1	Comparative genomics of two closely related coral species with different spawning		
2	seasons reveals genomic regions possibly associated with gametogenesis		
3			
4	Shiho Takahashi-Kariyazono ^{a, b*} , Akira Iguchi ^{a, c} , Yohey Terai ^{b*}		
5	^a Geological Survey of Japan, National Institute of Advanced Industrial Science and		
6	Technology (AIST), Tsukuba, Ibaraki, Japan		
7	^b SOKENDAI (The Graduate University for Advanced Studies), Research Center for		
8	Integrative Evolutionary Science, Hayama, Kanagawa, Japan		
9	^c Research Laboratory on Environmentally-Conscious Developments and Technologies		
10	[E-code], National Institute of Advanced Industrial Science and Technology, Ibaraki 305-		
11	8567, Japan		
12			
13	*Corresponding authors: S. Takahashi-Kariyazono and Y. Terai, SOKENDAI (The		
14	Graduate University for Advanced Studies), Research Center for Integrative Evolutionary		
15	Science, Shonan Village, Hayama, Japan, +81-46-858-1572, terai_yohei@soken.ac.jp;		

kariyazono.s@aist.go.jp 16

17 Abstract

18	Marine invertebrates release their gametes at an optimal time to produce the next
19	generation. In reef-building scleractinian corals, synchronous spawning is essential for
20	reproductive success. Molecular mechanisms of scleractinian gametogenesis have been
21	studied; however, the mechanism by which coral gametes mature at specific times has
22	yet to be discovered. The present study focused on two Acropora species with different
23	spawning seasons. In Okinawa, Japan, Acropora digitifera spawns from May to June,
24	whereas Acropora sp. 1 spawns in August. Comparative genomic analyses revealed that
25	39 candidate genes are differentiated between the two species, suggesting a possible
26	association with timing of gametogenesis. Among candidate genes, we identified an
27	Acropora sp. 1-specific amino acid change in gene WDR59, one of the components of a
28	mTORC1 activator, GATOR2. Since regulation of gametogenesis by mTORC1 is widely
29	conserved among eukaryotes, the difference in timing of gamete maturation observed in
30	the two Acropora species may be caused by a substitution in WDR59 that slightly affects
31	timing of mTORC1 activation via GATOR2. In addition, this substitution may lead to
32	reproductive isolation between the two species, due to different spawning periods. Thus,

- 33 we propose that A. digitifera and Acropora sp. 1 species pair is an effective model for
- 34 studying coral speciation and understanding the molecular mechanisms that control coral
- **35** spawning timing.

37 *Significance statement (required)*:

38	For successful coral reproduction, conspecific corals must spawn synchronously. Gamete
39	production initiates coral spawning. Regulation of gamete maturation by a protein
40	complex, mTORC1, is widely conserved among organisms, but little is known about it in
41	cnidarians. In this study, we analyzed genomes of two closely related Acropora species
42	with different spawning months, May/June and August. Our analyses revealed that 39
43	genes are genetically differentiated between the two species. One of these is a component
44	of mTORC1 activator, suggesting that this gene may be associated with the difference in
45	spawning times of these two species.
46	
47	
48	Key words: mTORC1, oogenesis, cnidaria
49	

50 Introduction

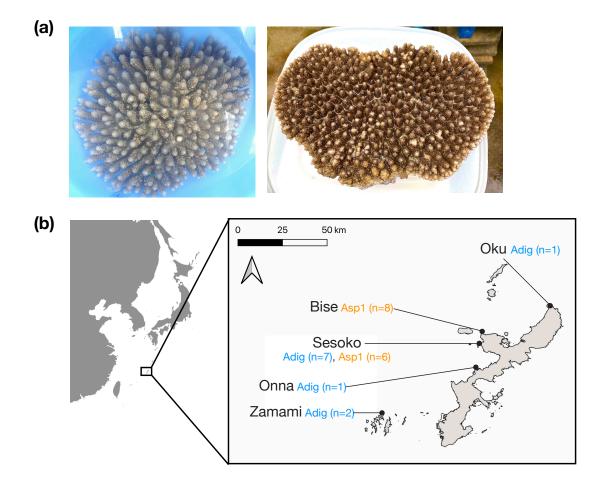
51	In marine invertebrate reproduction, gametes are released into the water to be fertilized
52	externally (spawning) (Mercier and Hamel 2010). Spawning occurs at an optimal time to
53	produce the next generation (Forrest and Miller-Rushing 2010). Since fertilization in
54	seawater can easily fail due to sperm dilution and other factors, marine organisms have
55	evolved mechanisms such as synchronized spawning (Fukami, et al. 2003; Levitan, et al.
56	2004).
57	Spawning in reef-building, scleractinian corals is one of the most massive
58	reproductive events on earth. In the Great Barrier Reef, most corals release their gametes
59	once a year for a few nights (Harrison, et al. 1984). For example, over 100 coral species
60	spawn in the Great Barrier Reef between the full and last quarter moon in late spring
61	(Babcock, et al. 1986). Synchronous spawning within species is essential for fertilization
62	because dilution and aging of sperm reduce fertilization success (Fukami, et al. 2003;
63	Levitan, et al. 2004). In synchronous spawning, gametes spawned by different species are
64	present in the water and may encounter each other. However, many Acropora species
65	exhibit species specificity in gamete compatibility (Hatta, et al. 1999; Willis, et al. 1997),

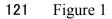
and interspecific hybridization rarely occurs in the Indo-Pacific (Hatta and Matsushima

67	2008; Isom	ura, et al. 2013).
----	------------	--------------------

68	Environmental cues act on corals to regulate spawning months, days, and times			
69	(Babcock, et al. 1986; Baird, et al. 2009). Temperature strongly influences gamete			
70	maturation (Baird, et al. 2009), and in several coral species, spawning has become			
71	asynchronous, due to effects of recent climate change (Shlesinger and Loya 2019).			
72	Therefore, understanding mechanisms of synchronous gamete maturation will help us			
73	estimate the impact of climate change on coral reproduction and restoration using coral			
74	seedlings produced from gametes (Suzuki, et al. 2020). Gametogenesis in corals has been			
75	studied in the field (Harrison 2011) and by molecular biological approaches (Chiu, et al.			
76	2020; Shikina and Chang 2016). However, the mechanism by which coral gametes mature			
77	at specific times has yet to be identified.			
78	In the Indo-Pacific region, including Okinawa, Japan, the genus Acropora			
79	comprises the largest number of coral species (Veron 2000). In Okinawa, most Acropora			

- 80 species spawn around the full moon in May or June, with a few species spawning several
- 81 months later (Hayashibara, et al. 1993). One species that spawns later is *Acropora* sp. 1.

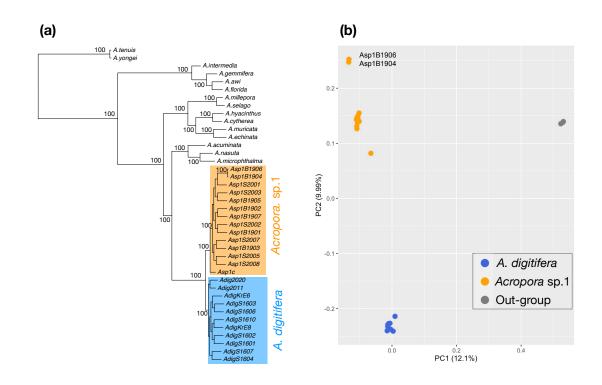

82	This species was initially classified as Acropora digitifera (Wallace 1999); however, the
83	two are now recognized as separate species, due to differences in morphology and
84	spawning time (Hayashibara and Shimoike 2002; Nakajima, et al. 2012; Ohki, et al. 2015).
85	Acropora sp. 1 has a flatter colony shape and shorter branches than A. digitifera
86	(Hayashibara and Shimoike 2002; Ohki, et al. 2015). Acropora sp. 1 tends to inhabit reef
87	edges with faster (offshore) currents than A. digitifera. In addition, in Okinawa, A.
88	digitifera spawns from May to June, whereas Acropora sp. 1 spawns in August
89	(Hayashibara and Shimoike 2002). Gametes of both species can cross-fertilize as
90	indicated by artificial fertilization experiments (Ohki, et al. 2015). Under natural
91	conditions, however, the two species do not interbreed because of the different spawning
92	months (Ohki, et al. 2015).
93	Advances in analysis of genomic data with next-generation sequencers have
94	revealed the genetic basis of specific traits (Ellegren and Sheldon 2008). In particular,
95	comparative genomic analyses between genetically close species have identified genomic
96	regions associated with their phenotypic differences (Poelstra, et al. 2014; Turner, et al.
97	2005). So far, genomes of various corals have been sequenced (Fuller, et al. 2020;


98	Shinzato, et al. 2021; Shinzato, et al. 2011; Voolstra, et al. 2015), and population genomic			
99	approaches have identified loci associated with heat tolerance (Smith, et al. 2022).			
100	Comparative genomic analysis has yet to be conducted to identify genomic regions			
101	associated with differences in coral spawning timing due to the lack of closely related			
102	species pairs to compare.			
103	In this study, we performed a comparative genomic analysis between A.			
104	digitifera and Acropora sp. 1 to identify genomic regions likely involved in trait			
105	differences between them. We expected that A. digitifera and Acropora sp. 1 were			
106	genetically closely related based on analysis of short sequences (Nakajima, et al. 2012)			
107	and their fertilization ability (Ohki, et al. 2015). Therefore, we determined the genome			
108	sequences of both species. This comparative genomic analysis identified genomic regions			
109	likely associated with differences in their spawning times. Since differences in spawning			
110	time can lead to reproductive isolation, these species will be a useful model to study coral			
111	speciation and to understand molecular mechanisms that regulate spawning time in corals.			
112				

113 Results

114 The spawning month of Acropora sp. 1

- 115 We collected 16 Acropora sp. 1 colonies during 2018-2020 at Sesoko and Bise, Okinawa,
- 116 Japan (Fig.1), and observed mature oocytes or spawning in August (Table S1). This later-
- spawning month of Acropora sp. 1 is consistent with previous observations (Hayashibara
- and Shimoike 2002; Nakajima, et al. 2012; Ohki, et al. 2015).
- 119



122 *Phylogenetic tree and principal component analysis*

123	We sequenced genomes from 16 colonies of Acropora sp. 1 (Table S1). Then, we mapped			
124	these reads to the A. digitifera whole-genome assembly ver. 2.0 (Shinzato, et al. 2021)			
125	and selected 14 colonies with coverage $>10x$ for analyses. In addition, we downloaded			
126	genomic sequence data for 11 colonies of A. digitifera and one colony each of 15 other			
127	Acropora species from the DNA Data Bank of Japan (DDBJ) and mapped them as well.			
128	First, we investigated the genetic relationship between A. digitifera and			
129	Acropora sp. 1. We extracted 885,405 biallelic single-nucleotide polymorphisms (SNPs)			
130	from mapping data of 17 species using our criteria (Materials and Methods). With these			
131	SNPs, we constructed a phylogenetic tree (Figure 2a). Acropora digitifera and Acropora			
132	sp. 1 colonies formed a monophyletic clade. In this clade, A. digitifera and Acropora sp.			
133	1 colonies each formed monophyletic clades. A monophyletic <i>A. digitifera/Acropora</i> sp.			
134	1 clade formed a monophyletic clade with A. acuminata, A. microphthalma, and A. nasuta			
135	(Fig. 2a). Using five species in this monophyletic clade, we performed principal			
136	component analysis (PCA). We used 80,490 SNPs extracted from A. digitifera, Acropora			
137	sp. 1, and three out-group species (A. acuminata, A. microphthalma, and A. nasuta). The			

138	three out-group species were separated along the PC1 axis from A. digitifera and
139	Acropora. sp. 1 colonies, forming distinct genetic clusters. Acropora digitifera colonies
140	were separated from Acropora sp. 1 along the PC2 axis (Fig. 2b). Among Acropora sp. 1
141	colonies, two (Colony IDs: Asp1B1906 and Asp1B1904) were separated from other
142	Acropora sp. 1 colonies by PCA. In addition, these two colonies (Colony IDs:
143	Asp1B1906 and Asp1B1904) formed a single clade with high bootstrap support in the
144	phylogenetic tree (Fig. 2a). These two colonies were sampled from the same sites as other
145	colonies sampled in the same year, indicating no geographic isolation.

148 Highly differentiated regions between A. digitifera and Acropora sp. 1

149	Since phylogenetic analysis indicated that A. digitifera and Acropora sp. 1 are closely
150	related, the degree of differentiation between the two species was calculated (F_{ST}) (Weir
151	and Cockerham 1984) using 1,459,328 SNPs. The F_{ST} (Weir and Cockerham 1984) value
152	across the genomes of these two species was 0.10225. This is comparable to the genetic
153	divergence of species pairs used in comparative genome analysis in previous studies
154	(Ellegren, et al. 2012; Geraldes, et al. 2011; Nadeau, et al. 2013). Despite low
155	differentiation throughout their genomes, genomic regions responsible for differences in
156	traits between A. digitifera and Acropora sp. 1 are expected to differ in the two species.
157	To extract differentiated regions, we performed a sliding window analysis of 10 kb in
158	1 kb increments between A. digitifera and Acropora sp. 1. Genomic regions with the top
159	0.1% F_{ST} (Hudson, et al. 1992) values ($F_{ST} > 0.6157$) in each 10 kb window were then
160	selected. We further selected windows containing differentiated SNPs (Materials and
161	Methods) from the top 0.1% F_{ST} (Hudson, et al. 1992) windows. When these windows
162	overlapped, they were combined. As a result, 34 genomic regions, called highly
163	differentiated regions (HDRs) (Table S2), were extracted from the whole genome.

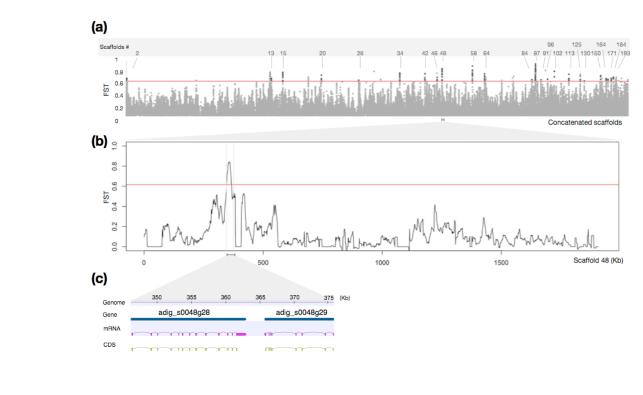
164

165 Genes in highly differentiated regions

- 166 In the HDRs, 39 genes harbor differentiated SNPs. We performed a Blast search using
- 167 these 39 genes as queries (Figure S1) and found that 23 of them are similar to high-quality
- 168 manually annotated genes (Table 1). Ten genes are similar to genes with automated
- 169 annotations related to known genes (Table S3). Four genes are similar to uncharacterized
- 170 genes (Table S3), and two genes have no similarity to any others in the NCBI nucleotide
- 171 database.
- 172 Table 1

Gene ID	Protein Name (Uniprot Reviewed)	Identity	E- Entry
		(%)	value
adig_s0002.g57.t1	Growth/differentiation factor 11	29.6	2.6E- Q9Z217 35
adig_s0002.g67.t1	Nipped-B-like protein A	26.1	5.1E- F5HSE3 15
adig_s0002.g68.t1	Kelch-like protein diablo	41	5.9E- B0WWP2 122
adig_s0013.g139.t1	Transcription factor Atoh1	27.9	9.6E- P48985 08
adig_s0013.g67.t1	Stromelysin-2	28.6	6.3E- O55123 17

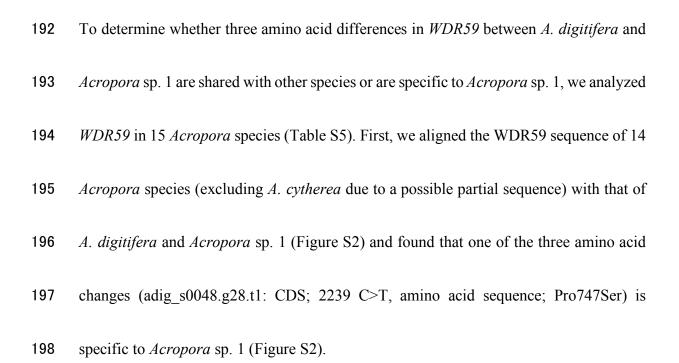
adig_s0015.g100.t1	RNA-binding motif protein, X	35	3.8E- 40	Q6IRQ4
adig_s0015.g101.t1	Glycine-rich RNA-binding protein 2	58.1	9.5E- 52	Q99070
adig_s0020.g143.t1	-	-	-	-
adig_s0028.g24.t1	-	-	-	-
adig_s0034.g150.t1	Collectin-12	49.2	3.9E- 07	Q4V885
adig_s0034.g151.t1	Collagen alpha-1(XVI) chain	46.2	1.3E- 05	Q07092
adig_s0042.g174.t1	Inactive tyrosine-protein kinase	31.5	2.3E-	Q9Z139
	transmembrane receptor ROR1		99	
adig_s0046.g74.t1	-	-	-	-
adig_s0048.g28.t1	GATOR complex protein WDR59	42.1	0	Q6PJI9
adig_s0048.g29.t1	Guanine nucleotide-binding protein G(o) subunit alpha	72.6	0	P08239
adig_s0058.g4.t1	-	-	-	-
adig_s0064.g90.t1	Putative nucleotidyltransferase MAB21L1	23.4	3.8E- 06	Q0V9X7
adig_s0064.g91.t1	Survival of motor neuron-related-splicing factor 30	50.5	7.8E- 20	Q4QQU6
adig_s0064.g92.t1	Probable N-acetyltransferase CML1	35.9	4.3E- 23	Q9JIZ0
adig_s0087.g2.t1	Zinc finger protein 862	26.6	2E- 06	O60290
adig_s0087.g3.t1	Pogo transposable element with KRAB domain	38.7	1.3E- 91	Q9P215


adig_s0087.g8.t1	-	-	-	-
adig_s0091.g43.t1	-	-	-	-
adig_s0091.g44.t1	-	-	-	-
adig_s0096.g12.t1	Brevican core protein	37.8	1.4E-	P55068
			15	
adig_s0113.g15.t1	-	-	-	-
adig_s0125.g55.t1	-	-	-	-
adig_s0130.g47.t1	-	-	-	-
adig_s0150.g20.t1	Peroxidasin	36.8	3.9E-	A4IGL7
			92	
adig_s0150.g21.t1	-	-	-	-
adig_s0164.g12.t1	-	-	-	-
adig_s0164.g14.t1	-	-	-	-
adig_s0164.g40.t1	Isoform 5 of Microtubule-actin cross-linking factor 1	24.1	0	Q9UPN3-4
adig_s0164.g41.t1	-	-	-	-
adig_s0171.g21.t1	Collagen alpha chain	47.6	0	B8V7R6
adig_s0181.g15.t1	-	-	-	-
adig_s0181.g16.t1	-	-	-	-
adig_s0184.g19.t1	Microtubule-associated proteins 1A/1B light chain	62.1	9E-46	Q2HJ23
	ЗА			
adig_s0184.g20.t1	Isoform 2 of Rho GTPase-activating protein 39	58.1	1.3E-	P59281-2
			147	

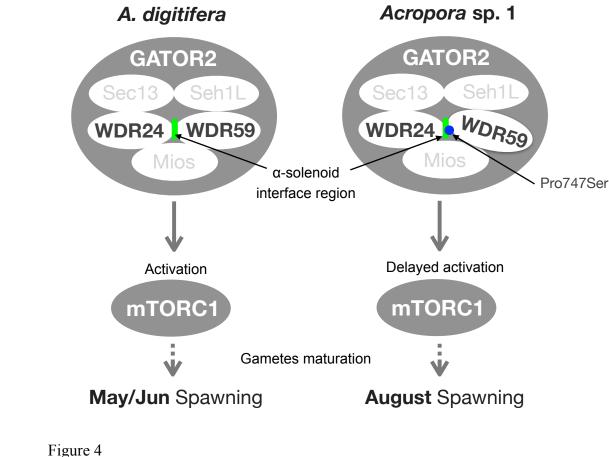
173

174

We surveyed the literature related to the annotated genes. Amino acid


175	sequences of two genes (Gene IDs: adig_s0034.g151 and adig_s0171.g21) were similar
176	(Table 1) to collagen alpha chain, which is associated with skeletogenesis in Acropora
177	corals (Ramos-Silva, et al. 2013). The amino acid sequence of another gene (Gene ID:
178	adig_s0048.g28) showed similarity (see Table 1) to a gene encoding WD repeat-
179	containing protein 59 (WDR59).
180	To identify genes whose function is affected by differentiated SNPs, we
181	identified amino acid changes between the two species caused by differentiated SNPs.
182	Among 39 genes, 14 had at least one amino acid change between A. digitifera and
183	Acropora sp. 1 (Table S4). Compared with the A. digitifera reference genome, Acropora
184	sp. 1 had three amino acid changes in WDR59 (Gene ID: adig_s0048.g28) (Table S4).
185	WDR59 is a component of the GTPase-activating protein toward Rags (GATOR)
186	complex, GATOR2 (Bar-Peled, et al. 2013). In Drosophila, GATOR2 controls meiotic
187	entry and oocyte development (Wei, et al. 2014). Therefore, we focused further on this
188	gene.

189


190 Figure 3

191 Differences in WDR59 between A. digitifera and Acropora sp. 1

199	Next, we manually checked mapping reads around WDR59 and found that
200	Acropora sp. 1 colonies have a 24 bp deletion 38 bp downstream of the Acropora sp. 1-
201	specific amino acid change. To verify this deletion, we amplified and sequenced the
202	region containing the deletion by PCR from genomic DNAs of A. digitifera (n=7) and
203	Acropora sp. 1 (n=14). We confirmed the deletion and found two additional amino acid
204	differences between A. digitifera and Acropora sp. 1, upstream (15 bp) and downstream
205	(14 bp) of the 24 bp deletion (Fig. S3). Among the differences between A. digitifera and
206	Acropora sp. 1, two amino acid changes and a deletion are shared with A. nasuta, and one
207	amino acid change is specific to Acropora sp. 1 (Figs. S4 and S5).
207 208	amino acid change is specific to <i>Acropora</i> sp. 1 (Figs. S4 and S5). To estimate the position of the amino acid change specific to <i>Acropora</i> . sp. 1,
208	To estimate the position of the amino acid change specific to <i>Acropora</i> . sp. 1,
208 209	To estimate the position of the amino acid change specific to <i>Acropora</i> . sp. 1, we used Phyre2 (Kelley, et al. 2015) to search for proteins highly similar to <i>A. digitifera</i>
208 209 210	To estimate the position of the amino acid change specific to <i>Acropora.</i> sp. 1, we used Phyre2 (Kelley, et al. 2015) to search for proteins highly similar to <i>A. digitifera</i> <i>WDR59</i> in known structure databases. As a result, <i>S. cerevisiae</i> Sea3, the yeast
208 209 210 211	To estimate the position of the amino acid change specific to <i>Acropora.</i> sp. 1, we used Phyre2 (Kelley, et al. 2015) to search for proteins highly similar to <i>A. digitifera</i> <i>WDR59</i> in known structure databases. As a result, <i>S. cerevisiae</i> Sea3, the yeast counterpart of mammalian WDR59, was highly similar to <i>A. digitifera WDR59</i> (E-

- 215 1,061 of S. cerevisiae Sea3 (WDR59) (Tafur, et al. 2022). An alignment of A. digitifera
- 216 WDR59 with *S. cerevisiae* Sea3 (*WDR59*) (Fig. S6) showed that the amino acid changes
- 217 specific to *Acropora* sp. 1 are located in the α -solenoid interface region.

²¹⁹ Figure

220 Discussion

- 221 A. digitifera and Acropora sp. 1 are useful for understanding timing of gametogenesis
- 222 in Acropora

223	Studying the timing of gamete maturation in corals using a population genetic approach,
224	as in this study, provides insights into genetic mechanisms of coral gametogenesis and
225	speciation in corals. Therefore, we propose A. digitifera and Acropora sp. 1 as a model
226	species pair for studying mechanisms of spawning month determination and speciation
227	in corals.
228	One of the advantages of using these two species is their clear phenotypic
229	difference in timing of spawning. In Okinawa, A. digitifera spawns in May or June,
230	whereas Acropora sp. 1 spawns in August (Hayashibara and Shimoike 2002; Nakajima,
231	et al. 2012; Ohki, et al. 2015). Continuous observations of oocyte volume revealed that
232	gamete maturation is later in Acropora sp. 1 than in A. digitifera (Hayashibara and
233	Shimoike 2002). The difference in gamete maturation is expected to lead to reproductive
234	isolation. Indeed, phylogenetic analysis and PCA showed that the two species are
235	genetically differentiated, despite their low genetic differentiation. Therefore, gene flow
236	between A. digitifera and Acropora sp. 1 is limited, which is considered an initial stage
237	of speciation.

238	The low genetic differentiation between A. digitifera and Acropora sp. 1 is
239	another advantage in studying genes responsible for spawning timing mechanisms and
240	speciation. Genomic differentiation between these two species is low ($F_{ST} = 0.10225$),
241	consistent with a previous microsatellite marker study (Nakajima, et al. 2012). Using this
242	low-genomic differentiated species pair, we identified 34 HDRs and selected 39 genes
243	located in HDRs. These genomic regions and candidate genes may be responsible for
244	morphological and ecological differences between the two species. Further analyses of
245	gene expression differences in different months, functional changes resulting from highly
246	differentiated substitutions are expected to advance research on the mechanism of
247	spawning month determination and speciation in corals.
248	
249	Genes that may determine morphological differentiation between two species
250	Morphological characteristics of Acropora sp. 1 include shorter branches and a flatter
251	colony shape than A. digitifera (Hayashibara and Shimoike 2002; Ohki, et al. 2015).
252	These morphological differences reflect differences in skeletal form (Todd 2008). The
253	alpha collagen-like proteins are skeletal organic matrix proteins involved in skeletal

254	formation in <i>Stylophora pistillat</i> a (Drake, et al. 2013; Mummadisetti, et al. 2021) and <i>A</i> .
255	millepora (Ramos-Silva, et al. 2013). In this study, we identified two alpha collagen-like
256	genes (Gene IDs: adig_s0034.g151 and adig_s0171.g21) in HDRs, and these genes are
257	likely responsible for species-specific differences in skeletal morphology. ATOH1 (Gene
258	ID: adig_s0013.g139), encodes the transcription factor Atoh1, which regulates primary
259	cilia of calcifying cells in mice (Chang, et al. 2019). Since the possibility of cilia in coral
260	skeletogenesis has been discussed in S. pistillata (Tambutté, et al. 2021), ATOH1 may
261	help to define skeletal morphology in the two species.
262	
262 263	mTORC1 may contribute to gametogenesis of <i>A. digitifera</i>
	mTOR C1 may contribute to gametogenesis of <i>A. digitifera</i> In this study, we identified an amino acid change specific to <i>Acropora</i> sp. 1 in <i>WDR59</i> .
263	
263 264	In this study, we identified an amino acid change specific to Acropora sp. 1 in WDR59.
263 264 265	In this study, we identified an amino acid change specific to <i>Acropora</i> sp. 1 in <i>WDR59</i> . WDR59 is one of the components of a mechanistic target-of-rapamycin complex 1
263 264 265 266	In this study, we identified an amino acid change specific to <i>Acropora</i> sp. 1 in <i>WDR59</i> . WDR59 is one of the components of a mechanistic target-of-rapamycin complex 1 (mTORC1) activator, GATOR2 (Bar-Peled, et al. 2013; Wolfson, et al. 2016) (Fig. 4).

270	Schizosaccharomyces pombe (van Werven and Amon 2011; Zheng and Schreiber 1997),
271	and Drosophila (Wei, et al. 2014). In mice, mTORC1 is required for spermatogonial
272	differentiation (Busada, et al. 2015) and oogenesis (Guo, et al. 2018). Activated mTORC1
273	drives oocyte development and growth in Drosophila oogenesis (LaFever, et al. 2010).
274	To the best of our knowledge, the function of mTORC1 in gametogenesis among
275	Cnidarians has been little discussed. One exception is a study about the kinase, Mos,
276	which regulates oocyte maturation in the jellyfish, Clytia hemisphaerica (Amiel, et al.
277	2009). Treatment of oocytes with rapamycin, a potent inhibitor of mTORC1, suggested
278	that the mTORC1 signaling pathway controls one Mos paralog translation during oocyte
279	growth (Amiel, et al. 2009). Moreover, in Hydra oligactis, continuous exposure to
280	rapamycin results in fewer mature sperm cells than in untreated individuals (Tomczyk, et
281	al. 2020). Hence, mTORC1 is likely associated with gametogenesis in cnidarians,
282	including Acropora species.
283	The Acropora sp. 1-specific amino acid change in WDR59 is located in a region
284	where WDR59 interacts with one of the other GATOR2 components to form the complex
285	(GATOR2). This amino acid change may cause slight differences in stability or structure

286	of GATOR2 through affinity of WDR59 with its counterpart. In Drosophila oogenesis,
287	GATOR2 activates mTORC1, and active mTORC1 is required to start oocyte
288	development (Wei, et al. 2014). Since regulation of gametogenesis by mTORC1 is
289	reported in Drosophila, meiotic entry and oocyte development in Acropora species is also
290	likely controlled by mTORC1 activity, regulated by GATOR2. In other words, the
291	difference in timing of gamete maturation in A. digitifera and Acropora sp. 1
292	(Hayashibara and Shimoike 2002) may be caused by an amino acid substitution in
293	WDR59 that slightly affects timing of mTORC1 activation via GATOR2. Note that even
294	though we focused on WDR59 in this study, a combination of genetic factors, including
295	genes in other HDRs, may be responsible for differences in spawning timing. Since the
296	phylum Cnidaria, including corals, is located in the basal lineage of the animal kingdom,
297	studies revealing the function of mTORC1 in gametogenesis in corals will provide
298	insights into evolution of gametogenesis regulation. Future studies of the two coral
299	species used in this study will shed light on mechanisms that determine the timing of coral
300	spawning.

302 Materials and Methods

303 Specimen collection and species identification

- 304 Coral samples were collected from two reefs at Okinawa, Japan, between 2018 to 2020
- 305 (Table S1) with permission of the Aquaculture Agency of Okinawa Prefecture (permit
- numbers 30-29, 31-43, and 31-68). Sixteen colonies of Acropora sp. 1 with visible
- 307 gametes, were collected in the field and subsequently maintained in an aquarium at the
- 308 Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus. In 2018,
- 309 gametes of one Acropora sp. 1 colony were collected during spawning, and sperm were
- 310 preserved at -80°C until genome extraction. After we placed the coral colonies in the
- 311 aquarium, we preserved branch fragments in RNAlater (Waltham, MA, USA) for genome
- **312** extraction in 2019 and 2020.
- 313

314 DNA extraction and sequencing

We extracted genomic DNAs from 15 branch fragments originating from 15 *Acropora*sp. 1 colonies using a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). We used
DNeasy Blood & Tissue Kits (QIAGEN, Hilden, Germany) for DNA extraction from

318	sperm originating from one Acropora sp. 1 colony. Following the manufacturer's
319	instructions, we constructed DNA libraries from 16 samples using an NEBNext Ultra II
320	DNA Library Prep Kit (Illumina). The 15 libraries from branch tissues were sequenced
321	on an Illumina HiSeqX Ten, and one library from sperm was sequenced on an Illumina
322	HiSeq 2500.
323	
324	Mapping and variant calling
325	We downloaded genome sequence data from 11 colonies of A. digitifera and 15 Acropora
326	species (A. tenuis, A.yongei, A. intermedia, A. gemmifera, A. awi, A. florida, A. millepora,
327	A. selago, A. hyacinthus, A. cytherea, A. muricate, A. echinate, A. acuminata, A. nasuta,
328	and A. microphthalma). We trimmed raw sequences and removed low-quality reads
329	before mapping with fastp (Chen, et al. 2018). Trimmed reads were mapped to the A.
330	digitifera genome assembly ver. 2.0 (Shinzato, et al. 2021) using bowtie2 ver. 2.3.3.1
331	(Langmead and Salzberg 2012). Among 16 Acropora sp. 1 colonies, we used 14 colonies
332	with mapping bam coverage ≥ 10 for variant calling. Variants were called using Genome

333 Analysis Toolkit (GATK) version 4.0 and filtered according to a GATK-suggested hard-

- 334 filtering with a minor modification.
- 335

336 PCA and molecular phylogenetic tree construction

- 337 We constructed a molecular phylogenetic tree of these *Acropora* corals using phyML
- 338 (Guindon, et al. 2010) with the GTR option (Guindon, et al. 2010). We performed PCA
- analysis of A. digitifera and Acropora sp. 1 with three species, A. acuminata, A.
- 340 microphthalma, and A. nasuta, as an out-group, using PLINK v1.90 (www.cog-
- 341 genomics.org/plink/1.9/) (Weeks 2010).
- 342

343 Genome scan of highly differentiated regions

We calculated F_{ST} (Hudson, et al. 1992) for 10-kb windows with 1 kb increments along each scaffold (>10 kb) using a sliding window approach with PopGenome (Pfeifer, et al. 2014). First, we extracted 10 kb windows that included the top 0.1% of F_{ST} values. Among these top windows, we selected windows with SNPs for which the allele is fixed in one population and for which there is no homozygote for the allele in the comparison

349	population. We considered these SNPs to be differentiated SNPs. We merged overlapping
350	regions among these selected windows and considered these connected regions highly
351	differentiated.
352	
353	Identification of genes in highly differentiated regions (HDRs)
354	We considered genes with differentiated SNPs in HDRs as candidate genes related to
355	phenotypic differences between the two species. To identify functional annotations of
356	these genes, we searched orthologous genes in the NCBI nucleotide database and UniProt
357	(Bateman, et al. 2022) by Blast search (Altschul, et al. 1990). We regarded the top hit
358	with an <i>e</i> -value $\ge 1e^{-30}$ and identity $\ge 90\%$ for NCBI and <i>e</i> -value $\ge 1e^{-4}$ and identity \ge
359	20% for UniProt as an orthologous gene.
360	
361	Identification of a deletion in WDR59 among Acropora sp. 1
362	The presence of one deletion in the WDR59 gene in Acropora sp. 1, discovered by visual
363	confirmation of the mapping results, was revealed by amplifying the genomic region
364	containing the deletion using PCR and sequencing it.

365

366 Alignment of WDR59 sequences among Acropora species

- 367 To determine whether other Acropora species have genetic variants other than those that
- 368 differentiate A. digitifera and Acropora. sp. 1, orthologous genes of WDR59 were
- 369 searched in the reference genomes of each of the 15 Acropora species using Blastn
- 370 (Altschul, et al. 1990). A WDR59 sequence of A. millepora was downloaded from the
- 371 Kyoto Encyclopedia of Genes and Genomes (KEGG).

373 Acknowledgments and funding sources

- We thank Jun Ishida for providing the photo of *Acropora* sp. 1. We thank Ryo Kariyazono
- 375 for helpful discussion. This work was supported by JSPS KAKENHI Grant Number
- 376 22J40115. Computations were partially performed on the NIG supercomputer at ROIS
- 377 National Institute of Genetics.
- 378
- 379 STK: research concept, all experiments, data analysis, and manuscript preparation.
- 380 AI: sample collection planning, species identification.
- 381 YT: research concept, research planning, data analysis, and manuscript preparation.

382

383 Spell out all abbreviations

- 384 CDS: Coding sequence
- 385 DDBJ: DNA Data Bank of Japan
- 386 GATK: Genome Analysis Toolkit
- 387 HDRs: Highly Differentiated Regions
- 388 KEGG: Kyoto Encyclopedia of Genes and Genomes
- 389 mTORC1 : mechanistic target of rapamycin complex 1

- **390** NCBI: National Center for Biotechnology Information
- **391** PCA: principal components analysis
- **392** SNP: single nucleotide polymorphism
- 393 SEA/GATOR: the <u>Seh1 associated/GTPase-activating protein toward Rags</u>
- **394** Sea2: SEA (*Se*h1-*a*ssociated) protein complex 2
- 395 Sea3: SEA (*Se*h1-*a*ssociated) protein complex 3
- 396 WDR24: WD repeat-containing protein 24
- 397 WDR59: WD repeat-containing protein 59
- 398

399 References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ 1990. Basic local
 alignment search tool. J Mol Biol. 215: 403-410.
- 402 Amiel A, Leclere L, Robert L, Chevalier S, Houliston E 2009. Conserved
- 403 functions for Mos in eumetazoan oocyte maturation revealed by studies in a404 cnidarian. Current Biology 19: 305-311.
- 405 Babcock R, et al. 1986. Synchronous spawnings of 105 scleractinian coral species406 on the Great Barrier Reef. Marine Biology 90: 379-394.
- 407 Baird AH, Guest JR, Willis BL 2009. Systematic and biogeographical patterns in
- 408 the reproductive biology of scleractinian corals. Annual review of ecology,
- 409 evolution, and systematics 40: 551-571.

410 Bar-Peled L, et al. 2013. A Tumor suppressor complex with GAP activity for the 411 Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340: 412 1100-1106. 413 Bateman A, et al. 2022. UniProt: the Universal Protein Knowledgebase in 2023. 414 Nucleic Acids Research. Busada JT, Niedenberger BA, Velte EK, Keiper BD, Gever CB 2015. 415 416 Mammalian target of rapamycin complex 1 (mTORC1) Is required for 417 mouse spermatogonial differentiation in vivo. Developmental biology 407: 90-102. 418 419 Chang C-H, et al. 2019. Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Developmental Cell 420 421 48: 184-199. e185. 422 Chen S, Zhou Y, Chen Y, Gu J 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890. 423 424 Chiu Y-L, Shikina S, Yoshioka Y, Shinzato C, Chang C-F 2020. De novo 425 transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. 426 BMC Genomics 21: 1-20. 427 428 Drake JL, et al. 2013. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proceedings of the National Academy of 429 Sciences 110: 3788-3793. 430 431 Ellegren H, Sheldon BC 2008. Genetic basis of fitness differences in natural populations. Nature 452: 169-175. 432 Ellegren H, et al. 2012. The genomic landscape of species divergence in Ficedula 433 434 flycatchers. Nature 491: 756-760. 435 Forrest J, Miller-Rushing AJ. 2010. Toward a synthetic understanding of the role 436 of phenology in ecology and evolution. In: The Royal Society. p. 3101-3112. 437 Fukami H, Omori M, Shimoike K, Hayashibara T, Hatta M 2003. Ecological and 438 genetic aspects of reproductive isolation by different spawning times in corals. Marine Biology 142: 679-684. 439 440 Fuller ZL, et al. 2020. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 369. 441

442 Geraldes A, Basset P, Smith KL, Nachman MW 2011. Higher differentiation

- among subspecies of the house mouse (Mus musculus) in genomic regionswith low recombination. Molecular ecology 20: 4722-4736.
- 445 Guindon S, et al. 2010. New algorithms and methods to estimate maximum-
- 446 likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic447 biology 59: 307-321.
- Guo J, et al. 2018. Oocyte stage-specific effects of MTOR determine granulosa
 cell fate and oocyte quality in mice. Proceedings of the National Academy of
 Sciences 115: E5326-E5333.
- 451 Harrison PL. 2011. Sexual reproduction of scleractinian corals. In. Coral reefs:452 an ecosystem in transition: Springer. p. 59-85.
- 453 Harrison PL, et al. 1984. Mass spawning in tropical reef corals. Science 223:454 1186-1189.
- Hatta M, et al. 1999. Reproductive and genetic evidence for a reticulate
 evolutionary history of mass-spawning corals. Molecular Biology and
 Evolution 16: 1607-1613.
- 458 Hatta M, Matsushima K 2008. Presumed natural hybrids between *Acropora*459 *donei* and *Acropora tenuis*. Galaxea, Journal of Coral Reef Studies 10: 91-91.
- 460 Hayashibara T, Shimoike K 2002. Cryptic species of *Acropora digitifera*. Coral
 461 Reefs 21: 224-225.
- 462 Hayashibara T, et al. 1993. Patterns of coral spawning at Akajima Island,
- 463 Okinawa, Japan. Marine Ecology Progress Series: 253-262.
- 464 Hudson RR, Slatkin M, Maddison WP 1992. Estimation of levels of gene flow465 from DNA sequence data. Genetics 132: 583-589.
- 466 Isomura N, Iwao K, Fukami H 2013. Possible natural hybridization of two
 467 morphologically distinct species of *Acropora* (Cnidaria, Scleractinia) in the
- 468 Pacific: fertilization and larval survival rates. PLoS One 8: e56701.
- 469 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ 2015. The Phyre2
- 470 web portal for protein modeling, prediction and analysis. Nature protocols
- **471** 10: 845-858.

LaFever L, Feoktistov A, Hsu H-J, Drummond-Barbosa D 2010. Specific roles of 472 473 Target of rapamycin in the control of stem cells and their progeny in the 474 Drosophila ovary. Development 137: 2117-2126. 475 Langmead B, Salzberg SL 2012. Fast gapped-read alignment with Bowtie 2. 476 Nature methods 9: 357-359. Levitan DR, et al. 2004. Mechanisms of reproductive isolation among sympatric 477 478 broadcast - spawning corals of the Montastraea annularis species complex. Evolution 58: 308-323. 479 480 Mercier A, Hamel J-F 2010. Synchronized breeding events in sympatric marine 481 invertebrates: role of behavior and fine temporal windows in maintaining reproductive isolation. Behavioral ecology and sociobiology 64: 1749-1765. 482 Mummadisetti MP, Drake JL, Falkowski PG 2021. The spatial network of 483 484 skeletal proteins in a stony coral. Journal of The Royal Society Interface 18: 20200859. 485 Nadeau NJ, et al. 2013. Genome - wide patterns of divergence and gene flow 486 487 across a butterfly radiation. Molecular ecology 22: 814-826. Nakajima Y, Nishikawa A, Iguchi A, Sakai K 2012. The population genetic 488 approach delineates the species boundary of reproductively isolated 489 490 corymbose acroporid corals. Mol Phylogenet Evol 63: 527-531. doi: 10.1016/j.ympev.2012.01.006 491 492 Ohki S, Kowalski RK, Kitanobo S, Morita M 2015. Changes in spawning time led 493 to the speciation of the broadcast spawning corals Acropora digitifera and 494 the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs 34: 1189-1198. doi: 10.1007/s00338-015-1337-4 495 Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ 2014. PopGenome: 496 an efficient Swiss army knife for population genomic analyses in R. 497 Molecular Biology and Evolution 31: 1929-1936. 498 499 Poelstra JW, et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344: 1410-1414. 500 Ramos-Silva P, et al. 2013. The skeletal proteome of the coral Acropora 501 502 *millepora*: the evolution of calcification by co-option and domain shuffling. Molecular Biology and Evolution 30: 2099-2112. 503

504 Shikina S, Chang C-F. 2016. Sexual reproduction in stony corals and insight into

- the evolution of oogenesis in Cnidaria. In. The Cnidaria, past, present andfuture: Springer. p. 249-268.
- 507 Shinzato C, et al. 2021. Eighteen coral genomes reveal the evolutionary origin of
 508 Acropora strategies to accommodate environmental changes. Molecular
 509 Di la contecta de la contecta
- 509Biology and Evolution 38: 16-30.
- 510 Shinzato C, et al. 2011. Using the *Acropora digitifera* genome to understand
 511 coral responses to environmental change. Nature 476: 320-323. doi:
- **512** 10.1038/nature10249
- 513 Shlesinger T, Loya Y 2019. Breakdown in spawning synchrony: A silent threat to514 coral persistence. Science 365: 1002-1007.
- 515 Smith EG, et al. 2022. Signatures of selection underpinning rapid coral
- adaptation to the world's warmest reefs. Science advances 8: eabl7287.
- 517 Suzuki G, et al. 2020. Enhancing coral larval supply and seedling production
- using a special bundle collection system "coral larval cradle" for large scale coral restoration. Restoration Ecology 28: 1172-1182.
- 520 Tafur L, et al. 2022. Cryo-EM structure of the SEA complex. Nature: 1-6.
- 521 Tambutté E, Ganot P, Venn AA, Tambutté S 2021. A role for primary cilia in
 522 coral calcification? Cell and Tissue Research 383: 1093-1102.
- 523 Todd PA 2008. Morphological plasticity in scleractinian corals. Biological524 reviews 83: 315-337.
- 525 Tomczyk S, et al. 2020. Deficient autophagy in epithelial stem cells drives aging
 526 in the freshwater cnidarian Hydra. Development 147: dev177840.
- 527 Turner TL, Hahn MW, Nuzhdin SV 2005. Genomic islands of speciation in
 528 Anopheles gambiae. PLoS biology 3: e285.

529 Valenstein ML, et al. 2022. Structure of the nutrient-sensing hub GATOR2.530 Nature 607: 610-616.

- 531 van Werven FJ, Amon A 2011. Regulation of entry into gametogenesis.
- 532 Philosophical Transactions of the Royal Society B: Biological Sciences 366:533 3521-3531.
- 534 Veron JEN. 2000. Corals of the World. Townsville, Australia: Australian535 Institute of Marine Science.

536 Voolstra CR, et al. 2015. The ReFuGe 2020 Consortium—using "omics"

- approaches to explore the adaptability and resilience of coral holobionts toenvironmental change. Frontiers in Marine Science: 68.
- 539 Wallace C. 1999. Staghorn corals of the world: a revision of the genus *Acropora*:540 CSIRO publishing.
- 541 Weeks JP 2010. plink: An R package for linking mixed-format tests using IRT542 based methods. Journal of Statistical Software 35: 1-33.
- 543 Wei Y, et al. 2014. TORC1 regulators Iml1/GATOR1 and GATOR2 control
 544 meiotic entry and oocyte development in Drosophila. Proceedings of the

545 National Academy of Sciences 111: E5670-E5677.

- 546 Weir BS, Cockerham CC 1984. Estimating F-statistics for the analysis of547 population structure. Evolution: 1358-1370.
- 548 Willis B, Babcock R, Harrison PL, Wallace C 1997. Experimental hybridization
- and breeding incompatibilities within the mating systems of mass spawningreef corals. Coral Reefs 16: S53-S65.
- Wolfson RL, et al. 2016. Sestrin2 is a leucine sensor for the mTORC1 pathway.
 Science 351: 43-48.
- 553 Zheng X-F, Schreiber SL 1997. Target of rapamycin proteins and their kinase
 554 activities are required for meiosis. Proceedings of the National Academy of
 555 Sciences 94: 3070-3075.

556

557

558 Figure Legends

- 559 Figure 1. (a) Adult colonies of Acropora digitifera (left) and Acropora sp. 1 (right). (b)
- 560 Sampling locations are shown as dots on the map of Okinawa Island.

- 561 Figure 2. Phylogenetic relationship of Acropora sp. 1 (a) Phylogenetic relationships of 17
- 562 Acropora corals were analyzed based on 885,405 SNPs using the maximum likelihood method
- 563 with the GTR option. Bootstrap support, shown next to each node for each clade, was obtained
- from 1,000 replicates. (b) PC1 and PC2 were derived from PCA based on SNPs for all individuals
- of *A. digitifera*, *Acropora* sp. 1, and three *Acropora* species as an out-group.
- 566 Figure 3. The genome-wide pattern of genetic differences between the two species. (a)
- 567 Genome-wide FST values were calculated in overlapping windows of 10 kb. The red line
- indicates the top 0.1% of values. (b) FST was estimated across a region of scaffold 48
- 569 (adig_s0048). The red line indicates the top 0.1% of values. (c) A close-up view of
- 570 predicted gene structures on an HDR in scaffold 48 (adig_s0048). The flanking gene
- 571 structure of WDR59 (Gene ID: adig_s0048.g28) and guanine nucleotide-binding protein
- 572 G(o) subunit alpha (Gene ID: adig_s0048.g29) are indicated.
- 573 Figure 4. Schematic representation of a hypothesis proposed in this study. Regulation of
- 574 mTORC1 by GATOR2 and components of GATOR2 is based on previous studies (Bar-
- 575 Peled, et al. 2013; Valenstein, et al. 2022; Wei, et al. 2014). An Acropora sp. 1-specific
- 576 mutation in the WDR59 / WDR24 interaction region is indicated with a blue circle.