
Author for correspondence: Ralf Reski, Email: ralf.reski@biologie.uni-freiburg.de

Key words: auxin, bryophyte, flagellum, moss, plant development, sperm, spermatozoid

Summary

- The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens) three canonical PINs (PpPINA-C) are expressed in the gametophore. PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development. Here, we examined the role of PpPINC in the life cycle of Physcomitrella.
- We established reporter and knockout lines for PpPINC and analysed vegetative and reproductive tissues using microscopy and transcriptomic sequencing of moss gametangia.
- PpPINC is expressed in immature leaves, mature gametangia and during sporophyte development. The sperm cells (spermatozoids) of knockout mutants exhibit increased motility compared to the wild type and show an altered flagella phenotype. Further, the knockout mutants have a significantly increased fertility, and an increased abortion rate of premeiotic sporophytes.
- Here, we show that PpPINC is an important regulator for spermatogenesis and sporophyte development. We propose an evolutionary conserved way of polar growth during early moss embryo development and sporophyte attachment, while suggesting the mechanical function in sporophyte securement of a ring structure, the Lorch ring.

Introduction

The auxin signal transduction pathway is conserved in all land plants (Paponov et al., 2009; FloresSandoval et al., 2015; Thelander et al., 2018; Cancé et al., 2022). In the model moss Physcomitrella (Physcomitrium patens), the main auxin biosynthesis pathway is, as in Arabidopsis, the conversion of tryptophan by TAR enzymes to indole-3-pyruvate (IPyA) from where it is converted by YUC enzymes into active auxin (indole-3-acetic acid, IAA) (Landberg et al., 2020). Auxin homeostasis plays an important role during the life cycle of Physcomitrella, maintaining growth and organogenesis (LudwigMüller et al., 2009; Thelander et al., 2018). However, there is no indication for a polar auxin transport in the moss shoot (Fujita et al., 2008), although the protein family responsible for polar auxin transport, Pin-formed (PIN), is conserved in all land plants, including bryophytes (Bennett et al., 2014a; Zhang et al., 2020).

Canonical PIN proteins share four highly conserved motifs in the hydrophilic loop and a strong conservation in the N^{\prime} - and C^{\prime} terminal transmembrane regions, while noncanonical PINs are defined by a higher variability (Bennett et al., 2014a). Structures and mechanism of auxin transport have recently been elucidated in great detail for the Arabidopsis thaliana PIN8 protein (Ung et al., 2022). The Physcomitrella genome encodes four PIN genes, the three canonical PpPINA, PpPINB and PpPINC, and the noncanonical PpPIND, with PpPINA and PpPINB being the most similar to each other (Bennett et al., 2014b). The Physcomitrella PIN proteins form an outgroup with other bryophytes to vascular plants and lycophytes, where the canonical PpPINs cluster with PIN proteins from other mosses, while the noncanonical PpPIND is separated together with several PIN proteins of the liverwort Marchantia polymorpha (Bennett et al., 2014a).

In the gametophore, apical stem cells show the highest expression of PpTAR genes, indicating biosynthesis of IPyA (Landberg et al., 2020), with auxin accumulating beneath the stem apex and at the stem base (Bierfreund et al., 2003; Fujita et al., 2008). The growth of developing leaves (phylloids) in Physcomitrella is marked by high auxin activity (Thelander et al., 2019) with all three canonical PpPIN genes being active (Viaene et al., 2014). While PpPINA is the highest expressed PIN gene in Physcomitrella tissues, PpPINC has the lowest expression level of all canonical PINs (Bennett et al., 2014b). Single knockouts of PpPIN genes have no severe effect on gametophore growth (Viaene et al., 2014), while the double knockout of PpPINA and PpPINB leads to elongated leaves, a phenotype similar to Physcomitrella gametophores treated with excess auxin or auxin transport inhibitors (Decker et al., 2006; Bennett et al., 2014b).

When introduced to short day conditions with low temperatures, the monoecious moss Physcomitrella initiates the formation of sexual organs on the gametophore apex (Hohe et al., 2002) with specialized stem cells for female archegonia and male antheridia development (Kofuji \& Hasebe, 2014). Growth of antheridia and archegonia is highly synchronized, beginning with the formation of the antheridia while
archegonia develop later but mature faster, so that self-fertilization is possible (Cove, 2005; Landberg et al., 2013). The development and growth of gametangia is controlled by the auxin-biosynthesis regulators SHORT INTERNODE/STYLISH (SHI/STY) and TAR enzymes, influencing the neck length of archegonia and growth of antheridia. During the growth of antheridia, the expression of PpSHI and PpTAR genes overlap with the expression of PpPINA and the accumulation of auxin in apical cells, before spermatogenesis begins. This activity slowly declines and reaches its lowest point during spermatogenesis, indicating a process where auxin plays a minor role (Landberg et al., 2013; Landberg et al., 2020). Spermatogenesis in Physcomitrella is tightly regulated, producing motile, biflagellate sperm cells, relying on the availability of water to swim to the egg cell (Reski, 1998; Cove, 2005; OrtizRamírez et al., 2017; Koshimizu et al., 2018; Gu et al., 2022). Like in antheridia, the activity of auxin biosynthesis, signalling and accumulation are the highest in archegonia during early growth phases. The precursor egg cell and apical neck cells show the highest activity, while there is a minimum of expression during egg maturation (Landberg et al., 2013; Landberg et al., 2020). After fertilization of the egg cell, a diploid embryo grows from the zygote and develops into the moss sporophyte (Horst et al., 2016). The sporophyte in Physcomitrella is reduced compared to other mosses (Kirbis et al., 2020), even within its own family (Ostendorf et al., 2021), and consists of the sporophyte foot, a short seta and the spore capsule, which rips open after maturation to release the spores (Cove, 2005). Auxin is distributed dynamically in a polar manner during sporophyte growth, with an auxin maximum in the apex of the early embryo which later localizes to the foot of the young sporophyte where it slowly recedes during maturation (Fujita et al., 2008). The sporophyte foot is secured in a maternal cavity (vaginula) and covered at its base with haustorial cells, important for the uptake of nutrients provided by the gametophore (Regmi et al., 2017). Formation of sporophytes is a complex process and regulated by a number of genetic elements (Mosquna et al., 2009; Horst et al., 2016; Ortiz-Ramírez et al., 2016; LopezObando et al., 2016; Hashida et al., 2020; Kirbis et al., 2020; Sakakibara et al., 2008; Takechi et al., 2021, Landberg et al. 2022). However, auxin remains a crucial player in sporophyte growth (Fujita et al., 2008), with the two Physcomitrella PIN genes PpPINA and PpPINB showing functional activity in the development of sporophytes (Bennett et al., 2014b), whereas the role of the canonical PpPINC remains unclear.

Here, we elucidate the role of PpPINC in the Physcomitrella life cycle. We found that PpPINC influences spermatogenesis-related gene expression, controls motility and phenotype of moss sperm cells, and is important in preventing early abortion of premeiotic sporophytes, while it has no obvious role in vegetative growth.

Material and Methods

Plant material and culture conditions

The Physcomitrella patens (Hedw.) Bruch \& Schimp. ecotype Gransden covers several laboratory strains which are descendants of the first original cultivated single clone (Haas et al., 2020) and was recently renamed to Physcomitrium patens (Hedw.) Mitt.. We used as wild type (WT) a fertile Gransden line, which underwent sexual reproduction regularly as a basis for all transgenic lines. Plants were cultivated using Knop medium (pH 5.8) according to Reski \& Abel (1985) containing microelements according to Egener et al. (2002). For solid medium, $12 \mathrm{~g} / \mathrm{l}$ agar (OXOID, Thermo Scientific) were added. Standard growth conditions were long day 16 hours light with $70 \pm 5 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-2}$ and $22^{\circ} \mathrm{C}$. Sporophyte induction was modified after Hohe et al. (2002). Plants were grown in long day conditions, before being transferred to sporophyte inducing conditions (Hohe et al., 2002). At day 18 of sporophyte induction, plants were watered $\left(\mathrm{H}_{2} \mathrm{O}\right.$ dest., 10 ml for 9 cm petri dish), which was removed from the plate at day 25. All moss lines used are stored in the International Moss Stock Center (IMSC; https://www.moss-stock-center.org) with the following accession numbers: PinCPromCit $=40917$, $\operatorname{pin} \mathrm{C} \# 10=40918, \operatorname{pin} \mathrm{C} \# 29=40919, \operatorname{pin} \mathrm{C} \# 69=40420, \mathrm{WT}=40095$.

Generation of transgenic lines

Transgenic lines were created via highly efficient homologous recombination (Reinhard et al., 2004) in transformed protoplasts (Hohe \& Reski, 2002). For the generation of targeted pinC mutants the region upstream from the beginning of the first exon to the untranslated region after exon six was amplified (2915 bp) from genomic DNA using the following primers: P3-KO Fw + P3-KO Rv (Supp. Tab. 1). The amplified fragment was sub-cloned into the vector pJET1.2. Using SacI and NcoI a piece of the PpPINC gene (1696 bp) was replaced with a sulfadiazine selection cassette (Parsons et al., 2012). For the generation of the reporter line, 2.1 kb upstream of the start codon of the PpPINC gene were fused to the citrine cds and nos terminator via Gibson cloning (Gibson et al., 2009), upper case letters are for PpPINC promoter amplification: 5PinCprom_f+CA5 + 3PinCprom_r+Citrin (Supp. Tab. 1). The expression cassette was cloned between homologous regions of the carbonic anhydrase locus (Wiedemann et al., 2018), erasing the citrine expression of the parental plant when correctly integrated into the genome.

Molecular analysis of transgenic lines

Initial screening of lines was done with leaflet PCR, according to Schween et al. (2002), to test for the presence of the construct. For RT-PCR total RNA was extracted from 6 weeks old gametophores, 21 days after the sporophyte induction started using the innuPREP Plant RNA Kit (Analytik Jena AG, Jena, Germany) and reversely transcribed using oligo-d(T)16 primers with Superscript III reverse transcriptase (Life Technologies, Thermo Fisher Scientific). Analysis for the absence of PpPINC RNA was performed with the gene-specific primers Pin3f_ex1-2 + Pin3r_ex2 (Supp. Tab. 1). Presence of cDNA was tested with C45_fwd and C45_rev (Supp. Tab. 1) amplifying the constitutively expressed gene L21. Transgene copy numbers were tested via quantitative Real-Time PCR according to NoyMalka et al. (2014). Genomic DNA was isolated from protonema, one week after the last tissue disruption using the innuPREP Plant DNA Kit (Analytic Jena AG). Transgene copy numbers were
determined comparing relative values of the transgene 35 S promoter ($35 \mathrm{SPqPCR} \mathrm{f}+35 \mathrm{SPqPCR} _$r; Supplemental Table 1) with the single copy transgene carbonic anhydrase line used in Wiedemann et al. (2018), for normalization, the single copy gene CLF was used (Noy-Malka et al., 2014).

Tissue isolation for gene expression analysis using SMARTseq

Triplicates of tissue samples were collected 18 days after gametophores were exposed to sporophyteinducing conditions. Mature archegonia and antheridia were collected manually using a stereoscope (Olympus SZX7) and stored directly in TRIzol® (Fisher Scientific GmbH, Schwerte, Germany). All lines used were grown together on the same plate. For each sample eight archegonia or antheridia were collected. Tissues were homogenized using small pistils and mixed with chloroform. The aqueous phase was then further processed using the Direct-zol RNA Microprep Kit (Zymo Research Europe GmbH, Freiburg, Germany). The resulting RNA was treated with RiboLock RNase Inhibitor (Fisher Scientific GmbH, Schwerte, Germany). The cDNA library was created at the Genomics Unit in the Instituto Gulbenkian de Ciencia, Portugal according to Picelli et al. (2014). Libraries were sequenced using the Illumina RNASeq platform from Novogene (Novogene Company Limited, Cambridge, UK).

Transcriptomic data processing

Raw data was trimmed using Trim Galore (Version 0.6.6; adapter stringency $=1 \mathrm{bp}$; minimum required sequence length for retaining a read pair $=20 \mathrm{bp} ; 3$ 'clipping $=1 \mathrm{bp}$). All further steps were done using the Galaxy platform (Afgan et al., 2018). The 150 bp paired-end reads were then mapped to the Physcomitrella genome version 3.3 (downloaded from Phytozome (Goodstein et al., 2012) using HISAT2 (Galaxy Version 2.1.0; spliced alignment activated). Mapped reads were counted with feature counts (Galaxy Version 2.0.1; excluding chimeric fragments; only fragments with both reads aligned, GFF feature type filter = CDS; GFF gene identifier = gene_id). Differential gene expression was analyzed using DESeq2 (Galaxy Version 2.11.40.6+galaxy1) and filtered for enriched gene ontology terms with GOEnrichment (Galaxy Version 2.0.1). Quality of mapping and read counts were controlled with MultiQC (Galaxy Version 1.11+galaxy0) and FastQC (Galaxy Version 0.73+galaxy0).

Calcium measurement in sperm cells

Sperm packets of single antheridia where extracted directly after being released from the antheridium and spotted on polylysine-covered glass slides according to Horst \& Reski (2017). Sperm cells where incubated in a Fluo-4 solution according to Ortiz-Ramírez et al. (2017) for 20 minutes, photographed (see microscopy) and pictures were then analyzed using ImageJ (Schneider et al., 2012).

Sporophyte count

For all lines we analyzed all gametophores on the respective plate. After removal of the leaves, sporophytes, embryos, empty vaginulae and aborted sporophytes were counted.

Statistical analysis

Stem length, leaf length and leaf width were tested with Student's t-Test with $\mathrm{p}<0.05$. Significance of motility was assessed with one-sided ANOVA and Tukey-Kramer test, flagellar phenotype with onesided ANOVA. All tests were performed with Microsoft Excel and the XLMiner Analysis ToolPak.

Protein alignments and motif analysis

Needleman-Wunsch (Needleman \& Wunsch, 1970) and multiple sequence alignments (Larkin et al., 2007) with Clustal Omega (1.2.4) were performed using the European Bioinformatics Institute (EMBLEBI) web tools (https://www.ebi.ac.uk/services) (Madeira et al., 2019). Needleman-Wunsch alignments were performed with BLOSUM62, a gap penalty of 10 and extend penalty of 0.5 . Multiple sequence alignments were performed with default settings. Transmembrane protein motifs were assessed using TMHMM 2.0 (Krogh et al., 2001; Sonnhammer et al., 1998).

Flow cytometry

Flow cytometry analysis was performed according to Heck et al. (2021).

Microscopy

For preparation of samples, we used an Olympus SZX7 stereoscope and for extraction of sperm packages a Zeiss Axiovert microscope. Fluorescence and bright-field microscopy pictures were taken with a Zeiss Axioplan 100 with a Zeiss MRc5 camera and Zeiss AxioVision software (Version 3.8.2).

Results

Physcomitrella PIN family

The Physcomitrella genome (Lang et al., 2018) encodes three canonical PIN proteins, PpPINA (Pp3c23_10200), PpPINB (Pp3c24_2970) and PpPINC (Pp3c10_24880). These genes are similar in structure and length (Supplemental Fig. S1 a), consisting like all canonical PIN proteins in land plants of two transmembrane regions (five helices each), separated by a hydrophilic loop (Supplemental Fig. S1 b). The transmembrane regions have the same length in all three proteins, whereas the hydrophilic loop of PpPINC is 15 amino acids (AA) shorter than those of PpPINA and PpPINB (Table 1, Supplemental Fig. S1 b). While PpPINA and PpPINB are very similar in their AA sequences, PpPINC differs more, especially in the hydrophilic loop (Supplemental Fig. S2 a, c). While PpPINA and PpPINB share a sequence identity above 86%, for PpPINC it is below 65% compared to the others (Table 1, Supplemental Fig. S2b). We hypothesise that PpPINA and PpPINB are the result of a gene duplication event in the recent genomic history of Physcomitrella (Lang et al., 2018), after the event that led to PpPINC.

Compared to the canonical PIN proteins of Arabidopsis (AtPIN1,2,3,4,7), the hydrophilic loop of Physcomitrella PINs are between 51 and 97 AA longer, while there is strong conservation in the transmembrane regions (Supplemental Fig. S2b), as there is among all land plants (Bennett et al., 2014a; Zhang et al., 2020).

Table 1: Identity, similarity and length of Physcomitrella PpPIN protein motifs

	A vs B	A vs C	B vs C	PpPINA	PpPINB	PpPINC
	Identity; Similarity of AA in \%	Length AA				
TM N'	$96.1 ; 98.7$	$87.7 ; 93.5$	$88.4 ; 93.5$	155	155	155
HL	$86.3 ; 91.4$	$64.7 ; 76.9$	$64.4 ; 76.8$	409	409	394
TM C'	$95.3 ; 98.7$	$80.0 ; 88.0$	$77.3 ; 86.7$	150	150	150

$\mathrm{A}=\mathrm{PpPINA}, \mathrm{B}=\mathrm{PpPINB}, \mathrm{C}=\mathrm{PpPINC}, \mathrm{TM} \mathrm{N}^{\prime}=\mathrm{N}$-teminal transmembrane region, $\mathrm{HL}=$ Hydrophilic loop, TM C'=C-terminal transmembrane region.

Stage-specific expression of PpPINC

We compared PpPIN expression in publicly available expression data (PEATmoss database; FernandezPozo et al., 2020) for the two Physcomitrella ecotypes Gransden and Reute in two or three datasets, respectively (Hiss et al., 2014; Ortiz-Ramírez et al., 2016; Perroud et al., 2018). As reported in Bennett et al. (2014b), PpPINA is the highest expressed gene of the three, followed by PpPINB with lower, but similar expression rates. Consistent across the three data sets, PpPINC is the lowest expressed of the three. While there are some differences in the expression in single tissues in the different data sets, the overall expression of PIN genes in both Physcomitrella ecotypes is very similar. In protonema, the expression of all three PINs is the lowest, while the highest expression of PpPINA and PpPINB can be found in gametophores and developing sporophytes. For PpPINC, the expression in vegetative tissues is very low, while there is a dynamic expression during sporophyte development in both ecotypes, which is nonetheless lower compared to the other two PINs in the same sporophytic tissues (Supplemental Fig. S3).

For a closer look at the activity of PpPINC, we created a moss line expressing citrine (pinCPromCit) under the influence of the native PpPINC promoter region (2.1 kb upstream CDS start). This construct was targeted to the carbonic anhydrase-citrine tagged locus used in Wiedemann et al. (2018), because of the high expression of the carbonic anhydrase gene. We screened for altered citrine signals in transformed plants compared to the ever-present citrine expression of the parental line and thus recovered a line with targeted integration of the pinCPromCit construct (Supplemental Fig. S4a, b). Under standard growth conditions we did not observe any PINC-driven citrine fluorescence, neither in
protonemal cells, rhizoids, stems, nor in adult leaves (Fig. 1a). In contrast, citrine fluorescence was clearly visible in the apices of young leaves. From here, fluorescence proceeds towards the base until maturation of the leaf. Intriguingly, PpPINC expression was highest in parts of the mid-rip and in leaf margins (Fig. 1b, c).

Figure 1: PpPINC is expressed in developing leaves of Physcomitrella. Fluorescence microscopy to visualize citrine expression in a PpPINC promoter line (green). Red marks autofluorescence of chlorophyll: a) protonema $(\mathrm{bar}=100 \mu \mathrm{~m}) \mathrm{b}$) budding gametophore $(\mathrm{bar}=100 \mu \mathrm{~m}) \mathrm{c}$) the youngest leaves of a moss gametophore $(\mathrm{bar}=200 \mu \mathrm{~m})$.

In addition, citrine expression was detectable in developing gametangia. In mature antheridia close to releasing their sperm cells (antheridium stage 9 in Landberg et al. (2013)), the signal was found in the foot cells separating the antheridial body from the gametophore apex (Fig. 2a). In archegonia, a citrine signal was visible only after the neck canal had opened, surrounding the transition zone between canal and archegonial body above the egg cell (Fig. 2b).

Figure 2: In Physcomitrella, PpPINC is dynamically expressed in reproductive organs. With fluorescence-microscopy we visualized citrine expression in a PpPINC promoter line (green). Red marks autofluorescence of chlorophyll: a) and c) mature antheridium shortly before sperm cells are released (scale bar $=25 \mu \mathrm{~m}$). Sperm cells can be seen inside the antheridium in c). b) and d) mature and opened archegonium (scale bar $=50 \mu \mathrm{~m}$).

Vegetative growth is unaltered in pin C mutant

To understand the role of PpPINC in the Physcomitrella life cycle, we created targeted knockout mutants via homologous recombination in the background of a fertile Physcomitrella WT. Out of 12 targeted mutant lines devoid of PpPINC expression, three independent, haploid mutant lines (pinC\#10, pinC\#29, pinC\#69) with single integration of the knockout construct in the genome were chosen for further analysis (Supplemental Fig. S5). On solid medium we could not detect obvious phenotypic differences to WT regarding stem length, leaf length and leaf width as well as overall growth (Supplemental Fig. S6).

Altered sperm motility and phenotype in pin C mutants

When WT and pinC mutants were grown in gametangia-inducing conditions, i.e. $15^{\circ} \mathrm{C}$ and short day (Hohe et al., 2002), male and female gametangia developed without any observable differences.

However, we detected an increased motility of pinC mutant sperm cells (spermatozoids). In WT, $38.9 \pm$ 1% of spermatozoids are motile 5 minutes after release from the opened antheridium. All three pinC mutant lines showed a significantly increased motility ($\mathrm{p}<0.00001$) of more than 60% compared to $\mathrm{WT}(\operatorname{pinC} \# 10=64.8 \pm 2.75 \%, \operatorname{pin} \mathrm{C} \# 29=63.8 \pm 1.51 \%$, $\operatorname{pin} \mathrm{C} \# 69=62.3 \pm 2.32 \%)($ Fig. 3a, b, c). For a deeper analysis we focused on the line pinC\#29. When looking closer at the phenotype of the spermatozoids we observed that a majority of WT spermatozoids have coiled flagella (59.8 $\pm 11.96 \%$ coiled) (Fig. 3d, g, h), while in the mutant pinC\#29 the vast majority of spermatozoids have non-coiled flagella ($94.48 \pm 5.22 \%$) (Fig. 3e, f). It was shown by Ortiz-Ramírez et al. (2017) that calcium concentration in Physcomitrella sperm cells can alter their motility. However, staining with the calciumsensitive dye Fluo-4 did not reveal differences in calcium concentrations inside the sperms of WT and mutant pinC\#29 (Supplemental Fig. S7).

Figure 3: Sperm morphology and motility in Physcomitrella WT and pinC mutants. Mutant sperm cells are more motile and have less coiled flagella compared to WT sperm cells. a) WT and b) pinC\#29 spermatozoids one, five and 30 minutes after being released from a single antheridium, respectively (bar $=20 \mu \mathrm{~m})$. Areas circled in red highlight spermatozoids after release. c) Percentage of moving spermatozoids after being released from the antheridium ($n=10$). d) Percentage of non-coiled flagella compared to coiled flagella (WT: $\mathrm{n}=7$ antheridia, $\operatorname{pin} \mathrm{C} \# 29: \mathrm{n}=9$ antheridia). Asterisks in c) and d) $=$ $\mathrm{p} \leq 0.0001$. e) and f) WT spermatozoids with coiled flagella marked by arrows. g) and h) pinC\#29
spermatozoids with non-coiled flagella marked by arrows. e) -h) $\mathrm{bar}=10 \mu \mathrm{~m}$. For better resolution of sperm cells pictures in $a, b, e-h$ are stacked pictures.

Organ-specific differential gene expression

To identify genes underlying the differences in sperm flagella phenotype, we performed RNAseq analysis on WT and mutant gametangia. For this we collected mature archegonia and antheridia from WT and the $\operatorname{pinC\# } 29$ mutant, cultivated on the same plate, 20 days after start of sporophyte induction. For each line and organ, we pooled eight gametangia per sample which were collected on three different occasions (three samples per organ and line). Mapping of sequenced samples resulted in alignment rates of $71.8-93.8 \%$ with the version 3.3 of the Physcomitrella genome (Lang et al., 2018). With 150 bp paired-end Illumina platform-based sequencing, we reached read counts between 19 and 39.8 million for the feature coding sequence (CDS) (Supplemental Fig. S8). No reads could be mapped to the deleted area of PpPINC in the mutant line pinC\#29, which confirms the efficient gene knockout (Supplemental Fig. S9). Between all mutant and all WT samples, we could not find significant differences in gene expression. In contrast, we found a clear separation between male and female gametangia, while the difference between WT and pinC mutant was not strong (Fig. 4a). When comparing the samples to each other, we found that for the male samples (WT antheridia WM vs mutant antheridia PM) there were two upregulated (Pp3c26_6020, Pp3c26_3990) and nine downregulated genes (Pp3c9_8920, Pp3c14_8940, Pp3c20_22670, Pp3c1_22810, Pp3c19_15670, Pp3c3_4950, Pp3c3_11110, Pp3c21_8410, Pp3c12_11710) (p ≤ 0.05, Fold change $(\mathrm{FC})> \pm 2$, Table 2) (Supplemental Table 2a). Three of the downregulated genes are not annotated so far, while the other genes show counts only in a local part of the gene or exhibit obscure gene structures consisting of only one exon or 22 micro exons. Comparing the female samples, we found one upregulated (Pp3c11_4360) and two downregulated (Pp3c7_8820, Pp3c6_26100) genes (Supplemental Table 2b), while these genes also show expression only in one part of the gene or show unusual gene structures. When comparing samples derived from antheridia against archegonia, we observed a strong upregulation of genes in male gametangia of both lines. The ratio of upregulated to downregulated genes is higher than 4 . The highest number of upregulated genes was found in the comparison between all male and all female samples with 1920 genes upregulated and 397 downregulated genes (Table 2). The results of all DEG experiments are compiled in Supplemental Table 3.

Table 2: Up- and downregulated genes in male (M) and female (F) tissue samples from Physcomitrella WT (W) and pinC\#29 (P).

	Upregulated genes	Downregulated genes
PM vs WM	2	9
PF vs WF	1	2

pinC\#29 vs WT	0	0
PM vs PF	1361	245
WM vs WF	1323	298
Male vs Female	1920	397

We analysed the gene ontology (GO) terms of the differentially expressed genes (DEGs) to look for accumulation of specific terms for all experiments (p-value cut off 0.01) but could find enriched terms only in the comparisons between sexes (Fig. 4b), we also found GO enrichment in the upregulated genes only. For the comparison of WT antheridia against WT archegonia (WM vs WF) we found a weak enrichment of the GO term axonemal dynein complex (0.08%). In the experiment PM vs PF (mutant antheridia vs mutant archegonia) we found that five GO terms were most prominent in the upregulated genes, three of them can be associated with spermatogenesis and one each with energy consumption and DNA synthesis (Cellular Components: cilium $=0.36 \%$, microtubule organizing center $=0.23 \%$; Biological Process: carbohydrate catabolic process $=7.2 \%$, cilium assembly $=1.3 \%$, purine ribonucleotide metabolic process $=7 \%$). The same is true for the comparison of all antheridia samples with all archegonia samples, where four GO terms associated with spermatogenesis were overrepresented (Cellular Components: cilium $=3.9 \%$, dynein complex $=2.2 \%$, intraciliary transport particle $\mathrm{B}=0.84 \%$; Biological Process: cell projection organization $=1.3 \%$) (Supplemental Table 1). Most of the upregulated DEGs found in the comparison of the sexes were shared between WT and mutant (Fig. 4c). The number of DEGs found exclusively in the mutant was similar between upregulated and downregulated genes (119 / 117). The WT shared the least downregulated genes with the mutant, while contributing more downregulated DEGs to the comparison between male and female (Fig. 4d). We identified some single DEGs, which had been reported to play roles in flagella formation or auxin homeostasis. The coiled coil-like protein Ppccdc39 (Meyberg et al., 2020) was upregulated almost 3fold (FC) in male samples compared to female ones ($\mathrm{FC}=2.98$). While it is also significantly upregulated in the comparison of WT male against female gametangia $(\mathrm{FC}=2.4, \mathrm{p}=0.0005)$, the fold change was even larger in the mutant samples, but due to high variation in the male samples not statistically significant. The arl13b homologue Pp3c1_40600, which is involved in flagella stability, was significantly upregulated in the comparison of male against female gametangia ($\mathrm{FC}=3.44, \mathrm{p}=0.025$), which is also upregulated in the Reute ecotype compared to Gransden (Meyberg et al., 2020). In all comparisons of male against female tissues the arabinogalactan 31 homologue Pp3c5_9210, found to be active during spermatogenesis (Meyberg et al., 2020), was upregulated with a higher fold change in PM vs $\mathrm{PF}(\mathrm{FC}=7.24, \mathrm{p}=2.06 \mathrm{E}-10)$ than in WM vs $\mathrm{WF}(\mathrm{FC}=4.62, \mathrm{p}=1.20 \mathrm{E}-07)$ (male vs female FC $=5.34, \mathrm{p}=1.61 \mathrm{E}-08$). We could also find that PpBELL2 (Horst et al., 2016) was significantly downregulated in all male samples compared to female samples (PM vs PF : $\mathrm{FC}=-7.53, \mathrm{p}=8.17 \mathrm{E}-09$; WM vs WF: $\mathrm{FC}=-3.07, \mathrm{p}=0.013$, male vs female: $\mathrm{FC}=-3.85, \mathrm{p}=0.0029$). The two PHD clade IIa genes PpMS1A and PpMS1B, are significantly higher expressed in male tissues compared to female
(PpMS1A: Male vs Female FC $=2.35, \mathrm{p}=0.029, \operatorname{PpMS1B}$: Male vs Female FC $=2.81, \mathrm{p}=0.036$, WM vs WF FC $=2.04, \mathrm{p}=0.035$), as it was also reported in Landberg et al. (2022). While not being differentially expressed, we observed expression of all six $P p T A R$ genes in both gametangia, with PpTARB being the highest expressed, followed by PpTARA and PpTARC, while PpTARE and PpTARF being lower expressed and PpTARD the lowest of all six genes. We could also find higher expression levels of the two $P p Y U C B$ and $P p Y U C F$ in both gametangia, while $P p Y U C D$ showed a very low, but significantly upregulated expression in archegonia. This indicates active auxin synthesis in mature gametangia. While our transcriptomic data reveal trends in general gene expression, we could not identify any single DEG which could be responsible for the difference in sperm flagella phenotype in the comparison of WT and the mutant.

360

Figure 4: Transcriptomic analysis of Physcomitrella WT and mutant gametangia. a) Variance of all samples. Samples group together into male and female, but there is no clear separation between WT and mutant samples. $\mathrm{M}=$ male (antheridia), $\mathrm{F}=$ female (archegonia), $\mathrm{W}=$ wild type, $\mathrm{P}=\operatorname{pin} \mathrm{C} \# 29 . \mathrm{b}$)

All enriched gene ontology terms in upregulated DEGs in the comparison of all male against all female samples (Male vs Female), all wild type male against wild type female (WM vs WF) and mutant male against mutant female samples (PM vs PF). c) Venn diagram of all up-and d) downregulated genes in the comparisons of male and female samples.

No PpPINC differences between Gransden and Reute

After we compared expression data of PpPINC in the Gransden and Reute ecotype and could not find any differences, we checked for differences in genomic sequences using published data (Lang et al., 2018). We compared the whole genomic PpPINC sequence from the 5 'UTR to the 3 'UTR and could confirm the PpPINC gene to be identical between both ecotypes.

Altered fertility and abortion rate

We did not observe any differences in the morphology of mature spore capsules or germination rates of spores between WT and mutant (Supplemental Fig. S10). In contrast, the increased motility of spermatozoids of the pinC mutant led to a significantly higher fertility rate in all three lines (Supplemental Fig. S11). Low fertility rates of WT Gransden have been reported (Perroud et al., 2011; Hiss et al., 2017; Meyberg et al., 2020), and in our experiments $5.5 \pm 0.4 \%$ of all WT gametophores of a colony produced a sporophyte. In contrast, all pinC mutants developed significantly more spore capsules, ranging from $14.5 \pm 0.6 \%$ for $\operatorname{pin} C \# 69,39.8 \pm 1.6 \%$ for $\operatorname{pinC} C 10$ and $63.2 \pm 4.5 \%$ for pinC\#29. In addition to increased fertility, we detected an increased abortion rate of sporophytes in the mutants (gametophores with aborted sporophytes: $\mathrm{WT}=0.1 \pm 0.03 \%$, pinC\#10 $=8.7 \pm 1.3 \%$, pinC\#29 $=35.4 \pm 1.7 \%, \operatorname{pinC} \# 69=6.5 \pm 0.2 \%)$. The aborted sporophytes were no longer attached to the maternal tissue (vaginula). Abortion happened around two weeks after fertilization of the egg cell (for reference of sporophyte development see Ortiz-Ramírez et al. (2016) and Lopez-Obando et al. (2022)).

In the early embryo, PpPINC was active in the lower half, excluding the basal tip cells, as well as in the walls of the maternal tissue that surrounds the young embryo (epigonium) (Fig. 5a). Development of the sporophyte foot and the maternal tissue are highly synchronized. When the embryo has doubled in size and the foot is secured in the now fully developed vaginula (Fig. 5b), the seta forms and rips apart the surrounding tissue of the epigonium, while the later developing spore capsule also starts to separate (Fig. 5 c), splitting the epigonium into the calyptra at the apex and the vaginula at the basis of the premeiotic sporophyte. The expression of PpPINC slowly declines in the foot of the embryo (Fig. 5a-c), while it increases in the maternal tissue during sporophyte foot growth, forming a distinct ring structure at the border of maternal and sporophytic tissue (Fig. 5b). After the growth spurt, PpPINC expression can be found only in the apophysis (region between seta and premeiotic tissue), while excluding the stomata cells (Fig. 5d). We found that Physcomitrella develops a true-type vaginula, where the foot of the sporophyte does not penetrate the gametophore tissue under the vaginula (Fig. 5e, f). Sporophyte
development is polar in Physcomitrella, where the foot of the sporophyte develops faster than the seta or premeiotic spore capsule. The basis of the foot was not in direct contact with the maternal cells, which is in line with an earlier report (Regmi et al., 2017), while the vaginula tightened at its apical border to the sporophyte, which is visible as a reddish-brown coloured ring after the emergence of the premeiotic sporophyte (Fig. 5g, i). In the mature sporophyte, no PpPINC expression was detectable.

Aborted sporophytes in WT and mutants were in the premeiotic phase after the separation of the epigonium (comparable to stage shown in Fig. 5g), and no longer attached to the vaginula. No visible defects could be detected, apart from the separation of the gametophore. On one occasion we could observe a sporophyte slipping out of the cavity of the vaginula, not losing contact as the basis of the foot was stuck in the tighter apical end (Fig. 5h). Empty vaginulae clearly showed the coloured ring formation at the apical opening (Fig. 5i). The aborted sporophytes had fully developed foot structures, with haustorium cells at the basis, seta, stomata cells and a depression between seta and haustorium cells, which we believe results from the securement of the sporophyte by the coloured ring formation (Fig. 5 j). We could find no morphological differences in the aborted sporophytes between mutants and WT, except for an increase in the number of abortions in the mutants. The calyptra could be removed without resistance, some aborted sporophytes had already lost them (Fig. 5k, 1).

Figure 5: Sporophyte development in Physcomitrella. a)-d) Bright-field and fluorescent microscopy pictures of Physcomitrella PpPINC reporter line. a) Embryo (probably 128 cell stadium) inside the epigonium, as = archegonial stalk. b) Embryo has doubled in size, vaginula and sporophyte foot are fully developed. c) Growth phase of seta, epigonium is about to rupture. d) Premeiotic sporophyte around 14 days post fertilization. The fluorescent signal is concentrated in the apophysis excluding stomata cells $($ smaller picture, bar $=25 \mu \mathrm{~m})$.e) and f$)=$ Negative grayscale cut out of a$)=\mathrm{e}$) and c$)=\mathrm{f}), \mathrm{e}) \mathrm{em}=$ embryo, and in = inner wall epigonium are outlined in black. f) Fully developed vaginula (v) with sporophyte foot (sf) and growing seta are indicated by black lines. g) Premeiotic sporophyte, after the epigonium has split into the calyptra (c) and vaginula (v), pmt = premeiotic tissue, $\mathrm{se}=\mathrm{seta}, \mathrm{st}=$ stomata.
h) Premeiotic sporophyte slips out of vaginula. f) Empty vaginula after abortion. j) Lower half of an aborted premeiotic sporophyte, $\mathrm{d}=$ depression, $\mathrm{h}=$ haustorium cells, $\mathrm{se}=\operatorname{seta}, \mathrm{sf}=$ sporophyte foot, st
$=$ stomata). k) Aborted premeiotic sporophyte covered by calyptra. h$)-\mathrm{k}$) $=\operatorname{pin} C \# 29$ mutant. l) Aborted premeiotic sporophyte from WT, not attached to calyptra. Bars in a), c), d), g), h), i), k), and l) $=200$ $\mu \mathrm{m}$. Bar in j$)=50 \mu \mathrm{~m}$.

Discussion

Auxin plays crucial roles in plant development (Santner \& Estelle, 2009; Weijers \& Wagner, 2016), including Physcomitrella development (Decker et al., 2006; Menand et al., 2007; Fujita et al., 2008; Coudert et al., 2017; Nemec-Venza et al., 2022) and biotechnology (Ruiz-Molina et al., 2022). Although PIN proteins are central in auxin transport and action (Adamowski \& Friml, 2015; Sauer \& KleineVehn, 2019; Ung et al., 2022), only two of the three canonical Physcomitrella PIN proteins have been fully characterized; the similar and relatively highly expressed PpPINA and PpPINB. In contrast, little was known about the function of the more divergent and less expressed PpPINC. Here, we strived to close this knowledge gap.

Our data on the expression of PpPINC in young Physcomitrella leaves is in line with an earlier report (Viaene et al., 2014). It was known that the single knockout of PpPINA or PpPINB has no visible effect on the morphology of the gametophore (Bennett et al., 2014b), and this is also true for PpPINC, as we have shown here. However, a double knockout of PpPINA and PpPINB lead to elongated leaves and stems, similar to treatments with exogenous auxin or auxin transport inhibitors (Bennett et al., 2014b). This means that, while PpPINA or PpPINB together with PpPINC can rescue the knockout of either A or $B, P p P I N C$ alone cannot replace the function of both proteins in a double knockout line. The publicly available expression data for canonical PIN proteins in the two Physcomitrella ecotypes Gransden and Reute is not always comparable, as they are different experimental data sets describing specific tissue stages. However, all three canonical PINs have a similar expression pattern regarding tissue and ecotype. All three PINs are expressed in gametophores and sporophytes, with PpPINA and PpPINB being more highly expressed than PpPINC. The expression of all three PINs in vegetative tissue has been reported (Viaene et al., 2014), as well as the important role of PpPINA and PpPINB in sporophyte formation (Bennett et al., 2014b). We could not find any differences between the expression of PpPINC in the Gransden and Reute data sets. Further, we did not observe any vegetative phenotype alteration in pinC knockout mutants. In contrast, we could identify PpPINC as an important regulator of spermatogenesis and sporophyte development. We therefore conclude that PpPINC is functionally active only in gametangia and sporophytic tissues, contrary to the other two canonical Physcomitrella PIN proteins.

It has been reported that the low fertility of the Physcomitrella ecotype Gransden is based on reduced male fertility (Perroud et al., 2011). This is partially caused by coiled up flagella of spermatozoids in the Gransden ecotype, which results in low sperm motility (Meyberg et al., 2020). We confirm this spermatozoid phenotype for the Gransden ecotype, with a high percentage of coiled flagella and a
motility of under 50%, resulting in a very low sporophyte production rate. In contrast, the pinC mutants, which we generated in the Gransden background, resemble in their sperm morphology and fertility rate the Reute ecotype, which has no coiled flagella, a high sperm motility and a high sporophyte rate (Hiss et al., 2017; Meyberg et al., 2020). The Gransden ecotype was introduced by Engel (1968) as a laboratory strain from one single spore from the UK, and has been propagated mostly vegetatively in laboratories around the world since, while the Reute ecotype was introduced relatively recently as a collection from Germany (Hiss et al., 2017). Compared to Reute, Gransden accumulated somatic, epigenetic mutations, probably leading to the faults in spermatogenesis (Haas et al., 2020).

Here, we found that mature antheridia of a PpPINC knockout mutant have a higher expression of spermatogenesis-related genes compared to WT. Activity of a TAR gene and PpPINA in the apical cells of the mature antheridium has been reported (Landberg et al., 2013; Landberg et al., 2020), while there are no reports of deviating gametangia in PpPINA mutants. Here, we also found evidence for expression of auxin synthesis-genes in mature gametangia. With PpPINC being expressed in the foot of the mature antheridium, contrary to PpPINA in the apical tip cell, it seems to be more important for spermatogenesis controlling auxin homeostasis at the bottom of the antheridium than at the tip. Wether this mode of action is part of a polar auxin homeostasis in a moss organ controlled by PIN proteins needs further clarification.

Gaining the ability to move the flagellum is one of the final steps of spermatogenesis before spermatozoids are released and activated. In mammals, this ability is gained in the epididymis, and is controlled by different external and internal factors (Pereira et al., 2017; O’Flaherty, 2019; Björkgren \& Sipilä, 2019). Due to the complexity of the process and a large number of influences, sperm populations are not homogenous, but vary regarding phenotype, motility or activity (Gómez Montoto et al., 2011; Genau et al., 2021; Martins-Bessa et al., 2021). A key role in metazoan and Physcomitrella spermatogenesis is played by the evolutionary conserved DNA Topoisomerase 1α, which facilitates chromatin condensation towards the compact sperm head (Gu et al., 2022). Activation of the flagella of released spermatozoids depends on changes in pH , calcium concentration, or presence of a chemoattractant released by the egg cell (Nakajima, 2005; Suarez, 2008; Morita et al., 2009). While mammalian spermatozoids are transported through the epididymis during maturation, spermatogenesis in the moss antheridium is stationary. This increases pressure on the exact spatiotemporal expression of spermatogenesis-related genes. As in mammals, Physcomitrella releases heterogeneous sperm populations from one antheridium. This was true for WT where motility ($\sim 40 \%$) and non-coiled flagella ($\sim 40 \%$) seem to fit nicely, whereas in the pinC\#29 mutant over 90% of all spermatozoids were straight, with an overall motility of 60%. While the phenotype of the spermatozoids changed drastically in the mutant, motility did not increase at the same rate. As we have shown, PpPINC is expressed only shortly before sperm cells are released, reducing the time it can influence spermatogenesis to a short window. Therefore, alterations in duration and strength of expression, which are likely to occur after somatic
mutations, could explain the differences in sperm morphology between the two ecotypes Gransden and Reute (Meyberg et al., 2020). The PpPINC gDNA sequence between the Gransden ecotype (v3.3 Phytozome genome ID:318) and Reute (SRX1528135; Hiss et al., 2017) is identical. Given that the mutant antheridia exhibit an increase in spermatogenesis-related gene expression together with an overall increased motility and fertility, one could argue that PpPINC acts as a repressor for spermatogenesis. The repression of spermatogenesis at the end of the whole process could be a molecular signal for sperm release or activation of flagella. The difference in expression between both ecotypes would be an earlier repression in Gransden, halting spermatogenesis when most of the flagella are coiled and not yet ready for release, while the signal in Reute comes later, when spermatogenesis has progressed to a majority of non-coiled sperm flagella. The unknown activating signal of PpPINC expression could therefore be the culprit responsible for reduced male fertility in the Gransden ecotype.

Male sexuality is reduced in many bryophytes, with a female-biased sex ratio (Cameron \& Wyatt, 1990; Stark et al., 2010; Pépin et al., 2013; Bisang et al., 2015; de Jong et al., 2018), or size of the plants, with the occurrence of dwarf males (nannandry), which are unique in bryophytes among land plants (Pedersen et al., 2006; Rosengren \& Cronberg, 2014; Rosengren et al., 2016; Lang et al., 2021). Dwarf males grow on the leaves of female plants (Pichonet \& Gradstein, 2012; Rosengren \& Cronberg, 2014; Rosengren et al., 2016; Lang et al., 2021) and increase fertilization success (Hedenäs \& Bisang 2012; Rosengren \& Cronberg, 2014), in the absence of a female, male spores develop normally. In Macromitrium japonicum, dwarf males grew in culture on medium containing auxin, but developed normally on auxin-free medium (Une, 1985). Dioecious mosses grow mostly vegetatively and sporophyte production can be rare due to absence of a sexual partner, while monoecious mosses produce sporophytes more frequently, as the chances for fertilization are higher (Haig, 2016). However, selffertilization leads to homozygous spores, while self-produced sperm are rarely outcompeted by non-self sperm (Taylor et al., 2007; Rosengren et al., 2016). Reducing male fertility in a monoecious moss increases the chance for outcrossing and could therefore be an internal mechanism, controlling the need to refresh genetic material (McDaniel et al., 2010; Haig, 2016; Szovenyi et al., 2017). In a monoecious moss like Physcomitrella with a very short life cycle (3-6 months) (Cove, 2005), pressure on mutations regarding the sexual life cycle is strong, as changes in fertility would be lethal (Haig, 2016). Cultivation in vegetative culture in laboratories around the world (Haas et al., 2020) could reduce this pressure on fertility, increasing the risk for severe mutations in the sexual signalling cascade (Meyberg et al., 2020; Haas et al., 2020). As male gametes need more energy and are more complex to build than female gametes (Rydgren \& Økland, 2003; Stark et al., 2000, 2009; Horsley et al., 2011; Santos et al., 2022), risk for mutations is higher. This cost calculation would also favour intentionally reducing male rather than female fertility, as more energy is required to constantly produce sperm cells, rather than egg cells, which are waiting for fertilization, ending the gamete production cycle and starting the growth of propagules.

In Arabidopsis, the expression of PIN proteins plays an important role during pollen development, together with anther-specific expression of YUCCA genes (Cecchetti et al., 2008; Dal Bosco et al., 2012). PIN8 locates to the ER and regulates auxin homeostasis with a rate-limiting activity during pollen grain development and pollen tube growth. It is functionally active only during male gametophyte development and a knockout of PIN8 leads to misshaped and aborted pollen (Ding et al., 2012; Bosco et al., 2012). The activity of PIN proteins in male gametophytic tissues is also reported in algae, in Chara vulgaris a PIN2-like protein is expressed during spermatogenesis (Żabka et al., 2016). Together with our findings it seems plausible that PIN proteins can play important roles during male gametophytic development in all plants. However, the exclusive function of PIN1 in Arabidopsis in the formation of floral organs, could not be rescued by the Physcomitrella PpPINA protein expressed under the PIN1 promoter, while it complements the vegetative phenotype of the knockout (Zhang et al., 2020).

The abortion of embryos is a natural process. Unfavourable environmental conditions, genetic mutations, injury of the embryo or of maternal tissue can trigger abortion. In mosses, the normal abortion rate differs among species (Stark \& Stephenson, 1983; Stark et al., 2009; Rosengren et al., 2016; Hedenäs \& Bisang, 2019) and seems to be resource-limited (Stark et al., 2000). Mosses have to allocate their energy between clonal regeneration and sexual reproduction (Stark et al., 2009), and sporophyte survival positively correlates with vegetative growth prior to fertilization (Stark \& Stephenson, 1983). In these cases, aborted sporophytes were no longer supported with nutrients and stopped growing inside the vaginula, contrary to the active abortion we observed here.

The haustorium cells of the sporophyte foot are not pressed against the vaginula tissue but surrounded by a placenta-like space, while both tissues are separated by a diffusion barrier (Uzawa \& Higuchi, 2010; Regmi et al., 2017). The foot of the sporophyte is wider than the seta with a small depression between seta and foot, while vital sporophytes are tightly attached to the gametophore. We observed a clear polarity during early embryo development favouring growth of the foot, while the upper part of the embryo starts to increase only after the foot is secured in the vaginula. PpPINC is active in the maternal tissues which will form the vaginula and the sclerotized ring structure after the sporophyte ruptures the epigonium. Premeiotic sporophytes were aborted after the epigonium had ruptured and the sporophyte foot had to be secured in the vaginula. The increased abortion rate in our mutants, combined with the activity of PpPINC at the vaginula-seta junction, point to a regulation of sporophyte securement controlled at least partially by PpPINC. Based on our observations, we suggest that the sclerotized, brown ring structure at the vaginula-seta junction has the mechanical function of securing the sporophyte foot.

The polarity of early embryo development we observed here in Physcomitrella as well as the functional significance of the sclerotized ring structure is in line with the findings of Lorch (1909) in the moss family Polytrichaceae. He reported that the sporophyte foot develops first, before the seta subsequently elongates, and as the lumen in the vaginula is not completely filled by the foot, the sclerotized ring
structure must secure the sporophyte (Lorch, 1909). As we could not find a name for this ring structure in the literature, we propose to name the reddish-brown ring structure, formed at the junction of vaginula and seta, the Lorch ring.

Taken together, the canonical Physcomitrella PINC protein is functional in reproductive tissues only, an important regulator of late spermatogenesis and of active abortion of premeiotic sporophytes. Thus, it may integrate environmental signals with developmental programs to regulate sexual reproduction, at least in moss gametangia and early stages of embryo development.

Acknowledgements: We gratefully acknowledge Nico van Gessel for consultation on transcriptomic sequence analysis, Richard Haas for expert technical advice and assistance extracting RNA from gametangia, and Anne Katrin Prowse for proof-reading of the manuscript.

Author contributions: VML, CR, ELD and RR planned and designed the research. VML did most of the experimental work. Data analysis of transcriptomic sequences was done by VML, guided by CR. MB created the knockout constructs and first knockout plants. OH took pictures of spermatozoids and aborted sporophytes. MR did measurements of stems and leaves, while data analysis for this was done by VML. ELD and RR supervised research. VML wrote the manuscript with help by ELD and RR. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC-2189 (CIBSS to RR) and EXC-2193/1-390951807 (livMatS to RR). All authors read and approved the final version of the manuscript.

Declaration: All authors declare to have no competing interests.

ORCID IDs

VLM: 0000-0002-2923-4236; CR: 0000-0002-0672-3897; OH: 0000-0003-3958-5061;
MR: 0000-0002-2659-3372; MB: 0000-0002-3601-5250; ELD: 0000-0002-9151-1361;
RR: 0000-0002-5496-6711

Data availability

All RNA-seq samples as well as the DEG experiments created in this study are available via the NCBI GEO project GSE205257. All moss lines used are available via the International Moss Stock Center (IMSC; https://www.moss-stock-center.org) with the following accession numbers: WT $=40095$, PinCPromCit $=40917$, $\operatorname{pin} \mathrm{C} \# 10=40918, \operatorname{pin} \mathrm{C} \# 29=40919$, $\operatorname{pin} \mathrm{C} \# 69=40420$.

References

Adamowski M, Friml J. 2015. PIN-dependent auxin transport: Action, regulation, and development. Plant Cell 27: 20-32.

Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D, Kutchan T, Rolf M, Thomas P, Wong GK-S, Leyser O, et al. 2014a. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Molecular Biology and Evolution 31: 2042-2060.

Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O’Connor D, Wang XY, White CD, et al. 2014b. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Current Biology 24: 2776-2785.

Bierfreund NM, Reski R, Decker EL. 2003. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Plant Cell Reports 21: 1143-1152.

Bisang I, Ehrlén J, Korpelainen H, Hedenäs L. 2015. No evidence of sexual niche partitioning in a dioecious moss with rare sexual reproduction. Annals of Botany 116: 771-779.

Björkgren I, Sipilä P. 2019. The impact of epididymal proteins on sperm function. Reproduction 158: R155-R167.

Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Eimer S, Hegermann J, Paponov IA, Ruperti B, et al. 2012. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis: Endoplasmic reticulum localized PIN8. Plant Journal 71: 860-870.

Cameron RG, Wyatt R. 1990. Spatial patterns and sex ratios in dioecious and monoecious mosses of the genus Splachnum. The Bryologist 93: 161-166.

Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. 2022. ARFs are keys to the many auxin doors. New Phytologist: doi: 10.1111/NPH. 18159.

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. 2008. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760-1774.

Coudert Y, Bell NE, Edelin C, Harrison CJ. 2017. Multiple innovations underpinned branching form diversification in mosses. New Phytologist 215: 840-850.

Cove D. 2005. The moss Physcomitrella patens. Annual Review of Genetics 39: 339-358.
Dal Bosco C, Dovzhenko A, Palme K. 2012. Intracellular auxin transport in pollen: PIN8, PIN5 and PILS5. Plant Signaling \& Behavior 7: 1504-1505.

Decker EL, Frank W, Sarnighausen E, Reski R. 2006. Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8: 397-406.

Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, et al. 2012. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications 3: 941.

Egener T, Granado J, Guitton M-C, Hohe A, Holtorf H, Lucht JM, Rensing SA, Schlink K, Schulte J, Schween G, et al. 2002. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biology 2: 6.

Fernandez-Pozo N, Haas FB, Meyberg R, Ullrich KK, Hiss M, Perroud P, Hanke S, Kratz V, Powell AF, Vesty EF, et al. 2020. PEATmoss (Physcomitrella Expression Atlas Tool): a unified gene expression atlas for the model plant Physcomitrella patens. Plant Journal 102: 165-177.

Flores-Sandoval E, Eklund DM, Bowman JL. 2015. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLOS Genetics 11: e1005207.

Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M. 2008. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots: Convergent evolution of shoots in land plants. Evolution \& Development 10: 176-186.

Genau AC, Li Z, Renzaglia KS, Pozo NF, Nogué F, Haas FB, Wilhelmson PKI, Ullrich KK, Schreiber M, Meyberg R, et al. 2021. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. Plant Reproduction 34: 149-173.

Gómez Montoto L, Magaña C, Tourmente M, Martín-Coello J, Crespo C, Luque-Larena JJ, Gomendio M, Roldan ERS. 2011. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLOS ONE 6: e18173.

Gu N, Chen C, Kabeya Y, Hasebe M, Tamada Y. 2022. Topoisomerase 1α is required for synchronous spermatogenesis in Physcomitrium patens. New Phytologist 234: 137-148.

Haig D. 2016. Living together and living apart: the sexual lives of bryophytes. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150535.

Hashida Y, Takechi K, Abiru T, Yabe N, Nagase H, Hattori K, Takio S, Sato Y, Hasebe M, Tsukaya H, et al. 2020. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens. Plant Journal 101: 1318-1330.

Heck MA, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, Joosten H, Decker EL, Reski R. 2021. Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology and paludiculture. New Phytologist 229: 861-876.

Hedenäs L, Bisang I. 2012. Sex expression and sex ratios in dwarf male-producing pleurocarpous mosses - have we missed something? Plant Ecology \& Diversity 5, 387-393.

Hedenäs L, Bisang I. 2019. Episodic but ample sporophyte production in the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) in SE Sweden. Acta Musei Silesiae, Scientiae Naturales 68: 83-93.

Hiss M, Laule O, Meskauskiene RM, Arif MA, Decker EL, Erxleben A, Frank W, Hanke ST, Lang D, Martin A, et al. 2014. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions. Plant Journal 79: 530-539.

Hiss M, Meyberg R, Westermann J, Haas FB, Schneider L, Schallenberg-Rüdinger M, Ullrich KK, Rensing SA. 2017. Sexual reproduction, sporophyte development and molecular variation in the model moss Physcomitrella patens: introducing the ecotype Reute. Plant Journal 90: 606-620.

Hohe A, Reski R. 2002. Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts. Plant Science 163: 69-74.

Hohe A, Rensing SA, Mildner M, Lang D, Reski R. 2002. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biology 4: 595-602.

Horst NA, Reski R. 2017. Microscopy of Physcomitrella patens sperm cells. Plant Methods 13: 33.
Horst NA, Katz A, Pereman I, Decker EL, Ohad N, Reski R. 2016. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nature Plants 2: 15209.
de Jong TJ, During HJ, Shmida A. 2018. Differences and similarities of sex ratios between dioecious angiosperms and dioicous bryophytes. Evolutionary Ecology Research 19: 365-386.

Karlin EF, Hotchkiss SC, Boles SB, Stenøien HK, Hassel K, Flatberg KI, Shaw AJ. 2012. High genetic diversity in a remote island population system: sans sex. New Phytologist 193: 1088-1097.

Kirbis A, Waller M, Ricca M, Bont Z, Neubauer A, Goffinet B, Szövényi P. 2020. Transcriptional landscapes of divergent sporophyte development in two mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. Frontiers in Plant Science 11: 747.

Kofuji R, Hasebe M. 2014. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Current Opinion in Plant Biology 17: 13-21.

Koshimizu S, Kofuji R, Sasaki-Sekimoto Y, Kikkawa M, Shimojima M, Ohta H, Shigenobu S, Kabeya Y, Hiwatashi Y, Tamada Y, et al. 2018. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Nature Plants 4: 36-45.

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305: 567-580.

Landberg K, Pederson ERA, Viaene T, Bozorg B, Friml J, Jonsson H, Thelander M, Sundberg E. 2013. The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiology 162: 1406-1419.

Landberg K, Šimura J, Ljung K, Sundberg E, Thelander M. 2020. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytologist 229: 845-860.

Landberg K, Lopez-Obando M, Sanchez Vera V, Sundberg E, Thelander M. 2022. MS1/MMD1 homologs in the moss Physcomitrium patens are required for male and female gametogenesis. New Phytologist doi:10.1111/nph. 18352

Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, et al. 2018. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant Journal 93: 515-533.

Lang AS, Gehrmann T, Cronberg N. 2021. Genetic diversity and population structure in bryophyte with facultative nannandry. Frontiers in Plant Science 12: 517547.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

Ludwig-Müller J, Sülke S, Bierfreund NM, Decker EL, Reski R. 2009. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytologist 181: 323-338.

Lopez-Obando M, Hoffmann B, Géry C, Guyon-Debast A, Téoulé E, Rameau C, Bonhomme S, Nogué F. 2016. Simple and efficient targeting of multiple genes through CRISPR-Cas9 in Physcomitrella patens. G3 (Bethesda, Md.) 6: 3647-3653.

Lopez-Obando M, Landberg K, Sundberg E, Thelander M. 2022. Dependence on clade II bHLH transcription factors for nursing of haploid products by tapetal-like cells is conserved between moss sporangia and angiosperm anthers. New Phytologist: nph. 17972.

Lorch W. 1909. Die Polytrichaceen. Eine biologische Monographie. Abhandlungen der Bayerischen Akademie der Wissenschaften - Mathematisch-naturwissenschaftliche Klasse: 445-546.

Maciel-Silva A, Cavalcanti Pôrto K. 2014. Reproduction in Bryophytes. In: Gopal Ramawat K, Merillon JM, Shivanna KR, eds. Reproductive Biology of Plants. CRC Press, 57-84.

Madeira F, Park Y mi, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47: W636-W641.

Martins-Bessa A, Quaresma M, Leiva B, Calado A, Navas González FJ. 2021. Bayesian linear regression modelling for sperm quality parameters using age, body weight, testicular morphometry, and combined biometric indices in donkeys. Animals 11: 176.

McDaniel SF, von Stackelberg M, Richardt S, Quatrano RS, Reski R, Rensing SA. 2010. The speciation history of the Physcomitrium-Physcomitrella species complex. Evolution 64: 217-231.

Menand B, Yi KK, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L. 2020. An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316: 1477-1480.

Meyberg R, Perroud P, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA. 2020. Characterization of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. New Phytologist 227: 440-454.

Morita M, Kitamura M, Nakajima A, Sri Susilo E, Takemura A, Okuno M. 2009. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. Cell Motility and the Cytoskeleton 66: 202-214.
Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N. 2009. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136: 2433-2444.

Nakajima A. 2005. Increase in intracellular pH induces phosphorylation of axonemal proteins for activation of flagellar motility in starfish sperm. Journal of Experimental Biology 208: 4411-4418.

Needleman SB, Wunsch CD. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 443-453.

Nemec-Venza Z, Madden C, Stewart A, Liu W, Novak O, Pencik A, Cuming AC, Kamisugi Y, Harrison CJ. 2022. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. New Phytologist 234: 149-163.

Noy-Malka C, Yaari R, Itzhaki R, Mosquna A, Auerbach Gershovitz N, Katz A, Ohad N. 2014. A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens. Plant Molecular Biology 84: 719-735.

O'Flaherty C. 2019. Orchestrating the antioxidant defenses in the epididymis. Andrology 7: 662-668.
Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD. 2016. A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Molecular Plant 9: 205-220.

Ortiz-Ramírez C, Michard E, Simon AA, Damineli DSC, Hernández-Coronado M, Becker JD, Feijó JA. 2017. GLUTAMATE RECEPTOR-LIKE channels are essential for chemotaxis and reproduction in mosses. Nature 549: 91-95.

Ostendorf AK, Van Gessel N, Malkowsky Y, Sabovljevic MS, Rensing SA, Roth-Nebelsick A, Reski R. 2021. Polyploidization within the Funariaceae-a key principle behind speciation, sporophyte reduction and the high variance of spore diameters? Bryophyte Diversity and Evolution 43: 164-179.

Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K. 2009. The evolution of nuclear auxin signalling. BMC Evolutionary Biology 9: 126.

Parsons J, Altmann F, Arrenberg CK, Koprivova A, Beike AK, Stemmer C, Gorr G, Reski R, Decker EL. 2012. Moss-based production of asialo-erythropoietin devoid of Lewis A and other planttypical carbohydrate determinants: Lewis A-free recombinant EPO from moss. Plant Biotechnology Journal 10: 851-861.

Pedersen N, Russell SJ, Newton AE, Ansell SW. 2006. A novel molecular protocol for the rapid extraction of DNA from bryophytes and the utility of direct amplification of DNA from a single dwarf male. The Bryologist 109: 257-264.

Pépin F, Hugonnot V, Celle J. 2013. Sex ratio patterns and fertility of Hamatocaulis vernicosus (Mitt.) Hedenäs at different spatial scales. Journal of Bryology 35: 20-26.

Pereira R, Sá R, Barros A, Sousa M. 2017. Major regulatory mechanisms involved in sperm motility. Asian Journal of Andrology 19: 5-14.

Perroud P-F, Cove DJ, Quatrano RS, McDaniel SF. 2011. An experimental method to facilitate the identification of hybrid sporophytes in the moss Physcomitrella patens using fluorescent tagged lines. New Phytologist 191: 301-306.

Perroud P-F, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K, Bassi R, Bonhomme S, Chen H, et al. 2018. The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data. Plant Journal 95: 168-182.
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols 9: 171-181.

Regmi KC, Li L, Gaxiola RA. 2017. Alternate modes of photosynthate transport in the alternating generations of Physcomitrella patens. Frontiers in Plant Science 8: 1956.

Reinhard C, Schween G, Reski R, Hohe A, Egener T, Lucht JM, Holtorf H. 2004. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Current Genetics 44: 339-347.

Reski R. 1998. Development, genetics and molecular biology of mosses. Botanica Acta 111: 1-15.
Reski R, Abel WO. 1985. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165: 354-358.

Rosengren F, Cronberg N. 2014. The adaptive background of nannandry: dwarf male distribution and fertilization in the moss Homalothecium lutescens. Biological Journal of the Linnean Society 113: 7484.

Rosengren F, Cronberg N, Hansson B. 2016. Balance between inbreeding and outcrossing in a nannandrous species, the moss Homalothecium lutescens. Heredity 116: 107-113.

Ruiz-Molina N, Parsons J, Schroeder S, Posten C, Reski R, Decker EL. 2022. Process engineering of biopharmaceutical production in moss bioreactors via model-based description and evaluation of phytohormone impact. Frontiers in Bioengineering and Biotechnology 10: 837965.

Santner A, Estelle M. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459: 1071-1078.

Santos WL, Pôrto KC, Pinheiro F 2022. Sex-specific differences in reproductive life-history traits of the moss Weissia jamaicensis. American Journal of Botany 109: 645-654.

Sauer M, Kleine-Vehn J. 2019. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 146: dev168088.

Schaefer DG, Zrÿd J-P. 2001. The moss Physcomitrella patens, now and then. Plant Physiology 127: 1430-1438.

Schween G, Fleig S, Reski R. 2002. High-throughput-PCR screen of 15,000 transgenic Physcomitrella plants. Plant Molecular Biology Reporter 20: 43-47.

Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175-182.

Stark LR, Stephenson AG. 1983. Reproductive biology of Entodon cladorrhizans (Bryopsida, Entodontaceae). II. Resource-limited reproduction and sporophyte abortion. Systematic Botany 8: 389394.

Stark LR, Mishler BD, McLetchie DN. 2000. The cost of realized sexual reproduction: assessing patterns of reproductive allocation and sporophyte abortion in a desert moss. American Journal of Botany 87: 1599-1608.

Stark LR, Brinda JC, McLetchie DN. 2009. An experimental demonstration of the cost of sex and a potential resource limitation on reproduction in the moss Pterygoneurum (Pottiaceae). American Journal of Botany 96: 1712-1721.

Stark LR, McLetchie DN, Eppley SM. 2010. Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae). The Bryologist 113: 788-797.

Suarez SS. 2008. Control of hyperactivation in sperm. Human Reproduction Update 14: 647-657.
Szovenyi P, Ullrich KK, Rensing SA, Lang D, van Gessel N, Stenoien HK, Conti E, Reski R. 2017. Selfing in haploid plants and efficacy of selection: Codon usage bias in the model moss Physcomitrella patens. Genome Biology and Evolution 9: 1528-1546.

Takechi K, Nagase H, Furuya T, Hattori K, Sato Y, Miyajima K, Higuchi T, Matsuda R, Takio S, Tsukaya H, et al. 2021. Two atypical ANGUSTIFOLIA without a plant-specific C-terminus regulate gametophore and sporophyte shapes in the moss Physcomitrium (Physcomitrella) patens. Plant Journal 105: 1390-1399.

Thelander M, Landberg K, Sundberg E. 2018. Auxin-mediated developmental control in the moss Physcomitrella patens. Journal of Experimental Botany 69: 277-290.

Thelander M, Landberg K, Sundberg E. 2019. Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter. New Phytologist 224: 775-788.

Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP. 2022.Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature, https://doi.org/10.1038/s41586-022-04883-y

Uzawa M, Higuchi M. 2010. Comparative development of the sporophyte-gametophyte junction in six moss species. Journal of Plant Research 123: 777-787.

Viaene T, Landberg K, Thelander M, Medvecka E, Pederson E, Feraru E, Cooper ED, Karimi M, Delwiche CF, Ljung K, et al. 2014. Directional auxin transport mechanisms in early diverging land plants. Current Biology 24: 2786-2791.

Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology 67: 539-574.

Wiedemann G, van Gessel N, Köchl F, Hunn L, Schulze K, Maloukh L, Nogué F, Decker EL, Hartung F, Reski R. 2018. RecQ helicases function in development, DNA repair, and gene targeting in Physcomitrella patens. Plant Cell 30: 717-736.

Żabka A, Polit JT, Winnicki K, Paciorek P, Juszczak J, Nowak M, Maszewski J. 2016. PIN2-like proteins may contribute to the regulation of morphogenetic processes during spermatogenesis in Chara vulgaris. Plant Cell Reports 35: 1655-1669.

Zhang Y, Rodriguez L, Li L, Zhang X, Friml J. 2020. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances $\mathbf{6}$: eabc8895.

Supporting Information

Supplemental Figure S1: Genetic structure and protein motifs of Physcomitrella PIN proteins
Supplemental Figure S2: Alignments of protein sequences of Physcomitrella and Arabidopsis PIN proteins

Supplemental Figure S3: Expression data of Physcomitrella PIN genes from PEATmoss database
Supplemental Figure S4: Molecular evaluation of pinCPromCit
Supplemental Figure S5: Molecular analysis of Physcomitrella pinC mutant lines
Supplemental Figure S6: Phenotypical characterization of vegetative tissue for Physcomitrella wild type (WT) and pinC mutant lines.

Supplemental Figure S7: Calcium concentration in Physcomitrella spermatozoids
Supplemental Figure S8: Quality control RNAseq
Supplemental Figure S9: Proof of PpPINC mutation in pinC\#29
Supplemental Figure S10: Size of spore capsules and spore germination rate
Supplemental Figure S11: Spore capsule numbers
Supplemental Table 1: Primers used in Physcomitrella WT and mutant lines

Supplemental Table 2: Differentially expressed genes in Physcomitrella WT and mutant
Supplemental Table 3: All DEG experiments, including table of single genes already identified in other publications
bioRxiv preprint doi: https://doi.org/10.1101/2022.07.05.498815; this version posted July 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { Gene } & \begin{array}{l}\text { Exon } \\ 1\end{array} & \text { Intron 1 } & \begin{array}{l}\text { Exon } \\ 2\end{array} & \text { Intron 2 } & \begin{array}{l}\text { Exon } \\ 3\end{array} & \text { Intron 3 } & \begin{array}{l}\text { Exon } \\ 4\end{array} & \text { Intron 4 } & \begin{array}{l}\text { Exon } \\ 5\end{array} & \text { Intron 5 } \\ \hline\end{array} \begin{array}{l}\text { Exon } \\ 6\end{array}\right]$

Supplemental Figure S1: Genetic structure and protein motifs of Physcomitrella PIN proteins. a) Genetic structure of canonical Physcomitrella PIN genes, length of exons and introns in base pairs (bp) b) Protein motifs of three Physcomitrella PIN proteins assessed with TMHMM2.0 using the DTU Health Tech online tool (Krogh et al., 2001).
a)

PpPINA HL and PpPINB HL
Length: 409

Identity:	$353 / 409$	(86.3%)
Similarity:	$374 / 409$	(91.4%)
Gaps:	$2 / 409$	(0.5%)

re: 1819.0
PINALOOP 1 AAKILIMQQFPENAASIVSFKVDSDVMSLDGREPVLTEAEIGDDGKLHVK 50
PINBLOOP 1 AAKILIMQQFPENAGSIVSFKVDSDVMSLDGREPVLTEAEIGDDGKLHVK 50
PINALOOP 51 VRRSVSSRSQGMHSAHHSMPSSKALTPRPSNLTGAEIYSMHSSVNLTPRD 100
PINBLOOP 51 VRRSVSSRSQGMHSAHHSMPSSKALTPRPSNLTGAEIYSMHSSVNLTPRD 100
PINALOOP 101 SSFNQGEFHSMMSQRSPHRQSNFDTSDVYSLQSSRGPTPRSSNFNEENSK 150
PINBLOOP 101 SSFNQGEYFSMMAQRSPHRQSNEDISDVYSLQSSRGPTPRTSNENEENSK 150
PINALOOP 151 DIHTHHRGLNMNSPRFAPPLYRNGMGARMFTPRPGLGGIGVPGTDCTGHG 200
PINBLOOP 151 DMHTHHRGLNLTSPRFVPPLYRNVAGGRMFMPRTGLGGLPVHGNDPTGHG 200

PINALOOP 201 TLSTLGAPGMGPDGRTIYPGSQTAINILTLGGAANVNATAPSTAVNTQIV 250
PINBLOOP 201 SLSTLGTPGMGPDGRTIYPGSQTAISLVTPGGTGNI-ATPLSSSLNTQIV 249
PINALOOP 251 NPVYSPQASQIAKKVKDPKASPRADEDAKELHMFVWSANASPVSEAGLHV 300
PINBLOOP 250 NPVYSPRASQIAKKVKDTRTSPKSDEDAKELHMFVWSANASPVSEAGLHV 299

PINALOOP 301 FGGNDTSANLQQRFDPKEVRMLVHPQLDRGLAAASPRTYDEYTREDFSFG 350
PINBLOOP 300 FGGNDTSANLHQSFDPKEVRMLVHPQSDLRHPEANPRTYDNYAQEDFSFG 349
PINALOOP 351 NRNDLKLEDLDKDGPRLD-KFGSTSTAELTPKLAEDEAKKSMPPSAVMIK 399

PINBLOOP 350 NRNDLKLEDLDKDGPRLDNKFGSTSTAELTPKVPEDEAKKSMPPSAVMIK 399

PINALOOP 400 LIAVMTFRK 408
||||||||
PINBLOOP 400 LIAVMTFRK 408

PpPINA HL and PpPINC HL

Length: 411
Identity: $266 / 411$ (64.7\%)
Similarity: $316 / 411$ (76.9\%)
Gaps: 21/411 (5.1\%)
Score: 1312.5

PINALOOP 1 AAKILIMQQFPENAASIVSFKVDSDVMSLDGREPVLTEAEIGDDGKLHVK

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.05.498815; this version posted July 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
 PINBTM2 101 IVQAALPQGIVPFVFAKEYGVHPEMLSTAVIFGMLIALPITMVYYILLGL

PpPINA TM2 and PpPINC TM2

Length: 150
Identity: $\quad 120 / 150$ (80.0%)
Similarity: $132 / 150$ (88.0%)
Gaps: $\quad 0 / 150$ (0.0%)
Score: 621.0
PINATM2 1 LVWNPNTYSSLLGVIWSLVANRWHLSMPLILYKSVHILSDAGLGMAMFSL
50

1 LTRNPNTYSSLLGVVWSLISFKCHLDMPLILYKSYHIISDAGIGMAMFSL
PINATM2
51 GLFMGLGDRIIVCGTKMAVFGMALRFLAGPAVFAAASYLVGLRGVPLKVS
PINCTM2

PINATM2 101 IVQAALPQGIVPFVFAKEYGVHPEILSTAVIFGMLIALPITMVYYILLGL 150
PINCTM2 101 TVQAALPQGIVPFVFAKEYNVHPEILSTAVIFGMIVTLPTALLYYILLGL 150

PpPINB TM2 and PpPINC TM2
Length: 150
Identity:
$116 / 150$ (77.3\%)
Similarity: $130 / 150 \quad(86.7 \%)$
Gaps: $0 / 150$ (0.0%)
Score: 606.0

PINBTM2 1 LVWNPNTYSSLLGVIWSLVANRWHFTMPLILYKSVHILSDAGLGMAMFSL 50
PINCTM2 1 LTRNPNTYSSLLGVVWSLISFKCHLDMPLILYKSYHIISDAGIGMAMFSL 50
PINBTM2 51 GLFMGLGDRIVVCGRKMAIFGMSLRFLAGPAVFAAASYLVGLRGVPLKVS 100

PINCTM2 51 GLFMGMGDRIIACGTKHALFAMLLRFLVGPAVFAAASYLVGLRGVSLNVS 100
PINBTM2 101 IVQAALPQGIVPFVFAKEYGVHPEMLSTAVIFGMLIALPITMVYYILLGL 150
PINCTM2 101 TVQAALPQGIVPFVFAKEYNVHPEILSTAVIFGMIVTLPTALLYYILLGL 150

b)

CLUSTAL $O(1.2 .4)$ multiple sequence alignment

Pp3c10 24880V3.1.p
Pp3c23_10200V3.1.p Pp3c24-2970V3.1.p AT5G57090.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23_10200V3.1.p Pp3c24-2970V3.1.p AT5G570990.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

> Pp3c10_24880V3.1.p Pp3c23_10200V3.1.p Pp3c24_2970V3.1.p

MITGHDMYNVLSAMVPLYVAMMLAYASVKWWGILTPQQCDGINRFVSIFAVPLLSFQFVS MINGHDIYNVLSAMVPLYVAMMLAYGSVKWWGILTPQQCGGINRFVSIFAVPLLSFQFIS MINGHDIYNVLSAMVPLYVAMMLAYGSVKWWGILTPQQCGGINRFVSIFAVPLLSFQFIS MITGKDMYDVLAAMVPLYVAMILAYGSVRWWGIFTPDQCSGINRFVAVFAVPLLSFHFIS MITAADFYHVMTAMVPLYVAMILAYGSVKWWKIFTPDQCSGINRFVALFAVPLLSFHFIA MITWHDLYTVLTAVVPLYVAMILAYGSVQWWKIFSPDQCSGINRFVAIFAVPLLSFHFIS MISWHDLYTVLTAVIPLYVAMILAYGSVRWWKIFSPDQCSGINRFVAIFAVPLLSFHFIS MITWHDLYTVLTAVIPLYVAMILAYGSVRWWKIFSPDQCSGINRFVAIFAVPLLSFHFIS **. *:* *: :*: : ******:***.**:** *: :*:**.******: : ********:*:

GNNPYEMNFRFIAADAVSKVFVLSCLGLWVRFSKRGSLEWVITLFMLTTIPNTLVIGTPL GNNPYAMNFKFIAADAVSKVLVLLCLGLWARYAKRGSLEWMITLFVLITIPNTLVMGTPL GNNPYAMNFRFIAADAVSKVFVLLCLGLWARYSKRGSLEWMITLFVLITIPNTLVMGTPL SNDPYAMNYHFLAADSLQKVVILAALFLWQAFSRRGSLEWMITLFSLSTLPNTLVMGIPL ANNPYAMNLRFLAADSLQKVIVLSLLFLWCKLSRNGSLDWTITLFSLSTLPNTLVMGIPL TNDPYAMNFRFVAADTLQKIIMLVLLALWANLTKNGSLEWMITIFSLSTLPNTLVMGIPL TNNPYAMNLRFIAADTLQKIIMLSLLVLWANFTRSGSLEWSITIFSLSTLPNTLVMGIPL SNNPYAMNLRFIAADTLQKLIMLTLLIIWANFTRSGSLEWSITIFSLSTLPNTLVMGIPL
bioRxiv preprint doi: https://doi.org/10.1101/2022.07.05.498815; this version posted July 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1185

AT5G57090.1
AT1G73590.1
AT2G01420. 2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23 10200V3.1.p Pp3c24_2970V3.1.p AT5G570990.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23-10200V3.1.p Pp3c24 2970V3.1.p
AT5G570 90.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23_10200V3.1.p Pp3c24-2970V3.1.p
AT5G57090.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10 24880V3.1.p Pp3c23_10200V3.1.p Pp3c24-2970V3.1.p AT5G57090.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23_10200V3.1.p Pp3c24_2970V3.1.p AT5G570990.1
AT1G73590.1
AT2G01420. 2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23 ${ }^{-10200 V 3.1 . p ~}$ Pp3c24_2970V3.1.p AT5G570̄90.1
AT1G73590.1
AT2G01420. 2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p Pp3c23-10200V3.1.p Pp3c24_2970V3.1.p AT5G570990.1
AT1G73590.1
AT2G01420.2
AT1G70940.1
AT1G23080.1

Pp3c10_24880V3.1.p

LRAMYGDFSGNLMVQIVVLQSIIWYTLMLFLFEFRGAKLLISEQFPETAGSITSFRVDSD LKGMYGNFSGDLMVQIVVLQCIIWYTLMLFLFEYRGAKLLISEQFPDTAGSIVSIHVDSD LIAMYGTYAGSLMVQVVVLQCIIWYTLLLFLFEYRGAKLLIMEQFPETGASIVSFKVESD LIAMYGEYSGSLMVQIVVLQCIIWYTLLLFLFEFRGAKMLIMEQFPETAASIVSFKVESD LIAMYGEYSGSLMVQIVVLQCIIWYTLLLFLFEYRGAKILIMEQFPETGASIVSFKVESD

VMSLDGPDPVLTEAEFRNDGKLHVRVRRSVSSRSQGV--HSANHSIPSSKALTPRASNLS VMSLDGREPVLTEAEIGDDGKLHVKVRRSVSSRSQGM--HSAHHSMPSSKALTPRPSNLT VMSLDGREPVLTEAEIGDDGKLHVKVRRSVSSRSQGM--HSAHHSMPSSKALTPRPSNLT VISLNGREPLQTDAEIGDDGKLHVVVRRSSAASSMISSFNKSHGGGLNSSMITPRASNLT IMSLDGRQPLETEAEIKEDGKLHVTVRRSNASRSDIY------SRRSQGLSATPRPSNLT VVSLDGHDFLETDAEIGNDGKLHVTVRKSNASRRSL---------------MMTPRPSNLT VVSLDGHDFLETDAEIGDDGKLHVTVRKSNASRRSFC------G-----PNMTPRPSNLT VVSLDGHDFLETDAQIGDDGKLHVTVRKSNASRRSFY------GG--GGTNMTPRPSNLT ::**:* : : *:*:: :****** **:* : :

NAEIYSMNSSVNLTPRGSSFDRGEDCSTMAHRDPNRKSN-------------FDTSDIYSI GAEIYSMHSSVNLTPRDSSFNQGEFHSMMSQRSPHRQSN--------------FDTSDVYSL GAEIYSMHSSVNLTPRDSSFNQGEYFSMMAQRSPHRQSN--------------FDISDVYSL GVEIYSVQSSREPTPRASSFNQTDFYAMFNASK-APSPRHGYTNSYGGAGAGPGGDVYSL NAEIYSLQSSRNPTPRGSSFNHTDFYSMMASGG-GRNSN-------------FGPGEA--V GAEIYSLS----STPRGSNFNHSDFYSVMGFPG-GRLSN--------------FGPADLYSV GAEIYSLS----TTPRGSNFNHSDFYNMMGFPG-GRLSN--------------- FGPADMYSV GAEIYSLN----TTPRGSNFNHSDFYSMMGFPG-GRLSN--------------FGPADMYSV ..****: *** *.*: :

QSSRGPTPRNSNFNEENSKEVHNHRGALNVNIPRFAPPLYRNGSGGRLFMARSDLGGVGA QSSRGPTPRSSNFNEENSKDIHTHHRGLNMNSPRFAPPLYRNGMGARMFTPRPGLGGIGV QSSRGPTPRTSNFNEENSKDMHTHHRGLNLTSPRFVPPLYRNVAGGRMFMPRTGLGGLPV QSSKGVTPRTSNFDEEVMKTAKKAG-R-GGRS------------------MSGELYNNN--FGSKGPTPRPSNYEEDGGPAKPTAAGT-AAGAGRF---------------HYQSG-GSGGG--QSSRGPTPRPSNFEENNAV--------------KY--------------GYYNTNSSVP--QSSRGPTPRPSNFEENCAMASSP-----------RF---------------GYYPG-------
 : *** **: :*.

LSFEPAA---------HSMGPDGRTIYPGITVVTNSV---------AAVPASGVSTHIIN PGTDCTGHGTLSTLGAPGMGPDGRTIYPGSQTAINILTLGGAANVNATAPSTAVNTQIVN HGNDPTGHGSLSTLGTPGMGPDGRTIYPGSQTAISLVTPGGTGNIAT-PLSSSLNTQIVN
\qquad

-----------------------AAGSYPAPNPEFSTGTGVS------T---------------1
----------------------GAGSYPAPNPEFSSTTTSTANKSVNK--------------N
------------------------APGSYPAPNPEFSTGNKTG-----SK--------------A **

PVFSPLVSQVAKKVNDPRASIPKTDEEAKELHMFVSSANPTSVSEGE-LHVFGGS-DISI PVYSPQASQIAKKVKDPKAS-PRADEDAKELHMFVWSANASPVSEAG-LHVFGGN-DTSA PVYSPRASQIAKKVKDTRTS-PKSDEDAKELHMFVWSANASPVSEAG-LHVFGGN-DTSA ------ES-----GGGGSGGGVGVGGQNKEMNMFVWSSSASPVSEANAKNAMTRGSSTD----------------NAPVVGGKRQDGNGRDLHMFVWSSSASPVSDVFGGG----GGNHHA PNKIPKEN-----QQQLQEKDSKASHDAKELHMFVWSSSASPVSDVFG----GGAGDNVA PKDVNTNQ-----QTTLPTGGKSNSHDAKELHMFVWSSNGSPVSDRAGLNVFGGAPDNDQ PKE------------NHHHVGKSNSNDAKELHMFVWGSNGSPVSDRAGLQVDNGANE-QV . : : : : : *** . : . : **
--NLQQSVNPKELHVHVHPQSEHHLPGA-ANHKTQDEHARQGFSFGNRRDLKVEDVDNNG --NLQQRFDPKEVRMLVHPQLDRGLAAA--SPRTYDEYTREDFSFGNRNDLKLEDLDKDG --NLHQSFDPKEVRMLVHPQSDLRHPEA--NPRTYDNYAQEDFSFGNRNDLKLEDLDKDG --------VSTDPKVSIPPHDNLA-TKAMQNLIENMSPG-------RKGHVE----M--D DYSTATNDHQKDVKISVPQG-----------NSNDNQYVEREEFSFGNKDDDSKVLAT-----TEQSEQGAKEIRMVVSDQPRKSNARGGGDDI----GGL-------DSGEGEREIEK--A --GGRSDQGAKEIRMLVPDQSHNGETKAVAHPASGDFGGEQQFSFAGKEEEAERPKD--A --GKSDQGGAKEIRMLISDHTQNGENKA--GPMNGDYGGE----------EESERVKE--V .: : : :

SKLDKKFRSILTAELAPKHPMD----EGKTSMPPSSVMIKLICVMTFRKLTRNPNTYSSI PRLD-KFGSTSTAELTPKLAED----EAKKSMPPSAVMIKLIAVMTFRKLVWNPNTYSSL PRLDNKFGSTSTAELTPKVPED----EAKKSMPPSAVMIKLIAVMTFRKLVWNPNTYSSL QDGNNGGK-SPYMGKKGSDVEDGGPGPRKQQMPPASVMTRLILIMVWRKLIRNPNTYSSL -D---------------GGNNISNKTTQAKVMPPTSVMTRLILIMVWRKLIRNPNSYSSL TAGLNKMGSNSTAELEAAGGDGGG--NNGTHMPPTSVMTRLILIMVWRKLIRNPNTYSSL ENGLNKLAPNSTAALQSKTGLGGAEASQRKNMPPASVMTRLILIMVWRKLIRNPNTYSSL PNGLHKLRCNSTAELNPKEAIETGETVPVKHMPPASVMTRLILIMVWRKLIRNPNTYSSL ***:•** *** ! * •*** *** ****

Pp3c23_10200V3.1.p	LGVIWSLVANRWHLSMPLILYKSVHILS	
Pp3c24_2970V3.1.p	LGVIWSLVANRWHFTMPLILYKSVHILS	
AT5G57090.1	FGLAWSLVSFKWNIKMPTIMSGSISILS	
AT1G73590.1	FGITWSLISFKWNIEMPALIAKSISILS	
AT2G01420.2	IGLIWALVAYRWHVAMPKILQQSISIL	
AT1G70940.1	IGLIWALVAFRWHVAMPKIIQQSISILS	
AT1G23080.1	IGLIWALVAFRWDVAMPKIIQQSISILS	
Pp3c10_24880V3.1.p	MLLRFLVGPAVFAAASYLVGLRGVSLNV	
Pp3c23_10200V3.1.p	MALRFLAGPAVFAAASYLVGLRGVPLKV	
Pp3c24_2970V3.1.p	MSLRFLAGPAVFAAASYLVGLRGVPLKV	
AT5G57090.1	MAVRFLTGPAVIAATSIAIGIRGDLLH	
AT1G73590.1	AAMRFVVGPAVMLVASYAVGLRGVLLHV	
AT2G01420.2	MAVRFITGPAIMAVAGIAIGLHGDLLRI	
AT1G70940.1	MAVRFLTGPAVMAVAAIAIGLRGDLLRV	
AT1G23080.1	MAVRFFTGPAVMAVAAMAIGLRGDLLRV	
	:**..***: : . .	
Pp3c10_24880V3.1.p	FGMIVTLPTALLYYILLGL	698
Pp3c23_10200V3.1.p	FGMLIALPITMVYYILLGL	713
Pp3c24_2970V3.1.p	FGMLIALPITMVYYILLGL	713
AT5G57090.1	FGMLVALPVTVLYYVLLGL	647
AT1G73590.1	FGMLIALPITLLYYILLGL	622
AT2G01420.2	FGMLIALPITLVYYILLGL	616
AT1G70940.1	FGMLIALPITLVYYILLGL	640
AT1G23080.1	FGMLIALPITLVYYILLGL	619

c)

```
Pp3c10 24880V3.1.p
Pp3c23_10200V3.1.p
Pp3c24_2970V3.1.p
Pp3c10_24880V3.1.p
Pp3c23-10200V3.1.p
Pp3c24_2970V3.1.p
```

Supplemental Figure S2: Alignments of protein sequences of Physcomitrella and Arabidopsis PIN proteins. a) Needleman-Wunsch (Needleman \& Wunsch, 1970) alignments of the hydrophilic loop (HL) as well as N^{\prime} - and C'-terminal transmembrane regions (TM) of the three canonical Physcomitrella PIN proteins. b) Multiple sequence alignment (Madeira et al., 2019) of the canonical PIN proteins of Physcomitrella and Arabidopsis. c) Differences in the middle of the loop structure of the three canonical PIN proteins in Physcomitrella. Cyan blue $=$ fully conserved, yellow $=$ conserved in two of three; $(*)=$ fully conserved $(:)=$ conservation between amino acid groups of similar properties; (.) = conservation between amino acid groups with weak similar properties.
a)

Hiss et al. 2014 PpPINA

Perroud et al. 2018 PpPINA

Ortiz-Ramìrez et al. 2016 PpPINB

c)

Hiss et al. 2014 PpPINC

Perroud et al. 2018 PpPINC

Ortiz-Ramìrez et al. 2016 PpPINC

Supplemental Figure S3: Expression data of Physcomitrella PIN genes from PEATmoss database. Expression of PpPINA, B and C in different gene expression sets accessed via the PEATmoss database (Fernandez-Pozo et al., 2020) in the two Physcomitrella ecotypes Gransden (blue bars) and Reute (grey bars), used data sets: Hiss et al. (2014), Perroud et al. (2018), and Ortiz-Ramirez et al. (2016). a) PpPINA b) PpPINB c) PpPINC. $\mathrm{Blq}=\mathrm{BCD}$ liquid, $\mathrm{BlqA}=\mathrm{BCD}$ (ammonium) liquid, $\mathrm{Bsl}=\mathrm{BCD}$ solid, $\mathrm{BslA}=$ BCD (ammonium) solid, $\mathrm{Klq}=$ Knop liquid, $\mathrm{Ksl}=$ Knop solid, Sporophyte $\mathrm{LB}-\mathrm{B}=$ light brown to brown sporophyte, Sporophyte $\mathrm{PM}-\mathrm{M}=$ premeiotic to meiotic green sporophyte, sporophyte Embryo 1= first embryo stage, sporophyte E2-ES = early developing sporophyte. $\mathrm{n}=3$, RPKM $=$ reads per kilobase per million.

Supplemental Figure S4: Molecular evaluation of pinCPromCit. a) Fluorescent microscopy pictures of CA\#2, parental line of pinCPromCit (left) and Physcomitrella WT (right) protonema and budding gametophore, scale bar $=100 \mu \mathrm{~m} . \mathrm{b})$ Control PCR using constitutive expressed gene Ef1 α for pinCPromCit and CA\#2, 3' integration (PCR product $=1.4 \mathrm{~kb}$) and 5^{\prime} integration $(\mathrm{PCR}$ product $=1.5 \mathrm{~kb})$ of $P p P I N C$ promoter construct, no PCR product for $C A \# 2$ parental line.
c) Construct used for creating pinCPromCit by targeting the whole construct used in Wiedemann et al. (2018). BSD = selection marker, prom = promoter, term = terminator.

Supplemental Figure 5: Molecular analysis of Physcomitrella pinC mutant lines. a) Control PCR using the L21 gene (C45 primers). b) 5' integration of targeting construct (1 kb). c) 3^{\prime} integration of targeting construct (770 bp). d) RT-PCR amplifying a region from exon 3 to exon 5 (700 bp).

Supplemental Figure 6: Phenotypical characterization of vegetative tissue for Physcomitrella wild type (WT) and pinC mutant lines. a) Length and b) width of the first haploidy of the generated pin C knockouts. Number of measured leaves and stems a) +b) $\mathrm{n}=7$; c) WT: $\mathrm{n}=13 \sin C \# 10: \mathrm{n}=14 \sin C \# 29: \mathrm{n}=16$, $\sin C \# 69: \mathrm{n}=18$.

Supplemental Figure S7: Calcium concentration in Physcomitrella spermatozoids. No difference in Ca^{2+} concentration in Physcomitrella WT and mutant sperm cells. a) Intensity of single sperm cells after treatment with Fluo-4. b) grey scale picture of fluorescence image of sperm cell treated with Fluo-4. c) negative image of b) to show sperm cell with flagellum. For a) $\mathrm{n}=15$ spermatozoids from three different antheridia were examined.

Supplemental Figure S8: Quality control RNAseq. Read distribution in Physcomitrella WT and $\operatorname{pin} \mathrm{C}$ mutant gametangia, $\mathrm{WM}=\mathrm{WT}$ antheridia, $\mathrm{WF}=\mathrm{WT}$ archegonia, $\mathrm{PM}=\operatorname{pin} \mathrm{C} 229$ antheridia, $\mathrm{PF}=\operatorname{pin} \mathrm{C} \# 29$ archegonia. $\mathrm{CDS}=$ coding sequence, $\mathrm{UTR}=$ untranslated region, TSS $=$ transcription start sequence, TES = transcription end sequence. Quality control done with MultiQC (Galaxy Version 1.11+galaxy0).

Supplemental Figure S9: Proof of PpPINC mutation in pinC\#29. Sashimi plot showing integration of knockout construct in Physcomitrella WT background. a) Knockout construct for the PINC gene. Black lines indicate the integration into the gene starting from the middle of exon 1 to the intron between exon 4 and 5. b) Sashimi plot for the PINC gene in all samples. Continuous read through of mapped fragments only in WT samples, confirming knockout of the gene in the mutant.

b)

Supplemental Figure S10: Size of spore capsules and spore germination rate. a) Length and width of mature spore capsules from Physcomitrella WT $\mathrm{n}=15$, mutant $\operatorname{pin} \mathrm{C} \# 10$ and mutant \#29, $n=16$. b) Germination rate of spores three days after plating. $n=3$ plates.

d)

f)

Supplemental Figure S11: Spore capsule numbers. Physcomitrella spore capsules in a) WT and b) pin $\mathrm{C} \# 29$ mutant, white arrows mark sporophytes (for visibility reasons, not all sporophytes in b) are marked while all visible sporophytes are marked in a)). bar $=1 \mathrm{~cm} . \mathrm{c}$) Percentage of gametophores with a sporophyte per colony, in blue total number of sporophytes (adult + aborted), in orange are only aborted sporophytes. Asterisks $=\mathrm{p}<0.00005$ of mutant lines against wild type, n (colonies) $=\mathrm{WT}(41)$, $\operatorname{pin} \mathrm{C} \# 10$ (30), pinC\#29 (42), pinC\#69 (32) d) wild type plate with 9 sporophytes counted. e) pinC\#10 plate with 48 sporophytes. f) pinC\#29 plate with 116 sporophytes. g) pinC\#69 with 16 sporophytes.

Supplemental Table 1: Primers used in Physcomitrella WT and mutant lines.

Name	Sequence	Comment
P3-KO Fw	5'-GGGATCCATGTTGGCCTACGCGTCTGT-3'	Amplified region for pinC knockout construct
P3-KO Rv	5^{\prime}-GAAGCTTCTGGGGAGTTCAACACCATT-3'	ibson primers for amplification of PpPINC promoter region, (capital letters)
5PinCprom_f+CA5	5'-agcttaacgttagccactcTCCTTTGTGTGGAGTAGAG-3'	

Supplemental Table 2: Differentially expressed genes in Physcomitrella WT and mutant. Single genes found in comparisons of Physcomitrella a) mutant (PM) vs wildtype (WM) antheridia b) mutant (PF) vs wild type (WF) archegonia; $\mathrm{BP}=$ biological process, $\mathrm{CC}=$ cellular compartment, $\mathrm{MF}=$ molecular function.
a)

Upregulated genes mutant (PM) vs. wildtype (WM) antheridia					
geneID	Foldchange	p-Adjust	GO_annot_BP	GO_annot_MF	GO_annot_CC
			single- multicellular organism process; anatomical structure development; ion transmembrane transport; single- organism developmental process	ion channel activity	cell part; integral component of membrane
Pp3c26_6020	2,61799094	0,00574099		substrate- specific transmembrane transporter activity	chloroplast envelope; integral component of membrane
Pp3c26_3990	2,60429982	$3,58 \mathrm{E}-08$		transmembrane transport	

geneID	PM1	PM2	PM3	WM1	WM2	WM3
Pp3c26_6020	209	282	1259	15	50	32
Pp3c26_3990	676	735	822	79	101	101

Downregulated genes mutant (PM) vs. wildtype (WM) antheridia					
geneID	Foldchange	p-Adjust	GO_annot_BP	GO_annot_MF	GO_annot_CC
Pp3c9_8920	-2,14177862	$\begin{aligned} & 0,0016014 \\ & 2 \\ & \hline \end{aligned}$	dolichol biosynthetic process	amino acid binding	chloroplast stroma; chloroplast thylakoid membrane
Pp3c14_8940	-2,3368623	$\begin{aligned} & 0,0131334 \\ & 7 \\ & \hline \end{aligned}$			integral component of membrane
Pp3c20_22670	-2,48823907	$\begin{aligned} & 0,0067335 \\ & 2 \\ & \hline \end{aligned}$	positive regulation of transcription, DNA-templated	zinc ion binding; sequence-specific DNA binding; sequence-specific DNA binding transcription factor activity	nucleus
Pp3c1_22810	-2,68377153	$\begin{aligned} & 0,0097305 \\ & 4 \\ & \hline \end{aligned}$	cell wall modification:pe ctin catabolic process	pectinesterase activity:aspartyl esterase activity	cell wall:extracellular region
Pp3c19_15670	-2,68772125	$\begin{aligned} & 0,0097305 \\ & 4 \\ & \hline \end{aligned}$	cellular component organization or biogenesis; cellular process		cytoplasm

Pp3c3_4950	-2,71566077	0,009008	regulation of biological quality; regulation of transcription, DNAtemplated; asymmetric cell division; leaf development; radial pattern formation	sequence-specific DNA binding; sequence-specific DNA binding transcription factor activity	nucleus
Pp3c3_11110	-3,07745056	4,01E-08	proteolysis	aspartic-type endopeptidase activity	
Pp3c21_8410	-3,24497467	5,52E-05	peptidyl- tyrosine dephosphorylati on	protein tyrosine phosphatase activity	
Pp3c12_11710	-4,86650335	1,63E-14			

geneID	PM1	PM2	PM3	WM1	WM2	WM3
Pp3c9_8920	1079	1248	2115	10980	5147	6717
Pp3c14_8940	531	119	190	1918	3043	2972
Pp3c20_22670	36	8	48	286	383	271
Pp3c3_11110	170	141	99	1975	1576	1902
Pp3c21_8410	1	5	7	100	197	253
Pp3c12_11710	232	115	230	71101	8547	41718
Pp3c1_22810	1	0	0	184	76	86
Pp3c19_15670	1	0	2	123	90	54
Pp3c3_4950	2	0	0	231	161	82

b)

Upregulated genes mutant (PF) archegonia vs. wildtype (WF) archegonia

geneID	Foldchange	p-Adjust	GO_annot_BP	GO_annot_MF	GO_annot_CC
Pp3c11_4360	3,28704921	$5,88 \mathrm{E}-11$		serine-type endopeptidase activity	cell part

geneID	PF1	PF2	PF3	WF1	WF2	WF3
Pp3c11_4360	154	241	220	0	0	4

Downregulated genes mutant (PF) archegonia vs. wildtype (WF) archegonia

geneID	Foldchange	p-Adjust	GO_annot_BP	GO_annot_MF	GO_annot_CC
Pp3c7_8820	$-2,55854236$	$6,08 \mathrm{E}-07$.	.	.
Pp3c6_26100	$-6,49563884$	9,91E-73	.	metal ion binding	.

geneID	PF1	PF2	PF3	WF1	WF2	WF3
Pp3c7_8820	72	129	58	1134	1082	3960
Pp3c6_26100	0	0	0	989	1581	1305

