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 2 

Abstract 17 

Marine invertebrates release their gametes at an optimal time to produce the next 18 

generation. In reef-building scleractinian corals, synchronous spawning is essential for 19 

reproductive success. Molecular mechanisms of scleractinian gametogenesis have been 20 

studied; however, the mechanism by which coral gametes mature at specific times has 21 

yet to be discovered. The present study focused on two Acropora species with different 22 

spawning seasons. In Okinawa, Japan, Acropora digitifera spawns from May to June, 23 

whereas Acropora sp. 1 spawns in August. Comparative genomic analyses revealed that 24 

39 candidate genes are differentiated between the two species, suggesting a possible 25 

association with timing of gametogenesis. Among candidate genes, we identified an 26 

Acropora sp. 1-specific amino acid change in gene WDR59, one of the components of a 27 

mTORC1 activator, GATOR2. Since regulation of gametogenesis by mTORC1 is widely 28 

conserved among eukaryotes, the difference in timing of gamete maturation observed in 29 

the two Acropora species may be caused by a substitution in WDR59 that slightly affects 30 

timing of mTORC1 activation via GATOR2. In addition, this substitution may lead to 31 

reproductive isolation between the two species, due to different spawning periods. Thus, 32 
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 3 

we propose that A. digitifera and Acropora sp. 1 species pair is an effective model for 33 

studying coral speciation and understanding the molecular mechanisms that control coral 34 

spawning timing. 35 

  36 
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Significance statement (required):  37 

For successful coral reproduction, conspecific corals must spawn synchronously. Gamete 38 

production initiates coral spawning. Regulation of gamete maturation by a protein 39 

complex, mTORC1, is widely conserved among organisms, but little is known about it in 40 

cnidarians. In this study, we analyzed genomes of two closely related Acropora species 41 

with different spawning months, May/June and August. Our analyses revealed that 39 42 

genes are genetically differentiated between the two species. One of these is a component 43 

of mTORC1 activator, suggesting that this gene may be associated with the difference in 44 

spawning times of these two species. 45 

 46 

 47 

Key words: mTORC1, oogenesis, cnidaria 48 

  49 
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Introduction 50 

In marine invertebrate reproduction, gametes are released into the water to be fertilized 51 

externally (spawning) (Mercier and Hamel 2010). Spawning occurs at an optimal time to 52 

produce the next generation (Forrest and Miller-Rushing 2010). Since fertilization in 53 

seawater can easily fail due to sperm dilution and other factors, marine organisms have 54 

evolved mechanisms such as synchronized spawning (Fukami, et al. 2003; Levitan, et al. 55 

2004). 56 

Spawning in reef-building, scleractinian corals is one of the most massive 57 

reproductive events on earth. In the Great Barrier Reef, most corals release their gametes 58 

once a year for a few nights (Harrison, et al. 1984). For example, over 100 coral species 59 

spawn in the Great Barrier Reef between the full and last quarter moon in late spring 60 

(Babcock, et al. 1986). Synchronous spawning within species is essential for fertilization 61 

because dilution and aging of sperm reduce fertilization success (Fukami, et al. 2003; 62 

Levitan, et al. 2004). In synchronous spawning, gametes spawned by different species are 63 

present in the water and may encounter each other. However, many Acropora species 64 

exhibit species specificity in gamete compatibility (Hatta, et al. 1999; Willis, et al. 1997), 65 
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 6 

and interspecific hybridization rarely occurs in the Indo-Pacific (Hatta and Matsushima 66 

2008; Isomura, et al. 2013). 67 

Environmental cues act on corals to regulate spawning months, days, and times 68 

(Babcock, et al. 1986; Baird, et al. 2009). Temperature strongly influences gamete 69 

maturation (Baird, et al. 2009), and in several coral species, spawning has become 70 

asynchronous, due to effects of recent climate change (Shlesinger and Loya 2019). 71 

Therefore, understanding mechanisms of synchronous gamete maturation will help us 72 

estimate the impact of climate change on coral reproduction and restoration using coral 73 

seedlings produced from gametes (Suzuki, et al. 2020). Gametogenesis in corals has been 74 

studied in the field (Harrison 2011) and by molecular biological approaches (Chiu, et al. 75 

2020; Shikina and Chang 2016). However, the mechanism by which coral gametes mature 76 

at specific times has yet to be identified. 77 

In the Indo-Pacific region, including Okinawa, Japan, the genus Acropora 78 

comprises the largest number of coral species (Veron 2000). In Okinawa, most Acropora 79 

species spawn around the full moon in May or June, with a few species spawning several 80 

months later (Hayashibara, et al. 1993). One species that spawns later is Acropora sp. 1. 81 
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This species was initially classified as Acropora digitifera (Wallace 1999); however, the 82 

two are now recognized as separate species, due to differences in morphology and 83 

spawning time (Hayashibara and Shimoike 2002; Nakajima, et al. 2012; Ohki, et al. 2015). 84 

Acropora sp. 1 has a flatter colony shape and shorter branches than A. digitifera 85 

(Hayashibara and Shimoike 2002; Ohki, et al. 2015). Acropora sp. 1 tends to inhabit reef 86 

edges with faster (offshore) currents than A. digitifera. In addition, in Okinawa, A. 87 

digitifera spawns from May to June, whereas Acropora sp. 1 spawns in August 88 

(Hayashibara and Shimoike 2002). Gametes of both species can cross-fertilize as 89 

indicated by artificial fertilization experiments (Ohki, et al. 2015). Under natural 90 

conditions, however, the two species do not interbreed because of the different spawning 91 

months (Ohki, et al. 2015). 92 

 Advances in analysis of genomic data with next-generation sequencers have 93 

revealed the genetic basis of specific traits (Ellegren and Sheldon 2008). In particular, 94 

comparative genomic analyses between genetically close species have identified genomic 95 

regions associated with their phenotypic differences (Poelstra, et al. 2014; Turner, et al. 96 

2005). So far, genomes of various corals have been sequenced (Fuller, et al. 2020; 97 
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Shinzato, et al. 2021; Shinzato, et al. 2011; Voolstra, et al. 2015), and population genomic 98 

approaches have identified loci associated with heat tolerance (Smith, et al. 2022). 99 

Comparative genomic analysis has yet to be conducted to identify genomic regions 100 

associated with differences in coral spawning timing due to the lack of closely related 101 

species pairs to compare. 102 

In this study, we performed a comparative genomic analysis between A. 103 

digitifera and Acropora sp. 1 to identify genomic regions likely involved in trait 104 

differences between them. We expected that A. digitifera and Acropora sp. 1 were 105 

genetically closely related based on analysis of short sequences (Nakajima, et al. 2012) 106 

and their fertilization ability (Ohki, et al. 2015). Therefore, we determined the genome 107 

sequences of both species. This comparative genomic analysis identified genomic regions 108 

likely associated with differences in their spawning times. Since differences in spawning 109 

time can lead to reproductive isolation, these species will be a useful model to study coral 110 

speciation and to understand molecular mechanisms that regulate spawning time in corals. 111 

 112 

Results 113 
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The spawning month of Acropora sp. 1 114 

We collected 16 Acropora sp. 1 colonies during 2018-2020 at Sesoko and Bise, Okinawa, 115 

Japan (Fig.1), and observed mature oocytes or spawning in August (Table S1). This later-116 

spawning month of Acropora sp. 1 is consistent with previous observations (Hayashibara 117 

and Shimoike 2002; Nakajima, et al. 2012; Ohki, et al. 2015). 118 

 119 

 120 

Figure 1  121 

Fig 1

(a)

(b)

Sesoko 

Adig (n=7), Asp1 (n=6)

Zamami Adig (n=2)

Onna Adig (n=1)

Bise Asp1 (n=8)

Oku Adig (n=1)
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 10 

Phylogenetic tree and principal component analysis 122 

We sequenced genomes from 16 colonies of Acropora sp. 1 (Table S1). Then, we mapped 123 

these reads to the A. digitifera whole-genome assembly ver. 2.0 (Shinzato, et al. 2021) 124 

and selected 14 colonies with coverage >10x for analyses. In addition, we downloaded 125 

genomic sequence data for 11 colonies of A. digitifera and one colony each of 15 other 126 

Acropora species from the DNA Data Bank of Japan (DDBJ) and mapped them as well. 127 

First, we investigated the genetic relationship between A. digitifera and 128 

Acropora sp. 1. We extracted 885,405 biallelic single-nucleotide polymorphisms (SNPs) 129 

from mapping data of 17 species using our criteria (Materials and Methods). With these 130 

SNPs, we constructed a phylogenetic tree (Figure 2a). Acropora digitifera and Acropora 131 

sp. 1 colonies formed a monophyletic clade. In this clade, A. digitifera and Acropora sp. 132 

1 colonies each formed monophyletic clades. A monophyletic A. digitifera/Acropora sp. 133 

1 clade formed a monophyletic clade with A. acuminata, A. microphthalma, and A. nasuta 134 

(Fig. 2a). Using five species in this monophyletic clade, we performed principal 135 

component analysis (PCA). We used 80,490 SNPs extracted from A. digitifera, Acropora 136 

sp. 1, and three out-group species (A. acuminata, A. microphthalma, and A. nasuta). The 137 
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 11 

three out-group species were separated along the PC1 axis from A. digitifera and 138 

Acropora. sp. 1 colonies, forming distinct genetic clusters. Acropora digitifera colonies 139 

were separated from Acropora sp. 1 along the PC2 axis (Fig. 2b). Among Acropora sp. 1 140 

colonies, two (Colony IDs: Asp1B1906 and Asp1B1904) were separated from other 141 

Acropora sp. 1 colonies by PCA. In addition, these two colonies (Colony IDs: 142 

Asp1B1906 and Asp1B1904) formed a single clade with high bootstrap support in the 143 

phylogenetic tree (Fig. 2a). These two colonies were sampled from the same sites as other 144 

colonies sampled in the same year, indicating no geographic isolation. 145 

 146 

Figure 2 147 
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Highly differentiated regions between A. digitifera and Acropora sp. 1 148 

Since phylogenetic analysis indicated that A. digitifera and Acropora sp. 1 are closely 149 

related, the degree of differentiation between the two species was calculated (FST) (Weir 150 

and Cockerham 1984) using 1,459,328 SNPs. The FST (Weir and Cockerham 1984) value 151 

across the genomes of these two species was 0.10225. This is comparable to the genetic 152 

divergence of species pairs used in comparative genome analysis in previous studies 153 

(Ellegren, et al. 2012; Geraldes, et al. 2011; Nadeau, et al. 2013). Despite low 154 

differentiation throughout their genomes, genomic regions responsible for differences in 155 

traits between A. digitifera and Acropora sp. 1 are expected to differ in the two species. 156 

To extract differentiated regions, we performed a sliding window analysis of 10 kb in   157 

1 kb increments between A. digitifera and Acropora sp. 1. Genomic regions with the top 158 

0.1% FST (Hudson, et al. 1992) values (FST >0.6157) in each 10 kb window were then 159 

selected. We further selected windows containing differentiated SNPs (Materials and 160 

Methods) from the top 0.1% FST (Hudson, et al. 1992) windows. When these windows 161 

overlapped, they were combined. As a result, 34 genomic regions, called highly 162 

differentiated regions (HDRs) (Table S2), were extracted from the whole genome. 163 
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 13 

 164 

Genes in highly differentiated regions 165 

In the HDRs, 39 genes harbor differentiated SNPs. We performed a Blast search using 166 

these 39 genes as queries (Figure S1) and found that 23 of them are similar to high-quality 167 

manually annotated genes (Table 1). Ten genes are similar to genes with automated 168 

annotations related to known genes (Table S3). Four genes are similar to uncharacterized 169 

genes (Table S3), and two genes have no similarity to any others in the NCBI nucleotide 170 

database. 171 

Table 1 172 

Gene ID Protein Name (Uniprot Reviewed) Identity 

(%) 

E-

value 

Entry 

adig_s0002.g57.t1 Growth/differentiation factor 11 29.6 2.6E-

35 

Q9Z217 

adig_s0002.g67.t1 Nipped-B-like protein A 26.1 5.1E-

15 

F5HSE3 

adig_s0002.g68.t1 Kelch-like protein diablo 41 5.9E-

122 

B0WWP2 

adig_s0013.g139.t1 Transcription factor Atoh1 27.9 9.6E-

08 

P48985 

adig_s0013.g67.t1 Stromelysin-2 28.6 6.3E-

17 

O55123 
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 14 

adig_s0015.g100.t1 RNA-binding motif protein, X 35 3.8E-

40 

Q6IRQ4 

adig_s0015.g101.t1 Glycine-rich RNA-binding protein 2 58.1 9.5E-

52 

Q99070 

adig_s0020.g143.t1 - - - - 

adig_s0028.g24.t1 - - - - 

adig_s0034.g150.t1 Collectin-12 49.2 3.9E-

07 

Q4V885 

adig_s0034.g151.t1 Collagen alpha-1(XVI) chain 46.2 1.3E-

05 

Q07092 

adig_s0042.g174.t1 Inactive tyrosine-protein kinase 

transmembrane receptor ROR1 

31.5 2.3E-

99 

Q9Z139 

adig_s0046.g74.t1 - - - - 

adig_s0048.g28.t1 GATOR complex protein WDR59 42.1 0 Q6PJI9 

adig_s0048.g29.t1 Guanine nucleotide-binding protein G(o) 

subunit alpha 

72.6 0 P08239 

adig_s0058.g4.t1 - - - - 

adig_s0064.g90.t1 Putative nucleotidyltransferase MAB21L1 23.4 3.8E-

06 

Q0V9X7 

adig_s0064.g91.t1 Survival of motor neuron-related-splicing 

factor 30 

50.5 7.8E-

20 

Q4QQU6 

adig_s0064.g92.t1 Probable N-acetyltransferase CML1 35.9 4.3E-

23 

Q9JIZ0 

adig_s0087.g2.t1 Zinc finger protein 862 26.6 2E-

06 

O60290 

adig_s0087.g3.t1 Pogo transposable element with KRAB 

domain 

38.7 1.3E-

91 

Q9P215 
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adig_s0087.g8.t1 - - - - 

adig_s0091.g43.t1 - - - - 

adig_s0091.g44.t1 - - - - 

adig_s0096.g12.t1 Brevican core protein 37.8 1.4E-

15 

P55068 

adig_s0113.g15.t1 - - - - 

adig_s0125.g55.t1 - - - - 

adig_s0130.g47.t1 - - - - 

adig_s0150.g20.t1 Peroxidasin 
 

36.8 3.9E-

92 

A4IGL7 

adig_s0150.g21.t1 - - - - 

adig_s0164.g12.t1 - - - - 

adig_s0164.g14.t1 - - - - 

adig_s0164.g40.t1 Isoform 5 of Microtubule-actin cross-linking factor 1 24.1 0 Q9UPN3-4 

adig_s0164.g41.t1 - - - - 

adig_s0171.g21.t1 Collagen alpha chain 47.6 0 B8V7R6 

adig_s0181.g15.t1 - - - - 

adig_s0181.g16.t1 - - - - 

adig_s0184.g19.t1 Microtubule-associated proteins 1A/1B light chain 

3A 

62.1 9E-46 Q2HJ23 

adig_s0184.g20.t1 Isoform 2 of Rho GTPase-activating protein 39 58.1 1.3E-

147 

P59281-2 

 173 

We surveyed the literature related to the annotated genes. Amino acid 174 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.03.551769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551769
http://creativecommons.org/licenses/by-nd/4.0/


 16 

sequences of two genes (Gene IDs: adig_s0034.g151 and adig_s0171.g21) were similar 175 

(Table 1) to collagen alpha chain, which is associated with skeletogenesis in Acropora 176 

corals (Ramos-Silva, et al. 2013). The amino acid sequence of another gene (Gene ID: 177 

adig_s0048.g28) showed similarity (see Table 1) to a gene encoding WD repeat-178 

containing protein 59 (WDR59). 179 

To identify genes whose function is affected by differentiated SNPs, we 180 

identified amino acid changes between the two species caused by differentiated SNPs. 181 

Among 39 genes, 14 had at least one amino acid change between A. digitifera and 182 

Acropora sp. 1 (Table S4). Compared with the A. digitifera reference genome, Acropora 183 

sp. 1 had three amino acid changes in WDR59 (Gene ID: adig_s0048.g28) (Table S4). 184 

WDR59 is a component of the GTPase-activating protein toward Rags (GATOR) 185 

complex, GATOR2 (Bar-Peled, et al. 2013). In Drosophila, GATOR2 controls meiotic 186 

entry and oocyte development (Wei, et al. 2014). Therefore, we focused further on this 187 

gene. 188 
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 189 

Figure 3 190 

Differences in WDR59 between A. digitifera and Acropora sp. 1 191 

To determine whether three amino acid differences in WDR59 between A. digitifera and 192 

Acropora sp. 1 are shared with other species or are specific to Acropora sp. 1, we analyzed 193 

WDR59 in 15 Acropora species (Table S5). First, we aligned the WDR59 sequence of 14 194 

Acropora species (excluding A. cytherea due to a possible partial sequence) with that of 195 

A. digitifera and Acropora sp. 1 (Figure S2) and found that one of the three amino acid 196 

changes (adig_s0048.g28.t1: CDS; 2239 C>T, amino acid sequence; Pro747Ser) is 197 

specific to Acropora sp. 1 (Figure S2). 198 
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Next, we manually checked mapping reads around WDR59 and found that 199 

Acropora sp. 1 colonies have a 24 bp deletion 38 bp downstream of the Acropora sp. 1-200 

specific amino acid change. To verify this deletion, we amplified and sequenced the 201 

region containing the deletion by PCR from genomic DNAs of A. digitifera (n=7) and 202 

Acropora sp. 1 (n=14). We confirmed the deletion and found two additional amino acid 203 

differences between A. digitifera and Acropora sp. 1, upstream (15 bp) and downstream 204 

(14 bp) of the 24 bp deletion (Fig. S3). Among the differences between A. digitifera and 205 

Acropora sp. 1, two amino acid changes and a deletion are shared with A. nasuta, and one 206 

amino acid change is specific to Acropora sp. 1 (Figs. S4 and S5).  207 

To estimate the position of the amino acid change specific to Acropora. sp. 1, 208 

we used Phyre2 (Kelley, et al. 2015) to search for proteins highly similar to A. digitifera 209 

WDR59 in known structure databases. As a result, S. cerevisiae Sea3, the yeast 210 

counterpart of mammalian WDR59, was highly similar to A. digitifera WDR59 (E-211 

value=0, Identity=29%). S. cerevisiae Sea3 (WDR59) has an α-solenoid interface region 212 

where Sea3 (WDR59) interacts with the other subunit to form a complex, Sea2 (WDR24) 213 

(Tafur, et al. 2022). The α-solenoid interface region is located from amino acids 782 to 214 
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1,061 of S. cerevisiae Sea3 (WDR59) (Tafur, et al. 2022). An alignment of A. digitifera 215 

WDR59 with S. cerevisiae Sea3 (WDR59) (Fig. S6) showed that the amino acid changes 216 

specific to Acropora sp. 1 are located in the α-solenoid interface region.  217 

 218 

Figure 4 219 

Discussion 220 

A. digitifera and Acropora sp. 1 are useful for understanding timing of gametogenesis 221 

in Acropora 222 

May/Jun Spawning August Spawning 
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Gametes maturation
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Studying the timing of gamete maturation in corals using a population genetic approach, 223 

as in this study, provides insights into genetic mechanisms of coral gametogenesis and 224 

speciation in corals. Therefore, we propose A. digitifera and Acropora sp. 1 as a model 225 

species pair for studying mechanisms of spawning month determination and speciation 226 

in corals. 227 

One of the advantages of using these two species is their clear phenotypic 228 

difference in timing of spawning. In Okinawa, A. digitifera spawns in May or June, 229 

whereas Acropora sp. 1 spawns in August (Hayashibara and Shimoike 2002; Nakajima, 230 

et al. 2012; Ohki, et al. 2015). Continuous observations of oocyte volume revealed that 231 

gamete maturation is later in Acropora sp. 1 than in A. digitifera (Hayashibara and 232 

Shimoike 2002). The difference in gamete maturation is expected to lead to reproductive 233 

isolation. Indeed, phylogenetic analysis and PCA showed that the two species are 234 

genetically differentiated, despite their low genetic differentiation. Therefore, gene flow 235 

between A. digitifera and Acropora sp. 1 is limited, which is considered an initial stage 236 

of speciation. 237 
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The low genetic differentiation between A. digitifera and Acropora sp. 1 is 238 

another advantage in studying genes responsible for spawning timing mechanisms and 239 

speciation. Genomic differentiation between these two species is low (FST = 0.10225), 240 

consistent with a previous microsatellite marker study (Nakajima, et al. 2012). Using this 241 

low-genomic differentiated species pair, we identified 34 HDRs and selected 39 genes 242 

located in HDRs. These genomic regions and candidate genes may be responsible for 243 

morphological and ecological differences between the two species. Further analyses of 244 

gene expression differences in different months, functional changes resulting from highly 245 

differentiated substitutions are expected to advance research on the mechanism of 246 

spawning month determination and speciation in corals.  247 

 248 

Genes that may determine morphological differentiation between two species 249 

Morphological characteristics of Acropora sp. 1 include shorter branches and a flatter 250 

colony shape than A. digitifera (Hayashibara and Shimoike 2002; Ohki, et al. 2015). 251 

These morphological differences reflect differences in skeletal form (Todd 2008). The 252 

alpha collagen-like proteins are skeletal organic matrix proteins involved in skeletal 253 
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formation in Stylophora pistillata (Drake, et al. 2013; Mummadisetti, et al. 2021) and A. 254 

millepora (Ramos-Silva, et al. 2013). In this study, we identified two alpha collagen-like 255 

genes (Gene IDs: adig_s0034.g151 and adig_s0171.g21) in HDRs, and these genes are 256 

likely responsible for species-specific differences in skeletal morphology. ATOH1 (Gene 257 

ID: adig_s0013.g139), encodes the transcription factor Atoh1, which regulates primary 258 

cilia of calcifying cells in mice (Chang, et al. 2019). Since the possibility of cilia in coral 259 

skeletogenesis has been discussed in S. pistillata (Tambutté, et al. 2021), ATOH1 may 260 

help to define skeletal morphology in the two species. 261 

 262 

mTORC1 may contribute to gametogenesis of A. digitifera 263 

In this study, we identified an amino acid change specific to Acropora sp. 1 in WDR59. 264 

WDR59 is one of the components of a mechanistic target-of-rapamycin complex 1 265 

(mTORC1) activator, GATOR2 (Bar-Peled, et al. 2013; Wolfson, et al. 2016) (Fig. 4). 266 

mTORC1 is involved in meiotic entry and gametogenesis. Regulation of meiotic entry by 267 

mTORC1 is conserved from yeast to mammals. Downregulation of mTORC1 activity 268 

promotes the transition from mitotic to meiotic cycles in Saccharomyces cerevisiae, 269 
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Schizosaccharomyces pombe (van Werven and Amon 2011; Zheng and Schreiber 1997), 270 

and Drosophila (Wei, et al. 2014). In mice, mTORC1 is required for spermatogonial 271 

differentiation (Busada, et al. 2015) and oogenesis (Guo, et al. 2018). Activated mTORC1 272 

drives oocyte development and growth in Drosophila oogenesis (LaFever, et al. 2010). 273 

To the best of our knowledge, the function of mTORC1 in gametogenesis among 274 

Cnidarians has been little discussed. One exception is a study about the kinase, Mos, 275 

which regulates oocyte maturation in the jellyfish, Clytia hemisphaerica (Amiel, et al. 276 

2009). Treatment of oocytes with rapamycin, a potent inhibitor of mTORC1, suggested 277 

that the mTORC1 signaling pathway controls one Mos paralog translation during oocyte 278 

growth (Amiel, et al. 2009). Moreover, in Hydra oligactis, continuous exposure to 279 

rapamycin results in fewer mature sperm cells than in untreated individuals (Tomczyk, et 280 

al. 2020). Hence, mTORC1 is likely associated with gametogenesis in cnidarians, 281 

including Acropora species. 282 

The Acropora sp. 1-specific amino acid change in WDR59 is located in a region 283 

where WDR59 interacts with one of the other GATOR2 components to form the complex 284 

（GATOR2）. This amino acid change may cause slight differences in stability or structure 285 
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of GATOR2 through affinity of WDR59 with its counterpart. In Drosophila oogenesis, 286 

GATOR2 activates mTORC1, and active mTORC1 is required to start oocyte 287 

development (Wei, et al. 2014). Since regulation of gametogenesis by mTORC1 is 288 

reported in Drosophila, meiotic entry and oocyte development in Acropora species is also 289 

likely controlled by mTORC1 activity, regulated by GATOR2. In other words, the 290 

difference in timing of gamete maturation in A. digitifera and Acropora sp. 1 291 

(Hayashibara and Shimoike 2002) may be caused by an amino acid substitution in 292 

WDR59 that slightly affects timing of mTORC1 activation via GATOR2. Note that even 293 

though we focused on WDR59 in this study, a combination of genetic factors, including 294 

genes in other HDRs, may be responsible for differences in spawning timing. Since the 295 

phylum Cnidaria, including corals, is located in the basal lineage of the animal kingdom, 296 

studies revealing the function of mTORC1 in gametogenesis in corals will provide 297 

insights into evolution of gametogenesis regulation. Future studies of the two coral 298 

species used in this study will shed light on mechanisms that determine the timing of coral 299 

spawning.  300 

  301 
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Materials and Methods 302 

Specimen collection and species identification 303 

Coral samples were collected from two reefs at Okinawa, Japan, between 2018 to 2020 304 

(Table S1) with permission of the Aquaculture Agency of Okinawa Prefecture (permit 305 

numbers 30-29, 31-43, and 31-68). Sixteen colonies of Acropora sp. 1 with visible 306 

gametes, were collected in the field and subsequently maintained in an aquarium at the 307 

Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus. In 2018, 308 

gametes of one Acropora sp. 1 colony were collected during spawning, and sperm were 309 

preserved at -80ºC	until genome extraction. After we placed the coral colonies in the 310 

aquarium, we preserved branch fragments in RNAlater (Waltham, MA, USA) for genome 311 

extraction in 2019 and 2020. 312 

 313 

DNA extraction and sequencing 314 

We extracted genomic DNAs from 15 branch fragments originating from 15 Acropora 315 

sp. 1 colonies using a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). We used 316 

DNeasy Blood & Tissue Kits (QIAGEN, Hilden, Germany) for DNA extraction from 317 
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sperm originating from one Acropora sp. 1 colony. Following the manufacturer’s 318 

instructions, we constructed DNA libraries from 16 samples using an NEBNext Ultra II 319 

DNA Library Prep Kit (Illumina). The 15 libraries from branch tissues were sequenced 320 

on an Illumina HiSeqX Ten, and one library from sperm was sequenced on an Illumina 321 

HiSeq 2500. 322 

 323 

Mapping and variant calling   324 

We downloaded genome sequence data from 11 colonies of A. digitifera and 15 Acropora 325 

species (A. tenuis, A.yongei, A. intermedia, A. gemmifera, A. awi, A. florida, A. millepora, 326 

A. selago, A. hyacinthus, A. cytherea, A. muricate, A. echinate, A. acuminata, A. nasuta, 327 

and A. microphthalma). We trimmed raw sequences and removed low-quality reads 328 

before mapping with fastp (Chen, et al. 2018). Trimmed reads were mapped to the A. 329 

digitifera genome assembly ver. 2.0 (Shinzato, et al. 2021) using bowtie2 ver. 2.3.3.1 330 

(Langmead and Salzberg 2012). Among 16 Acropora sp. 1 colonies, we used 14 colonies 331 

with mapping bam coverage ≥10 for variant calling. Variants were called using Genome 332 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.03.551769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551769
http://creativecommons.org/licenses/by-nd/4.0/


 27 

Analysis Toolkit (GATK) version 4.0 and filtered according to a GATK-suggested hard-333 

filtering with a minor modification. 334 

 335 

PCA and molecular phylogenetic tree construction 336 

We constructed a molecular phylogenetic tree of these Acropora corals using phyML 337 

(Guindon, et al. 2010) with the GTR option (Guindon, et al. 2010). We performed PCA 338 

analysis of A. digitifera and Acropora sp. 1 with three species, A. acuminata, A. 339 

microphthalma, and A. nasuta, as an out-group, using PLINK v1.90 (www.cog-340 

genomics.org/plink/1.9/) (Weeks 2010). 341 

 342 

Genome scan of highly differentiated regions 343 

We calculated FST (Hudson, et al. 1992) for 10-kb windows with 1 kb increments along 344 

each scaffold (>10 kb) using a sliding window approach with PopGenome (Pfeifer, et al. 345 

2014). First, we extracted 10 kb windows that included the top 0.1% of FST values. Among 346 

these top windows, we selected windows with SNPs for which the allele is fixed in one 347 

population and for which there is no homozygote for the allele in the comparison 348 
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population. We considered these SNPs to be differentiated SNPs. We merged overlapping 349 

regions among these selected windows and considered these connected regions highly 350 

differentiated. 351 

 352 

Identification of genes in highly differentiated regions (HDRs) 353 

We considered genes with differentiated SNPs in HDRs as candidate genes related to 354 

phenotypic differences between the two species. To identify functional annotations of 355 

these genes, we searched orthologous genes in the NCBI nucleotide database and UniProt 356 

(Bateman, et al. 2022) by Blast search (Altschul, et al. 1990). We regarded the top hit 357 

with an e-value ≥ 1e–30 and identity ≥ 90% for NCBI and e-value ≥ 1e–4 and identity ≥ 358 

20% for UniProt as an orthologous gene.  359 

 360 

Identification of a deletion in WDR59 among Acropora sp. 1 361 

The presence of one deletion in the WDR59 gene in Acropora sp. 1, discovered by visual 362 

confirmation of the mapping results, was revealed by amplifying the genomic region 363 

containing the deletion using PCR and sequencing it. 364 
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 365 

Alignment of WDR59 sequences among Acropora species 366 

To determine whether other Acropora species have genetic variants other than those that 367 

differentiate A. digitifera and Acropora. sp. 1, orthologous genes of WDR59 were 368 

searched in the reference genomes of each of the 15 Acropora species using Blastn 369 

(Altschul, et al. 1990). A WDR59 sequence of A. millepora was downloaded from the 370 

Kyoto Encyclopedia of Genes and Genomes (KEGG). 371 

  372 
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 382 

Spell out all abbreviations 383 

CDS: Coding sequence 384 

DDBJ: DNA Data Bank of Japan 385 

GATK: Genome Analysis Toolkit  386 

HDRs: Highly Differentiated Regions 387 

KEGG: Kyoto Encyclopedia of Genes and Genomes 388 

mTORC1：mechanistic target of rapamycin complex 1 389 
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NCBI: National Center for Biotechnology Information  390 

PCA: principal components analysis 391 

SNP: single nucleotide polymorphism 392 

SEA/GATOR: the Seh1 associated/GTPase-activating protein toward Rags 393 

Sea2: SEA (Seh1-associated) protein complex 2 394 

Sea3: SEA (Seh1-associated) protein complex 3 395 

WDR24: WD repeat-containing protein 24 396 

WDR59: WD repeat-containing protein 59 397 

 398 
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 557 

Figure Legends 558 

Figure 1. (a) Adult colonies of Acropora digitifera (left) and Acropora sp. 1 (right). (b) 559 

Sampling locations are shown as dots on the map of Okinawa Island. 560 
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Figure 2. Phylogenetic relationship of Acropora sp. 1 (a) Phylogenetic relationships of 17 561 

Acropora corals were analyzed based on 885,405 SNPs using the maximum likelihood method 562 

with the GTR option. Bootstrap support, shown next to each node for each clade, was obtained 563 

from 1,000 replicates. (b) PC1 and PC2 were derived from PCA based on SNPs for all individuals 564 

of A. digitifera, Acropora sp. 1, and three Acropora species as an out-group. 565 

Figure 3. The genome-wide pattern of genetic differences between the two species. (a) 566 

Genome-wide FST values were calculated in overlapping windows of 10 kb. The red line 567 

indicates the top 0.1% of values. (b) FST was estimated across a region of scaffold 48 568 

(adig_s0048). The red line indicates the top 0.1% of values. (c) A close-up view of 569 

predicted gene structures on an HDR in scaffold 48 (adig_s0048). The flanking gene 570 

structure of WDR59 (Gene ID: adig_s0048.g28) and guanine nucleotide-binding protein 571 

G(o) subunit alpha (Gene ID: adig_s0048.g29) are indicated. 572 

Figure 4. Schematic representation of a hypothesis proposed in this study. Regulation of 573 

mTORC1 by GATOR2 and components of GATOR2 is based on previous studies (Bar-574 

Peled, et al. 2013; Valenstein, et al. 2022; Wei, et al. 2014). An Acropora sp. 1-specific 575 

mutation in the WDR59 / WDR24 interaction region is indicated with a blue circle. 576 
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