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Highlights
« EZH2 expression is upregulated fusion positive (FPRMS) and fusion negative (FNRMS)
rhabdomyosarcomas
« EZH2 inhibition combined with retinoic acid treatment was investigated RMS cell models.
« Combination treatment reduced cell proliferation and tumor spheroid volume.
« Combination treatment in FPRMS resulted in apoptosis in FPRMS via interferon signaling.
« Conversely, combination treatment in fusion negative RMS resulted in myogenic

differentiation.

Abstract

Rhabdomyosarcomas (RMS) are predominantly pediatric sarcomas thought to originate from muscle
precursor cells due to impaired myogenic differentiation. Despite intensive treatment, 5-year survival
for patients with advanced disease remains low (<30%), highlighting a need for novel therapies to
improve outcomes. Differentiation therapeutics are agents that induce differentiation of cancer cells
from malignant to benign. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2)
suppresses normal skeletal muscle differentiation and is highly expressed in RMS tumors. We
demonstrate combining EZH2 inhibition with the differentiating agent retinoic acid (RA) is more
effective at reducing cell proliferation in RMS cell lines than single agents alone. In PAX3-FOXO1
positive RMS cells this is due to an RA-driven induction of the interferon pathway resulting in
apoptosis. In fusion negative RMS, combination therapy led to an EZH2i-driven upregulation of
myogenic signaling resulting in differentiation. These results provide insight into the mechanism that
drives the anti-cancer effect of the EZH2/RA single agent and combination treatment and indicate that
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the reduction of EZH2 activity combined with the induction of RA signalling represents a potential
novel therapeutic strategy to treat both subtypes of RMS.
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1. Introduction

Rhabdomyosarcoma (RMS) is a high-grade malignant tumor of mesenchymal origin that resembles
skeletal muscle. RMS consists of two main subtypes: embryonal RMS (ERMS) and alveolar RMS
(ARMS). ERMS comprise around 70% of cases occurring in younger children with a better prognosis,
whereas ARMS accounts for up to 30% of cases, and has a poorer prognosis [1]. In ARMS, up to
80% of cases are characterized by a chromosomal translocation resulting in the formation of
PAX3/FOXO1 or PAX7/FOXO1 fusion onco-proteins, key markers of poor prognoses in these cancers
[2, 3]. Both ERMS and ARMS can be fusion negative (FN), and FN-ARMS have a better prognosis
with outcomes similar to ERMS [4]. Although there have been incremental improvements in RMS
therapy, the 5-year survival rate of patients with high-risk RMS and recurrent or metastatic disease is
<30% [5], therefore there is an unmet clinical need for the identification of new therapeutic targets and
strategies.

Current therapy for RMS patients involves chemotherapy, surgery, and radiotherapy; treatments that
are accompanied by late side effects including reduced fertility, development issues and growth
deficiency [6]. Differentiation therapy may be an alternative strategy for these patients. Activating
terminal differentiation has been shown to reduce the aggressiveness of RMS by facilitating the
progression to a less proliferative state [7]. Enhancer of zeste homologue 2 (EZH2) is abnormally
expressed in RMS patients and cell lines [7, 8], and is associated with poor prognosis and increased
metastatic potential by preventing cell differentiation whilst inducing proliferation. EZH2 is a
H3K27me3 methyltransferase that forms the catalytic subunit of Polycomb repressive complex 2
(PRC2) [8, 9]. Upon activation of normal myogenesis, the levels of EZH2 decrease with the PRC2
complex dissociating from gene promoters leading to the activation of muscle-specific genes.
Silencing EZH2 results in muscle differentiation through the transcriptional activation of muscle-
specific promoters [10, 11]. EZH2 has also been implicated in the repression of MyoD — a core
regulatory transcription factor that promotes myogenesis [11]. In fusion negative (FNRMS) tumors,
EZH2 overexpression sustained proliferation [7], and EZH2 inhibition lead to myogenic differentiation
[12]. EZH2 is also overexpressed in fusion positive RMS (FPRMS) tumors compared to normal muscle
tissue and EZH2 depletion resulted in apoptosis in FPRMS cell models [13]. Indirect inhibition of EZH2
through PRC2 components has been shown to arrest proliferation in RMS cells, downregulating EZH2
protein levels and activity as well as global H3K27me3 levels, leading to myogenic differentiation.
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Together these results suggest a pro-differentiative effect of EZH2 inhibition in RMS [7, 14, 15].
However, these single agent targeting strategies did not lead to complete differentiation or apoptosis
in RMS models.

Retinoic acid (RA) has been shown to inhibit proliferation and facilitate differentiation and induced
apoptosis in several tumor cell lines [16-18]. The RA derivative, All-trans retinoic acid (ATRA) can
bind and activate retinoic acid receptors (RARa, B, y) which then regulate the expression of target
genes through interactions as homodimers or as heterodimers with retinoic X receptor before binding
to specific RA response elements [17]. Although RA is used in neuroblastoma to prevent recurrence
as well as showing promise in the treatment of cancers such as acute promyelocytic leukemia [19,
20], RAtreatment alone is not curative [21-23]. Treatment of FNRMS and FPRMS cell lines with ATRA
results in a dose-dependent inhibition of cell proliferation with incomplete differentiation, suggesting
that combination treatment may be required to reach terminal differentiation [24, 25] similar to acute
myeloid leukemia cells where knockdown of EZH2 potentiated the pro-differentiating effects of ATRA
in addition to impairing clonogenic survival [26].

Here we show that EZH2 is overexpressed in RMS patient tumors and that pharmacological inhibition
of EZH2 leads to a reduction in cell proliferation and tumor spheroid volume in RMS cell models.
Importantly, we demonstrate that combination treatment with EZH2 inhibitors and ATRA leads to
greater efficacy than single agents alone. Finally, we link phenotypic differences seen in combination
treatments in FPRMS versus FNRMS tumors with mechanistically distinct molecular changes,
including the induction of interferon signaling in FPRMS tumors. This highlights the potential use of
EZH2 inhibitors (EZH2i) to augment immunotherapies in these cancers for therapeutic benefit.

2. Materials and Methods

2.1. Cell culture. Cell lines, RH30, RH4 ,RD, RMS-01, RMS-YM, JR-1, RH41 and HFF-1 have been
previously described [27]. CT-10 was a gift from Peter Houghton and HS-SY-Il was a gift from Janet
Shipley. CT-10 were cultured in DMEM (ThermoFisher Scientific) whereas HS-SY-Il were cultured in
RPMI-1640 medium (ThermoFisher Scientific) supplemented with 10% fetal bovine serum, 2 mM L-
glutamine and 1% penicillin/streptomycin. Cells were maintained at 37 °C and 5% CO..Cell lines were
authenticated using Short Tandem Repeat fingerprinting carried out using the GenePrint 10 system
(Promega). For 3D spheroids, cells were plated in ultra-low attachment (ULA) plates (ThermoFisher
Scientific). The size of the spheroids was calculated by measuring two orthogonal diameters (d1 and
d2). Spheroid volume was calculated using the formula: volume = 4/3mr® where the radius is the
geometric mean of three spheroids was calculated using r = ¥2Vd1d2 [28].

2.2. Treatment of RMS cells with EZH2i or RA. Spheroids were treated every 2-3 days with either
GSK343 (Sigma-Aldrich), GSK126 (Selleckchem), EPZ6438 (Selleckchem), UNC1999 (Tocris
Bioscience), or UNC2400 (Tocris Bioscience) alone or in combination with ATRA (Sigma-Aldrich) as
indicated. For 2D combination studies in 384-well plates the Echo 550 liquid handler (Labcyte) was
programmed to add drug.

2.3. Immunohistochemistry (IHC). At indicated time-points, spheroids were collected and washed
in PBS before fixing in 4% paraformaldehyde for 24h at 4°C. Approximately 10 spheroids were
embedded in 1% agarose, before processing as previously published [27]. Primary antibodies used
were: Cleaved Caspase-3 (9661; Cell Signaling Technology (CST)), H3K27me3 (ab6002; Abcam),
Ki67 (M7240; Agilent Dako), MYOG (M3559; Agilent Dako), MHC (MAB4470; R&D Systems).
Spheroid cores were scored by pathologist Prof Anna Kelsey.

2.3.1 EZH2 expression in tissue microarray cores.
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EZH2 expression was analyzed in a large cohort of RMS patient samples (n=282) and correlated with
clinicopathological features. Tissue microarray slides were processed as above and incubated with
EZH2 antibody (Leica Biosystems) for 1hr by Dr Frances Daley (Pathology Core Facility, ICR). Each
core was scored as previously described [27]by two histopathologists blinded to patient outcomes (Dr
Sergey Popov and Dr Khin Thway). Ethical approval was obtained from the Local Research Ethics
Committee protocol 1836 and UK Multi-Regional Research Ethics Committee 98/4/023 (16/11/06).

2.5. Cell Viability and Proliferation Assay. CyQUANT cell proliferation assay (ThermoFisher
Scientific) was used to measure cell proliferation in 96-well plates according to the manufacturer’'s
instructions. Fluorescence was measured after 1h incubation at 37°C using excitation at 485nm and
emission at 530nm. To measure cell viability in 384-well plates alamarBlue cell viability reagent
(ThermoFisher Scientific) was used following manufacturer’s instructions. After incubation for 4h at
37°C absorbance was measured at 570nm. Cell viability for 3D spheroids was assayed using
CellTiter-Glo® 3D Cell Viability Assay (Promega) according to manufacturer’'s instructions. The
luminescence of each well was measured after 30min.

2.6. Caspase Activity Assay. Apoptosis was measured by evaluating the activation of caspase 3/7
using the Ac-DEVD-AMC Caspase-3 Fluorogenic Substrate (BD Biosciences) according to
manufacturers’ instructions. The fluorescence of each well was measured after 2h incubation at 37°C
at excitation at 380nm and emission at 460nm.

2.7. Western Blot. Cell Lysis Buffer (CST) was used to extract protein lysates and the Subcellular
Protein Fractionation Kit for Cultured Cells (ThermoFisher Scientific) was used for fractionation
according to manufacturers’ instructions. The following primary antibodies were used: EZH2 (5246;
CST), GAPDH (MAB374; Merck Millipore), Histone H3 (ab1791; Abcam), H3K27me3 (ab6002;
Abcam), MYOG (556358; BD Biosciences), p16 (ab108349; Abcam), p21 (ab80633; Abcam), PARP
(9542; CST), RARa (E6Z6K; CST), a-Skeletal Muscle Actin (ab28052; Abcam), a-Tubulin (SC-8035;
Santa Cruz Technology). Immunostained bands were detected by chemiluminescence (GE
Healthcare).

2.8. RNA-sequencing (RNA-seq). RNA was extracted from RMS cells treated with GSK343, ATRA
or combination after 6 days (n=6 replicates). RNA was sent to Novogene (Hong Kong) for library
preparation and sequencing. RNA-seq fastq files for each condition were aligned to the GRCh38.p13
GENCODE human genome reference using STAR (v2.7.10b) [29] with the —quantMode option set to
GeneCounts. The resulting gene counts were used to identify differentially expressed genes between
each condition and DMSO using Deseq?2 [30]. A gene was determined as differentially expressed if
the fold change between DMSO and condition was greater than two and the adjusted p-value
(Benjamini-Hochberg) was less than 0.05.

2.9. Chromatin immunoprecipitation (ChIP) / ChlP-sequencing (ChlIP-seq). RMS cells were
prepared for ChlP using SimpleChIP™ kit (#9006A; CST) according to manufacturer’s instructions.
Pulldown was performed using magnetic beads and all antibodies were purchased from CST: anti-
IgG (2729), anti-Histone H3 (4620), anti-H3K27me3 (9733), anti-EZH2 (5246), anti-RARa (E6Z6K).
Library preparation and ChlP-Segencing was performed by Novogene (Hong Kong). ChlP-seq fastq
files for EZH2, RARa, H3K27me3, and IgG were aligned to the GRCh38.p13 human genome
reference using Bowtie2 [31] and resulted BAM files sorted using Samtools (v 1.16.1) [32]. Peak
calling was performed with the BAM files using MACS (v 3.0.0b1). Regular peak calling options were
used for RARaq, while broad peak calling options were used for EZH2 and H3K27me3, using IgG as
a control. For RARa narrow peak calling the option -g 0.01 was used, and for EZH2/H3K27me3 broad
peak calling the option --broad-cutoff 0.1 was used to set significance threshold. R packages
ChlPseeker and TxDb.Hsapiens.UCSC.hg38.knownGene were used to annotate the called peaks.
Genes for which peaks were called in or close to were compared pairwise between experiments to
identify overlaps.
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2.10. Pathway analysis and GSEA. Pathway analysis was performed on differentially expressed
genes (DEGSs) alone and for DEGs that peaks were called at in the ChIP-seq analysis. R packages
enrichR and clusterProfiler were used to identify enriched pathways using the MSigDB hallmark
genesets. Using R packages clusterProfiler and fgsea, GSEA was performed on all genes in the
Deseq2 output, ranked by fold change (highest to lowest), considering MSigDB hallmark, and gene
ontology (GO) genesets.

2.11. Statistical Analysis. Graphs represent means + standard deviation (SD) from multiple
independent experiments as stated in figure legends. Statistical significance was measured by Two-
tailed unpaired t-test or One Way ANOVA as specified and assigned as follows: * p<0.05, ** p<0.01,
*** n<0.001, **** p<0.0001 using GraphPad Prism. To assess synergy between treatment
combinations, the Bliss predicted response (Yab) was first calculated according to the following
equation: Yab = Ya + Yb —YaYb where Ya and Yb are observed responses with the two compounds
alone. Excess over Bliss (EOB) score is calculated by subtracting the predicted response (Yab) from
the observed response of the combination treatment (yab) as follows: EOB = yab — Yab. EOB scores
that are >0 represent synergy and <0 represents antagonism [33]. One-sided Fisher’s exact test was
used to determine whether the overlap of genes near called peaks was significant between two
different ChIP-Seq experiments. The total number of genes considered in calculations was all pseudo-
and coding-genes used for annotation (n = 34,130).
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3. Results

3.1. EZH2 is overexpressed in RMS primary tumors and cell lines. As EZH2 has been shown to
be overexpressed in small cohorts of RMS patients [7, 13, 34], we sought to examine expression in a
large, well-curated dataset of RMS patients (n=282) by tissue microarray (TMA). EZH2 was expressed
in 79.4% (224/282) of patients, (Table 1; Figure 1A). Contrary to previous reports in smaller sample
sets, we found no correlation between EZH2 protein expression and outcome or metastases in our
cohort. The frequency and intensity of EZH2 staining was higher in the RMS sections than normal
tissue samples. Variability in EZH2 staining in tumors was observed so EZH2 transcript levels was
analyzed from two gene expression datasets of RMS patients [35, 36], and a dataset of childhood
cancer cell lines which was compared to a normal skeletal muscle dataset using R2 [37]. EZH2
transcript levels were higher in RMS patient samples and cell lines compared to normal skeletal
muscle (Figure 1B).

Table 1. EZH2 protein staining in RMS patient samples by histology and clinical features. FN
= Fusion Negative, FP = Fusion positive, U = Fusion status unknown.

Score FN FP U Total
0 37 9 12 58
1 85 31 9 125
2 61 16 5 82
3 17 0 0 17
Total 200 56 26 282
Metastasis
0 1 Total
Neg 48 8 56
Pos 174 42 216
Total 222 50 272
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Figure 1. EZH2 is overexpressed in RMS and inhibition leads to a decrease in cell proliferation.
(A) Photomicrograph of tissue microarray cores, showing examples of EZH2 protein expression in
fusion negative RMS (FNRMS) and fusion positive RMS (FPRMS) samples scored as 0 (less than
5% positively stained cells), 1(weak), 2 (moderate), 3 (high). Scale bars = 50 uym. (B) EZH2 transcript
is overexpressed in RMS tissue samples and cell lines. (C) GI50 after GSK343 treatment for RMS
cell lines, HFF-1, and HS-SY-II. (D) Cell proliferation of RD and RH30 treated with indicated
concentrations of GSK343 or ATRA for 6 days.
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3.2. EZH2 inhibition reduces RMS cell proliferation. As the overexpression of EZH2 has been
reported to support survival and proliferation in RMS cells [7], we tested the EZH2 inhibitor (EZH2i),
GSK343 against a panel of RMS cell lines. These were compared with a normal fibroblast cell line,
HFF-1 which are non-responsive to EZH2i, and the EZH2i-sensitive synovial sarcoma cell line, HS-
SY-1I [38]. Treatment of RMS cell lines with GSK343 lead to a significant decrease in cell proliferation
and significantly lower GI50 over 6 days compared to control HFF1 cells (Figure 1C). Similar results
were observed in all cell lines when tested with other EZH2i, GSK126 and UNC1999 (Figure S1,
S2A). In contrast, EPZ6438 did not induce any significant changes in all RMS cell lines tested (Figure
S3). RD and RH30 were selected for further work as representatives of FNRMS and FPRMS
respectively. Additionally, we tested the inactive analog for UNC1999, UNC2400 [39] to check for
specificity of EZH2 inhibition and found no significant changes in cell viability (Figure S2B).

We next compared the effects of GSK343 and differentiating agent, ATRA on cell proliferation. In
contrast to GSK343, ATRA treatment showed a minimal decrease in proliferation in both cell lines
(Figure 1D).

3.3. EZH2 inhibition potentiates ATRA treatment in FNRMS and FPRMS cell lines. As both EZH2
and retinoic acid signalling are known to influence differentiation, we sought to determine whether
combination treatment EZH2i with RA treatment might be synergistic. Combination treatment resulted
in a decrease in proliferation in both RD (Figure 2A) and RH30 (Figure 2B) cells at 6 and 10 days
compared with the DMSO control (Figure 2B) and single agent treatment (Figure S4A-D). Evaluation
of combination effect by EOB score indicated strong synergistic effects in both RD (Figure S5A) and
RH30 (Figure S5B) by day 10.
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Figure 2. EZH2 inhibition potentiates the effect of ATRA in 2D. Cyquant proliferation assay of
(A) RD and (B) RH30 after treatment with ATRA, GSK343 or in combination relative to DMSO
control. Caspase signaling intensity of ATRA and GSK343 combination treatment in (C) RD and (D)
RH30 cells relative to DMSO control. (E) Western blots of myogenic marker expression for
fractionated RD and RH30 respectively treated with ATRA, GSK343, or combination for 6 days.
Data shown are mean values from at least 2 independent experiments; bars, SD. One Way ANOVA
was used to analyze statistical significance compared to the DMSO control (* p < 0.05, ** p < 0.01,
***p <0.001, ***p <0.001
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3.4. Combination treatment induces differentiation in 2D FNRMS cells and apoptosis in FPRMS
cells. As EZH2 inhibition has been linked to differentiation in FNRMS lines [13], versus apoptosis in
FPRMS lines [7], we sought to determine whether the combination therapy was associated with a
greater induction of myogenic differentiation and apoptosis respectively. Caspase activity levels did
not show significant changes in RD after 6 days compared to the control and single agent
(Figure 2C, S4E & F). At Day 10, an increase in caspase activity was observed at the combination
treatments with 5 uM ATRA in the RH30 cells compared with control and signal agent (Figure 2D).
These results suggests that the combination with 5 uM ATRA may induce an apoptotic phenotype in
FPRMS.

Both cell lines were tested for the expression of myogenic markers, a-skeletal muscle actin (a-SMA)
and myogenin (MYOG). Both RD and RH30, expressed MYOG in the absence of treatment (Figure
2E). Single agent treatments had little effect on MYOG expression, however combination treatment
lead to a notable decrease in nuclear MYOG. The expression of a-SMA was noticeably different with
RD showing no expression in the absence of drugs and a marked increase in response to 5 uM
GSK343. This effect appears to be ameliorated in the combination treatment. Conversely, RH30 cells
appear to express a-SMA constitutively with little variation due to either agent used alone and a
marked reduction of detectable a-SMA with the combination treatment. These suggest that the
combination therapy affects expression of regulators of myogenic differentiation in both RD and RH30,
but the differences appear subtype dependent.

To determine if differentiation was the result of reduced cell proliferation, cell cycle proteins p16
(CDKN2A) and p21 (CDKN1A) were compared to cells differentiated using
12-O-tetradecanoylphorbol-13-acetate (TPA) (Figure 2E). The increased a-SMA and a-tubulin along
with reduced expression of p21 and MYOG in RD cells implies that differentiation confers the growth
inhibitory effects of the combination treatment. A reduction in the expression of cell cycle proteins in
RH30 cells was also observed in the combination treatment but unlikely to be a consequence of
differentiation as a-SMA was reduced in this line. This along with the results from the caspase assay
implies that the growth inhibitory effect of the combination treatment in RH30 may be due to induction
of the apoptosis pathway.

3.5. EZHZ2 inhibition potentiates ATRA treatment in FNRMS and FPRMS tumor spheroids. ATRA
plus GSK343 treatment results in a reduction in cell growth in both FNRMS and FPRMS cells using
2D culture, so we aimed to determine whether these effects could be replicated in 3D spheroid
models. Spheroids better represent in vivo tumor characteristics [40] and allow for longer term
experiments important for observing epigenetic changes. Combination treatment induced a significant
increase in RD cell viability at Day 14 with 5 uM GSK343 compared to the control and single agent
(Figure 3A, S6A & B). In RH30 spheroids, a significant decrease in cell viability was observed at the
combination treatment with 5 uM GSK343 and with combinations of both concentration of ATRA at
Day 6. At Day 14, all treatments induced a significant decrease in cell viability, but combination
treatments showed a stronger decrease compared to the control and single agent treatment (Figure
3B, S6C & D). These trends were also observed with spheroid volumes in the respective cell lines
(Figure 3C-E, S6E-H), where combination treatment in FPRMS lines resulted in significant
morphological changes consistent with apoptosis (Figure 3E, S6H).
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Figure 3. EZH2 inhibition potentiates the effect of ATRA in 3D RMS spheroids. 3D cell viability
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Combination treatment in RD spheroids showed strong synergy at Day 14 with ATRA and 5 uM
GSK343 (Figure S7A). Combination treatment in RH30 spheroids showed strong synergy at Day 6
but this effect was reduced at Day 14 (Figure S7B). These results indicate that the inhibiting EZH2
and inducing RA signaling in FNRMS and FPRMS cells potentiated the growth inhibitory effects of
the treatments.

3.6. Combination treatment induces differentiation in FNRMS spheroids and apoptosis in
FPRMS spheroids. As 2D cells showed evidence of the upregulation of differentiation markers in RD
and caspase activity in RH30, we determined whether the same could be seen in 3D spheroids. With
combination treatment, RMS spheroids apoptose and disintegrate by Day 14 (Figure 3E) therefore
further experiments were performed at Day 6. Doses of ATRA above 2.5 uM did not show an
additional effect on viability and volume of spheroids therefore this concentration was used for further
combination experiments.

H & E staining showed that RD spheroids treated with 5 uM GSK343, with or without 2.5 uM ATRA
showed >60% differentiation characterized by features such as smaller nuclei, larger cytoplasm —
changes in nuclei to cytoplasm ratio. This may explain the increasing spheroid size observed in Figure
3C and 3E (Figure 4A; Table S1). RH30 spheroids showed little evidence of differentiation (Figure
4B). The combination of GSK343 and ATRA showed anti-proliferative effects in RMS spheroids as
evidenced by the reduction of the proliferative marker, Ki67 when compared to the DMSO control
(Figure 4C). EZHZ2 inhibition was also observed as indicated by the decrease in H3K27me3 staining
in both RMS spheroids treated with GSK343 alone and in combination (Figure 4D). The combination
treatment showed evidence of myogenic differentiation in RD spheroids as seen by the presence of
the terminal differentiation marker MHC (Figure 3H) and decrease in MYOG staining (Figure 4F).
Conversely, there was little evidence of differentiation in RH30 spheroids by H&E staining, or IHC for
the differentiation markers MHC and MYOG. Expression of the apoptotic marker, cleaved caspase 3
was positive in 5% of cells, localized to the cytoplasm and nucleus in GSK343 treated RH30
spheroids. However, no significant changes in cleaved caspase 3 were observed in the combination
treatment (Figure 4G). Day 6 RH30 spheroids may be too early for induction of the apoptosis pathway.
These data coupled with MTCS volume data from later timepoint suggest that combination treatment
induced a pro-differentiation phenotype in RD spheroids versus likely cell death in RH30.

12


https://doi.org/10.1101/2023.06.12.544568

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544568; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

RD RH30

2.5 UM ATRA 2.5 UM ATRA

DMSO 25 2.5uMGSK

2.5uM GSK SuUMGSK

2.5 UM ATRA
25uMGSK  5uMGSK "

i 5 (et Myogenin
Myogenin < “ Iy 5

Cleaved 3 % et . cteaved3
caspase 3 pv 3 N i 5o : caspase3

H3K27me3 3
H3K27me3

C Ki67 D H3K27me3
. RD .. RH30 RD , RH30
i ‘!7 § 150 § 150
s - 4 P .
g 3o 1e
§ § g
| B ; i
P IE SIS P '
MRALS RKe YA YA
Wﬂjﬁ: o ﬁifif ,_-_,j;s,{,_e,; ,e.f;y,s:_ﬁs
E MHC F Myogenin G Cleaved Caspase 3
RD RH30 RD RH30 RD RH30
% 4 g 40 % 50 % 50 Ze &
I i I. i,
§= = 3, i, § 3
g 10 % 10 g o g » gﬂ gz
3 o g o g0 a0 o o
o#o f' *’P éf o&o r"Qy °’°'c, dfof o“’or«r o“&r‘a 4
I S U

25 M ATRA 2SPMATRA SAPMAT AT 25 MATRA 25 UM ATRA

Figure 4. Combination treatment induces a pro-differentiation phenotype in RD spheroids and
cell death in RH30 spheroids. Representative images of hematoxylin and eosin staining (H & E)
and immunohistochemistry (IHC) of proteins in RD (A) and RH30 (B) spheroids after 6 days of
treatment. Percentage of cells stained in immunohistochemistry (IHC) of proteins in RD and RH30
spheroids after 6 days treatment using antibodies targeting (C) Ki67, (D) H3K27me3, (E) Myosin
Heavy Chain (MHC), (F) Myogenin and (G) Cleaved Caspase 3.

13


https://doi.org/10.1101/2023.06.12.544568

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544568; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

We next sought to identify pathways and genes that are differentially expressed between treatments
to further understand the mechanism behind combination treatment and the different phenotypes
observed in the FPRMS and FNRMS cell lines.

3.7. ATRA treatment alone induced an upregulation of genes involved in the interferon
response pathway in FPRMS cells. As ATRA can initiate RA signaling through the binding of RARs,
we identified genes bound and regulated by RARa through the integration of ChlP-seq and RNA-seq
data to understand the mechanism of action. RNA-seq was performed on RMS cells treated with 2.5
UM ATRA for 6 days. In RD, 100 genes were significantly upregulated compared to DMSO control,
while 14 genes were downregulated (FC > 2, adj p value < 0.05; Figure S8A), with significant
upregulation of differentially expressed genes (DEGSs) associated with estrogen early response and
KRAS signalling by gene set enrichment analysis (GSEA) (Figure S8B). In RH30, 339 genes were
upregulated, compared to DMSO control, and 135 genes were downregulated (FC > 2, adj p value <
0.05; Figure S8C), with significant upregulation of DEGs associated with the immune response Figure
S8D).
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Integration of ChIP-seq and RNA-seq data showed the low degree of overlap in RARa binding
domains with changes in gene expression in both RMS cell which may be due to the timepoint used
for RNA-seq as RAR-responsive genes have been shown to respond rapidly to RA-stimulation [41,
42] (Figure S8E & F).

3.8. GSK343 treatment alone induced an upregulation of genes involved in the myogenesis
pathway in RD cells. To understand the underlying mechanism of EZH2 inhibition, RNA-seq was
performed on RMS cells treated with 5 pM GSK343 for 6 days and compared to DMSO control. In
RD, 858 genes were significantly upregulated and 20 significantly downregulated (FC > 2, adj. p value
< 0.05), with significant upregulation of DEGs associated with the canonical MSigDB myogenesis
pathway (Figure S9A and B). In RH30 cells, 457 genes were significantly upregulated and 52
significantly downregulated (FC > 2, adj. P value < 0.05) with similar enrichment in pathways seen in
RD (Figure S9C and D). Overall, EZH2 inhibition resulted in an upregulation of cholesterol
homeostasis genes in both cells (RD - 25/74, RH30 - 10/74; Figure 6D) suggesting that GSK343
targets RMS cells on a metabolic level, in addition to myogenesis in FNRMS.
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We next investigated EZH2 binding using ChlP-seq on untreated RMS cells. Integration of the ChiIP-
seq and RNA-seq data showed 8 genes that were downregulated, and 414 genes were upregulated
in RD that showed an overlap with EZH2 peaks (Figure S9E). In RH30 cells, 44 genes were
downregulated whilst 418 genes were upregulated that EZH2 may bind to (Figure S9F). Pathway
analysis using MSigDB canonical pathway gene sets and the DEGs that are potentially regulated by
EZH?2 indicates that EZH2 may play a role in regulating cholesterol homeostasis and myogenesis in
both RMS subtypes (Figure S9G). Using a lower concentration of GSK343 (2.5 uM) showed an
upregulation in genes involved in the same pathways however to a lesser degree compared to the
higher concentration (5 uM) (Figure S10).

Epigenetic reprogramming of H3K27me3 marks by EZH2 in RMS cells was also explored using ChlP-
seq. We found that there was a large overlap between EZH2 and H3K27me3 peaks in both RMS
subtypes which correlates with the role of EZH2 in the trimethylation of H3K27 (Figure S11).

3.9. Combination treatment strongly induces an additive upregulation in myogenesis in
FNRMS and the interferon response pathway in FPRMS. To understand the underlying
mechanism of the potentiating effect observed in the combination treatment, RNA-seq was performed
on RMS cells treated with 2.5 uM ATRA and 5 uM GSK343 for 6 days. More DEGs were seen in RD
cells after combination treatment (versus control) compared to single agent GSK343(combination —
1275; GSK343 — 878), with significant enrichment in the myogenesis pathway by GSEA (Figure 5A-
C) compared to GSK343 alone (combination - 42/200, GSK343 - 45). Similarly, after combination
treatment in RH30, an increase in significant DEGs was observed compared to single agent ATRA
(combination — 1651; ATRA — 474), with significant enrichment in the IFN-a pathway and in other
immune response canonical pathways (Figure 5D and E). Treatment of RMS cells with 2.5 uM
ATRA/2.5 uM GSK343 showed a similar trend in the upregulation of the same pathways as treatment
with 2.5 uyM ATRA/5 pM GSK343 (Figure S11, S12A-C).
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Figure 5. Integration of RNA-seq and ChlIP-seq data in RMS cells treated with a combination of
2.5 uM ATRA and 5 pM GSK343 compared to DMSO control. (A) Volcano plot of genes involved
in myogenesis in RD cells after treatment. (B) Gene ontology analysis of processes that are
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differentially regulated in RD cells treated with combination of 2.5 uM ATRA and 5 puM GSK343. (C)
GSEA shows positive enrichment of myogenesis genes in RD after combination treatment. (D)
Volcano plot of genes involved in the interferon a response pathway in RH30 cells after treatment. (E)
Gene ontology analysis of processes that are differentially regulated in RH30 cells treated with
combination of 2.5 pM ATRA and 5 pM GSK343. (F) GSEA shows positive enrichment of genes
involved in the interferon a response in RH30 after combination treatment. Venn diagram showing the
overlap of number of DEGs with EZH2 and RARa peaks identified from ChlP-seq in (G) RD and (H)
RH30 cells.

Overlap of RARa and EZH2 peaks were analyzed to investigate whether they were present in the
same genes, indicating whether they might regulate overlapping targets. There was a significant
overlap in genes located near peaks for EZH2 and for RARa in both RD and RH30; in RD, RARa and
EZH2 peaks were both observed in 307 genes (One-sided Fisher's exact test, p < 0.0001; Figure
S13A) and in RH30, there was an overlap of 451 genes (One-sided Fisher’s exact test, p < 0.0001;
Figure S13C). Pathway analysis revealed that RARa and EZH2 bind to and regulate the same genes
in TNF-a signaling via NFKB in both cell lines in addition to TGF signaling in RH30 (Figure S13B and
D). Under all treatments tested, negatively enriched canonical pathways were cell cycle related (E2F
targets, MYC targets, and G2M checkpoint) and/or oxidative phosphorylation in both subtypes of RMS
(Figure S14 and S15).

To investigate if RARa and EZH2 regulated the same genes in the combination treatment, ChiP-seq
was used to assay RARa and EZH2 binding sites in untreated RMS cells. RARa and EZH2 peaks
were detected in 11 of the upregulated genes and 8 of the downregulated genes in the RD cell
differential gene expression analysis (Figure 5G). Specifically, CCND2 is upregulated in the
combination treatment and has a role in cell cycle and differentiation [43]. In RH30 cells, RARa and
EZH2 peaks were observed in 22 upregulated genes, including immunoregulatory gene VSIR, and
13 downregulated genes from the differential gene expression analysis (Figure 5H). Few RARa peaks
were present in DEGs in both RMS cell lines perhaps owing to the single timepoint used for RNA-seq,
however EZH2 peaks were detected in 496 upregulated DEGS and 37 downregulated DEGs in RD
cells (Figure S16D). In RH30 cells, EZH2 peaks overlapped with 1142 upregulated DEGs and 235
downregulated DEGs (Figure S16E). Pathway analysis on integrated ChiP-seq and RNA-seq data
showed that EZH2 bound to genes involved in myogenesis and inflammatory response including the
interferon response (Figure S16F). Collectively, these observations suggest that combination EZH2i
and ATRA treatment may be an effective therapy in both FN and FP RMS by enhancing myogenesis
and inflammation, respectively, further suggesting that EZH2i/ATRA treated FPRMS tumour cells may
respond to immune-based therapies.

4. Discussion

Differentiation therapy shows promise in the treatment of cancer, showing positive outcomes in certain
cancer types [44]. The results of this study provide evidence suggesting the use of EZH2i and RA
treatment can induce myogenic differentiation, inhibit proliferation, and increase apoptosis as potential
treatment for RMS patients. In all agents tested in this study, Myc targets and oxidative
phosphorylation were downregulated in RMS which suggests in general, that the anti-proliferative
effect of these treatments may also involve the targeting of cancer metabolism and proliferation.

Retinoic acid receptors, activated by RA ligands, act as a transcription factor to enhance the
expression of specific myogenic genes [45] and RMS xenografts treated with ATRA showed
enhanced MHC and decreased MYOG indicative of terminal muscle cell differentiation [21].
Contrastingly, several RMS cell lines, including RD and RH30 show limited response to RA as
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indicated by lack of reduction in cell growth or induction of myogenic differentiation, which was
previously suggested to be due to low RAR expression [46]. Consistent with this, our results also
show that ATRA treatment alone in both RD and RH30 cell lines had little effect on growth and
differentiation. However, this is unlikely due to RAR expression as RARa is expressed in our cell lines.
As PRC2-EZH2 has been shown to be involved in suppressing the RA signaling pathway [47-49],
inhibiting EZH2 could allow RA ligand binding to facilitate signaling which may explain why ATRA
alone was ineffective as a single agent treatment.

Our data indicate that the anti-cancer effect of EZH2 inhibition in RMS cells may partly be due to the
dysregulation of cholesterol homeostasis as revealed by the RNA-seq and ChlP-seq data. Similar
findings were observed in head and neck squamous carcinoma [50] and hepatocellular carcinoma
[50] where EZH2i resulted in altered cholesterol synthesis. Dysregulation of cholesterol homeostasis
can induce cell cycle arrest and apoptosis through the activation of specific transcription factors [51].

We show that combination treatment with EZH2i and RA in RMS 2D cell culture showed an anti-
proliferative effect. Combination treatment resulted in a pro-differentiation phenotype in FNRMS
versus a pro-apoptotic phenotype in the FPRMS in both 2D culture and 3D spheroid. Epigenetic
profiling revealed that the pro-differentiation phenotype observed in FNRMS appeared to be driven
by EZH2i, as combination treatment with ATRA resulted in synergism by upregulating more genes
involved in myogenesis pathways. Upregulation of myogenic markers were also observed in 2D cells
and spheroid in FNRMS which were not seen in FPRMS. This supports the role of oncogenic role of
EZH2 in FNRMS via the suppression of myogenic differentiation. Our results show that RARa and
EZH2 did not show many overlaps in DEGs of the treated RMS cells. This may be due to the timing
of the experiment, the cells were harvested at Day 6 to capture the targets that are influenced by
EZH2 inhibition (i.e., after changes in the H3K27me3 mark) however this time point may be too late
to observe direct targets of RARa. Further investigation is required to understand what targets RARa
regulate and if RARa regulates the same genes as EZH2 in the combination treatment.

In FPRMS, the pro-apoptosis phenotype appeared to be driven by ATRA potentiated by EZH2
inhibition. This pro-apoptotic phenotype in FPRMS has been observed in a number of previous studies
where RH30 cells treated with EZH2i resulted in a dose-dependent increase in apoptosis rather than
differentiation [13, 14]. This apoptotic phenotype may be immune-related as genes of the IFN-a
pathway were upregulated. RA was reported to induce the secretion IFN-a in various human cell lines
[52]. IFN-a has a reported role in inducing apoptosis in malignant cancer cells [53]. Whilst ATRA alone
induced an upregulation of these pathways, combination with EZH2i was required to reduce viability
and proliferation of FPRMS. Our data showed that EZH2 may regulate the genes involved in similar
signaling pathways to those upregulated in ATRA treatment in FPRMS. Inhibition of EZH2 appeared
to potentiate the effect of ATRA as more genes involved in the interferon a and y response pathway
were upregulated.

The difference in cellular response to EZH2 inhibition and/or RA signaling in the subtypes may be
attributed to the different signaling pathways established due to the fusion oncogene. Comparison of
primary RMS tumors and FNRMS transduced with PAX3-FOXO1 constructions revealed DEGs
involved in apoptosis, cell death and negative regulation of cell proliferation [54]. Apoptosis appeared
to be present in FPRMS tumors, however the baseline level was not sufficient to prevent tumor
formation [55]. This highlights the paradoxical role of PAX3-FOXO1 where it can be oncogenic or anti-
cancer. As the PAX3-FOXOL1 fusion gene inhibits myogenic differentiation in FPRMS [56], its
presence could determine why the FPRMS favors apoptosis rather than differentiation upon treatment
with differentiating agents.

Overall, our findings provide insight into the mechanism that drives the anti-cancer effect of the
EZH2/RA single agent and combination treatment, and the effect determined by the presence of the
fusion oncogene. Ideally in vivo preclinical assessment of the combination would provide further
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rationale for the use of this combination in RMS, however the lack of appropriate immunocompetent
models of RMS limits the ability to effectively test this. Nevertheless, our results support the potential
use of this combination therapy for the treatment of both FNRMS and FPRMS.
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Figure S4. EZH2 inhibition potentiates effect of ATRA in 2D. Cyquant proliferation assay after treatment with 2.5
UM ATRA, GSK343 or in combination relative to DMSO control in RD (A) and RH30 (B) and treatment with 5 uM
ATRA, GSK343 or in combination relative to DMSO control in RD (C) and RH30 (D). Caspase signaling intensity after
treatment with 2.5 uM ATRA, GSK343 or in combination relative to DMSO control in RD (E) and RH30 (F) and
treatment with 5 pM ATRA, GSK343 or in combination relative to DMSO control in RD (G) and RH30 (H). Data shown
are mean values from at least 2 independent experiments; bars, SD. One Way ANOVA was used to analyse statistical
significance compared to single agent (* p < 0.05, ** p < 0.01, *** p <0.001, **** p < 0.001.
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experiments; bars, SD. One Way ANOVA was used to analyse statistical significance compared to single
agent (* p < 0.05, * p <0.01, ** p <0.001, **** p < 0.001.
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Figure S8. Integration of RNA-seq and ChlP-seq data in RMS cells treated with 2.5 yM ATRA
compared to DMSO control. (A) Volcano plot of differentially expressed genes after treatment of RD
cells, with upregulated myogenesis-related genes highlighted in black. (B) Top 20 most significant
MSigDB canonical pathways using the upregulated genes from the DEG analysis in RD cells treated with
2.5 yM ATRA. (C) Volcano plot of differentially expressed genes after treatment of RH30 cells, with
upregulated genes in the canonical interferon a response pathway highlighted in black. (D) Top 20 most
significant MSigDB canonical pathways using the upregulated genes from the DEG analysis in RH30
cells treated with 2.5 uM ATRA. Venn diagram showing the overlap of number of DEGs with RARa peaks
identified from ChIP-seq in (E) RD and (F) RH30 cells. For all volcano plots, red dots represent
significantly upregulated with fold change > 2 and adjusted p value < 0.05, blue dots represent
significantly downregulated genes with fold change > 2 and adjusted p value < 0.05, and grey dots
represent genes that did not reach fold change and significance thresholds.
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Figure S9. Figure 6. Integration of RNA-seq and ChlP-seq data in RMS cells treated with 5 uM
GSK343 compared to DMSO control. (A) Volcano plot of differentially expressed genes after treatment
of RD cells, with upregulated myogenesis-related genes highlighted in black (B) Top 20 most significant
MSigDB canonical pathways using the upregulated genes from the DEG analysis in RD cells treated with
5 uM GSK343. (C) Volcano plot of differentially expressed genes after treatment of RH30 cells, with
upregulated genes in the canonical interferon a response pathway highlighted in black Top 20 most
significant MSigDB canonical pathways using the upregulated genes from the DEG analysis with in RH30
cells treated with 5 pM GSK343. Venn diagram showing the overlap of number of differentially expressed
genes (DEGs) with EZH2 peaks identified from ChlP-seq in (E) RD and (F) RH30 cells. (G) Gene
ontology analysis of DEGs that overlap with EZH2 peaks. For all volcano plots, red dots represent
significantly upregulated with fold change > 2 and adjusted p value < 0.05, blue dots represent
significantly downregulated genes with fold change > 2 and adjusted p value < 0.05, and grey dots
represent genes that did not reach fold change and significance thresholds.
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Figure S10. Integration of RNA-seq and ChlIP-seq data in RMS cells treated with 2.5 uM GSK343
compared to DMSO control. (A) Volcano plot of genes involved in myogenesis in RD cells after
treatment. (B) Gene ontology analysis of processes that are differentially regulated in RD cells treated
with 2.5 uM GSK343. (C) Volcano plot of genes involved in the interferon a response pathway in RH30
cells after treatment. (D) Gene ontology analysis of processes that are differentially regulated in RH30
cells treated with 2.5 uM GSK343. Venn diagram showing the overlap of number of differentially
expressed genes (DEGs) with EZH2 peaks identified from ChIP-seq in (E) RD and (F) RH30 cells. (G)
Gene ontology analysis of DEGs that overlap with EZH2 peaks.
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Figure $11. Venn diagram showing the overlap of EZH2 and H3K27me3 peaks from ChiP-seq in (A) RD and (B)
RH30 cells.
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Figure S12. Integration of RNA-seq and ChlIP-seq data in RMS cells treated with a combination of
2.5 uyM ATRA and 2.5 uM GSK343 compared to DMSO control ( A) Volcano plot of genes involved in
myogenesis in RD cells after treatment. (B) Gene ontology analysis of processes that are differentially
regulated in RD cells treated with combination of 2.5 uM ATRA and 2.5 uM GSK343. (C) GSEA show
positive enrichment of myogenesis genes in RD after combination treatment. (D) Volcano plot of genes
involved in the interferon a response pathway in RH30 cells after treatment. (E) Gene ontology analysis of
processes that are differentially regulated in RH30 cells treated with combination of 2.5 uM ATRA and 2.5
MM GSK343. (F) GSEA show positive enrichment of genes involved in the interferon a response in RH30
after combination treatment. Venn diagram showing the overlap of number of differentially expressed
genes (DEGSs) with EZH2 and RARa peaks identified from ChlP-seq in (G) RD and (H) RH30 cells.
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Figure S13. Venn diagram showing the overlap of EZH2 and RARa peaks from ChlIP-seq in (A) RD
cells and (B) gene ontology pathway analysis. Venn diagram showing the overlap of EZH2 and RARa
peaks from ChIP-seq in (C) RH30 cells and (D) gene ontology pathway analysis.
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Figure S14. Top 20 most significant MSigDB canonical pathways using the downregulated genes from
the DEG analysis in RD cells treated with (A) 2.5 uM ATRA (B) 2.5 uM GSK343 (C) 5 uM GSK343 (D)
2.5 uM ATRA + 2.5 uM GSK343 and (E) 2.5 uM ATRA + 5 pM GSK343.
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Figure S15. Top 20 most significant MSigDB canonical pathways using the downregulated genes from the
DEG analysis in RH30 cells treated with (A) 2.5 uM ATRA (B) 2.5 uM GSK343 (C) 5 uM GSK343 (D) 2.5
MM ATRA + 2.5 uyM GSK343 and (E) 2.5 uM ATRA + 5 uM GSK343.
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Figure S16. Venn diagram showing the overlap of number of differentially expressed genes (DEGS) with
EZH2 peaks identified from ChlIP-seq in (A) RD and (B) RH30 cells treated with combination of 2.5 uM
GSK343 and 2.5 uM ATRA. (C) Gene ontology analysis of DEGs that overlap with EZH2 peaks after 2.5
MM GSK343 and 2.5 pM ATRA combination treatment. Venn diagram showing the overlap of number of
DEGs with EZH2 peaks identified from ChlIP-seq in (D) RD and (E) RH30 cells treated with combination of

5 UM GSK343 and 2.5 uM ATRA. (F) Gene ontology analysis of DEGs that overlap with EZH2 peaks after
2.5 uM GSK343 and 2.5 pM ATRA combination treatment.
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