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ABSTRACT  

Long considered as transcriptional noise, long non-coding RNAs (lncRNAs) are emerging as central, 

regulatory molecules in a multitude of eukaryotic species, from plants to animals to fungi. Yet, our 

knowledge about the occurrence of these molecules in the marine environment, namely in planktonic 

protists, is still elusive. To fill this gap of knowledge we developed LncPlankton v1.0, which is the first 

comprehensive database of marine plankton lncRNAs. By integrating the predictions derived from ten 

distinctive coding potential prediction tools in a majority voting setting, we identified 2,210,359 

lncRNAs distributed across 414 marine plankton species from over nine different phyla. A user-

friendly, open-access web interface for the exploration of the database was implemented 

(https://www.lncplankton.bio.ens.psl.eu/). We believe LncPlankton v1.0 will serve as a rich resource 

for studies of lncRNAs that will contribute to small- and large-scale analyses in a wide range of marine 

plankton species and allow comparative analysis well beyond the marine environment. 
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INTRODUCTION 

Often referred to as the “dark matter” of genomes, the non-protein coding DNA portion of eukaryotic 

genomes has, in the last decade, been shown to be much bigger than what could have been 

anticipated. Furthermore, with the advent of deep sequencing it has become clear that genomes are 

pervasively transcribed and that the non-coding fraction generates huge amounts of transcripts that 

cannot be accounted for as simple “junk” or transcriptional noise (1). Among this non-coding fraction, 

long noncoding RNAs (lncRNAs) represent the most abundant and prevalent class (2, 3). LncRNAs 

are arbitrarily defined as transcripts of more than 200 nucleotides (nt) in length that lack consensual 

open reading frames (2). Like mRNAs, lncRNAs are largely polyadenylated, capped and processed (2, 

3). However, besides their lack of protein coding potential, lncRNAs exhibit certain characteristics that 

distinguish them from mRNAs. These include a low GC content, low number of exons, short 

sequence length, low sequence conservation, and low expression levels (4). In terms of function, 

lncRNAs have been shown to play important regulatory roles in various biological processes and 

diseases, namely cancers, which involve the control of epigenetic modifications as well as gene and 

protein expression regulation (1, 3). 

With the booming of high-throughput sequencing techniques and the exponential rise of 

transcriptomics data in public repositories, several databases dedicated to lncRNAs have been 

developed. Some are exclusively devoted to human lncRNAs, like GeneCaRNA (5), and LNCipedia 

(6), while other databases have grouped together a significant number of lncRNAs coming from 

photosynthetic organisms such as CANTATAdb (7) and GREENC v.2 (8). The NONCODE knowledge 

database v6.0 on the other hand compiled lncRNAs from 39 species including 16 animals and 23 

plants (9) and the RNAcentral catalogue is an extensive database of lncRNA sequences from a broad 

range of organisms (10). Despite such extensive work on the identification of lncRNAs in animals and 

plants, the ocean remains largely unexplored. To fill this gap of knowledge, our study took advantage 

of the publicly available transcriptomic data originating from more than 400 marine protists from the 

Marine Microbial Eukaryote Transcriptome Sequencing Project MMETSP (11), to perform a thorough 

screening to identify and annotate lncRNAs in marine plankton. In order to do this, a computational 

pipeline using a majority voting-based ensemble learning technique was developed and applied. The 

objective was to increase the reliability and promote the diversity of the ensemble model. Furthermore, 

a joint prediction is likely to behave better than any single model as recommended by Duan Y. et al. 

(12), and likely obtain higher cross-species prediction performance (13). In order to use the strength 

of multiple classifiers and to enhance their performance, several ensemble methods have been 

developed in recent years, such as TLClnc (13), which combined a stacking of SVM predictors and a 

naïve Bayes classifier. Conversely, Simopoulos et al. (14) proposed a prediction method based on the 

stochastic gradient boosting of random forest classifiers, and LncRNApred (15) proposes a method 

using hybrid features. To promote the reliability of the results, CRlncRC (16) was developed on the 

basis of five machine learning models including Random Forest (RF), Naïve Bayes (NB), Support 

Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN), to predict cancer-
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related lncRNAs. In our study, we combined ten coding potential prediction classifiers (see 

Supplementary Table S1) into a single meta-learner. The selected tools used different AI algorithms, 

provided models pre-trained with diverse fine-tuned features, were non-species specific and achieved 

good performance within a reasonable runtime. Furthermore, two tools considering full and partial 

sequence length were included, mRNN (17) and LncADeep (18). In addition, the tools selected 

presented a good usability score, which is based on ease-of-use in installation and running of the tool 

as described in (19). Briefly, each transcript was predicted by each classifier and labelled as “Coding” 

or “Noncoding”, and the class with the highest number of votes was the outcome. Several filters were 

applied on the “Noncoding” set to discriminate between lncRNAs and sncRNAs. 

The predicted lncRNAs and their annotations, including the nucleotide sequence, the encoded ORF(s), 

the folding energy, and the predicted secondary structure were organized and stored in a database, 

LncPlankton, with the aim to update it periodically on the basis of new knowledge and a potential 

expansion in the number of planktonic species screened. A user-friendly, open-access web interface 

for the exploration of the database was also implemented (https://www.lncplankton.bio.ens.psl.eu/). 

The user interface provides modules for browsing, searching, and downloading lncRNA data per 

species and/or per phylum, as well as interactive graphs, and an online BLAST service. Additionally, a 

SHINY application was integrated which allows the user to customize and visualize the classifications. 

With this user-friendly interface, we anticipate that LncPlankton will provide a rich source of 

information about lncRNAs for small-and large-scale studies in a variety of plankton taxa and 

contribute significantly to future efforts aimed at deciphering the biology and evolution of lncRNAs in 

diverse eukaryotic lineages.     

 

MATERIAL AND METHODS 

Data sources 

In the current version of LncPlankton (version 1.0), transcriptomic data of 406 marine micro-planktonic 

species derived from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) 

(11) were used. The most represented phylum is Bacillariophyta (diatoms), to which we have 

additionally added the transcriptomes of six other cosmopolitan diatom genera, originally not included 

in the MMETSP project. Furthermore, the transcriptomes of the two reference diatom species, 

Phaeodactylum tricornutum (20) and Thalasiossira pseudonana (21), were also included and 

assembled using an in-house assembly pipeline (Figure S1). Taken together the transcriptomes 

screened covered > 9 phyla (Figure 1A). In total, 11,623,179 contigs were obtained across 414 

species, almost half of which belonging to the Dinophyta and Bacillariophyta groups, with 3.4 and 2.4 

million contigs, respectively (Figure 1A). The average contig length varied between 593nt (Dinophyta) 

and 949nt (Cercozoa) with a median = 651nt across all species (Figure 1B).  

Data analysis pipeline 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565479doi: bioRxiv preprint 

https://www.lncplankton.bio.ens.psl.eu/
https://doi.org/10.1101/2023.11.03.565479
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

The assembled transcriptomes (in a FASTA format) provided by the MMETSP project (11) were 

screened for the prediction and identification of lncRNA-like transcripts, in each species, using the 

majority voting-based procedure inspired by the ensemble machine learning methods. The aim was to 

increase the reliability and promote the diversity of the ensemble model by combining all the 

predictions from multiple models. To achieve that, 10 protein coding potential prediction tools were 

selected and used in the pipeline. Each tool used a different algorithm and different training features, 

and may produce a different classification result. Aggregating those different techniques in a majority 

setting led to a single prediction representing the group‟s consensus. We believe that such a hybrid 

technique leads to more reliable results and acceptable performance. 

We selected the 10 tools according to the following criteria: i) the tools must use a different AI 

approach: among the 10 tools, 3 used a SVM-based model CPC2 (22), LncFinder (23), and longdist 

(24), 2 were based on XGBOOST LncDC (25) and RNAmining (26); 2 on maximum likelihood 

estimation MLE, and logistic regression LGC (27) and CPAT (28), respectively; and 3 other tools were 

based on deep learning approaches with different intrinsic architectures; convolutional neural network 

CNN in RNASamba (29), Recurrent neural network RNN in mRNN (17), and deep belief network DBN 

in LncADeep (18); ii) the tools must provide pre-trained models with diverse fine-tuned classification 

features; and iii) the tools should achieve good performance, particularly for cross-species prediction 

within a reasonable ease-to-use score according to the usability score defined in (19). In addition, the 

tools should accept sequences presented in a FASTA format. The tools selected and the key 

characteristics of each of them are summarized in supplementary Table S1.    
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Figure 1. Data used in LncPlankton v1.0. (A) The distribution of the number of species and the 

number of assembled contigs across the different phyla; the number of contigs is displayed in millions 

and reported on the right scale y-axis of the graph and (B) The density distribution of the scaled log2 

contig length across phyla, the dotted vertical lines denotes the median length.  

 

The selected tools were applied using their default parameters and their default pre-trained 

classification models. The Python package ezLncPred (V.1.0) (30) was used to run the following tools: 

CPC2, CPAT (-p Human), LGC and longdist. The remaining tools were run using an in-house script 

with the following parameters: LncADeep (-MODE lncRNA, and the coding potential probability of a 
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transcript was calculated as the mean of probabilities generated by the 21 intrinsic models of the 

algorithm), lncFinder (svm.model="human"), mRNN (mRNN_ensemble which used the weighted 

average prediction of the five best single mRNN models), RNAmining (-organism_name 

Homo_sapiens), and RNASamba (Full and partial weighted models were included). The FASTA files 

containing the sequence contigs were used as an input to the pipeline displayed in (Figure 2). 

Basically, a transcript sequence was inputted to each tool which predicted both the forward and the 

reverse strand, and labelled them as “Coding-like” or “NonCoding-like”. A transcript was considered 

as “NonCoding-like” within a single tool only if both strands were labelled “NonCoding-like”, otherwise 

it was assigned the “Coding-like” label. For the assembly of the two species Phaeodactylum 

tricornutum and Thalasiossira pseudonana, stranded libraries were used, thus only the forward strand 

was assessed.  The majority label output from all the tools was considered as the final coding 

potential class. Alongside the majority class, a non-coding potential score was calculated as the 

number of tools labelling the transcript as “NonCoding-like” divided by 10. This score was used to 

calculate the reliability (confidence level) of the lncRNA transcripts identified. The transcripts with 

significant hits in either the Pfam (V.35.0) or SwissProt (V.2023.01) databases were filtered out. A 

series of stringent filters was then applied to the “NonCoding-like” transcript sequences to classify 

them as long noncoding RNAs “lncRNAs” or small noncoding RNAs “sncRNAs” on the basis of 

transcript length and peptide length information. 

 

Figure 2. Overview of the majority voting-based pipeline for the prediction of lncRNAs. The 10 tools 

included in the procedure are displayed on the right panel. 
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Evaluation of the performance of the majority voting-based procedure 

The majority voting-based pipeline was tested on different sets of coding and non-coding datasets 

related to 18 different organism species and compared to the state-of-the-art coding potential 

prediction tools. Each tested dataset was independent of the training sets used in the construction of 

the pre-trained classification models related to each method. Among the 18 organisms tested, 10 

datasets were perfectly balanced, containing the same number of coding and non-coding RNA 

transcripts. Furthermore, in order to test the robustness of the tools towards biased datasets, 7 highly 

imbalanced testing sets were considered. The description of the tested datasets is provided in the 

supplementary data (Table S2).  

Each tool was applied to each tested dataset to predict the classes of the transcripts. The default 

parameters and pre-trained models were used for each tool. Tool outputs were parsed and analysed 

with custom R scripts. A cross-tabulation of observed and predicted classes was generated, and the 

performance metrics including the accuracy, sensitivity, and specificity were calculated using the 

“confusionMatrix” method of the caret package (https://CRAN.R-project.org/package=caret). The 

Receiver operating characteristic (ROC) curve as well as its AUC (Area under the curve) value was 

also computed using the ROCR package (http://rocr.bioinf.mpi-sb.mpg.de). All tested tools considered 

coding transcripts as positive and non-coding transcripts as negative sets. 

 

Architecture of the database  

The 3-tier client/server architecture model containing data, logic, and presentation layers has been 

implemented for LncPlankton as shown in (Figure 3A). The data layer represents the data storage 

part which is handled by a relational database (Figure 3B) setup with the popular MySQL (version 

5.7.36) open-source relational database management system (RDBMS). The data layer is expanded 

with NoSQL file storage. The logic layer represents the core of the architecture, and is responsible for 

the communication between the user queries from the presentation layer, fetching the data from the 

data layer, processing the data, and formatting the response to the presentation layer. The JSON-

based (JavaScript Object Notation) data structure is mainly the most used format. In addition, the 

logic layer is integrated with the followings components:   

 A BLAST program implemented via the interface rBLAST 

(https://github.com/mhahsler/rBLAST) for online similarity search, 

 A RNAfold program implemented via the package LncFinder (23) and RNAPlot implemented 

via the package RRNA (31) for the calculation and the visualization of secondary structure,  

 ORFfinder implemented via LncFinder (23) for the exploration of lncRNA containing sORFs, 

and seqinr package (https://github.com/cran/seqinr) for the translation to peptide sequences.  

Those functionalities were provided via an express REST API web service implemented using the R 

package Plumber (https://github.com/rstudio/plumber). A Shiny server function was also developed 
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and was integrated into the logic layer. This function processes the request of the shiny prediction app 

from the presentation layer and uses the static part of the data layer in addition to the SQL part. The 

presentation layer contains several modules based on AJAX (Asynchronous JavaScript and XML), 

jQuery (JavaScript Query system version 3.5.1), and the PHP server-side scripting language (version 

7.1.26), as well as the CSS (Cascading Style Sheets) code to describe how HTML elements are to be 

displayed on user side web interface. JQuery and AJAX provide methods to perform asynchronous 

call requests to the logic tier using GET and POST methods, parsing the JSON response, and 

dynamically rendering the browser display.  

The Web server is hosted on an Ubuntu (22.04.3 LTS) operating system using an Apache (version 

2.4.52) web server. The user interface was tested and is functional across major web browsers 

including Chrome, Safari, and Firefox on Linux, Mac, Android, and Windows platforms. All graphs are 

generated dynamically using the open-source Chart.js library (version 3.5), and plotly R library 

(version 4.10.0).   

 

Figure 3. Schema of the Web/Database system of LncPlankton. (A) A detailed 3-tier architecture 

implemented in LncPankton; (B) The mySQL relational database scheme of LncPlankton containing 

three main tables: transcript, species, and phylum 

 

Implementation of the prediction application 

The shiny application was built in R (V.4.3.1) using the shiny framework. The app currently depends 

on the following R packages: shiny, shinyWidgets, reshape2, wesanderson, dplyr, ggplot2, ggthemes, 

tidyverse, ggrepel, shinybusy, shinyjs, DT, plotly, leaflet, and RMySQL. 
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RESULTS 

Performance of the majority voting algorithm 

We compared the performance of the proposed majority voting-based method with the ten tools 

selected individually (Supplementary Table S1). We used as input all coding and non-coding RNA 

sequences from the testing datasets of the 18 species described in Supplementary Table S2. Our 

method showed the highest mean accuracy across all the datasets with a mean = 0.95 (Figure 4A), 

and low inter-dataset variability (variance: 0.0014). At the species level, our method outperforms the 

other tools in seven organisms, and performs well in cases where the other tools presented poor 

performances; for example, for Homo sapiens the majority voting procedure yields an accuracy of 

0.95 while longdist and RNAmining yield only 0.56 and 0.54, respectively. For the remaining 

organisms, our method gets approximately the same accuracy as the other tools (Supplementary 

Table S3).  

In addition, our method showed comparable AUC performance (AUC: 0.92-1.00) with the best 

performing coding potential methods like CPAT and CPC2 (Figure 4C). Among the 18 datasets tested, 

our method showed the highest AUC score in 13 datasets (Supplementary Table 6). The AUC values 

obtained by our method for the 18 organisms are shown in Figure 4B. 

The detailed results regarding the accuracy, the sensitivity, the specificity, and the AUC of all the tools 

can be found in Supplementary Tables S3, S4, S5, and S6, respectively. 
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Figure 4. Benchmarking of ten coding potential prediction methods and the majority voting-based 

procedure using 18 independent testing sets. (A) Distribution of the accuracy across the 11 methods 

tested; the majority voting method on the last column showed the highest mean accuracy with a small 

variability; (B) ROC curves of the majority voting-based procedure on the 18 datasets tested, the AUC 

values corresponding to the curves are also reported; and (C) Distribution of the AUC scores obtained 

by each method on the 18 datasets. 

 

Data content of LncPlankton V1.0  

Data in the current version of LncPlankton v1.0 was based on transcriptomic datasets from 414 

planktonic species ranging from the Cercozoa, representing 3.6% of the total number of species 

screened, to the most abundant phylum Bacillariophyta, with 24.4% (Figure 1A). Using a majority 

voting-based method combining the 10 coding potential tools with strict prediction criteria (Figure 2), 

2,210,359 lncRNA transcripts were identified from an input set of 11,623,179 transcripts. Among them, 

239,116 were predicted as non-coding by all the tools and have a non-coding potential score = 1, we 
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dubbed them “high-confidence lncRNAs” as their non-coding potential status was indisputable (Figure 

5A). The distribution of the predicted lncRNA transcripts across the groups is shown in Figure 5B. 

More than 45% of the total lncRNA transcripts identified belong to the 2 most abundant groups, the 

Dinophyta (531,029 lncRNAs, 24.1%) and the Bacillariophyta (482,473 lncRNAs, 21.8%). At the 

species level, the highest percentage of lncRNAs were identified in the dinoflagellate Karenia brevis 

Wilson (23,686 lncRNAs, 1.1%) followed by the diatom Fragilariopsis kerguelensis (21,011 lncRNAs, 

1%), while the lowest in the Rhizarian Minchinia chitonis (83 lncRNAs, 0.003%) and the dinoflagellate 

Thoracosphaera heimii (with only 10 lncRNAs) (see Supplementary Table S7).  

     

 

Figure 5. The current content of LncPlankton v1.0. (A) Summary statistics of the content of the 

database, and (B) The percentage of transcripts predicted as lncRNA-like by the majority voting 

pipeline distributed across phyla.  

 

Functional modules of LncPlankton V1.0 

LncPlankton v1.0 provides a very useful user interface (UI) accessible from the browser. The UI offers 

various ways to browse and search lncRNA resources (Figure 6). Furthermore, users can download 

the data deposited in LncPlankton v1.0 in FTP bulk or programmatically through dedicated APIs. 

Search per species. The current release of LncPlankton allows querying a given species to explore 

the content of its transcriptome. The user is required to select a phylum and a species from drop-

down lists. A page will then appear (Figure 6B) displaying a summary table with the number of 
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transcripts classified as lncRNA-like, sncRNA-like, and Coding-like by the majority voting procedure 

described above. A pie chart reporting the percentage of lncRNAs found is also displayed. The user 

can also visualize the distribution of lncRNA features such as transcript length, peptide length, GC 

content and Fickett score. Additionally, all the information about the lncRNAs found for the selected 

species are reported in a table with one row per lncRNA. The presented data include lncRNA id, 

length, peptide length (if any), Fickett score, iso-electric point, longest ORF length (if any), coverage 

ORF (if any), GC content, class determined by the pipeline above, and the probability of coding 

potential generated by the majority voting procedure. To get access to more information on the 

selected lncRNA the user can click upon the „More...‟ button in the last column of the table.  

lncRNA details webpage. The detailed information about the lncRNA selected is displayed on this 

page (Figure 6C). In addition to the basic details of lncRNA sequence (including phylum/group, 

species name, length, GC content, the majority voting probability, and the confidence level), the page 

displays the ORFs and conceptual translation products of the sequence, alongside with the length of 

ORFs detected, their coverage information, and the length of the translated peptides. Furthermore, 

the page shows the one-dimensional dot-bracket notation and the two-dimensional rendering 

secondary structure of the lncRNA. The Minimum Free Energy (MFE) of the structure folding was also 

calculated by the RNAfold tool (V.2.5.1) and displayed. A “save” button was added to allow the user to 

download and save the structure.    

lncRNA prediction app. The lncRNA content of the current release of LncPlankton was generated 

using the majority voting-based procedure described above. To allow the user to customize their 

predictions, for example using a preferred coding potential prediction tool, and/or to modify the cut-off 

value of the filters, a SHINY application was developed and embedded to the UI. The application 

contains two panels (Figure 6A): i- The input panel in which the user can select the phylum, the 

species, and the coding potential tool from dedicated drop-down lists. Other inputs can be set by the 

user such as the transcript length, the peptide length, and whether or not to include the reverse strand 

in the prediction. The input panel offers also the possibility to select the manner in which the result will 

be displayed, namely as a histogram, polar plot, table, or map (with the sampling location coordinates 

of the selected species); ii- The output panel, which renders the results and displays it according to 

the choice of the user. All the figures and tables generated can be optionally downloaded and saved. 

The output panel was implemented using the plotly package (V4.10.1). 

BLAST module. The user can perform a sequence-based search of data stored in LncPlankton using 

BLAST (Figure 6D). The input sequence should be in a FASTA format; and the user can select 

between two tools, BLASTN and MEGABLAST. Except for the expectation value (E-value) and the 

number of target hit sequences which can be selected in dedicated drop-down lists, the default 

arguments were used. The BLAST search outputs a raw report which includes pairwise alignment, 

BLAST hits based upon alignment scores and other measures of statistical significance. To 
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interactively display the BLAST result, a viewer module was implemented using the BlasterJS library 

(32), and was integrated to LncPlankton (Figure 6E).  

Download. Both the full and the high-confidence collections of lncPlankton can be found on the 

download page. The lncRNA collections related to each species can also be downloaded in a FASTA 

format separately. In addition, the majority voting R package used for the prediction can be retrieved 

from this page. 

API. A representational state transfer application programming interface (REST-API) was 

implemented using the plumber package, and made available to allow programmers to interface with 

LncPlankton programmatically. The API returns documents in the JSON format and can be used in 

any programming language. In the current version of LncPlankton, three APIs were implemented and 

documented to access and use data:  

 GET /lncRNA_details: information about lncRNA transcript including: sequence length, 

peptide length, reliability (confidence calculated by the majority voting-based procedure), GC 

content, ORF coverage, MFE, Fickett score, isoelectric point, nucleotide sequence, peptide 

sequence.   

 GET /search_per_species: detailed information about species including the number and the 

percentage of transcript predicted. 

 GET /search_per_phylum: detailed information about phylum including number of species, 

and statistics about the prediction of the transcriptomes of the species.  
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Figure 6. Screenshots of LncPlankton web interface and modules. (A) Interface of the LncPlankton 

prediction application. (B) Results page showing the content of the transcriptome of the diatom 

species Amphiprora paludosa. A table showing the features of all the lncRNAs predicted by the 

majority voting procedure was also displayed. (C) A page showing the detailed information on a 

predicted lncRNA including the secondary structure of the transcript (D) Online BLAST module and 

visual output in the LncPlankton database. Users can run blast against plankton lncRNAs by 

submitting the sequence in FASTA format, and then the result is displayed in text format. (E) The 

alignment result can be visualized in a more convenient way thanks to the BlasterJS module. 

 

DISCUSSION AND FUTURE DIRECTIONS  

Determining the coding potential of a transcript is a crucial step in the identification of lncRNAs, yet it 

represents a complex task due to overlapping characteristics and functions that exist between coding 

and noncoding RNAs (33). To overcome this challenge, many computational methods have been 

developed. The majority of tools use features derived from the nucleotide sequence of the transcript 
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such as the Fickett score, GC content, and kmer composition. Some of the tools like lncFinder use 

secondary structure properties to try to improve the discrimination between non-coding RNAs and 

coding RNAs. Despite the good performances reported in many studies for those tools, they generate 

a significant number of false positives and false negatives (7), and their reliability is questionable, 

which introduces uncertainty to the findings. As reported in the supplementary data (Figure S2), the 

lncRNA content of the LncPlankton database varies according to the coding potential prediction tool 

used; for instances only 7.73% of the transcripts of the MMETSP datasets were predicted as lncRNAs 

when using mRNN but this number reached 33.64% with LGC. Such difference in findings is 

inevitably caused by the intrinsic algorithms used by each method, the training set, and the fine-tuned 

learning features and parameters (see supplementary Table S1). In our pipeline, we opted for the use 

of a combination of multiple tools in a majority voting setting, inspired from the ensemble method 

technique used in machine learning. With this approach, 19% of the whole planktonic transcriptomes 

surveyed in this study was labelled as “lncRNAs”.  

 

The choice of the coding potential prediction tool is not trivial and in most cases the criteria of 

evaluating these tools was based on the accuracy, sensitivity, specificity, and the computational time, 

but nothing has been reported about the reliability. In our case, the reliability of a predicted lncRNA 

transcript was calculated as the number of tools labelling the transcript as lncRNAs and dividing by 10, 

the total number of used tools. Therefore, a non-coding score value closer to 1 denotes a higher 

reliability. The density of this score, calculated on the lncRNAs found by our pipeline and distributed 

across groups shows high density at 0.6 and 0.7, decreasing at higher score values (Supplementary 

Figure S3). A significant part of lncRNAs found have a medium reliability of 0.6 or 0.7, meaning that 

at least 6 or 7 tools have predicted them as lncRNAs. A less significant number of lncRNAs have a 

score = 1 (239,116, ~10,8% of the predicted lncRNAs), which means all the tools agreed that those 

transcripts are indeed lncRNAs. We called these high confidence lncRNAs. The remaining lncRNAs 

found have a good reliability with a score ranging between 0.8 and 0.9.     

Regarding the filters introduced in our pipeline to discriminate lncRNA from other transcripts, default 

values were used for the transcript length (= 200nt), and the putative peptide length (= 100aa). 

Regarding peptide length, 1,475,973 lncRNA-like having predicted peptides > 3aa long which 

represent ~ 67% of the total identified lncRNAs. Since lncRNAs are likely to possess ORFs purely by 

chance, discarding any transcripts containing ORFs would result in losing a significant number of true 

lncRNAs. Although this value has no fixed limit, the user can customize it in the SHINY prediction 

application developed and integrated to the LncPlankton user interface. 

As part of our pipeline, we used a meta-learner combining multiple and diverse protein coding 

potential tools. We assessed the performance of our meta-learner using gold standard metrics such 

as the accuracy and AUC-ROC, and compared to each single tool. Overall, our method showed 

similar performance to the top performing coding potential tools, and it maintained a good 

performance in challenging cases in which some tools found difficulties to discriminate coding from 
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non-coding transcripts. For highly imbalanced datasets like B_taurus, X_tropicalis, and M_mulatta 

which have a 1:72, 1:32, and 1:22 ratio of the number of coding to non-coding instances, some tools 

performed poorly longdist and RNAmining, while our method preserved a high accuracy meaning that 

our method is not impacted by the imbalancedness between coding and non-coding classes. The 

following aspects supported our choice to use the meta-learner proposed: i) the meta-learner used 

diverse and heterogeneous models covering a broad range of species since each model related to 

each tool was trained using transcripts of different species. Therefore, we believe that our method is a 

suitable choice for cross-species prediction; ii) our method achieved the highest accuracy. There are 

two reasons why the meta-learner outperforms others. First, our method benefited from the ensemble 

method principle since it combined multiple single tools. Second, the method integrated information 

from different types of features to enhance lncRNA prediction performances; iii) our method is robust 

showing a low variability of the prediction across the different testing datasets; iv) our method 

promotes the diversity which is coming from the different mathematics and algorithms used by each 

single tool, and fine-tuned features and parameters. Indeed, by pooling all the tools together, our 

method allowed an in-depth analysis of the transcripts by using all possible features describing the 

sequences; v) the reliability of the prediction in our method can be measured by the non-coding 

potential probability of the ensemble. It reflects the agreement of the tools to recognize the correct 

class of a transcript. In our method, we set the threshold to a value = 0.6 i.e. if at least 6 out of 10 

tools recognized a transcript as non-coding RNA, it is more likely to be a non-coding RNA than a 

coding RNA. Increasing this threshold to 1 means that all the tools recognize it as a non-coding RNA. 

We believe the majority voting tool offers us a reliable choice for lncRNA identification, beyond what a 

single tool can offer at the moment. 

We collected all the reliable lncRNAs predicted by our pipeline and their information, and stored them 

in a MySQL database termed LncPlankton. Many databases of lncRNAs have been implemented in 

the past few years but most of them are dedicated to humans, vertebrates and plants. To date, no 

other database of this scale collecting non-coding transcripts on planktonic organisms, with 

representatives from the major branches of the eukaryotic tree of life, has been developed. Although 

a few algal species have been included in plant lncRNA databases: 6 algae in GreenC (8), and 3      

algae in Cantatadb (7), no database was completely dedicated to lncRNA in planktonic species. 

Compared with other lncRNA databases, the lncRNA transcripts of LncPlankton were predicted using 

the majority voting pipeline with stringent filters making them more reliable than what we could get 

with other pipelines using a single coding potential prediction tool.                                                                        

Similar to other lncRNA databases, LncPlankton v1.0 includes all the basic information of a given 

lncRNA including the nucleotide sequence, the longest ORF sequence, and the predicted secondary 

structure. Two missing features of lncRNA recorded in LncPlankton v1.0 are the genomic coordinates 

(the start and stop position, and the strand information), and the expression profiles. This is due to the 

lack of an annotated genome for the species surveyed (11). In addition to the regular update of the 

database, the following future developments will be considered: i) the genomic coordinates of 
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lncRNAs will be incorporated to further classify the lncRNAs identified as long intergenic ncRNAs 

(lincRNAs), intronic-lncRNAs, or antisense as this information becomes available; ii) the expression 

patterns can be integrated for the functional study of lncRNAs identified; iii) even if lncRNAs do not 

show high conservation at the nucleotide level, a sequence clustering using Orthofinder algorithm will 

be performed to provide information about highly conserved lncRNAs; iv) given that lncRNAs of 

related functions often share similar short motif profiles, we will use a kmer-based approach called 

SEEKR proposed in (34) to quantify the nonlinear sequence homology and the evolutionary 

relationships between the lncRNAs predicted in LncPlankton. 

In addition, the UI will be improved accordingly by adding a submit page to the LncPlankton interface 

to enhance the interaction between the research community and the database, and to encourage all 

scientists to supply their own assembled contig data. All submitted entries will be processed by our 

procedure described in Materials and Methods. 

 

AVAILABILITY 

The package of the majority voting procedure was implemented in R, and can be downloaded on 

LncPlankton website at https://www.lncplankton.bio.ens.psl.eu/files/tools/majorityLNC.tar.gz.The 

source code can be found at https://gitlab.com/a5076/majorityLNC. The database is freely available 

without restrictions for use by academics and non-commercial researchers. The web server is publicly 

available at https://www.lncplankton.bio.ens.psl.eu/. Inquiries concerning the database may be 

directed to debit@bio.ens.psl.eu or cruz@biologie.ens.fr. 

 

SUPPLEMENTARY DATA 

Supplementary Data are available at bioRxiv online. 
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