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Abstract: single-cell sequencing methods have enabled the pro-1

filing of multiple types of molecular readouts at cellular resolu-2

tion, and recent developments in spatial barcoding, in situ hy-3

bridization, and in situ sequencing allow such molecular read-4

outs to retain their spatial context. Since no technology can5

provide complete characterization across all layers of biological6

modalities within the same cell, there is pervasive need for com-7

putational cross-modal integration (also called diagonal integra-8

tion) of single-cell and spatial omics data. For current methods,9

the feasibility of cross-modal integration relies on the existence10

of highly correlated, a priori “linked” features. When such11

linked features are few or uninformative, a scenario that we call12

“weak linkage”, existing methods fail. We developed MaxFuse,13

a cross-modal data integration method that, through iterative14

co-embedding, data smoothing, and cell matching, leverages all15

information in each modality to obtain high-quality integra-16

tion. MaxFuse is modality-agnostic and, through comprehen-17

sive benchmarks on single-cell and spatial ground-truth multi-18

ome datasets, demonstrates high robustness and accuracy in the19

weak linkage scenario. A prototypical example of weak linkage20

is the integration of spatial proteomic data with single-cell se-21

quencing data. On two example analyses of this type, we demon-22

strate how MaxFuse enables the spatial consolidation of pro-23

teomic, transcriptomic and epigenomic information at single-24

cell resolution on the same tissue section.25
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Introduction30

Recent technological advances have enabled the profiling of31

multiple biological modalities within individual cells, over32

many cells in parallel. The growing list of modalities that33

can now be profiled at the single-cell level include proteome34

and metabolome (1, 2), transcriptome (3), and various as-35

pect of the epigenome such as methylation (4), histone mod-36

ification (5–7), and chromatin accessibility (5, 8). In addi-37

tion to technologies that operate on dissociated single cells,38

rapid progress has been made on the in situ measurement of39

transcriptome (9), proteome (10–14), epigenome (15), and40

other modalities on histological tissue sections at single-cell41

or close to single-cell resolution, retaining the spatial context.42

These advances have spawned consortia-level efforts to con-43

struct multiomic single-cell and spatial atlases of each and44

every organ, across species, in healthy and diseased states.45

To harness the new technologies and growing data resources46

for biological discovery, a primary challenge is the reliable47

integration of data across modalities. Cross-modal integra-48

tion, also referred to as “diagonal integration” (16, 17), is49

the alignment of single cells or spatial spots across datasets50

where different features (or modalities) are profiled in each51

dataset. An example is the alignment of cells in a CODEX52

dataset, which measures protein abundance, to cells in a53

single-cell RNA sequencing (scRNA-seq) dataset, which54

measures RNA expression. This cross-modal integration step55

underpins many types of downstream analyses, and its impor-56

tance is evident in the myriad methods that have already been57

developed to tackle it (18–24).58

Despite the progress in this area, key limitations still hinder59

reliable cross-modal integration, as highlighted by recent sur-60

veys (16, 17, 25) . A key factor limiting the accuracy of exist-61

ing methods is the strength of linkage between modalities, as62

we define below. A feature is “linked” between two modal-63

ities if it can be measured in, or predicted by, both modal-64

ities. In the terminology of (16, 17), these linked features65

can serve as “anchors” for the integration. For example, to66

integrate single-cell or spatial ATAC sequencing (ATAC-seq)67

and single-cell or spatial RNA-seq data, most existing meth-68

ods predict the “activity” for each gene in each cell/spot of69

the ATAC-seq data based on the accessibility of the gene’s70

surrounding chromatin; then, each gene’s ATAC activity can71

be linked to its RNA expression, mapping cells from the two72

datasets into the same feature space. Similarly, between RNA73

and protein assays, the abundance of each protein in the pro-74

tein assay can be linked to the expression of its coding gene75

in the RNA assay. With the exception of bindSC (26), all ex-76

isting methods, to our knowledge, rely crucially on the linked77

features and are designed for scenarios where there is a large78

number of linked features that exhibit strong cross-modality79

correlation, a situation that we refer to as “strong linkage”.80

For example, between scRNA-seq and scATAC-seq, every81

gene in the genome can be linked, and the correlation be-82

tween gene activity and RNA expression is often high enough83

for enough genes to allow for precise integration (18, 19, 22).84

To achieve strong linkage, some methods attempt to learn a85

mapping from the features of one modality to the features of86
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the other modality through a “training set” consisting of data87

where both modalities are simultaneously observed in each88

cell/spot (23, 27). While this strategy may be applicable to-89

wards the integration of data from biological systems that are90

similar to the training set, it is questionable how well it can91

generalize to unseen systems.92

Cross-modality integration in scenarios of weak linkage,93

where the number of linked features is small and/or the94

between-modality correlation for the linked features is weak,95

is especially challenging. A prototypical example of weak96

linkage is between targeted protein assays (14, 28) and97

transcriptome/epigenome assays such as scRNA-seq and98

scATAC-seq. Such scenarios are becoming extremely com-99

mon as spatial proteomic technologies are receiving wide-100

spread adoption (10–14), complementing RNA and ATAC se-101

quencing in achieving more complete tissue characterization102

(see, for example, (29–32)). We will reveal, through compre-103

hensive benchmarks, the limitations of existing state-of-the-104

art methods in such difficult cases.105

Under both strong and weak linkage, the evaluation of ex-106

isting methods have leaned heavily on systems with highly107

distinct cell types whose separation only requires a crude108

feature-level mapping between modalities. In fact, most ex-109

isting methods explicitly focus on the goal of “label transfer”,110

that is, the transfer of cell type labels from one modality to the111

other. This goal only requires the integration to be accurate at112

the resolution of the label. As we demonstrate in our bench-113

marks, even this seemingly modest goal of label transfer for114

major cell types is unattainable in weak linkage scenarios by115

current methods, much less the more challenging goal of in-116

tegration in continuously transitioning cell populations where117

subtle distinctions need to be preserved between closely re-118

lated states. Yet, key biological discoveries often hinge on119

the accurate preservation of fine cell state distinctions during120

integration,121

To address the above limitations, we developed MaxFuse122

(MAtching X-modality via FUzzy Smoothed Embedding), a123

model free, highly adaptive method that can accurately inte-124

grate data across weakly linked modalities. MaxFuse goes125

beyond label transfer and attempts to match cells to pre-126

cise positions on a graph-smoothed low-dimensional embed-127

ding. MaxFuse starts by denoising the linked features in each128

modality through borrowing information from all of the fea-129

tures, and then performs an initial crude matching of cells130

based on the denoised linked features. Then, MaxFuse iter-131

atively refines the matching step based on graph smoothing,132

linear assignment, and CCA. These iterations use informa-133

tion from all features in both modalities to improve upon the134

initial matching. The initial feature linkage may be derived135

from domain knowledge or an existing integration, and thus,136

MaxFuse can also be used to improve upon any existing inte-137

gration methods.138

We systematically benchmarked the performance of Max-139

Fuse across protein, RNA, and chromatin accessibility140

single-cell multiome ground-truth datasets. Across a wide141

variety of datasets, MaxFuse has superior performance com-142

pared to other state-of-the-art integration methods. Although143

the largest improvements in accuracy are observed under144

weak linkage, under strong linkage MaxFuse is comparable145

to the current best method in integration performance with146

substantial improvement in speed.147

We further demonstrate the analyses enabled by MaxFuse148

with two examples. First, in the integration of scRNA-seq149

and CODEX multiplexed in situ protein profiling data from150

the human tonsil, we show that MaxFuse can recover correct151

spatial gradients in the RNA expression of genes not included152

in the 46-marker protein panel. Next, MaxFuse is applied to153

an atlas-level integration of spatial proteomic and single-cell154

sequencing datasets, as part of a consortium-level effort to155

map cell organization and function across different regions of156

the human intestine (32). We demonstrate how to perform tri-157

modal integration of CODEX, snRNA-seq, and snATAC-seq158

data to recover spatial patterns of RNA expression and tran-159

scription factor binding site accessibility at single-cell reso-160

lution.161

Results162

Cross-modality matching of single cells via iterative163

fuzzy smoothed embedding. Let data from the two modal-164

ities be represented by a pair of cell-by-feature matrices that165

contain all measured features in each modality. For conve-166

nience, call the two modalities Y and Z. In addition, we167

represent the initial knowledge about the linkage between168

the two modalities as another pair of cell-by-feature matrices169

whose columns have one-to-one correspondences. To distin-170

guish between these two pairs of matrices, we call the for-171

mer all-feature matrices and the latter linked-feature matri-172

ces. For example, when one modality is protein abundance173

over a small antibody panel and the other is RNA expres-174

sion over the whole transcriptome, the two all-feature matri-175

ces have drastically different numbers of columns, one be-176

ing the number of proteins in the panel and the other being177

the number of genes in the transcriptome; the linked feature178

matrices, on the other hand, have equal number of columns,179

where each column in the protein matrix is one protein and180

its corresponding column in the RNA linked-feature matrix181

is the gene that codes for the protein. When the number of182

cells is large, we recommend aggregating cells with similar183

features into meta-cells, as described in Materials & Meth-184

ods, prior to applying MaxFuse. In that case, each row in the185

above matrices would represent a meta-cell. The procedure186

below does not depend on whether single- or meta-cells are187

used, and thus we will refer to each row as a “cell”. The two188

pairs of matrices form the input of the MaxFuse pipeline in189

Figure 1A.190

Stage 1 of MaxFuse aims to summarize cell-cell similarity191

within each modality and learn an initial cross-modal match-192

ing of cells. As shown in Figure 1A, this stage consists of193

three major steps. In step 1, for each modality, we use all194

features to compute a fuzzy nearest-neighbor graph connect-195

ing all cells measured in that modality. This graph, by uti-196

lizing the information in all features, provides the best possi-197

ble summary of the cell-cell similarity for the given modal-198

ity. In particular, cells that are close in this graph should199
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Figure 1: Overview of MaxFuse pipeline. (A) The input consists of two pairs of matrices. The first pair consists of all features from each modality, and the second pair
consists of only the linked features. MaxFuse uses all features within each modality to create a nearest-neighbor graph (all-feature NN-graph) for cells in that modality. Fuzzy
smoothing induced by the all-feature NN-graph is applied to the linked features in each modality. Cross-modal cell matching based on the smoothed linked features initializes
the iterations in (B). (B) In each iteration, MaxFuse starts with a list of matched cell pairs. A cross-modal cell pair is called a pivot. MaxFuse learns CCA loadings over all
features from both modalities based on these pivots. These CCA loadings allow the computation of CCA scores for each cell (including cells not in any pivot), which are used
to obtain a joint embedding of all cells across both modalities. For each modality, the embedding coordinates then undergo fuzzy smoothing based on the modality-specific
all-feature NN-graphs (obtained in (A)). The smoothed embedding coordinates are supplied to a linear assignment algorithm which produces an updated list of matched pairs
to start the next iteration. (C) After iterations end, MaxFuse screens the final list of pivots to remove low-quality matches. The retained pairs are called refined pivots. Within
each modality, any cell that is not part of a refined pivot is connected to its nearest neighbor that belongs to a refined pivot and is matched to the cell from the other modality
in this pivot. This propagation step results in a full matching. MaxFuse further learns the final CCA loadings over all features from both modalities based on the refined pivots.
The resulting CCA scores give the final joint embedding coordinates.

have comparable values for their linked features. Thus, in200

step 2 of stage 1, MaxFuse boosts the signal-to-noise ratio in201

the linked features within each modality by shrinking their202

values, for each cell, towards the cell’s graph-neighborhood203

average. We call this step “fuzzy smoothing”. After fuzzy204

smoothing of linked features within each modality, MaxFuse205

computes in step 3 distances between all cross-modal cell206

pairs based on the smoothed linked features and applies linear207

assignment (33) on the cross-modal pairwise distances to ob-208

tain an initial matching of cells. The initial matching serves209

as the starting point of stage 2 of MaxFuse.210

Stage 2 of MaxFuse, shown in Figure 1B, aims at improving211

cross-modal cell matching quality by iterating the sequence212

of joint embedding, fuzzy smoothing, and linear assignment213

steps. Starting with the initial matches obtained in stage 1, in214

each iteration, MaxFuse first learns a linear joint embedding215

of cells across modalities by computing a canonical corre-216

lation based on all features of the cross-modal matched cell217

pairs. Then, coordinates of this joint embedding are treated218

as new linked features of each modality and fuzzy smoothing219

is applied on them based on the all-feature nearest-neighbor220

graphs computed in stage 1. Finally, MaxFuse updates the221

cell-matching across modalities by applying linear assign-222

ment on the pairwise distances of these fuzzy-smoothed joint223

embedding coordinates. The resulting matching then starts224

the next iterate. Matching quality improves with each iter-225

ation until available information in all features, and not just226

the linked features, have been used.227

Stage 3 of MaxFuse aims at post-processing the last cross-228

modal cell matching from stage 2 and producing final out-229

puts. First, MaxFuse screens the matched pairs from the last230

iterate in stage 2, retaining high quality matches as pivots.231

The pivots are used in two complementary ways: (i) they are232

used one last time to compute a final joint embedding of all233

cells in both modalities; (ii) for any unmatched cell in either234

modality, its closest neighbor within the same modality that235

belongs to a pivot is identified and, as long as its distance to236

this neighbor is below a threshold, the match in the pivot is237

propagated to the cell. Thus, the final output of MaxFuse has238

two components: (i) a list of matched pairs across modalities,239

and (ii) a joint embedding of all cells in both modalities.240

More details on the MaxFuse algorithm are given in Materials241

& Methods.242

Integration of transcriptome and targeted protein data243

with varying protein panel sizes. We benchmarked Max-244

Fuse on a CITE-seq dataset (34) containing simultaneous245

measurements of 228 protein markers and whole transcrip-246

tome on peripheral blood mononuclear cells. For compari-247

son, we also applied four state-of-the-art integration meth-248

ods: Seurat (V3) (24), Liger (22), Harmony (20), and BindSC249

(26) to this same dataset. Protein names were converted to250

RNA names manually to link the features between datasets.251

In each repetition of our experiment, we randomly subsam-252

pled 10,000 cells, applied all methods, and assessed using the253

benchmarking criteria to be described below. We performed254

5 such repetitions and averaged the criteria across repetitions.255

We masked the known cell-cell matching between the pro-256

tein and RNA modalities when applying all methods (treating257

Protein and RNA as two unpaired modalities), and then used258

the known matching for assessment.259

Methods are assessed using six different criteria that mea-260

sure both cell-type-level label transfer accuracy as well as261

cell-level matching accuracy. The first two criteria are based262

on label transfer accuracy. Cells are annotated at two levels263
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Figure 2: Benchmark on ground-truth CITE-seq PBMC data with full and reduced antibody panels. (A) Matching and integration performance of MaxFuse and other
methods on CITE-seq PBMC dataset with full antibody panel (228 antibodies). (B) UMAP visualization of MaxFuse and Seurat (V3) integration results of CITE-seq PBMC with
full panel, colored by modality (left) or cell type (right). (C) Matching and integration performance of MaxFuse and other methods on CITE-seq PBMC dataset with reduced
antibody panels. (D) UMAP visualization of MaxFuse and Seurat (V3) integration results of CITE-seq PBMC with the 30 most informative of the original 228 antibodies,
colored by modality (left) or cell type (right).

of granularity: level-1, which differentiates between 8 ma-264

jor cell types, and level-2, a finer classification which dif-265

ferentiates between 20 cell types. Label transfer accuracy is266

expected to be higher for level-1 labels than for level-2 la-267

bels. The proportion of matched pairs that share the same268

label at both annotation levels are reported, with higher pro-269

portions indicating higher matching quality. The next two270

criteria measure the quality of the cross-modal joint embed-271

ding of cells. A high-quality joint embedding should preserve272

biological signal, as reflected by the separation of known cell273

types, while mixing the two modalities as uniformly as pos-274

sible. Usually, there is a trade-off between biological sig-275

nal preservation and uniformity of mixing. Thus, we report276

the F1 scores computed based on average silhouette width277

(slt_f1) and adjusted Rand index (ari_f1), as proposed in Tran278

et al. (35). These scores aggregate quality assessments of279

biological signal preservation and modality mixing. For both280

criteria, higher F1 indicates a better embedding. The fifth cri-281

terion is FOSCTTM, Fraction Of Samples Closer Than True282

Match (19, 36, 37), that quantifies the quality of joint embed-283
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ding at single-cell resolution. For each cell, one can compute284

the fraction of cells in the other modality that is closer than285

its true match in the joint embedding. FOSCTTM is the av-286

erage of this fraction over all cells in both modalities. The287

lower this measure, the closer the true matches are in the joint288

embedding, and hence, the better the joint embedding. The289

last criterion is FOSKNN, Fraction Of Samples whose true290

matches are among their K-Nearest Neighbors in the joint291

embedding space. For any given k ≥ 1, the higher this pro-292

portion, the better the joint embedding. For precise defini-293

tions and details of these criteria, see Materials & Methods.294

Among all criteria described above, MaxFuse uniformly295

dominates the methods by a sizable margin (Figure 2A). Im-296

portantly, MaxFuse provides accurate cell matching across297

weakly-linked modalities (level 1 accuracy 93.9%, + ∼ 7%298

to the second best method, Figure S2B). The UMAP plots299

calculated based on the post-integration embedding from re-300

spective methods are shown in Figure 2B, colored by modal-301

ity and by cell type. MaxFuse achieves both better mixing302

of the two modalities (left panel) and better preservation of303

biological signals (right panel). For example, B cell subtypes304

(B naive, intermediate, and memory cells) present a nicely305

resolved developmental trajectory after MaxFuse integration,306

but not after integration by other methods.307

It is common to have an antibody panel that is of signif-308

icantly smaller size than 228, especially for the emerging309

spatial-proteomic datasets. To benchmark the performance310

of MaxFuse against existing methods for smaller antibody311

panels, we ordered the proteins according to their importance312

for differentiating cell types (See Materials & Methods for313

details). We repeated the foregoing experiments when only314

the top 100, 50, and 30 most important proteins are used315

in the matching and integration process. At each antibody316

panel size, we ran the experiment over five independent rep-317

etitions with randomly subsampled 10,000 cells, and aver-318

age the cell type annotation level matching accuracy, FOS-319

CTTM and FOSKNN across repetitions (Figure 2C). Regard-320

less of panel change, MaxFuse consistently outperformed321

other methods. Additionally, MaxFuse successfully miti-322

gated the effect of reduced panel size on integration qual-323

ity: Even when the antibody panel size was reduced to 30,324

MaxFuse maintained a > 90% annotation level 1 accuracy325

while other methods produced variable and low quality cell326

matching results (∼ 10 − 70%, Figure S2B). Similarly, with327

a reduced antibody panel size (eg. 30 antibodies), the inte-328

grated UMAP embedding (38) produced by other methods329

blurs the distinction between cell types, while MaxFuse em-330

bedding still accurately captures the subtle structure of highly331

granular cell subtypes (e.g., the B cell subpopulations, Figure332

2D and Figure S2A).333

Systematic benchmark across multiple ground-truth334

multiome modalities. We further benchmarked MaxFuse335

on four additional single-cell multiome datasets. The first336

is a CITE-seq dataset of human bone marrow mononuclear337

cells (BMMCs) that provides cell-matched measurements of338

the full transcriptome along with an antibody panel of size339

25 (34). The second is an ABseq dataset, also of BMMCs,340

with an antibody panel of size 97 and the whole transcrip-341

tome (39). The third is an ASAP-seq PBMC dataset (40)342

with 227 antibodies and the whole epigenome measured in343

ATAC fragments. The fourth is a TEA-seq PBMC dataset344

(41) where we focused on the simultaneous measurements of345

46 antibodies and the whole epigenome measured in ATAC346

fragments. Together, these datasets represent a diverse col-347

lection of measurement technologies over different modality348

pairs. We benchmarked the performance of MaxFuse against349

Seurat (V3), Liger, Harmony, and BindSC on these datasets.350

For datasets with simultaneous RNA and protein features, we351

linked each protein to its coding gene. For datasets with si-352

multaneous ATAC and protein measurements, we linked each353

protein to the gene activity score (42) computed from the354

ATAC fragments mapping near its coding gene. As in the pre-355

vious case, the known cell-cell correspondence across modal-356

ities were masked in the matching and integration stage for all357

methods, but used afterwards for evaluation.358

We compared the performances of MaxFuse and the other359

four methods on these datasets using the collection of match-360

ing and integration quality measures described in the previ-361

ous section (Figure 3A): cell type annotation matching accu-362

racy, FOSCTTM, FOSKNN (K set as 1/200 dataset size),363

Silhouette F1 score, and ARI F1 . Overall, MaxFuse outper-364

formed other methods, often by a sizable margin (eg. ∼ 20%365

relative improvement in terms of the metrics measured, Fig-366

ure 3A and Figure S3.1A).367

UMAPs of the MaxFuse cross-modal joint embeddings for368

each dataset are shown in Figure 3B, with the top row col-369

ored by modality and the bottom row colored by cell type an-370

notation. Across the integration scenarios, MaxFuse mixed371

different modalities well in joint embeddings while retaining372

separation between cell types. Compared to the UMAPs of373

joint embeddings produced by other methods, MaxFuse con-374

sistently achieves substantial improvements (Figure 3B and375

Figure S3.2 A).376

As a counterpoint to the above integration scenarios, we377

also considered the problem of integration of scRNA-seq and378

scATAC-seq data, on which multiple methods have demon-379

strated feasibility (18, 19, 22). The degree of overlap in the380

information contained in the RNA and ATAC modalities has381

been systematically measured in Lin and Zhang (43), where382

it was shown that, in terms of cell population structure, the in-383

formation shared across RNA and ATAC is much higher than384

the information shared between RNA and protein for com-385

monly used targeted protein panels. Thus, RNA and ATAC386

has stronger linkage and should be easier to integrate. We387

benchmarked MaxFuse against state-of-the-art methods for388

this problem on four public multiome datasets that simulta-389

neously measure the chromatin accessibility and transcrip-390

tome expression for each cell: 10x mononuclear cells from391

peripheral blood (44), cells from embryonic mouse brain at392

day 18 postconception (44), cells from developing human393

cerebral cortex (45), and cells from human retina (46). The394

integration quality criteria described in the previous subsec-395

tion are used to assess all methods, shown in Supplementary396

Materials. Across datasets and evaluation metrics, MaxFuse397
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Figure 3: Systematic benchmark across multiple ground-truth data types with MaxFuse (A) Four different multiome datasets, generated by different technologies, were
benchmarked. Cell type matching accuracy, FOSCTTM, FOSKNN (with K = 0.5% total cell counts of each dataset), and ARI and Silhouette F1 were evaluated across 5
methods. (B) UMAP visualization of MaxFuse integration results for the four ground-truth multiome datasets.

achieves best or close-to-best performance among methods,398

and is comparable to scGLUE. However, MaxFuse is much399

faster than scGLUE. For example, for the integration of a400

dataset of 20,000 cells, MaxFuse took <5 minutes to finish401

on a laptop with M1 Max chip while scGLUE took hours on402

a comparable platform without CUDA acceleration.403

Cross-modal integration of scRNA-seq and spatial404

proteomic data enables information-rich spatial pat-405

tern discovery. MaxFuse is particularly motivated by sce-406

narios where the signal-to-noise ratio in the cross-modal407

linked features is low. Weak linkage is especially common408

in spatial-omic data types due to technical limitations. For409

example, high resolution spatial proteomic methods such as410

CODEX, MIBI-TOF, IMC, and CosMx SMI can profile, at411

sub-cellular resolution, a panel of 30-100 proteins (10–13).412

Integration of such spatial proteomics datasets with single-413

cell transcriptomic and epigenomic datasets of the same tis-414

sue is often of interest, and particularly challenging due to415

the small number of markers in the spatial dataset and the416

weak linkage between modalities that is caused by both bio-417

logical and technical differences. Thus, we demonstrated and418

benchmarked MaxFuse on the integration of CODEX multi-419

plex imaging with 46 markers (47) with single-cell RNA-seq420

(48) of human tonsils from two separate studies (Figure 4A).421

Figure 4B shows the UMAPs of the MaxFuse integration col-422

ored by modality and by 6 major cell types.423

Based on the pre-described benchmarking metrics, MaxFuse424

is the only method capable of integrating spatial proteomic425

and single-cell RNA-seq data. Existing state-of-the-art meth-426

ods, Seurat (V3), Liger, Bindsc, and Harmony, failed to pro-427
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Figure 4: MaxFuse enables information-rich spatial pattern discovery (A) MaxFuse integrates human tonsil single-cell data: one dataset by CODEX from Kennedy-
Darling et al (47) (upper panel), the other dataset by scRNA-seq from King et al (48) (lower panel). (B) UMAP visualization of MaxFuse integration of tonsil CODEX
and scRNA-seq data, colored by modality (upper panel) and cell type (lower panel). (C) Metrics (cell type matching accuracy, Silhoutte F1 and ARI F1 score) evaluating
performance of MaxFuse and other methods. Five batches of randomly sampled CODEX and scRNA-seq cells (total of 40k each batch) were sampled, and used for
benchmarking for all methods. (D) Illustration of cell layers extending inwards/outwards from the germinal center boundary, with each layer consisting of 30 pixels (∼ 11µm).
A total of 10 layers extending in each direction were examined. (E) For each of 9 genes, the average mRNA counts (linked by MaxFuse) across cells in each layer are plotted
versus the position of the layer in reference to the germinal center boundary (inward on the left of boundary, outward on the right). For each group of 3 genes (row), their
expected expression profile in reference to the germinal center boundary is shown on the right.
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duce an embedding that integrates the two modalities while428

preserving the cell population structure (Figure 4B and Fig-429

ure S4.1A). Evaluation results based on cell-type matching430

accuracy is consistent with evaluation results based on the431

joint embedding. At the level of the 6 major cell types shown432

in Figure 4B, MaxFuse is able to achieve high label trans-433

fer accuracy (93.3%), while the other methods fail to pre-434

serve cell type distinctions (40% - 60%, Figure 4B and Figure435

S4.1B).436

We further assessed whether MaxFuse can preserve, during437

integration, the more subtle spatial variations within a cell438

type that are captured by CODEX. We manually delineated439

the boundaries of each individual germinal center (GC) from440

the CODEX tonsil images based on CD19, CD21, Ki-67 pro-441

tein expression patterns. From the boundaries, we then ex-442

tended outward or inward, with each step covering roughly443

one layer of cells (one step = 30 pixels erosion/dilation) (Fig-444

ure 4C). Then, for each layer of cells, we calculated the av-445

erage counts of specific genes, based on the scRNA-seq cells446

that match to CODEX cells of that layer. We then asked if447

known position-specific gene expression patterns relative to448

the germinal center boundary are recovered in the integrated449

scRNA-seq data. Indeed, MaxFuse was able to reconstruct450

the spatial pattern of the GC from disassociated transcrip-451

tomic data (Figure 4D): For GC-specific genes BCL6, AICDA452

and FOXP1 (49–51) that relate to germinal center function-453

ality, we observed high expression within the boundary and a454

sharp drop in expression after passing the boundary layer; for455

genes related to B cell memory CCR6, BANK1 and FCER2456

(51–53) that should be enriched in B cells exiting from the457

GC, we indeed saw a gradual increase outside of the GC and458

then a quick decrease as the layer fully expands into the T cell459

region; and finally for T cell related genes, for example CD4,460

GATA3 and CD3 (54), we indeed saw a rapid increase out-461

side of the GC boundary but no expression within. In com-462

parison, the integration with scRNA-seq produced by other463

methods was incapable of accurately reconstructing the GC464

spatial pattern (Figure S4.2A).465

Tri-modal atlas-level integration of spatial and single–466

cell data with MaxFuse. In the consortium-level effort to467

generate a comprehensive atlas across different regions of the468

human intestine, colon and small bowel tissue from healthy469

human donors were collected and systematically profiled by470

CODEX, snRNA-seq, and snATAC-seq (32). We applied471

MaxFuse to the integration of these three modalities (Fig-472

ure 5A), with the goal of constructing high-resolution spatial473

maps of full transcriptome RNA expression and transcrip-474

tome factor binding accessibility. To perform tri-omic inte-475

gration, we first conducted pairwise alignment of cells be-476

tween protein (CODEX) and RNA (snRNA-seq), and cells477

between RNA (snRNA-seq) and ATAC (snATAC-seq), as478

previously described. The two sets of bi-modal cell-pairing479

pivots were then “chained” together, with the pivot cells in480

the RNA modality serving as the intermediary. This “chain-481

ing” created a set of pivots linking all three modalities: Pro-482

tein, RNA, and ATAC. Subsequently, we used these pivots to483

calculate a tri-omic embedding via generalized CCA (gcca)484

(21, 55). This allows for a joint UMAP embedding of the485

three modalities, shown in Figure 5B. We see that distinc-486

tions between major cell types are preserved and modalities487

are mixed within each cell type.488

The MaxFuse integration produces, effectively, a joint pro-489

file of protein abundance, RNA expression, and chromatin490

accessibility at single-cell spatial resolution on the same tis-491

sue section. To confirm the post-integration consistency be-492

tween the three modalities, we inspected whether CODEX’s493

protein abundance aligns spatially with the expression and494

chromatin activity of the protein-coding gene, the spatial495

measurements of the latter two modalities imputed based on496

the MaxFuse integration. Figure 5C shows an example in497

CD163, a macrophage marker: The protein expression, RNA498

expression, and gene activity of CD163 are, as expected,499

uniquely enriched in the macrophage cell cluster (Figure 5C500

upper panel). Furthermore, protein, RNA, and ATAC activi-501

ties of this gene all localize to the same spatial positions on502

the tissue section (Figure 5C lower panel). Other examples503

are shown in Supplementary Materials.504

With the integration of the snATAC-seq and CODEX data, we505

can further map the spatial enrichment of transcription factor506

(TF) binding site accessibility. For each TF, this is achieved507

by first computing its motif enrichment score for each cell in508

the snATAC-seq data, and then the scores are transferred to509

the CODEX spatial positions based on the MaxFuse integra-510

tion. Figure 5D shows such spatial profiles for 3 transcription511

factors: Binding motifs of IRF4, known to be a key regulator512

in immune cell differentiation (57), had increased accessibil-513

ity in the immune-enriched compartments of the mucosa and514

submucosa layers (32). Binding motifs of KLF4, known to be515

required for the terminal differentiation of goblet cells (58),516

had heightened accessibility in the colonic crypts of the mu-517

cosa layer where goblet cells mature. Finally, binding motifs518

of SRF, a master regulator of smooth muscle gene expression,519

(59), had heightened accessibility in neighborhoods that are520

enriched for smooth muscle cells.521

Discussion522

In this paper, we conceptually separated cross-modal integra-523

tion of single-cell data into two different scenarios: across524

modalities with strong linkage (e.g., ATAC-RNA integra-525

tion) and across modalities with weak linkage (e.g., RNA-526

protein integration for a targeted protein panel). Most ex-527

isting methods are developed for integration across strongly528

linked modalities, and our ground-truth benchmark results529

suggest that their performances decay significantly as the530

strength of cross-modal linkage weakens. MaxFuse is moti-531

vated by and focuses on the challenging case of weak linkage,532

which has become increasingly common as many emerging533

study designs include spatial data with targeted marker pan-534

els to be collected jointly with single-cell sequencing data.535

MaxFuse relies on two key ideas to overcome weak linkage:536

The first is a “fuzzy smoothing” procedure that denoises the537

linked features by moving their values towards their graph-538

smoothed values, with the graph determined by all features.539

The second is an iterative refinement procedure that improves540
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Figure 5: MaxFuse enables tri-modal integration with HUBMAP data (A) Overview of data: Patient paired CODEX, snRNA-seq, snATAC-seq single-cell human intestine
data from HUBMAP consortium. Colon and small bowel data were integrated by MaxFuse respectively and this figure shows part of the colon data (CODEX data from
one donor; snRNA-seq and snATAC-seq data from four donors). (B) UMAP visualization of the tri-modal integration embedding produced by MaxFuse, colored by modality:
Protein, RNA and ATAC (left panel) and colored by cell type (right panel). (C) Upper panel: UMAP visualization of CODEX cells based on the integration embedding, overlaid
with CD163 protein expression (from CODEX cells itself, left panel), CD163 RNA expression (from matched snRNA-seq cells, middle panel), CD163 gene activity score
(from matched snATAC-seq cells). Lower panel: Spatial location of CODEX cells based on their centroids’ x-y position, overlaid with the same expression features as in the
upper panel. (D) Spatial location of CODEX cells based on their centroids’ x-y position, overlaid with the transcription factor motif enrichment score (Z-score, calculated by
chromVAR (56)), based on their matched snATAC-seq cells.
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the cross-modal matching through an iterative cycle of co-541

embedding, graph-smoothing, and matching; this ensures542

that information from all features, in both modalities, are543

used to generate the final matching. We show that these key544

ideas allow MaxFuse to substantially improve upon state-of-545

the-art methods, achieving accurate integration of data from546

targeted protein assays with data from transcriptome- and547

epigenome-level assays.548

While MaxFuse is motivated by the weak linkage scenario,549

its applicability is universal. For strong linkage scenar-550

ios, methods based on deep learning, such as scGLUE,551

achieve state-of-the-art integration performance but is hin-552

dered by high computational costs. In comparison, MaxFuse553

achieves comparable performances as scGLUE on ground-554

truth strong-linkage benchmark datasets at a considerably555

lower computational cost. In addition, when joint embed-556

ding coordinates from other integration methods are avail-557

able, these coordinates could serve as linked features in Max-558

Fuse, which could then be further improved by the proce-559

dure. The light computation architecture and the flexibility560

in incorporating domain knowledge and existing integration561

results make the MaxFuse framework applicable to a wide562

range of cross-modal integration tasks.563

Materials & Methods564

The MaxFuse pipeline.565

Input preparation Consider a pair of datasets Y ∈ RNy×py566

and Z ∈ RNz×pz from two modalities (termed Y -modality567

and Z-modality for exposition convenience), with each row568

corresponding to a cell and each column a feature. In the569

ensuing discussion, we treat Y as the modality with a higher570

signal-to-noise ratio. For concreteness, one can think of Y571

as a snRNAseq dataset and Z as a CODEX dataset. Suppose572

there are two known functions fy :Rpy →Rs and fz :Rpz →573

Rs such that fy(y) predicts the values of fz(z) in a cell if the574

measured values under Y -modality are y in that cell and those575

under Z-modality are z. For any matrix A with py columns,576

let fy(A) denote the matrix with s columns and the same577

number of rows as A, obtained from applying fy on each row578

of A and stacking the outputs as row vectors. For any matrix579

B with pz columns, fz(B) is analogously defined. With fy580

and fz , we define Y ◦ = fy(Y ) ∈ RNy×s and Z◦ = fz(Z) ∈581

RNZ×s. In the snRNAseq vs. CODEX example, if one has582

a crude prediction for a subset S (with size |S| = s) of the583

proteins then fz(z) = zS returns the subvector indexed by S584

while fy(y) = ẑS predicts the observed CODEX values for585

these proteins based on transcriptomic information of a cell.586

In summary, we start with a pair of original datasets (Y,Z)587

and a pair of datasets (Y ◦,Z◦) with correspondence of588

columns based on domain knowledge.589

Meta-cell construction To alleviate sparsity and to scale to590

large datasets, we start by constructing meta-cells. Take the591

Y -modality for example. Let ny be the desired number of592

meta-cells one aims for. We first construct a nearest-neighbor593

graph of the rows of Y , apply Leiden clustering with an ap-594

propriate resolution level to obtain ny clusters, and average595

over the rows within each cluster to obtain the features for596

each meta-cell that serves as the representative of the cluster.597

Consequently, we obtain Ym ∈ Rny×py . Using this clustering598

structure (induced by Y as opposed to Y ◦), we can average599

feature vectors in Y ◦ to obtain Y ◦
m ∈ Rny×s. When desired,600

the same operation can be performed on the Z-modality to601

obtain Zm ∈ Rnz×pz and Z◦
m ∈ Rnz×s. We recommend only602

constructing meta-cells for modalities with high signal-to-603

ratios. For example, if Y -modality contains snRNAseq data604

and Z-modality contains CODEX data, then we would con-605

struct meta-cells only in Y -modality. After this curation step,606

we have two pairs of datasets (Ym,Zm) and (Y ◦
m ,Z◦

m). The for-607

mer pair can have completely distinct feature sets, while the608

latter pair must have matching feature sets with correspond-609

ing columns. In Figure 1A, the former correspond to the pair610

of all feature matrices, and the latter correspond to the pair of611

linked feature matrices.612

Fuzzy smoothing Let GY ∈ {0,1}ny×ny be a nearest613

neighbor graph of Ym where each row i is connected to kY
i614

rows that are closest in a chosen similarity measure, includ-615

ing itself. So row i of GY has kY
i entries equal to one and616

others zeros. In addition, all its diagonal entries are equal to617

one. Let AY (Ym) = K−1
Y GY Ym and AY (Y ◦

m ) = K−1
Y GY Y ◦

m618

be locally averaged versions of Ym and Y ◦
m over GY , respec-619

tively, where KY = diag(kY
1 , . . . ,kY

ny
). For a nearest neigh-620

bor graph GZ , we define AZ(Zm) and AZ(Z◦
m) in an analo-621

gous way. Finally, for any weight w ∈ [0,1) and any matrices622

A and B with ny and nz rows respectively, define623

Ã = SY (A;w) = wA+(1−w)AY (A),

B̃ = SZ(B;w) = wB +(1−w)AZ(B).
(1)

In this way, we define Ỹ ◦
m = SY (Y ◦

m ;w0) and Z̃◦
m =624

SZ(Z◦
m ;w0) with w0 ∈ [0,1). In Figure 1A, these are625

the smoothed Y -modality linked features and smoothed Z-626

modality linked features.627

Initial matching via linear assignment As the columns in628

Ỹ ◦
m and in Z̃◦

m have correspondences, we can compute an629

ny ×nz distance matrix D◦ where D◦
ij measures the distance630

between the i-th row in Ỹ ◦
m and the j-th row in Z̃◦

m after pro-631

jecting to respective leading singular subspaces. We obtain632

an initial matching Π̂◦ as the solution to the linear assign-633

ment problem (33, 60):634

minimize ⟨Π,D◦⟩
subject to Π ∈ {0,1}ny×nz∑

iΠij ≤ 1,∀j,
∑

jΠij ≤ 1,∀i,∑
i,jΠij = nmin.

(2)

Here, nmin = min{ny,nz} and for two matrices A and B of635

the same size, ⟨A,B⟩ =
∑

i,j AijBij denotes the trace inner636

product. The estimator Π̂◦ provides a relatively crude match-637

ing using only the information provided by the prior knowl-638

edge encapsulated in fy and fz that link features in the two639

modalities. By definition, Π̂◦ gives nmin pairs of matched640
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rows between the two modalities. We call these matched641

pairs initial pivots.642

Cross-modality joint embedding and iterative refinement of643

matching644

From matched pairs to joint embedding An estimated match-
ing Π̂ induces a cross-modality joint embedding of Ym and
Zm. In particular, let Y r

m ∈ Rny×ry and Zr
m ∈ Rnz×rz collect

the leading PCs of all features (i.e., Ym and Zm) in the two
modalities, respectively. Here, the numbers of PCs to retain,
i.e., ry and rz , are chosen based on data. For any matrix A, let
[A]i· denote its i-th row. Suppose {(iℓ, i′

ℓ) : ℓ = 1, . . . ,nmin}
are the matched pairs specified by Π̂. We perform CCA on
data pairs

{([Y r
m ]iℓ·, [Zr

m ]i′
ℓ
·) : ℓ = 1, . . . ,nmin}

to obtain the leading rcc loading vectors for either modality,645

collected as the columns of Ĉy = Ĉy(Π̂) and Ĉz = Ĉz(Π̂),646

respectively. The cross-modal joint embedding induced by647

Π̂ is then Y cc
m = Y r

m Ĉy ∈ Rny×rcc and Zcc
m = Zr

m Ĉz ∈648

Rnz×rcc , which are the predicted CC scores of Y r
m and Zr

m ,649

respectively.650

Iterative refinement Let Π̂(0) = Π̂◦ be the initial matching651

obtained from Eq. (2). Fix a weight w1 ∈ [0,1) and the em-652

bedding dimension rcc, we refine the estimated matching by653

iterating the following steps for t = 1, . . . ,T :654

(i) Compute joint embedding {Y
cc,(t)
m ,Z

cc,(t)
m } induced by655

Π̂(t−1);656

(ii) Apply fuzzy smoothing on joint embedding: Ỹ
cc,(t)
m =657

SY (Y cc,(t)
m ,w1), Z̃

cc,(t)
m = SZ(Zcc,(t)

m ,w1);658

(iii) Calculate a distance matrix D(t) ∈ Rny×nz where D
(t)
ij659

measures the distance between [Ỹ cc,(t)
m ]i· and [Z̃cc,(t)

m ]j·,660

and obtain a refined matching Π̂(t) by solving Eq. (2) in661

which D◦ is replaced with D(t).662

Figure 1B illustrates the foregoing refinement iteration.663

Propagation of matching and post-processing For down-664

stream analyses, one would often like to find for each cell in665

Y a match in Z when possible, or vice versa, and sometimes666

both ways. In addition, we would like to have joint embed-667

ding of cells across different modalities in a common space.668

We now describe how MaxFuse achieves these goals.669

Filtering and final joint embedding Upon obtaining the670

matched pairs {(iℓ, i′
ℓ) : ℓ = 1, . . . ,nmin} in Π̂(T ), we rank671

them in descending order of D
(T )
iℓi′

ℓ
and only retain the top672

100 × (1 − α)% pairs, where α is a user-specified filtering673

proportion (with a default α = 0). The retained pairs are674

called refined pivots. Then, we fit a CCA using the re-675

fined pivots and the corresponding rows in Ym and Zm to676

get the associated CCA loading matrices Ĉe
y ∈ Rpy×re and677

Ĉe
z ∈ Rpz×re . Here the positive integer re is a user-specified678

dimension for final joint embedding. Finally, the joint em-679

bedding of the full datasets is given by Y e = Y Ĉe
y ∈RNy×re

680

and Ze = ZĈe
z ∈ RNz×re , respectively. In Figure 1C, they681

correspond to the Y -modality embedding and Z-modality682

embedding matrices.683

Using pivots to propagate matching For each row index684

i ∈ {1, . . . ,ny} in Y -modality that does not have a match in685

Z-modality (i.e., i does not belong to any refined pivot), we686

search for the nearest neighbor of the i-th row in Ỹm (Ym after687

fuzzy smoothing) that belongs to some refined pivot. Sup-688

pose the nearest neighbor is the ji-th row with a match j′
i in689

Z-modality, then we call (i, j′
i) a matched pair obtained via690

propagation. We can optionally filter out any matched pair691

via propagation in which the nearest neighbor distance be-692

tween [Ỹm]i· and [Ỹm]ji· is above a user-specified threshold.693

The retained matched pairs composes the Y -to-Z propagated694

matching. We then repeat the above procedure with the roles695

of Y - and Z-modalities switched and obtain the Z-to-Y prop-696

agated matching.697

Pooling all matched pairs from refined pivots and propagated698

matching together, we obtain a matching between meta-cells699

in Y -modality and those in Z-modality. Such a meta-cell700

level matching defines a single-cell level matching between701

the original datasets Y and Z by declaring (i, i′) a matched702

pair for 1 ≤ i ≤ Ny,1 ≤ i′ ≤ Nz if the meta-cell that i belongs703

to is matched to the meta-cell that i′ belongs to.704

Scoring and directional pruning of matching For each single-705

cell level matched pair (i, i′), we compute Pearson correla-706

tion between the i-th row of Y e and the i′-th row of Ze (i.e.,707

corresponding rows in final joint embedding) as its matching708

score. We use these matching scores to prune single-cell level709

matching, with the direction of pruning specified by user.710

Suppose the user wants to find for each cell in Z a match711

in Y (e.g., Z is a CODEX dataset and Y snRNAseq). Then712

for each cell index 1 ≤ i′ ≤ Nz , we first list all refined pivots713

and propagated matching pairs that contain i′. If the list is714

non-empty, we only retain the pair with the highest match-715

ing score. Otherwise, we declare no match for cell i′ in Z-716

modality. If the direction is reversed, we apply the foregoing717

procedure with the roles of Y and Z switched. Furthermore,718

if no directional pruning is desired, we just keep all refined719

pivots and post-screening propagated matching pairs in the720

final single-cell matching.721

After filtering, propagation, and potential pruning, the final722

list of matched pairs correspond to the final matching in Fig-723

ure 1C.724

A batched version of MaxFuse. Single-cell and spatial725

datasets can be large. To facilitate fast computation for large726

datasets, we developed a batched version of MaxFuse.727

Batching Fix a desired pair of sample sizes (ny,nz) and728

meta-cell ratios (Ny/ny,Nz/nz), we randomly partition the729

dataset under Y -modality (resp. Z-modality) into disjoint730

subsets of sizes roughly all equal to Ny (resp. Nz). De-731

note them as Y [1], . . . ,Y [by] and Z[1], . . . ,Z [bz ]. We then ap-732

ply the MaxFuse pipeline on each pair of data {Y [l],Z[m]},733

1 ≤ l ≤ by , 1 ≤ m ≤ bz to get the refined pivots and the prop-734

agated matching, as well as their induced single-cell level735

matched pairs, for that pair of batches.736
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Stitching After pooling all refined pivots from all batch737

pairs, we obtain a multiple-to-multiple matching. For each738

unique cell in Z-modality, we average all its matches in Y -739

modality, that is, we average matched cells in the modality740

with a higher SNR. After this step, we get a pair of matrices741

with rows paired. We then fit CCA on this pair of matrices742

and get the loading matrices, which are then used to jointly743

embed the whole datasets. Finally, with the joint embedding744

of the whole datasets in Y - and Z-modalities, scoring and di-745

rectional pruning of matching are performed in the same way746

as in MaxFuse without batching.747

Systematic benchmarks on ground-truth datasets.748

MaxFuse and other methods in comparison MaxFuse was749

implemented in Python, and the four methods in comparison,750

Seurat V3, Harmony, Liger, and BindSC, were implemented751

in R. All benchmarking datasets were preprocessed in the752

same way for all methods, including filtering of low-quality753

cells, selection of highly variable genes and protein features754

to be used in integration, feature linkage scheme (e.g., pro-755

tein to their corresponding gene names), and normalization of756

raw observed values (except for Liger which required scaling757

without centering). We used the default tuning parameters758

in each method suggested by the respective tutorial except759

for BindSC, for which we used the separate set of parame-760

ters suggested for the integration of protein-related data by761

its method tutorial website. For MaxFuse, initial matching762

used features that are weakly linked (e.g., protein CD4 and763

RNA CD4) and are smoothed by all-feature nearest-neighbor764

graphs. For refined matching, all features from both modal-765

ities were used (e.g., all proteins and RNAs that are highly766

variable). For other methods in comparison, BindSC used767

both the weakly linked features and all features, whereas oth-768

ers only used the weakly linked features by design. The full769

detail (including preprocessing, implementation, and down-770

stream analysis and evaluation of MaxFuse and other meth-771

ods) is recorded and can be reproduced.772

Evaluation metrics773

1. Cell type matching accuracy: To evaluate the matching774

performance for Seurat, Liger, Harmony, and BindSC, we775

used the respective integration embedding vectors pro-776

duced by each method. For these methods, for each777

cell in one modality, we regarded its nearest neighbor778

from the other modality under Pearson correlation dis-779

tance in the embedding space as its match. For MaxFuse,780

we directly used matched pairs produced in the final re-781

sult. For all methods, we use the same matching direc-782

tion (e.g., for each cell in CODEX data finding a matched783

cell in scRNAseq data) for fair comparison. Accuracy784

of the matchings was measured by fraction of matched785

pairs with identical cell type annotations. Details on cell786

type annotation are given below in the description of each787

benchmarking dataset.788

2. FOSCTTM: Fraction of sample closer than true match
(FOSCTTM) was used to evaluate single-cell level align-
ment accuracy on datasets with ground-truth single-cell

level pairing. The measure has been used previously in
cross-modality alignment benchmarking tasks (19, 36,
37). For such data, Ny = Nz = N , and FOSCTTM is
defined as:

FOSCTTM = 1
2N

( N∑
i=1

n
(i)
y

N
+

N∑
i=1

n
(i)
z

N

)
,

where for each i, n
(i)
y = |{j|d(yi,zj) < d(yi,zi)}| with d789

a distance metric in the joint embedding space and for l =790

1, . . . ,N , yl and zl the embedded vectors of the l-th cell791

with its measurements in Y and Z modality, respectively.792

The counts n
(i)
z , i = 1, . . . ,N , are defined analogously.793

A lower value of FOSCTTM indicates better integration794

performance.795

3. FOSKNN: Fraction of sample with true match among
k-nearest-neighbors (FOSKNN) was used to evaluate
single-cell level alignment accuracy on datasets with
ground-truth single-cell level pairing. For such data,
Ny = Nz = N . For any method in comparison, let
{yi : i = 1, . . . ,N} be the coordinates of cells in the joint
embedding space from their Y modality information, and
let {zi : i = 1, . . . ,N} be embedding coordiantes from
their Z modality information. Then

FOSKNN = 1
2N

( N∑
i=1

1(i)
Ey,k

+
N∑

i=1
1(i)

Ez,k

)

where for i = 1, . . . ,N , 1(i)
Ey,k

is the indicator of whether796

the k closest embedded vectors from Z modality to yi797

includes zi. The quantity 1(i)
Ez,k

is defined analogously.798

4. Silhouette F1 score: Silhouette F1 score has been used799

to simultaneously measure modality mixing and infor-800

mation preservation post-integration process (21, 35).801

In brief, the F1 score was calculated by 2 · slt_mix ·802

slt_clust/(slt_mix + slt_clust), where slt_mix803

is defined as one minus normalized Silhouette width804

with the label being modality index (two modalities);805

slt_clust is defined by the normalized Silhouette width806

with label being cell type annotations (e.g., “CD4 T”,807

“CD8 T”, “B”, etc.). All Silhouette widths were com-808

puted using the silhouette() function from R pack-809

age cluster.810

5. ARI F1 score: Adjusted Random Index F1 score has been811

used to jointly measure modality mixing and information812

preservation post-integration process (21, 35). The score813

was calculated in a similar way to Silhouette F1 score,814

while the Adjusted Random Index was used instead of815

the Silhouette width. All ARI scores were computed us-816

ing the function adjustedRandIndex() in R pack-817

age mclust.818

CITE-seq PBMC dataset The CITE-seq healthy human819

pbmc data with antibody panel of 228 markers was retrieved820

from Hao et al. (34). For benchmarking purposes, 5 batches821

of cells, each with 10k cells were randomly sampled from the822

original dataset, and selected for benchmarking. The first 15823
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components of the embedding vector produced by all meth-824

ods were used for benchmarking metric calculation. The825

UMAP visualization of the integration process was also cal-826

culated with the first 15 components of the embedding vec-827

tors. Cell type annotations (lv1 - 8 cell types and lv2 - 20828

cell types) were directly retrieved from Hao et al.’s original829

annotation.830

For antibody dropping, we ranked the importance of each in-831

dividual antibody in the panel in terms of phenotyping con-832

tribution. The importance score was calculated by training a833

random forest model (function randomForest in R pack-834

age randomForest, with default parameters) using all an-835

tibodies to predict cell type labels (annotation level 2 from836

Hao et al.), then a permutation feature importance test (func-837

tion varImp with default parameters in R package caret)838

was performed on the trained model to acquire the individ-839

ual importance scores. Then antibodies were ranked by the840

importance scores, and 4 panels were used for antibody drop-841

ping test: (1) full 228 antibody panel; (2) top 100 most im-842

portant antibodies; (3) top 50 most important antibodies; (4)843

top 30 most important antibodies.844

CITE-seq BMC dataset The CITE-seq healthy human845

BMC data with antibody panel of 25 markers was retrieved846

from R package SeuratData ‘bmcite’, orignated from Hao847

et al. (34). For benchmarking purpose, a total of 20k cells848

were randomly sampled from the original dataset, and se-849

lected for benchmarking. The first 15 components of the850

embedding vectors produced by all methods were used for851

benchmarking metric calculation. The UMAP visualization852

of the integration process was also calculated with the first 15853

components of the embedding vectors. The original cell type854

annotation (lv2) from the R package was binned into 8 popu-855

lations: “DC”, “progenitor”, “monocyte”, “NK”, “B”, “CD4856

T”, “CD8 T” and “Other T”, and used for benchmarking.857

Ab-seq BMC dataset The Ab-seq healthy human BMC858

data with antibody panel of 97 markers, and whole transcrip-859

tome sequencing was retrieved from Triana et al. (39). All860

cells in the dataset (∼13k), except cells belonging to cell861

types with insufficient amount of cells ( < 50 cells, anno-862

tated as “Doublet and Triplets”, “Early GMP”, “Gamma delta863

T cells”, “Immature B cells”, “Metaphase MPPs”, “Neu-864

trophils” in Triana et al.) were excluded for integration, and865

the remaining 14 cell types were used during benchmarking.866

The first 15 components of the embedding vectors produced867

by all methods were used for benchmarking metric calcula-868

tion. The UMAP visualization of the integration process was869

also calculated with the first 15 components of the embedding870

vectors.871

TEA-seq PBMC dataset The TEA-seq neutrophil-depleted872

human PBMC dataset was retrieved from Swanson et al.873

(41) (GSM4949911). This dataset is stained with 46874

antibodies and contains chromatin accessibility informa-875

tion. Cell type annotation was performed using R package876

Seurat(v4) WNN-multi-modal clustering pipeline: func-877

tion FindMultiModalNeighbors was run on ADT878

PCA (first 25 components) and ATAC LSI (2-50 com-879

ponents, calculated by R package Archr (42)). Subse-880

quently, function FindClusters was used to generate un-881

supervised clustering (with parameter algorithm = 3,882

resolution = 0.2), followed by manual annotation. A883

total of 8 populations were identified (“Naive CD4”, “Mem884

CD4”, “Monocyte”, “NK”, “Naive CD8”, “Mem CD8”, “Ef-885

fector CD8”, “B”, “NK”), and the total amount of cells was886

∼7.4k. ADT expressions and gene activity scores (calculated887

by R package Archr (42)) were used as input for Max-888

Fuse and other methods. Additionally, during matching re-889

finement, MaxFuse used LSI reduction of the ATAC peaks890

(first 2-50 components) as features for the ATAC modality.891

The first 15 components of the embedding vectors produced892

by all methods were used for benchmarking metric calcula-893

tion. The UMAP visualization of the integration process was894

also calculated with the first 15 components of the embedding895

vectors.896

ASAP-seq PBMC dataset The ASAP-seq healthy human897

PBMC data (CD28 & CD3 stim PBMC control group) with898

an antibody panel of 227 markers, and chromatin accessi-899

bility information was retrieved from Mimitou et al. (40)900

(GSM4732109). Cell type annotation was performed us-901

ing R package Seurat(v4) WNN-multi-modal clustering902

pipeline: function FindMultiModalNeighbors was903

run on ADT PCA (first 18 components) and ATAC LSI (2-904

40 components, calculated by R package Archr). Subse-905

quently, function FindClusters was used to generate un-906

supervised clustering (with parameter algorithm = 3,907

resolution = 0.3), followed by manual annotation. A908

total of 9 populations were identified (“Naive CD4”, “Mem909

CD4”, “Monocyte”, “NK”, “Naive CD8”, “Mem CD8”, “B”,910

“OtherT”, “dirt”), and “dirt” was removed from subsequent911

usage, resulting in ∼4.4 k cells used. ADT expressions and912

gene activity scores (calculated by R package Archr) were913

used as input for MaxFuse and other methods. Additionally,914

during matching refinement, MaxFuse used LSI reduction of915

the ATAC peaks (First 2-50 components) as features for the916

ATAC modality. The first 15 components of the embedding917

vectors produced by all methods were used for benchmarking918

metric calculation. The UMAP visualization of the integra-919

tion process was also calculated with the first 15 components920

of the embedding vectors.921

MaxFuse on Spatial-omics matching.922

CODEX and scRNA-seq human tonsil CODEX multi-923

plexed imaging data of human tonsil tissues with a panel of924

46 antibodies were retrieved from Kennedy-Darling et al.925

(47). Images from tonsil-9338 (region X2-8, Y7-15) were926

used. Whole-cell segmentation was performed with a local927

implementation of Mesmer (61) , with weights downloaded928

from: https://deepcell-data.s3-us-west-1.929

amazonaws.com/model-weights/Multiplex_930

Segmentation_20200908_2_head.h5. Inputs of931

segmentation were DAPI (nuclear) and CD45 (membrane).932

Signals from the images were capped at 99.7th percentile,933

with prediction parameter model_mpp = 0.8. Cells934

Chen & Zhu et al. | MaxFuse bioRχiv | 13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523851doi: bioRxiv preprint 

https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://doi.org/10.1101/2023.01.12.523851
http://creativecommons.org/licenses/by-nc/4.0/


smaller than 30 pixels or larger than 800 pixels were ex-935

cluded. Signals from individual cells were then extracted,936

and scaled to the [0,1] interval, with percentile cutoffs937

of 0.5% (floor) and 99.5% (ceiling). Cell type annota-938

tion was performed using R package Seurat clustering939

pipeline: function FindNeighbors was run on CODEX940

protein PCA (first 15 components). Subsequently, function941

FindClusters was used to generate unsupervised clus-942

tering (with parameter resolution = 1), followed by943

manual annotation. A total of 9 populations were identified944

(“B-CD22-CD40”, “B-Ki67”, “Plasma”, “CD4 T”, “CD8945

T”, “DC”, “Fibro/Epi”, “Vessel”, “Other”, and “Dirt”), and 6946

populations (∼180k cells) were used in subsequent analysis947

(“B-CD22-CD40”, “B-Ki67”, “Plasma”, “CD4 T”, “CD8948

T”, and “DC”).949

Single-cell RNA-seq data of dissociated human tonsil cells950

were retrieved from King et al. (48). The pre-processing and951

cell typing steps were done in R package Seurat, follow-952

ing the description presented in King et al. In brief, tonsil953

cells ("t1", "t2" and "t3") were merged, then filtered by cri-954

teria: nFeature_RNA > 200 & nFeature_RNA <955

7500 & percent.mt < 20, and subsequently value956

normalized by function SCTransform. Harmony batch957

correction was performed for different tonsils, with func-958

tion RunHarmony. Unsupervised clustering was per-959

formed by function FindNeighbors with harmony em-960

bedding (1-27 dimensions) and function FindClusters961

with resolution = 0.5. A total of 8 population962

was defined (“B-CD22-CD40”, “B-Ki67”, “circulating B”,963

“Plasma”, “CD4 T”, “CD8 T”, “DC”, “Other”), and 6 pop-964

ulations (∼13k cells) were used in subsequent analysis (“B-965

CD22-CD40”, “B-Ki67”, “Plasma”, “CD4 T”, “CD8 T”, and966

“DC”).967

Boundaries of germinal centers from the CODEX images968

were drawn manually, and dilation and erosion from the969

boundary was performed with python package skimage,970

with function morphology.binary_dilation and971

morphology.disk. Ten layers inward or outward972

from the boundary (each layer = 30 pixels, resolution:973

376nm/pixel) was performed. Cells were assigned to each974

layer by their centroids’ locations. The RNA expression level975

from each layer, based on the averaged CODEX matched976

scRNA-seq cells, were plotted with R package ggplot2.977

The UMAP visualization of the integration process was cal-978

culated with the first 15 components of the embedding vec-979

tors.980

HUBMAP atlas: CODEX, snRNA-seq and snATAC-seq hu-981

man intestine CODEX multiplex imaging (48 markers),982

snRNA-seq and snATAC-seq of healthy human intestine cells983

were acquired from Hickey et al. (32). For CODEX, samples984

“B005_SB” and “B006_CL” were used, while for snRNA-985

seq and snATAC-seq, single-ome sequencing data of four986

donors (“B001”, “B004”, “B005”, “B006”) from the study987

were used. Cells annotated as “B cells”, “T cells”, “Endothe-988

lial”, “Enteroendocrine”, “Goblet”, “Mono_Macrophages”,989

“Plasma”, “Smooth muscle”, and “Stroma” were selected990

for the integration process. Cell counts for each modality991

used for MaxFuse were: CODEX ∼100k (small bowel) and992

∼70k (colon); snRNA-seq ∼32k (small bowel) and ∼16k993

(colon); snATAC-seq ∼28k (small bowel) and ∼21k (colon).994

CODEX protein expressions, snRNA-seq RNA expressions,995

snATAC-seq gene activity scores and LSI scores (calculated996

with R package Archr) were used as MaxFuse input (RNA997

expressions, gene activity scores and LSI scores were batch-998

corrected by Harmony (20), based on patient ID). The match-999

ing and integration process was done on colon and small1000

bowel samples respectively.1001

Pairwise MaxFuse alignments of cells between protein1002

(CODEX) and RNA (snRNA-seq), and cells between RNA1003

(snRNA-seq) and ATAC (snATAC-seq) were performed. Re-1004

fined pivots from the two bi-modal alignments were chained1005

together by using the pivot cells in the RNA modality as the1006

intermediary, resulting in a list of tri-modal pivots linking1007

all three modalities. Subsequently, we used these pivots to1008

calculate a tri-omic embedding via generalized CCA (gcca)1009

(21, 55). In particular, we used the gcca formulation and al-1010

gorithm described in (21).1011

The UMAP visualization of the tri-modal integration was cal-1012

culated with the first 15 components of the embedding vec-1013

tors (gcca scores in this case). Embeddings of CODEX cells1014

were overlaid with their protein expressions, or their matched1015

cells’ RNA expressions, or gene activity scores. Spatial lo-1016

cations of these expression values and scores were plotted1017

based on CODEX cells’ x-y centroid locations. Addition-1018

ally, we showed spatial locations of transcription factor mo-1019

tif enrichment scores (Z-score) of CODEX cells, based on1020

their matched snRNA-seq cells, which were calculated by R1021

package chromVAR (56). All values were capped between1022

5%−95% quantiles for visualization purpose during plotting.1023

Benchmark on ground-truth strongly linked modali-1024

ties.1025

MaxFuse and other methods specialized in ATAC-RNA in-1026

tegration in comparison We compared MaxFuse to three1027

methods that specialize in ATAC-RNA integration: scGLUE1028

(19), Maestro (62) and scJoint (63). For MaxFuse, the ini-1029

tial matching used the gene activity scores, while during re-1030

fined matching the active RNA features and LSI embedding1031

from ATAC were used. For other methods in comparison, we1032

used their default settings. Metrics used for benchmarking1033

were calculated similarly as described in previous sections.1034

The full detail (including preprocessing, implementation, and1035

downstream analysis and evaluation of MaxFuse and other1036

methods specialized in ATAC-RNA integration) is recorded1037

and can be reproduced.1038

Multiome scRNA - scATAC-seq human retina dataset Mul-1039

tiome (scRNA-seq & scATAC-seq) data of human retina cells1040

was retrieved from Wang et al. (46). For input required1041

by MaxFuse: gene activity and LSI scores of ATAC cells1042

were calculated by R package Archr using the fragment1043

files, while RNA counts were directly extracted. For other1044

methods in comparison, we used their default settings. For1045

benchmarking, a total of 20k cells were randomly sampled1046
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and used for testing. All cell types were used during integra-1047

tion (“Rod”, “OFF cone bipolar”, “Mullerglia”, “ON cone1048

bipolar”, “Rod bipolar”, “Cone”, “GABA amacrine”, “Hor-1049

izontal”, “Glyamacrine”, “AII amacrine”, “Retinal ganglion1050

cell”, “Astrocyte”, “Microglia”, annotated by Wang et al.).1051

The first 15 components of the embedding vectors produced1052

by all methods were used for benchmarking metric calcula-1053

tion.1054

10x Multiome peripheral blood mononuclear cells Multi-1055

ome (scRNA-seq & scATAC-seq) data of human mononu-1056

clear peripheral blood cells was retrieved from the 10x pub-1057

lic data repository (44). For input required by MaxFuse: gene1058

activity and LSI scores of ATAC modality were calculated by1059

R package Signac, the latter using the fragment files. RNA1060

counts were directly extracted from the cellranger out-1061

put. Cell-type labels were transferred from CITE-seq PBMC1062

reference (34) using the method in (34).1063

10x Multiome day 18 embryonic mouse brain cells Multi-1064

ome (scRNA-seq & scATAC-seq) data of developing mouse1065

brain cells was retrieved from the 10x public data reposi-1066

tory (44). For input required by MaxFuse: gene activity and1067

LSI scores of ATAC modality were calculated by R package1068

Signac, the latter using the fragment files. RNA counts1069

were directly extracted from the cellranger output. Cell-1070

type labels were transferred from (64) using the method in1071

(65).1072

10x Multiome developing human cerebral cortex cells1073

Multiome (scRNA-seq & scATAC-seq) data of developing1074

human cerebral cortex cells was retrieved from Trevino et1075

al. (45). For input required by MaxFuse: gene activity and1076

LSI scores of ATAC modality were calculated by R package1077

Signac using the fragment files. RNA counts and ATAC1078

peak matrices were extracted from 10x cellranger out-1079

put. The cell-type labels were taken from the original publi-1080

cation.1081
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