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Abstract

Fungi are inseparable companions of human life, they can be found in
both the environment and human organs including skin, respiratory tract and
gut. Studies of fungal communities are of great interest to modern biology,
partially due to their specific way of life and the presence of unique biochemical
pathways they have. Fungi have been shown to be both producers of useful
compounds, such as antibiotics and organic acids, and pathogens of various
diseases. When considering the selected fungal community, in a number of
cases it is rather difficult to evaluate its functional capabilities, which is partially
caused by some technical difficulties in the analysis and annotation of whole
eukaryotic genomes. In practice, the taxonomic composition of fungal
communities is determined using short marker sequences. The most popular
fungal taxonomy markers are ITS (internal transcribed spacer) sequences. Here,
we present FunFun, the instrument that allows to evaluate the functional content
of an individual fungus or mycobiome based on ITS sequencing data.

1. Introduction

Natural fungal communities have a lot of different biochemical pathways,
including biosynthesis of antimicrobial substances, organic acids, and even
toxins (Branco, 2019). At the same time, individual fungi from one community
might drastically differ from each other in terms of their functional capabilities
(Wisecaver et al., 2014).

Generally, while analyzing either individual fungi or their communities,
researchers do not perform whole genome sequencing of eukaryotic cells and
tend to infer their taxonomy using specific markers. This is caused by the high
price of whole genome sequencing and some technical obstacles to work with
eukaryotic cells. In practice, amplicon sequencing technologies are widely used
for estimating fungal taxa composition. One of the most used taxonomy markers
for fungi is ITS region (Blaalid et al., 2013; Mbareche et al., 2020; Schoch et

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501143doi: bioRxiv preprint 

mailto:danil01060106@gmail.com
https://www.zotero.org/google-docs/?NlBMyr
https://www.zotero.org/google-docs/?3xXNWh
https://www.zotero.org/google-docs/?ml2sIc
https://doi.org/10.1101/2022.07.22.501143


al., 2012), which is useful in taxonomy inference but does not provide
comprehensive information about genes content. However, in biotechnology it
is essential to understand the biochemical capabilities of individual fungi, which
might be applicable to industrial biotechnology (Kim et al., 2006). Information
about gene content can be useful to solve ecological problems such as
bioconversion of solid waste (Chilakamarry et al., 2022) or caffeine utilization
(Zhou et al., 2018).

There are a number of tools designed to predict biochemical features of
bacterial communities using 16S sequencing data (Douglas et al., 2020; Sun et
al., 2020). At the same time, functional annotation of the fungal part of the
community is usually performed using whole genome sequencing (WGS), since
the number of precisely annotated fungi is not enough to build complex
predictive models such as the machine learning algorithm implemented in
PICRUST2 (Douglas et al., 2020). For this reason the fungal part of microbial
communities often remains to be neglected.

Inspired by the idea of PICRUST2, we decided to develop an algorithm
that is designed to solve a similar task for fungal datasets. The tool is based on
the assumption that functional capabilities of fungi, unlike bacteria, are in strong
correlation with their taxonomic affiliation which is according to published data
describing individual fungal metabolic pathways (Slater and Birney, 2005). We
implemented a modified K nearest neighbors (KNN) model and tested it using
shuffle-split cross-validation and on ITS subset. The model has been
implemented as a command-line tool called FunFun.

2. Methods
2.1. Data collection

To construct the model, we collected 9271 whole fungal genomes of
different assembly levels from the GeneBank database. Next, we extracted
ITS1-5.8S-ITS2 sequence fragments from the genomes via in silico PCR
method with ITS1F: CTTGGTCATTTAGAGGAAGTAA and ITS4:
TCCTCCGCTTATTGATATGC primers using the ipcress tool from the
exonerate software package (Slater and Birney, 2005). After this stage, 6132
fungal genomes left, which might be the result of not successful primers
annealing. Generally, in silico PCR does not guarantee the absolute correctness
of extracted sequences. To validate ITS sequences we additionally used the
ITSx software (Bengtsson-Palme et al., 2013) to ensure that the extracted
fragments were ITS. Based on the ITSx annotations,, we built databases of
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individual ITS1 and ITS2 sequences, and full ITS1-5.8S-ITS2 fragments (they
will be called Concatenates in the further text) belonging to 5882 fungal
genomes.

FIGURE 1 ITS cluster structure and primer scheme used.
The complete genome sequences were annotated using the Augustus tool

(Keller et al., 2011) to ensure consistency of annotations. Predicted protein
sequences were analyzed by the KofamKOALA tool (Aramaki et al., 2020) to
get the functional annotations. Based on the results, we built gene content
vectors constructed using the third level of the KoFAM hierarchy (430 vector
components, presented in Supplementary 1). Each component in this vector
represents the relative abundance of the corresponding KEGG orthology group.
To avoid the appearance of non-fungal biochemical pathways, the KEGG
orthology data were manually filtered by removing the 09160 Human Disease
branch.

Additionally, we checked the quality of the gene content estimation based
on Augustus genes annotations. 75 fungal assemblies for which curated protein
sequences had been published were loaded from the RefSeq database. Here, to
ensure the reliability of data, we considered only the protein sequence data
obtained using the Eukaryotic Annotation Propagation Pipeline (“The NCBI
Eukaryotic Genome Annotation Pipeline,” n.d.). Thereafter, for each assembly,
we constructed two uniformic functional gene content profiles, where the first
profile was based on curated protein sequences data from RefSeq and the
second profile was built using Augustus gene annotations. Convergence of
results was estimated using Pearson’s correlation coefficient for each assembly
pair independently.

To preliminary validate our method of functional content profiling we
used the t-SNE decomposition for gene content vectors. We expected that
observed clusters would be associated with fungal taxonomy, which is
according to literature data (Leroy et al., 2021; Wisecaver et al., 2014). To
estimate the convergence of observed clusters and fungal taxonomy, the Rand
Index (RI) was used.
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2.2. Algorithm explanation

For each ITS sequence in the collected database, a relative abundance of
each nucleotide k-mer is calculated (k was chosen to be 5). Thus, for each
sequence we generate a k-mer relative abundances vector with length of 45. In
the further text we will name such k-mer abundances vectors as k-mers vectors.
Thereafter, we evaluate cosine distance between the k-mers vector representing
the target sequence and k-mers vectors for each fungal reference amplicon
variant (RAV) from the database. Thus, we constructed a list of distances, which
describe similarity between the target sequence and each RAV from the
database.

To predict the fungal gene content, the algorithm searches for K nearest
neighbors in the ε neighborhood using the generated distances list. Here, the ε
neighborhood is the area, which limits the space where the neighbors searching
will be performed. Number of neighbors not exceeding K and located in an area,
limited by ε neighborhood, we call Kchosen. Such an approach allows to prevent
usage of too far sequences while gene content prediction. For each i-th fungi in
our database we have a precalculated gene content profile Fi = ( f1i, f2i, f3i, … ,
fLi), Fi is a vector with length L (L = 430). In Fi, each fji value is a fraction of
individual j-th function while the sum of these values is equal 1. To calculate
functional gene content profile for the target sample we average the value of
each individual function among the Kchosen neighbors.
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Ftarget - predicted gene content profile of target fungi, Kchosen - number of
neighbors not exceeding K and limited by ε neighborhood, fji- fraction of j-th

function in the genome of i-th neighbored fungi from Kchosen.
In cases, when the target sequence has neighbors with cosine distance to

the target of 0 (that usually means the identity of ITS sequences), only these
neighbors are selected for the prediction. is.
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FIGURE 2 Possible cases of  neighbors selection (in this example K = 8). A -
when the number of reference amplicon variants (RAVs) included in the ε

neighborhood is less than the specified number K; B - when the ε neighborhood
includes exactly K neighbors; C - when the number of points included in the ε
neighborhood is greater than K; D - when the target sequence has at least one
RAV with identical k-mers vector; E - when there are no neighbors in the ε

neighborhood.

2.3. Validation

To test our algorithm we splitted our database on test/train data sets and
tested using shuffle-split cross-validation. The train/test ratio was chosen to be
80/20, with 10 shuffling iterations. So, for each shuffling epoch 1176 testing
samples were used. For each epoch, quality of prediction was estimated using a
median R2 metric between real gene content vectors, which were built using
whole genome annotations, and predicted vectors which were obtained with
FunFun. The validation was performed for each amplicon type (ITS1, ITS2,
Concatenate) independently.

3. Results
3.1. Software explanation

We have developed an algorithm aimed to predict fungal metabolic
capabilities (gene content) using ITS sequencing data. As an input the algorithm
can use ITS1, ITS2 or full size ITS clusters (concatenates). The algorithm has
been realized as a command-line instrument which we named FunFun (Fungal
Functional). As an input, the program takes the ITS sequence (or sequences) of
the object (or objects) of interest in .fasta format and returns as an output the
table, where the first column is the KEGG orthology group (which we call
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function), and the subsequent columns correspond to predicted gene content
vector components for each sample. First of all, FunFun was developed to be
capable of metagenomic analysis but can be useful in analysis of individual
fungi as well.

Also, the tool has two hyperparameters K - maximum number of nearest
neighbors selected and ε, defining the area where the K neighbors search is
performed. In the case when the tool does not return a prediction for the
analyzed sequence, the user can increase the ε value. However, it should be
noted here that the greater the ε value the lower the expected prediction quality.
On the other hand, as we observed the number of neighbors K does not
drastically influence the prediction quality in general but in some cases might
make the prediction more robust, especially while the target sequence has a lot
of close neighbors. By default, K is set to be 10 and ε is set to be 0.5.

3.2. Validation results

The algorithm developed is based on the assumption that fungal
metabolism correlates with their taxonomy, so, we expected that gene content
profiles, which we calculated with our approach, also should be in strong
correlation with fungal taxonomy. To verify this assumption, t-SNE
decomposition of calculated gene content vectors and clustering with the
HDBSCAN algorithm (Campello et al., 2015, 2013) were performed. The
resulting clusters demonstrated a good convergence with taxonomy data (family
level) (RI = 0.929). In part, the observed inaccuracy in clustering might be
caused by some ambiguity of fungal taxonomy (Hawksworth, 2011).

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501143doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?pqM9Ok
https://www.zotero.org/google-docs/?eKjzfD
https://doi.org/10.1101/2022.07.22.501143


FIGURE 3 t-SNE decomposition of fungal functional profiles. Each  color
corresponds to an individual fungal taxon.

We also checked the validity of Augustus annotations by comparing
functional profiling of Augustus annotations with corresponding RefSeq protein
data. The analysis showed a good value of Pearson correlation score (r=0.62).
Thus, results of functional profiling obtained with Augustus are quite close to
the results confirmed by experimental transcriptome data, so, we decided that
Augustus is suitable as a genome annotator in our method.

Using the number of neighbors of K = 10, we tested our algorithm with a
range of different ε values (Fig.3). At the validation stage we calculated the R2

value between the gene content vector, which we built on full genome data, and
the gene content vector predicted on ITS sequence using FunFun. Also, we
estimated the percentage of predicted samples from the test subset (functional
gene content is predicted only if the target ITS has at least one neighbor in the ε
neighborhood).

We found that it is more efficient to give the algorithm using as input data
full size ITS clusters (concatenates). On average, the values of median R2 were
at least 0.95 regardless of the ε value chosen. So, we set ε = 0.5 and K = 10 as
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default values. If necessary, the user is able to set custom values of them when
running FunFun.

FIGURE 4 Validation results.
A) Dependence of gene content prediction quality on the ε value. B)

Dependence of the percentage of predictions on ε value (In some cases the ε
neighborhood can include no one neighbors that does not allow to build

predicted profiles with sufficient quality. Thus, the lower the ε value, the less the
number of predicted profiles).

Quite high R2 values might be partially explained by conservative gene
functions, which are common features of all fungi. Examples of these functions
are glycolysis and citric cycle. So, we decided to additionally check how the
method estimates relative abundances of the functions most variable among
different fungal genomes. We chose such functions using the coefficient of
variation, which is defined as the standard deviation normalized to the mean.
We considered a function as highly variable if its coefficient of variation was
greater than 10. As on the previous validation stage we calculated the median R2

value between real and predicted gene content vectors. In the result we obtained
median R2= 0.99 and percentage of predicted equals 98.6%.

Figure 5 illustrates convergence of real gene content profiles and
corresponding profiles predicted with FunFun. For this assay we took a subset
of 10 randomly chosen fungal organisms.
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FIGURE 5 Comparison of gene content profiles obtained from whole genome
sequence data and predicted on ITS data with FunFun. For each pair, the left bar

represents the real relative abundances of corresponding functions in the
genome while the right bar shows function fractions predicted with FunFun.

Conclusion

We have developed FunFun, a novel tool designed for estimation of
fungal functional content based on ITS amplicon sequencing data. It can be
useful for estimation of fungal gene content for individual fungi as well as
mycobioms. The tool can be installed via pip. Also,it can be downloaded from
git https://github.com/DanilKrivonos/FunFun.
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